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Abstract. Neural language representation models such as BERT, pre-
trained on large-scale unstructured corpora lack explicit grounding to
real-world commonsense knowledge and are often unable to remember
facts required for reasoning and inference. Natural Language Inference
(NLI) is a challenging reasoning task that relies on common human un-
derstanding of language and real-world commonsense knowledge. We
introduce a new model for NLI called External Knowledge Enhanced
BERT (ExBERT), to enrich the contextual representation with real-
world commonsense knowledge from external knowledge sources and en-
hance BERT’s language understanding and reasoning capabilities. ExBERT
takes full advantage of contextual word representations obtained from
BERT and employs them to retrieve relevant external knowledge from
knowledge graphs and to encode the retrieved external knowledge. Our
model adaptively incorporates the external knowledge context required
for reasoning over the inputs. Extensive experiments on the challenging
SciTail and SNLI benchmarks demonstrate the effectiveness of ExBERT:
in comparison to the previous state-of-the-art, we obtain an accuracy of
95.9% on SciTail and 91.5% on SNLI.

Keywords: Natural Language Inference · Contextual Representations.

1 Introduction

Natural Language Inference (NLI), also known as Recognising Textual Entail-
ment, is formulated as a - ‘directional relationship between pairs of text expres-
sions, denoted by T (the entailing “Text”) and H (the entailed “Hypothesis”).
Text T, entails hypothesis H, if humans reading T would typically infer that H
is most likely true.’ [4]. The NLI task definition relies on common human under-
standing of language and real-world commonsense knowledge. NLI is a complex
reasoning task, and NLI models can not rely solely on training data to acquire
all the real-world commonsense knowledge required for reasoning and inference
[3]. For example, consider the premise-hypothesis pair in Table 1, if the training
data do not provide the common knowledge that, (wave RelatedTo crash) and
(crash IsA hit), it will be hard for the NLI model to correctly recognise that the
premise entails the hypothesis.
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Table 1: SNLI premise (P) & hypothesis (H) and commonsense triples (red) from
ConceptNet KG. Commonsense knowledge enrich premise-hypothesis context
and helps the NLI model in reasoning.

P: Four boys are about to be hit by an approaching wave. (wave RelatedTo crash)

H: A giant wave is about to crash on some boys. (crash IsA hit)

Recently, deep pre-trained language representations models (PTLMs) such
as BERT [6] achieved impressive performance improvements on a wide range
of NLP tasks. These models are trained on large amounts of raw text using a
self-supervised language modelling objective. Although pre-trained language rep-
resentations have significantly improved the state-of-the-art on many complex
natural language understanding tasks, they lack grounding to real-world knowl-
edge and are often unable to remember real-world facts when required [14]. In-
vestigations into the learning capabilities of PTLMs reveal that the models fail to
recall facts learned at training time, and do not generalise to rare/unseen entities
[17]. Knowledge probing tests [14] on the commonsense knowledge of Concept-
Net [20] reveal that PTLMs such as BERT have critical limitations when solving
problems involving commonsense knowledge. Hence, infusing external real-world
commonsense knowledge can enhance the language understanding capabilities of
PTLMs and the performance on the complex reasoning tasks such as NLI.

Incorporating external commonsense knowledge into pre-trained NLI mod-
els is challenging. The main challenges are (i) Structured Knowledge Re-
trieval: Given a premise-hypothesis pair how to effectively retrieve specific and
relevant external knowledge from the massive amounts of data in Knowledge
Graphs (KGs). Existing models [3], use heuristics and word surface forms of
premises-hypothesis which may be biased and the retrieved knowledge may not
be contextually relevant for reasoning over premise-hypothesis pair. (ii) En-
coding Retrieved Knowledge: Learning the representations of the retrieved
external knowledge amenable to be fused with deep contextual representations
of premise-hypothesis is challenging. Various KG embedding techniques [22] are
employed to learn these representations. However, while learning, the KG em-
beddings are required to be valid within the individual KG fact and hence might
not be predictive enough for the downstream tasks [22] (iii) Feature Fusion:
How to fuse the learned external knowledge features with the premise-hypothesis
contextual embeddings. This feature fusion requires substantial NLI model adap-
tations with marginal performance gains [3].

To overcome the aforementioned challenges, we propose, ExBERT - an Ex-
ternal knowledge enhanced BERT model which enhances the contextual repre-
sentations of BERT model with external commonsense knowledge to improve
BERT’s real-world grounding and reinforce its reasoning and inference capa-
bilities. ExBERT utilises BERT for learning the contextual representation of
premise-hypothesis as well as the representations of retrieved external knowl-
edge. The aim here is to take full advantage of contextual word representations
obtained from pre-trained language models and the real-world commonsense
knowledge from Knowledge Graphs (KGs).
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The main contributions of this paper are: (i) we devise a new approach,
ExBERT, to incorporate external knowledge in contextual word representations.
(ii) we investigate and demonstrate the feasibility of using contextual word rep-
resentation for encoding external knowledge obviating learning specialised KG
embeddings. To the best of our knowledge, this is the first study of its kind,
indicating a potential future research direction. (iii) we introduce a new external
knowledge retrieval mechanism for NLI that is capable of retrieving fine-grained
contextually relevant external knowledge from KGs.

2 Related Work

Traditional Attention-Based Models do not utilise contextual representa-
tions from PTLMs [7]. KG-Augmented Entailment System (KES) [11] augments
the NLI model with external knowledge encoded using graph convolutional net-
works. Knowledge-based Inference Model (KIM) [3] incorporates lexical-level
knowledge (such as synonym and antonym) into its attention and composition
components. ConSeqNet [23], a system of a text-based model and a graph-based
model, concatenates the output of the two models, to be fed to a classifier. The
AdvEntuRe [10] framework train the decomposable attention model with adver-
sarial training examples generated by incorporating knowledge from linguistic
resources, and with a sequence-to-sequence neural generator. BiCAM models
improve the performance of NLI baselines via the incorporation of knowledge
from the ConcepNet and Aristo Tuple KGs by factorised bilinear pooling [9].

PTLM-Based Models PTLM-based models such as OpenAI GPT [19] and
BERT [6] leverage transfer learning from a large textual corpus and are fine-
tuned on NLI datasets. Specifically, OpenAI GPT pre-trains the Transformer
[21] model in an unsupervised manner with the standard language modelling
objective and fine-tunes the model in a supervised manner for NLI. Semantics-
aware BERT (SemBERT) [25] demonstrated the benefit of enriching the BERT’s
contextual representation with the semantic roles. BERT model has shown to
be robust to adversarial examples when external knowledge is incorporated to
the attention mechanism using simple transformations [15]. The KES [11] model
highlighted above further evaluates their system with BERT contextual embed-
dings in the framework.

3 Methodology

ExBERT architecture is depicted in Fig.1. In this section, we describe the key
components of ExBERT and their detailed implementation including the model
architecture in Section 3.2. We start by describing the contextual representation
based external knowledge retrieval procedure in Section 3.1.

3.1 External Knowledge Retrieval: Selection and Ranking

Retrieval and preparation of contextually specific and relevant information from
knowledge graphs are complex and challenging tasks. The crucial challenge is to
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Fig. 1: A high-level view of ExBERT architecture.

identify the knowledge specific and relevant to the task at hand from the mas-
sive amounts of noisy KG data [1]. Different from the previous approaches that
use word surface forms to retrieve external knowledge, we use the cosine simi-
larity between the contextual representations of premise-hypothesis tokens and
the external knowledge. The external knowledge for the premise and hypoth-
esis is retrieved individually. Below we explain the procedure for the premise.
The same procedure is applied to the hypothesis. The output of external knowl-
edge retrieval is the set of contextually relevant KG triples for the premise and
hypothesis. We divide the external knowledge retrieval process into two parts:
Selection and Ranking.

Selection We first filter the stop words from the premise. Then we retrieve
all the KB triples that contain the tokens of the premise as one of the words
in the head entity of KG triples. For example, for the token “speaking” one of
the retrieved KG fact is “public speaking IsA speaking”. The retrieved triples
are converted to a sentence. For example, the previous triple is transformed into
“public speaking is a speaking”. The selection process retrieves a large number
of KG triples which are not all relevant to the context of the premise. We filter
the selected triples in the ranking step.

Ranking step ranks the selected KG triples according to the contextual sim-
ilarity to the fine-grained context of the premise. Specifically, given the BERT
generated context-aware representation of the premise tokens, we group all the
bigrams of the representations. Each group of the bigram representation is av-
eraged, and the cosine similarity is calculated with the average of the BERT
representation of each of the selected KG triple sentence (created in selection
step). For each bigram, we choose the KG triple sentence with the highest cosine
similarity score. To capture the fine-grained context of the premise, we repeat
the ranking step with the trigrams, fourgrams, and the average of the whole
premise BERT representations and retrieve the KG record with highest cosine
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similarity for each of the grams. Duplicate KG triple sentences are removed form
the final set of retrieved knowledge.

The advantages of our knowledge retrieval mechanism are that it is free
from heuristic biases, requires no feature engineering, and the retrieved external
knowledge is contextually relevant to the fine-grained context of the premise and
hypothesis.

3.2 Model Architecture

BERT Encoding Layer This layer uses the BERT encoder to learn the context-
aware representations of premise-hypothesis and the set of retrieved external
knowledge.

Specifically, given premise P = {pi}ni=1, hypothesis H = {hj}mj=1, and the

set of external knowledge EXT = {{er}lr=1}k, where r is the number of tokens
in the external knowledge and k is the number of retrieved external knowledge.
For encoding the premise and hypothesis, we input P and H to BERT in the
following form

S = [〈CLS〉, P, 〈SEP〉, H, 〈SEP〉] (1)

H = BERT(S) ∈ R(n+m+3)×h (2)

where 〈SEP〉 is the token separating P and H, 〈CLS〉 is the classification
token, and h is the dimension of the hidden state. When the BERT model is
fine-tuned for the downstream task, the fine-tuned hidden state vector (hcls)
corresponding to the classification token is used as the aggregate representation
for the sequence. For each of the external knowledge in the set EXT , we generate
the context-aware representations using the same BERT encoder as used for
premise-hypothesis above as follows

EXT k = [〈CLS〉, e1, . . . , el, 〈SEP〉] (3)

Ek = BERT(EXT k) ∈ Rl+2×h (4)

ek = MeanPooling(Ek) ∈ R1×h (5)

The averaged context-aware vector representation (e) generated for each of
the (k) retrieved external knowledge are stacked to create the context-aware
matrix, E ∈ Rk×h.

Knowledge Integration Layer This layer integrates external knowledge
into the premise-hypothesis contextual representations by means of multi-head
dot product attention. The layer uses a mixture model to allow a better trade-off
between the context from external knowledge and the premise-hypothesis context
[24]. The mixture model learns two parameter matrices, A and B, weighing the
importance of premise-hypothesis context and the external knowledge context.

Multi-head Attentions To measure the importance of external knowledge
to each context-aware premise-hypothesis representation, we apply multi-head
dot product attention [21] between the context-aware representations of external
knowledge and that of premise-hypothesis.
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In multi-head dot product attention, the context-aware representations are
projected linearly to generate the queries, keys and values. As we use the multi-
head attention to highlight the external knowledge important to premise-hypothesis
context, premise-hypothesis representation (H) generates the query matrix (Hq)
via linear projection and the two linear projections of external knowledge rep-
resentation (E) generate the keys and values. The attention function is defined
as

Attention(Hq, Ek, Ev) = softmax(
HqEkT

√
hk

)Ev (6)

Then the multi-head attention is

Cext
ph = MH(Hq, Ek, Ev)

= Concat(head1, . . . , headh)W
o

(7)

where headi = Attention(HqW q
i , E

kW k
i , E

vW v
i ) and W q

i ,W
k
i ,W

v
i , and W o

are projection matrices and i is the number of attention heads (12 in our case).
The output of multi-head attention, Cext

ph ∈ R(m+n+3)×h is an attention-weighted
context matrix measuring the importance of the external knowledge context to
each of the context-aware premise-hypothesis representation.

Similarly, to measure the importance of each premise-hypothesis BERT rep-
resentation (H) to the aggregate premise-hypothesis representation (hidden rep-
resentation hcls corresponding to CLS token), we apply the multi-head attention
between hcls token representation and H as

Attention(Cq
cls, H

k, Hv) = softmax(
Cq

clsH
kT

√
hk

)Hv (8)

where Cq
cls ∈ R(m+n+3)×h is a matrix obtained by repeating hcls hidden state

(n+m+ 3) number of times. The multi-head attention is calculated similar to
(Eq. 7) that outputs a context matrix Ccls

ph ∈ R(m+n+3)×h. The output matrix

Ccls
ph is an attention-weighted context matrix measuring the importance of each

of the premise-hypothesis representation to the aggregate premise-hypothesis
representation.

Mixture Model The mixture model learns a trade-off between the premise-
hypothesis context and the context from external knowledge and is defined as

M = ACext
ph +BCcls

ph (9)

where A and B are the parameter metrices, learned with a single layer neural
network and A+B = J ∈ R(n+m+3)×1, J is a matrix of all ones. The parameters
A and B learn to balance the proportion of incorporating the premise-hypothesis
context and the context from external knowledge. Each of the representations
in M ∈ R(m+n+3)×h can be regarded as a knowledge aware state representation
that encodes external knowledge context information with respect to the context
of each of the premise-hypothesis representation.
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Composition Layer We compose the knowledge state representation (M)
to the corresponding premise-hypothesis representation to obtain knowledge-
aware matrix Ĥ as

Ĥ = H +M (10)

Pooling Layer The pooling layer creates a fixed-length representation from
premise-hypothesis representations H and the knowledge-aware representations
Ĥ. We apply the standard mean and max pooling mechanisms as

hmean = MeanPooling(H) hmax = MaxPooling(H) (11)

ĥmean = MeanPooling(Ĥ) ĥmax = MaxPoolling(Ĥ) (12)

Classification Layer We classify the relationship between premise and hypoth-
esis using a Multilayer Perceptron (MLP) classifier. The input to the MLP is
the concatenation of pooled representations as

f = [hmean; ĥmean;hmax; ĥmax] (13)

The MLP consists of two hidden layers with tanh activation and a softmax
output layer to obtain the probability distribution for each class. The network
is trained in an end-to-end manner using multi-class cross-entropy loss.

4 Experiments

4.1 Datasets

NLI & KGs The key contribution of this paper is the unique method to incor-
porate external knowledge into the pre-trained BERT representations. ExBERT
is capable of incorporating knowledge from any external knowledge source that
allows the knowledge to be retrieved, given an entity as input. This includes
KBs with (head, relation, tail) graph structure, KBs that contain only entity
metadata without a graph structure and those that combine both a graph and
entity metadata.

In this work, we retrieve external commonsense knowledge from ConceptNet
[20] for evaluating ExBERT on SNLI (570,000 examples) [2] and SciTail (27,000
examples)[12] benchmarks, and from the science domain-targeted KG, Aristo
Tuple [5] for evaluation on science domain SciTail dataset.

ConceptNet is a multilingual KG comprising of 83 languages. We pre-process
the ConceptNet data to retrieve the facts with head and tail entities in the En-
glish language. The final pre-processed ConceptNet that we retrieve the external
knowledge from contains 3,098,816 (≈ 3M) commonsense facts connected by 47
relations. Aristo Tuple is an English language KG that contains 294, 000 science
domain facts connected with 955 unique relations. We search the whole Aristo
Tuple KG to retrieve relevant external knowledge.
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4.2 Experimental Setup

Following our external knowledge retrieval mechanism discussed in Section 3.1,
we first retrieve the external knowledge from ConceptNet and Aristo Tuple for
SNLI and SciTail datasets via selection and ranking steps. In the ranking step,
the English uncased BERTBASE [6] model is employed in feature extraction mode
(i.e. without fine-tuning) to learn the contextual representations of the premise,
the hypothesis and to each of the selected KG triple sentences. We then use the
retrieved external knowledge to train the following three versions of ExBERT.

Models We used the English uncased BERTBASE to train three versions of
ExBERT: Two ExBERT+ConceptNet models on SNLI and SciTail respectively
and one ExBERT+AristoTuple model on SciTail. The models utilise the external
knowledge from the KG their name is suffixed.

Training Details ExBERT is implemented in PyTorch using the base imple-
mentation of BERT3. The underlying BERT is initialised with the pre-trained
BERT parameters and follows the same fine-tuning procedure as the original
BERT. During training, the pre-trained BERT parameters are fine-tuned with
the other ExBERT parameters. We use the Adam optimiser [13] with the initial
learning rate fine-tuned from {8e-6, 2e-5, 3e-5, 5e-5} and warm-up rate of 0.1.
The batch size is selected from {16, 24, 32}. The maximum number of epochs is
chosen from {2, 3, 4, 5}. Dropout ratio of 0.5 is used at the classification layer
[8]. Texts are tokenised using word pieces, with a maximum length of 40 for
SNLI, 60 for SciTail, and 15 for external knowledge. The hyper-parameters are
fine-tuned on the dev set of each NLI dataset.

5 Results

The results of top-performing models on the SNLI4 and SciTail5 leaderboards
are summarised in Table 2. For fairness of comparison, we compare ExBERT
with only the PTLMs based NLI models that leverage external knowledge. On
SNLI, the performance of the state-of-the-art models is highly competitive.

We observe that ExBERT outperforms all the existing baselines on the
SNLI dataset and pushing the benchmark to 91.5% within the models using
BERTBASE as the base model. ExBERT achieves a maximum performance im-
provement of 1.9% over the previous state-of-the-art BERTBASE + SRL [26]
baseline.

Among the models built on BERTLARGE with more than 340M million pa-
rameters [6], our ExBERT6 with BERTBASE (110M parameter) remarkably out-
performs the BERTLARGE and BERTLARGE + SRL [26] models with the ab-
solute improvements of 0.5% and 0.2% respectively, and is able to match the
performance of SemBERTLARGE [25] and MT−DNNLARGE [16] models.

3 https://github.com/huggingface/transformers
4 https://nlp.stanford.edu/projects/snli/
5 https://leaderboard.allenai.org/scitail/submissions/public
6 We expect further improvements in ExBERT’s performance with BERTLARGE, how-

ever we left the evaluation for future work due to the limited computing resources.

8 ICANN2021, 436, v2 (final): ’ExBERT: An External Knowledge Enhanced BERT for Nat� . . .



ExBERT for Natural Language Inference 9

Table 2: Results on SNLI and SciTail dataset: For SNLI, ExBERT uses Con-
ceptNet KG. For SciTail ExBERT uses ConceptNet KG and AristoTuple KGs.

SNLI Dataset

BERTBASE as Base Model

NLI Model Test Acc(%)

BERT BERTBASE + SRL [26] 89.6
OpenAI GPT [19] 89.9
BERTBASE [15] 90.5
BERTBASE [16] 90.8
BERT+LF [18] 90.5
SemBERTBASE [25] 91.0
MT − DNNBASE [16] 91.1
MT-DNN+LF [18] 91.1

BERTLARGE as Base Model

BERTLARGE [16] 91.0
BERTLARGE + SRL [26] 91.3
SemBERTLARGE [25] 91.6
MT − DNNLARGE [16] 91.6

ExBERT+ConceptNet (Ours) 91.5

SciTail Dataset

BERTBASE as Base Model

NLI Model Test Acc%)

OpenAI GPT [19] 88.3
BERTBASE [16] 92.5
BERT+LF [18] 92.8
MT − DNNBASE [16] 94.1
MT-DNN+LF[18] 94.3

BERTLARGE as Base Model

BERTLARGE [16] 94.4
MT − DNNLARGE [16] 95.0

ExBERT+ConceptNet (Ours) 95.2
ExBERT+AristoTuple (Ours) 95.9

On SciTail (Table 2), ExBERT outperforms all the existing models in-
cluding the models built on BERTLARGE model. Our best performing model,
ExBERT+AristoTuple demonstrates an absolute improvement of 7.6% over the
established baseline of OpenAI GPT [19]. Moreover, using only BERTBASE as the
underlying model, our ExBERT+AristoTuple outperforms BERTLARGE based
MT−DNNLARGE [16] model by 0.9%.

We observe higher performance improvements on the smaller SciTail dataset
which demonstrates that incorporating external knowledge helps the model with
small training data. Further, we observe that ExBERT attains higher accuracy
when external knowledge is incorporated from the science domain-specific KG,
Aristo Tuple as compared to when external knowledge is added from the com-
monsense KG, ConceptNet. The specialised scientific knowledge in Aristo Tuple
is more beneficial to SciTail.

6 Analysis

6.1 Number of External Features

To investigate the effect of incorporating various numbers of external knowledge
features, we vary the number of KG triple sentences input to ExBERT. Par-
ticularly, we are interested in answering the question: How many commonsense
features are required for the optimal model performance? Figure 2 illustrates
the results of the experiment. For SNLI, ExBERT achieves the highest accu-
racy (91.5%) using 11 external knowledge sentences. We observe a decrease in
accuracy when increasing the number of external knowledge sentences after 11.
The fewer number of external knowledge sentences required, compared to Sci-
Tail dataset, to achieve the maximum accuracy on SNLI dataset, is attributed
to the limited linguistic and semantic variation and the short average length of
stop-word filtered premise (7.35 for entailment and neutral class) and hypothesis
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(3.61 for entailment and 4.45 for neutral class) [12] of the SNLI dataset, which
limits its ability to fully extract and exploit external KG knowledge.
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Fig. 2: ExBERT accuracy with varying amount of external knowledge.

For SciTail, ExBERT when evaluated using the general commonsense knowl-
edge source ConceptNet, requires a relatively high number of external knowledge
sentences (15) to achieve the maximum accuracy. This is due to the higher syn-
tactic and semantic complexity of SciTail, which needs more knowledge to reason.
However, when evaluated with the domain-specific Aristo Tuple KG, the model
achieves the highest accuracy with fewer (7) external knowledge sentences. To
reiterate, domain specific knowledge in Aristo Tuple improves the model perfor-
mance with less external knowledge.

6.2 Qualitative Analysis

Case Study This section provides the case study of different premise-hypothesis
pairs and the corresponding external knowledge, to vividly show the effective-
ness of ExBERT in adaptively identifying the relevant features from the sup-
plied external knowledge. Recall that given a context-aware representation of
premise-hypothesis token, the relevance of the retrieved external knowledge in
E is measured by the multi-head attention defined in Eq.(6). We average the
attention weights of all heads and plot a heat map.

Fig.3 presents the heat map showing the attention of premise-hypothesis to-
kens to the retrieved external knowledge sentences from ConceptNet. In Fig.3(a),
we can see, these attention distribution is quite meaningful, with the “speaking”
and “talking” attending mainly to the retrieved external knowledge “speaking
is talking”. Similarly, the tokens “speaking” “talking” and “man” attends to
“talking is a human activity”. In Fig.3(b) among the other attentions, the most
prominent can be observed between the tokens “performing for cash” and the
external knowledge sentence “performing used for earning”.

Attending to the relevant external knowledge demonstrates the ExBERT’s
ability to effectively utilise the retrieved external knowledge based on the context
from the premise and hypothesis.
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<CLS> a
closeup of an

older
man
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glasses
speaking .

<SEP> an
older
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talking .
<SEP>
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speaking is a talking
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talking is a human activity
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man
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Fig. 3: Case Study. Visualisation of ExBERT’s attention between external knowl-
edge from ConceptNet (y axis) and SNLI premise-hypothesis pair tokens (x axis).

7 Conclusion

We introduced ExBERT to enrich the contextual representation of BERT with
real-world commonsense knowledge from external knowledge sources and to en-
hance its language understanding and reasoning capabilities. ExBERT can incor-
porate external knowledge from any external knowledge source that allows the
knowledge to be retrieved, given an entity. We devised a novel external knowledge
retrieval mechanism utilising contextual representations to retrieve relevant ex-
ternal knowledge. Experimental results on SNLI and SciTail NLI benchmarks in
conjunction with two KGs, ConceptNet and Aristo Tuple, shows that ExBERT
achieves significant performance improvements over the previous state-of-the-
art methods, including those which are enhanced by BERTLARGE. Further, we
demonstrated the feasibility of utilising contextual representations for encoding
external knowledge from KGs, which indicates a potential direction for future
research.
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