8 research outputs found

    Variability-aware design of CMOS nanopower reference circuits

    Get PDF
    Questo lavoro è inserito nell'ambito della progettazione di circuiti microelettronici analogici con l'uso di tecnologie scalate, per le quali ha sempre maggiore importanza il problema della sensibilità delle grandezze alle variazioni di processo. Viene affrontata la progettazione di generatori di quantità di riferimento molto precisi, basati sull’uso di dispositivi che sono disponibili anche in tecnologie CMOS standard e che sono “intrinsecamente” più robusti rispetto alle variazioni di processo. Questo ha permesso di ottenere una bassa sensibilità al processo insieme ad un consumo di potenza estremamente ridotto, con il principale svantaggio di una elevata occupazione di area. Tutti i risultati sono stati ottenuti in una tecnologia 0.18μm CMOS. In particolare, abbiamo progettato un riferimento di tensione, ottenendo una deviazione standard relativa della tensione di riferimento dello 0.18% e un consumo di potenza inferiore a 70 nW, sulla base di misure su un set di 20 campioni di un singolo batch. Sono anche disponibili risultati relativi alla variabilità inter batch, che mostrano una deviazione standard relativa cumulativa della tensione di riferimento dello 0.35%. Abbiamo quindi progettato un riferimento di corrente, ottenendo anche in questo caso una sensibilità al processo della corrente di riferimento dell’1.4% con un consumo di potenza inferiore a 300 nW (questi sono risultati sperimentali ottenuti dalle misure su 20 campioni di un singolo batch). I riferimenti di tensione e di corrente proposti sono stati quindi utilizzati per la progettazione di un oscillatore a rilassamento a bassa frequenza, che unisce una ridotta sensibilità al processo, inferiore al 2%, con un basso consumo di potenza, circa 300 nW, ottenuto sulla base di simulazioni circuitali. Infine, nella progettazione dei blocchi sopra menzionati, abbiamo applicato un metodo per la determinazione della stabilità dei punti di riposo, basato sull’uso dei CAD standard utilizzati per la progettazione microelettronica. Questo approccio ci ha permesso di determinare la stabilità dei punti di riposo desiderati, e ci ha anche permesso di stabilire che i circuiti di start up spesso non sono necessari

    Robust Design With Increasing Device Variability In Sub-Micron Cmos And Beyond: A Bottom-Up Framework

    Full text link
    My Ph.D. research develops a tiered systematic framework for designing process-independent and variability-tolerant integrated circuits. This bottom-up approach starts from designing self-compensated circuits as accurate building blocks, and moves up to sub-systems with negative feedback loop and full system-level calibration. a. Design methodology for self-compensated circuits My collaborators and I proposed a novel design methodology that offers designers intuitive insights to create new topologies that are self-compensated and intrinsically process-independent without external reference. It is the first systematic approaches to create "correct-by-design" low variation circuits, and can scale beyond sub-micron CMOS nodes and extend to emerging non-silicon nano-devices. We demonstrated this methodology with an addition-based current source in both 180nm and 90nm CMOS that has 2.5x improved process variation and 6.7x improved temperature sensitivity, and a GHz ring oscillator (RO) in 90nm CMOS with 65% reduction in frequency variation and 85ppm/oC temperature sensitivity. Compared to previous designs, our RO exhibits the lowest temperature sensitivity and process variation, while consuming the least amount of power in the GHz range. Another self-compensated low noise amplifiers (LNA) we designed also exhibits 3.5x improvement in both process and temperature variation and enhanced supply voltage regulation. As part of the efforts to improve the accuracy of the building blocks, I also demonstrated experimentally that due to "diversification effect", the upper bound of circuit accuracy can be better than the minimum tolerance of on-chip devices (MOSFET, R, C, and L), which allows circuit designers to achieve better accuracy with less chip area and power consumption. b. Negative feedback loop based sub-system I explored the feasibility of using high-accuracy DC blocks as low-variation "rulers-on-chip" to regulate high-speed high-variation blocks (e.g. GHz oscillators). In this way, the trade-off between speed (which can be translated to power) and variation can be effectively de-coupled. I demonstrated this proposed structure in an integrated GHz ring oscillators that achieve 2.6% frequency accuracy and 5x improved temperature sensitivity in 90nm CMOS. c. Power-efficient system-level calibration To enable full system-level calibration and further reduce power consumption in active feedback loops, I implemented a successive-approximation-based calibration scheme in a tunable GHz VCO for low power impulse radio in 65nm CMOS. Events such as power-up and temperature drifts are monitored by the circuits and used to trigger the need-based frequency calibration. With my proposed scheme and circuitry, the calibration can be performed under 135pJ and the oscillator can operate between 0.8 and 2GHz at merely 40[MICRO SIGN]W, which is ideal for extremely power-and-cost constraint applications such as implantable biomedical device and wireless sensor networks

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Fully Integrated Voltage Reference Circuits

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014Gerilim referans devreleri, elektriksel sistemlerde diğer alt blokların çalışmaları için kararlı bir çalışma noktası üretmeleri sebebiyle veri dönüştürücüler (ADC - DAC), frekans sentezleyiciler, DC-DC ve AC-DC dönüştürücüler ve lineer regülatörler gibi pek çok elektriksel sistemin en temel yapı bloklarındandır. İdeal olarak, üretilen bu referans noktası, sıcaklık, üretim süreçleri, besleme gerilim degişimleri ve yükleme etkileri gibi çalışma koşullarından etkilenmemelidir. Bir referans devresinin doğruluğu bahsedilen çalışma koşullarının etkisiyle mutlak değerinden ne kadar saptığı olarak tanımlanır. Modern haberleşme sistemleri ve tüketici ürünlerindeki gelişmeler ile birlikte yüksek entegrasyon ve doğruluklu sistemlere olan talep artmıştır. Tümdevre sistemlerinde, alt blokların çalışma noktalarını belirlemesi nedeniyle özellikle referans devrelerinin performansları bütün sistemin performansının belirlenmesinde önemli rol oynamaktadır. Dolayısıyla yüksek performanslı sistemlere olan talep, bu performansların elde edilmesi için kullanılan düşük geometrili üretim teknolojilerine uygun, yani giderek azalan besleme gerilimleri ile çalışabilecek yüksek doğruluklu referans devrelerine olan talebi de arttırmıştır. Bu nedenle bu çalışmada gerilim referans devre topolojilerine odaklanılmıştır. Bu doğrultuda, öncelikle yüksek doğruluklu, düşük gürültülü gerilim refereans devre topolojileri üzerinde çalışılarak 0.35 um CMOS teknoljisinde farklı tasarımlar yapılmıştır. Bu aşamada temel hedef, yüksek dogrulukluk olarak belirenmiş ve yapılan tasarımlarda, üretim sonrası ayarlamalardan sonra sıcaklık katsayısı 3 ppm/C olabilecek devreler tasarlanmıştır. Ancak, 0.35 um CMOS üretim teknolojisi kullanılması ve kullanılan topolojiler dolayısıyla, devrelerin çalışabileceği minimum besleme gerilim seviyesi 1.8 V ile sınırlı kalmıştır. Devrelerin çektikleri akımlar ise 20-30 uA seviyesindedir. Bu tasarımlar sırasında (triple-well üretim teknlojileri için), önerilen blok gövde izolasyon stratejisi, tasarımı yapılan devrenin gövdesinin tümdevrenin geri kalan kısmından ters kutuplanmış bir jonksiyon diyodu sayesinde izole edilmesine dayanmaktadır ve devrenin gövde gürültüsünden etkilenmesini önemli ölçüde azaltmaktadır. Son olarak, çoğunlukla osilatör devrelerinde uygulanan anahtarlamalı kutuplama tekniği uygulanarak devrelerin düşük frekans gürültü performansının iyileştirilmesi amaçlanmıştır. Çalışmanın geri kalan kısmında, düşük besleme gerilimleriyle çalışabilecek mikron-altı üretim teknolojilerine uygun gerilim referans devre topolojileri üzerine odaklanılmıştır. Bu doğrultuda, iki yeni düşük besleme gerilimli ve düşük güç tüketimli gerilim referans devre topolojisi önerilmiştir. Önerilen topolojiler, 0.18 um CMOS üretim teknolojisinde gerçeklenmiştir. Ölçüm sonuçları, tasarlanan gerilim refarans devrelerinin 0.65 V besleme gerilimi ile çalışabildiğini göstermiştir. Önerilen devre topolojileri ile 0-120 C sıcaklık aralığında, sıcaklık katsayısı 50 ppm/C olan 193 mV seviyesinde referans gerilimleri elde edilmiştir. Devrelerin güç tüketimleri sırasıyla 0.3 uW ve 0.4 uW iken kapladıkları alan 0.2 mm^2 ve 0.08 mm^2 dir. Sonuç olarak, önerilen devre topolojileri ile literatürde yer alan diğer 1V-altı referans devreleri ile karşılatrılabilir seviyede sıcaklık katsayısı olan referans gerilimleri çok daha düşük güç harcamasıyla elde edilmiştir.Voltage references are one of the basic building blocks of many SoCs and mixed-signal ICs such as data converters, voltage regulators and operational amplifiers as they constitute a stable reference voltage for other sub-circuits to generate predictable and repeatable results. Ideally, this reference point should not change with external influences or operating conditions such as temperature, fabrication process variations, power supply variations and transient loading effects. Along with the rapid development of modern communication systems and consumer products, which constitutes the main market for semiconductor industry, the market demand for these System on Chip (SoC) or Mixed Signal ICs to have lower power consumption, higher accuracy and lower cost, and thus, higher integration. Since the performance of the whole system depends strongly to the performance of the reference circuit, this work is focused on fully integrated voltage reference architectures. With this motivation, firstly, different kinds of high precision low noise voltage reference circuits are designed in standard 0.35 um CMOS technology that we have more experience and knowledge of. The essential goal of these studies was high precision and temperature coefficient of the designed voltage reference circuits are on the order of 3 ppm/C with trimming after production. However, since 0.35 um CMOS technology is used in these designs and also due to the chosen topologies their minimum supply voltage can be down to 1.8 V and while current consumption is on the order of 20-30 uA. In the design of the this voltage reference block bulk isolation technique is proposed (for triple-well CMOS processes), in which system blocks are bulk isolated by a reverse biased junction diode from the rest of the die to drastically reduce substrate noise coupling. This is especially important if a very low power voltage reference is designed in a very noisy SoC. Moreover, the switched biasing technique, which is mostly applied to the oscillators, is also implemented to the designed BGR in order to improve the low noise performance of the circuit. The rest of the thesis is focused on new voltage reference topologies that are appropriate for sub-micron technologies operating with low supply voltages. With this motivation two new low voltage and low power voltage reference topologies are proposed. The proposed voltage reference topologies are implemented and fabricated in 0.18 um CMOS technology. Measurement results show that the proposed voltage reference circuits are working properly down to 0.65 V and achieve an output voltage of 193 mV with a temperature coefficient on the order of 50 ppm/C in the temperature range of 0-120C. The total power consumption of the two designed voltage references are 0.3 uW and 0.4 uW at 27 C, while occupying the area of 0.2 mm^2 and 0.08 mm^2, respectively. As a result, the proposed voltage reference topologies generate a reference voltage with comparable level of temperature coefficient and quite low power consumption with respect to the other sub-1V voltage reference circuits reported in the literature.DoktoraPh

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Development of electronics for microultrasound capsule endoscopy

    Get PDF
    Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (µUS) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable µUSCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems. In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 µA output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated µUS pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised. A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter. A low-noise amplifier (LNA) was designed for a wide bandwidth µUS array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for µUS frequencies

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces
    corecore