79 research outputs found

    SiNW-based Biosensors for Profiling Biomarkers in Breast Tumor Tissues

    Get PDF
    Breast cancer is the most common life-threatening malignancy in women of most developed countries today, with approximately 200,000 new cases diagnosed every year. About 30% of these cases progress to metastatic disease and death. Considering that one-third of these cancer deaths could be decreased if detected and treated early, new strategies for early breast cancer detection are needed to improve the efficacy of current diagnostics. The sensitive analysis of proteins such as breast cancer biomarkers has become the focus of intensive research due to its relevance to tumor diagnosis. However, the state-of-the-art diagnostic tools still lack the level of resolution needed for the detection of biomarkers at the very early stage of the disease, when treatments have more probability of success, and when protein concentration in tumor tissue is still very low. Nanotechnologies have shown great potential for the development of high-sensitive, portable devices for clinical applications. In particular, SiNWs with their unique properties such as the high surface-to-volume ratio and size, combined with the specificity of immune-sensing, are natural candidates for the fabrication of nanosensors. Thanks to their compatibility with conventional CMOS technology, SiNWs have been incorporated in standard FETs. In biosensing, SiNW-FETs have been shown a promising method for the label-free detection of trace amounts of biomolecules. However, detection of Antigen using Antibody immobilized SiNW-FETs is limited by ionic screening effects that reduce the sensor responsiveness and limit their applicability in tumor tissue. Here, we propose novel SiNW-based biosensing strategies with the aim of overcoming current sensitivity limitations of conventional SiNW-FET biosensors for the detection of breast cancer biomarkers in real human samples. Specifically, we address this goal by investigating two different approaches of biosensing. In the first method, we push the sensitivity of SiNW-FETs to their limits by proposing an alternative way of doing sensing in dry conditions. We show that in-air electrical measurements of Ab-Ag binding have the big advantage of increased Debye screening length in non-bulk solutions, and enable highly sensitive and specific measurements in breast tumor extract. Then, we present a completely novel biosensing paradigm that shows, for the first time, the use of memristive effects in fabricated SiNWs for biodetection purposes. This novel detection method has been named Voltage Gap (VoG)-biosensing as it is based on the changes of the VoG parameter, observed in the hysteretic characteristic of memristive devices, as a function of biomolecules. In this research, we demonstrate the use of the memristive-based VoG effect in Schottky Barrier SiNWs for the high-resolution sensing of ionic and biological species both in ideal buffer solutions and in tumor tissue extracts. Moreover, we propose an original theory enabling the physical interpretation and prediction of the mechanisms underlying the VoG-biosensing method in memristive devices. Finally, we demonstrate the potential of our system for future integration in a multi-panel VoG-biosensing platform. We fabricated a PDMS microfluidics enabling selective and high-quality functionalization of the NWs. We also realized a CMOS readout circuit for multiplexed VoG acquisition. The simulations demonstrate the feasibility of the approach and the potential for the integration of the reader with a portable and automated biosensing platform. Microfluidics and VoG reader will enable fast, concurrent detection ofmultiple angiogenic and inflammatory ligands in tumor tissue. This will highly improve the level of knowledge of the cancer disease by capturing the heterogeneity and the complexity of the tumor microenvironment, thus leading to novel opportunities in breast cancer diagnosis

    Memristor-Based Devices for Sensing

    Get PDF
    In this paper we propose CMOS-compatible Memristive-Biosensors as label-free, highly sensitive sensors for in-air detection of Vascular Endothelial Growth Factor (VEGF) molecules. The memristive behavior of the fabricated devices is strongly affected by molecules in proximity of the wire surface. In this paper, we demonstrate the reproducibility of the measurement based on the memristive voltage gap. We also show the successful sensing of femto-molar amounts of VEGF. Specifically, we demonstrate a correlation between the decreasing behavior of the voltage gap and the increasing concentrations of VEGF. The voltage gap dependence on the pH of the initial solution is also shown as a further proof of the ionic interactions occurring at the SiNW surface. All measurements are performed in air, under controlled humidity; this makes our approach more sensitive thanks to the lowered Debye screening effect of counterions

    SiNW-FET in-Air Biosensors for High Sensitive and Specific Detection in Breast Tumor Extract

    Get PDF
    The sensitive analysis of proteins is central to disease diagnosis. The detection and investigation of angiogenic and inflammatory ligands in the tumor tissue can further improve the level of knowledge of the cancer disease by capturing the heterogeneity and the complexity of the tumor microenvironment. In previous works we demonstrated that high quality Silicon Nanowire Field Effect Transistors (SiNW-FETs) can be used to sense very low concentration (fM) of pathogenic factors in controlled Phosphate Buffered Saline (PBS). In this work, we show SiNW-FETs as biosensors for the detection of cancer markers in tumor extracts, as proof of our technology to successfully work on real patients’ sample. In particular, we achieved the detection of exogenously added rabbit antigen in a much more complex environment, i.e. a human breast tumor extract. Our results show specific and high sensitive antigen detection with p-type SiNWFETs in the femto-molar range. Further and most importantly, the wires sense rabbit antigen molecules in the presence of a 100.000 mass excess of non-specific protein, indicating that the sensor is extremely resistant to noise

    Femto-Molar Sensitive Field Effect Transistor Biosensors Based on Silicon Nanowires and Antibodies

    Get PDF
    This article presents electrically-based sensors made of high quality silicon nanowire field effect transistors (SiNW- FETs) for high sensitive detection of vascular endothelial growth factor (VEGF) molecules. SiNW-FET devices, fabricated through an IC/CMOS compatible top-down approach, are covalently functionalized with VEGF monoclonal antibodies in order to sense VEGF. Increasing concentrations of VEGF in the femto molar range determine increasing conductance values as proof of occurring immuno-reactions at the nanowire (NW) surface. These results confirm data in literature about the possibility of sensing pathogenic factors with SiNW-FET sensors, introducing the innovating aspect of detecting biomolecules in dry conditions

    A Study of Biomedical Sensors Based on Layered Semiconductors: From Characteristics to Nanofabrication Approaches

    Full text link
    Among other layered two-dimensional (2D) materials, transition metal dichalcogenides (TMDCs) have revealed their importance in developing novel electronic devices such as field-effect transistors (FETs), optoelectronics, and biomedical sensors. The superior electrical, mechanical, and optoelectronic characteristics, in combination with naturally formed sizable and tunable bandgap of TMDCs, have turned out to be promising for making new biomedical sensors. Despite such a bright prospect, there remain critical scientific and technical gaps that should be filled to enable advanced and practical biomedical sensor applications. Specifically, such gaps include (i) loss of operation stability of MoS2 FET biosensors under wet conditions, (ii) lack of reusability of the electronic biosensors made of TMDCs, and (iii) absence of scalable nanofabrication methods capable of producing well-defined TMDC device patterns. A series of studies presented in this thesis leveraged scientific and technical knowledge to deal with the aforementioned urgent demands and was categorized into three main topics: (i) devise a cycle-wise method for operating MoS2 FET biosensors integrated with a microfluidic channel, which alleviates the liquid-solution-induced issues; (ii) design a new biosensor structure consisting of a bio-tunable nanoplasmonic window and a low-noise few-layer MoS2 photodetector, which can enable highly sensitive, fast, and reusable biosensing processes; (iii) invent scalable nanofabrication and nanomanufacturing approaches capable of producing orderly-arranged TMDCs device channel patterns at designated locations on a target substrate. The presented works have engineered layered semiconductors and device structures based on the scientific knowledge and device physics to realize practical and functional TMDC-based biomedical devices. Additionally, the nanofabrication methods invented in this thesis work could be further developed into cost-efficient and scalable nanomanufacturing techniques that will speed up the development of a wide variety of new device applications made of layered semiconductors.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163205/1/bhryu_1.pd

    Design, Fabrication, and Characterization of Conjugated Polymeric Electrochemical Memristors as Neuromorphic/Integrated Circuits

    Get PDF
    Organic materials are promising candidates for future electronic devices compared to the complementing inorganic materials due to their ease of processability, use, and disposal, low cost of fabrication, energy efficiency, and flexible nature toward implementation as flexible and non-conformal devices.With that in mind, electrochemical materials have been widely demonstrated with commercial use as sensors, displays, and a variety of other electronic devices. As Moore\u27s law predicts the increase in the density of transistors on a chip, the requirement to create either smaller transistors or the replacement of the transistor device entirely is apparent. Memory resistors, coined ``memristor , are variable resistive tuning devices that are capable of information processing and data storage in one device. This work focuses on the embodiment of a non-volatile conjugated polymeric electrochemical memristor. Three-terminal memristive systems are fabricated and studied using various electrochemicals (a self-doped PEDOT derivative, a polypyrrole, and a dithienopyrrole derivative) and are tested for their electronic properties and biomimicking capabilities. Optical absorbance properties are studied in order to verify the electrochemical material\u27s redox tuning potential for their respective oxidized and reduced chemical forms. The three-terminal device employed a post-synaptic ``read\u27\u27 channel where conductivity of the electrochemical material was equated to synaptic weight and was electronically decoupled from the pre-synaptic programming electrode by means of a polymeric gel electrolyte. Basic electronic characteristics are exhibited for these three devices such as state stability and retention, non-volatile voltage-driven conductivity tuning, input parameter characteristic trends, and power consumption per input program. Biological synapses consume, on the order of, 1 - 100 fJ of energy per synaptic energy. The electrochemical materials used in this study, at their most optimized input parameters, were capable of demonstrating a 4.16 fJ/mm2 power consumption per input pulse and lead to a promising candidate for implementation as future artificial neural networks. Biological mimicry was displayed for these devices in the form of paired-pulse facilitation and paired-pulse depression, both a form of short term memory which observes the effect the timescale between two incoming inputs has on the change in the final output signal. Toward the indication for the replacement of transistors with three-terminal memristors, basic circuit operations are achieved and demonstrated for these devices. These operations include both Boolean and elementary algebra, key features that demonstrate data processing and storage in-memory where the physical states of the conjugated polymer film represent either logical statements or arithmetic counting variables. The Boolean algebra demonstrated the use of a single memristive device equal to a variety of single logic gates (AND, NAND, OR and NOR) where, by wiring several devices in series, more advanced combinational logic gates can be achieved. Furthermore, each device was capable of displaying elementary algebra for the basic arithmetic functions of addition, subtraction, multiplication, and division. In regards to thin film deposition techniques, the self-doped PEDOT device employed roll-to-roll gravure printing, a high speed and high resolution commercially used deposition technique. The polypyrrole device was fabricated implementing an in-situ polymerization technique, referred to as vapor phase polymerization, and demonstrated the use of this technique toward non-conformal devices. The dithienopyrrole derivative was polymerized through the same vapor phase polymerization technique as the polypyrrole and used in tandem with screen printing in order to construct the final device, including the oxidant film, the silver electrodes, and the polymeric gel electrolyte

    E-Beam Induced Micropattern Generation and Amorphization of L-Cysteine-Functionalized Graphene Oxide Nano-composites

    Full text link
    The evolution of dynamic processes in graphene-family materials are of great interest for both scientific purposes and technical applications. Scanning electron microscopy and transmission electron microscopy outstand among the techniques that allow both observing and controlling such dynamic processes in real time. On the other hand, functionalized graphene oxide emerges as a favorable candidate from graphene-family materials for such an investigation due to its distinctive properties, that encompass a large surface area, robust thermal stability, and noteworthy electrical and mechanical properties after its reduction. Here, we report on studies of surface structure and adsorption dynamics of L-Cysteine on electrochemically exfoliated graphene oxides basal plane. We show that electron beam irradiation prompts an amorphization of functionalized graphene oxide along with the formation of micropatterns of controlled geometry composed of L-Cysteine-Graphene oxide nanostructures. The controlled growth and predetermined arrangement of micropatterns as well as controlled structure disorder induced by e beam amorphization, in its turn potentially offering tailored properties and functionalities paving the way for potential applications in nanotechnology, sensor development, and surface engineering. Our findings demonstrate that graphene oxide can cover L-Cysteine in such a way to provide a control on the positioning of emerging microstructures about 10-20 um in diameter. Besides, Raman and SAED measurement analyses yield above 50% amorphization in a material. The results of our studies demonstrate that such a technique enables the direct creation of micropatterns of L-Cysteine-Graphene oxide eliminating the need for complicated mask patterning procedures

    Nanogap capacitive biosensor for label-free aptamer-based protein detection

    Get PDF
    Recent advances in nanotechnology offer a new platform for the label free detection of biomolecules at ultra-low concentrations. Nano biosensors are emerging as a powerful method of improving device performance whilst minimizing device size, cost and fabrication times. Nanogap capacitive biosensors are an excellent approach for detecting biomolecular interactions due to the ease of measurement, low cost equipment needed and compatibility with multiplex formats.This thesis describes research into the fabrication of a nanogap capacitive biosensor and its detection results in label-free aptamer-based protein detection for proof of concept. Over the last four decades many research groups have worked on fabrication and applications of these type of biosensors, with different approaches, but there is much scope for the improvement of sensitivity and reliability. Additionally, the potential of these sensors for use in commercial markets and in everyday life has yet to be realized.Initial work in the field was limited to high frequency (>100 kHz) measurements only, since at low frequency there is significant electronic thermal noise (=4kBTR) from the electrical double layer (EDL). This was a significant drawback since this noise masked most of the important information from biomolecular interactions of interest. A novel approach to remove this parasitic noise is to minimize the EDL impedance by reducing the capacitor electrode separation to less than the EDL thickness. In the case of aptamer functionalized electrodes, this is particularly advantageous since device sensitivity is increased as the dielectric volume is better matched to the size of the biomolecules and their binding to the electrode surface. This work has demonstrated experimentally the concepts postulated theoretically.In this work we have fabricated a large area (100 x 5 ÎĽm x 5 ÎĽm) vertically oriented capacitive nanogap biosensor with a 40 nm electrode separation between two gold electrodes. A silicon dioxide support layer separates the two electrodes and this is partially etched (approximately 800 nm from both sides of each 5 ÎĽm x 5 ÎĽm capacitor), leaving an area of the gold electrodes available for thiol-aptamer functionalization.AC impedance spectroscopy measurements were performed with the biosensor in the presence of air, D.I. water, various ionic strength buffer solutions and aptamer/protein pairs inside the nanogap. Applied frequencies were from 1Hz to 500 kHz at 20 mV AC voltage with 0 DC. We obtained relative permittivity results as a function of frequency for air (É›=1) and DI water (É›~80) which compares very favorably with previous works done by different research groups.The sensitivity and response of the sensors to buffer solution (SSC buffer) with various ionic strengths (0.1x SSC, 0.2x SSC, 0.5x SSC and 1x SSC) was studied in detail. It was found that in the low frequency region (<1 kHz) the relative permittivity (capacitance) was broadly constant, that means it is independent from the applied frequency in this range. With increasing buffer concentration, the relative permittivity starts to increase (from É›=170 for 0.1x SSC to É›=260 for 1x SSC).The sensor performance was further investigated for aptamer-based protein detection, human alpha thrombin aptamers and human alpha thrombin protein pairs were selected for proof of concept. Aptamers were functionalized into the gold electrode surface with the Self-Assembly-Monolayer (SAM) method and measurements were performed in the presence of 0.5x SSC buffer solution (É›=180). Then the hybridization step was carried out with 1 ÎĽM of human alpha thrombin protein followed by measurements in the presence of the same buffer (É›=130). The response of the sensors with different solutions inside the nanogap was studied at room temperature (5 working devices were tested for each step). The replacement of the buffer solution (É›=250) with lower relative permittivity biomolecules (aptamer É›=180) and further binding proteins to immobilized aptamer (É›=130) was studied. To validate these results, a control experiment was carried out using different aptamers, in this case which are not able to bind to human alpha thrombin protein. It was found that the relative permittivity did not change after the hybridization step compared to the aptamer functionalization step, which indicates that the sensors performance is highly sensitive and reliable.This work serves as a proof of concept for a novel nanogap based biosensor with the potential to be used for many applications in environmental, food industry and medical industry. The fabrication method has been shown to be reliable and consistent with the possibility of being easily commercialized for mass production for use in laboratories for the analysis of a wide range of samples
    • …
    corecore