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Abstract

Over the last decade the demand forlowcost materials/methods increased significantly. Due
to its high electrical conductivity, high mobility and absence of critical raw materials, zinc-tin oxide
(ZTO) appears as an ideal candidate for several applications, such as electronics, energy,

sensors and photocatalysis.

ZTO nanowires have been fabricated essentially by vapor-phase methods, however these
methods are expensive and require high temperatures (>700 °C). In contrast, hydrothermal
processing was explored in this work to synthesize ZTO nanowires, aiming at a maximum
temperature of 200 °C. The synthesis was extensively studied regarding its chemical and physical
parameters, aiming to achieve a well-controlled and reproducible process to achieve
nanostructures with specific properties. A seed-layer free and one-step hydrothermal method at
200 °C was then optimized to produce ZnSnO3 nanowires and Zn2SnOs4 nanoparticles and

octahedrons.

Although very challenging, due to the lower dimension of the nanowires, the resistivity of a
single ZnSnOs3 nanowire was measured using a nanoprobe inside a scanning electron

microscope.

Due to the excellent piezoelectric properties of ZnSnOs, robust energy harvesters of a micro-
structured composite of ZnSnO3 nanowires and PDMS film were fabricated, resulting in a great

performance regarding output voltage, current and instantaneous power density (>200 pW-cm-2).

Memristors were also fabricated using the ZnSnOs nanowires, showing an excellent on/off

ratio (>107) and a retention time higher than 4x10%s.

The photocatalytic behavior of different ZTO nanostructures was studied under both UV and
visible light for methylene blue and rhodamine B, allowing for complete degradation of both dyes

in 90 min.

pH sensors were also fabricated using ZTO nanostructures as sensitive layer, revealing a

sensitivity very close to the theoretical limit (-58.6 mV/pH).

These different applications highlight the multifunctionality of Zn:Sn:O nanostructures,
demonstrating the potential of its low-cost synthesis forintegration on environmentally friendly

and self-sustainable smart surfaces.

Keywords: Zinc-tin oxide; ZnSnOs; Zn2SnOs; Nanostructures; Hydrothermal synthesis;

Multifunctionality.







Resumo

A necessidade de materiais/métodos de baixo-custo aumentou significativamente na dltima
década. Devido a sua elevada condutividade elétrica, elevada mobilidade e auséncia de
matérias-primas criticas, o 6xido de zinco e estanho (ZTO) aparece como um forte candidato

para diferentes aplicagcdes, como eletronicas, energéticas, sensores e fotocatalise.

Nanofios de ZTO tém sido fabricados essencialmente por métodos de vapor, contudo, estes
métodos apresentam elevados custos e requerem elevadas temperaturas (>700 °C). Neste
trabalho foram explorados processos hidrotérmicos para sintetizar nanofios de ZTO, com uma
temperatura maxima desejada de 200 °C. Os parametros quimicos e fisicos da sintese foram
intensivamente estudados com o objetivo de obter um processo controlado e reprodutivel para
produzir nanoestruturas com propriedades especificas. Assim, foi otimizado um processo
hidrotérmico de passo Unico, sem seed-layer a 200 °C, para produzir nanofios de ZnSnOs, e

nanoparticulas e octaedros de Zn2Sn0Oa.

Embora desafiante devido as pequenas dimens@es dos nanofios, a resistividade de um
nanofio individual de ZnSnOs foi medida com sucesso, usando pontas de prova no microscopio

eletrénico de varrimento.

Devido as suas excelentes propriedades piezoelétricas, os fios foram utilizados para fabricar
robustos nanogeradores de energia, constituidos por um filme microestruturado destes fios
embebidos em PDMS, resultando numa excelente performance relativamente a resposta de

tensdo, corrente e densidade de poténciainstantanea (>200 pw-cm-2).

Este material foi também usado para produzir memoérias, resultando numa excelente razdo

on/off (>107) e um tempo de retencdo superior a 4x10* s.

O comportamento fotocatalitico de diferentes nanoestruturas de ZTO foi estudado sob luz
UV e visivel em metileno azul e em rodamina B, tendo sido obtida uma completa degradagéo de

ambos os corantes em 90 minutos.

Sensores de pH foram ainda produzidos usando nanoestruturas de ZTO como material

ativo, revelando uma performance muito préxima do limite te6rico (-58.6 mV/pH).

Estas aplicagdes realgam a multifuncionalidade deste material, mostrando o potencial de
uma sintese debaixo custo de nanoestruturas de Zn:Sn:0 para integragdo em superficies amigas

do ambiente e autossustentaveis.

Termos-chave: Oxido de Zinco e Estanho; ZnSnO3s; Zn2SnOs4; Nanoestruturas; Sintese

hidrotermal; Multifuncionalidade.
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Introduction

Motivation and Objectives

The motivation of this thesis is related with the demand fora new generation of sustainable
nanostructured oxide materials, fabricated by low-temperature solution routes and able to be
integrated in a wide range of applications. Owing to the multiple phases and morphologies
achievable with multicomponent oxides of different compositions, they seem to be ideal for this
multifunctional concept, allowing to combine in the same surface different devices such as
sensors, energy harvesters, transistors and memories, all based in the same material system. It
is also imperative to combine these concepts with sustainability, searching for materials that are
abundant in the earth, with low-cost and that can be recyclable and preferentially non-toxic.
Additionally, when considering concepts as the IoT, which demand for material/device integration
in a plethora of objects, with different shapes and surface properties, it is desirable that the
nanostructured materials being developed are compatible with multiple deposition/integration
methods. A good example is that they would not rely on a specific seed layer or substrate to grow

with the desired properties.

In the Chapter 1 it will be possibleto verify that zinc-tin oxide (ZTO) is one the most promising
multicomponent oxide materials for achieving this desired multifunctionality. Its multifunctionality
comes essentially from the great electrical and optical properties of its two crystalline phases,
ZnSnOs3 and Zn2Sn04 and the wide range of shapes in which this material is possible to obtain.
While the different nanostructures can be advantageous for different applications, 1D
morphologies such as nanowires are specially interesting. They have a high surface area but also
very efficient electrontransport properties which is relevant forseveral applications but specifically

for electronics, which is always a significant drive for the development of materials.

Table 1 summarizes several reports on ZTO nanowires, their fabrication method and targeted
applications. The lack of low-cost processes to synthesize ZTO nanowires is made clear and,

moreover, reports on solution-based processing always require the use of seed-layers.

Thus, this work intends to address those problems, by developing ZTO nanowires by low-
cost and low-complexity processes, based on hydrothermal methods below 200 °C. Seed-layer
free synthesis is primary considered due to the higher flexibility allowed for the integration of the
nanostructures, while also imposing less constraints during the synthesis process itself. Due to

the complexity of this synthesis an extensive investigation covering the different physical and
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chemical synthesis parameters is intended. A proper control of not only the phase but also the
morphology of the nanostructures is expected, since this is known to be determinant for their

electrical and optical properties.12

Afterwards, implementation of the produced nanostructures in devices through transfer or
direct growth methodologies was intended, with the major goal of demonstrating that the low-cost
multifunctional materials developed have great potential to conceive self-sustainable smart
surfaces.

Table 1. Summary of ZTO (ZnSnOs and Zn.Sn0O4) nanowires, their synthesis methods and

applications. Abbreviations: FTO — fluorine-doped tin oxide; SS — stainless steel; fcc - face
centered; orth — orthorhombic. *(for ethanol, hydrogen and methane)

Phase Synthesis Method Application References
ZnSn0Os3
] ) Carbon-thermal reaction )
microwires and Energy harvesting 3-6
_ (900 °C)
microbelts
ZnSnO3 Thermal evaporation
_ Photoconductors 7.8
nanowires (990 °C)
ZnSnO3 Thermal evaporation
) Ethanol sensors 9
nanowires (990 °C)
ZnSnO3 Seed-layered (FTO) ] ]
) _ Piezophotocatalysis 10,11
nanowires hydrothermal synthesis
R3C - ZnSnOs3 Seed-layered (ZnO thin-film) ]
) _ Hydrogen generation 12
nanowires hydrothermal synthesis
Zn:Sn:.0 Thermal evaporation
) Transistors 13,14
nanowires (700 °C -850 °C)
Zn2Sn04 Thermal evaporation
) Gas sensors* 15,16
nanowires (800 °C — 950 °C)
Zn2Sn04 Thermal evaporation
_ Photosensors 17-19
nanowires (500 °C —900 °C)
Zn2Sn0a4 Thermal evaporation Resistive switching ”0
nanowires (800 °C) memory
Zn2Sn0a4 Thermal evaporation Dye-sensitized solar ,
nanowires (900 °C) cells
Zn2Sn0a4 Thermal evaporation ) )
_ Li-batteries 22
nanowires (900 °C)
Zn2Sn0a4 Seed-layered (SS) Dye-sensitized solar »
nanowires hydrothermal synthesis cells
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Thesis structure

This thesis is mainly structured in an article-based format, as most of the chapters are based
on either already published manuscripts or manuscripts that are submitted or under submission.
Nevertheless, all of these were edited as to keep the dissertation consistency, with the respective
supporting information being merged into the main text, as well as any other additional information

considered relevant.

Chapter 1 starts with an overview of green multicomponent oxide semiconductor
nanostructures, their fabrication methods and applications, as well as the characterization

techniques typically involved under this scope.

Chapter 2 describes the optimization of the hydrothermal synthesis of ZnSnO3z nanowires
using a conventional oven. For this optimization, the chemical and physical parameters of the
synthesis were extensively studied with the aim of properly controlling the synthesis process to

achieve the desired nanostructures with good reproducibility.

Chapter 3 shows other synthesis routes that were explored besides that presented in
chapter 2. Herein, the knowledge previously acquired was used for reducing the time of the
reaction synthesis by using a microwave system and, in order to have nanostructures directly
grown on substrates, the influence of different seed layers in the ZTO nanostructures growth was
studied.

In Chapter 4 energy harvesting and optoelectronic applications employing the synthetized
ZnSnOs3 nanowires are presented. Their characteristic piezoelectricity is explored and a work
consisting on energy harvesters made using a film of PDMS with embedded ZnSnOs nanowires
is presented. In the same chapter, the electrical characterization of the ZnSnO3 nanowires is then

provided. Lastly, their application for memristor and light sensing devices is shown.

In Chapter 5 the photocatalytic activity of three different synthetized ZTO nanostructures is
presented, in the degradation of two dyes: methylene blue and rhodamine B, and under both UV

and visible light.

Chapter 6 presents electrodeposition as an integration method for the nanostructures in
devices and the application of several ZTO-based nanostructures as sensitive layer for pH

sensing.

In Chapter 7 the main conclusions drawn from the developed work are presented. Future
perspectives as well as suggestions forthe continuation of the work under the scope of this project

are also presented.
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Outputs

The work performed in this PhD project resulted in several oral and poster presentations in

national and international conferences and also peer-reviewed papers published in international

scientific periodicals. The work developed in this PhD was also very useful to achieve the

objectives of multiple tasks of the European Community’s H2020 project 1D-Neon (No. 685758)
and of the ERC starting grant TREND (No. 716510).

The outputs are presented below.

Publications

1.

A. Rovisco, R. Branquinho, J. Martins, M. J. Oliveira, D. Gomes, E. Fortunato, R. Martins
and P. Barquinha, Seed-layer free zinc tin oxide tailored nanostructures for
nanoelectronic applications: effect of chemical parameters, ACS Appl. Nano Mater., 1,
3986-97, 2018, DOI: 10.1021/acsanm.8b00743

A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
Growth mechanism of seed-layer free ZnSnO3 nanowires: effect of physical parameters,
Nanomaterials, 9(7), 1002, 2019, DOI: 10.3390/nano9071002

A. Rovisco, A. dos Santos, T. Cramer, J. Martins, R. Branquinho, H. Aguas, B. Fraboni,
E. Fortunato, R. Martins, R. Igreja and P. Barquinha, Piezoelectricity Enhancement of
Nanogenerators based on PDMS and ZnSnO3s Nanowires through Micro-structuration,

under revision ACS Applied Materials and Interfaces 2019

A. Rovisco, R. Branquinho, J. Deuermeier, J. Martins, T. Freire, E. Fortunato, R. Martins
and P. Barquinha, Photocatalytic behavior of solution-based Zn:Sn:O nanostructures,

under submission 2019

A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
Literature review on green multicomponent oxide semiconductor nanostructures, under

preparation 2019

A. Rovisco, J. Neto, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P.
Barquinha, pH sensors based on electrodeposited ZTO nanostructures, under

preparation 2019

A. Rovisco, J. Martins, A Kiazadeh, R. Branquinho, E. Fortunato, R. Martins and P.

Barquinha, ZnSnOs nanowires resistive switching memories, under preparation 2019
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Oral presentations

1.

Ana Rovisco, Rita Branquinho, Jorge Martins, Maria Jo&o Oliveira, Daniela Nunes,
Elvira Fortunato, Rodrigo Martins and Pedro Barquinha, Seed-layer free zinc tin oxide
tailored nanostructures: effect of chemical parameters, 15th International Conference on

Nanosciences & Nanotechnologies (NN18), 3-6 July 2018, Thessaloniki, Greece

Ana Rovisco, Rita Branquinho, Jorge Martins, Elvira Fortunato, Rodrigo Martins and
Pedro Barquinha, Seed-layer free zinc tin oxide tailored nanostructures fornanoelectronic
applications produced by low-temperature hydrothermal synthesis, 2018 MRS Fall
Meeting, November 25 - 30, 2018 Hynes Convention Center, Boston, Massachusetts,
USA

A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
ZnSnOs nanowires by hydrothermal synthesis, Materiais 2019, 14-17 April 2019, Lisbon,
Portugal

Ana Rovisco, Zinc tin oxide nanostructures characterization using a SEM workstation,
Seminario Hitachi: Os limites da microscopia, CENIMAT (UNL), Caparica, 16" May 2019

A. Rovisco, J. Martins, A.d.Santos, J. Neto, R. Branquinho, E.Fortunato, R. Martins and
P. Barquinha, Multifunctional Zinc Tin Oxide Nanostructures: From Photocatalysis to

Electronic Applications, Nanotech France 2019, 26 - 28 June, Paris, France

Contribution in oral presentations

1

P. Barquinha, C. Fernandes, A. Santos, E. Carlos, R. Branquinho, A. Kiazadeh, J.
Martins, A. Rovisco, R. Martins, E. Fortunato, “Sustainable, multifunctional and flexible

electronics platform based on oxides”, NanoPT 2017, Porto, February 2017 —invited

Pedro Barquinha, Ana Rovisco, Soumen Maiti, Rita Branquinho, Zinc-tin oxide tailored
nanostructures produced by solution-based methods: a vehicle towards sustainable and
multifunctional oxide nanoelectronics, XVII Brazilian MRS Meeting, September 16-20,
2018, Natal, Brasil — invited

S. Nandy, S. Goswami, A. Rovisco, P. Barquinha, R. Martins, E. Fortunato, “Electro-
typing” Data Storage Device by Probe Induced Charge Injection Method, Materiais 2019,
14-17 April 2019, Lisbon, Portugal

Pedro Barquinha, Daniela Nunes, Ana Pimentel, Lidia Santos, Ana Rovisco, Rita
Branquinho, Suman Nandy, Elvira Fortunato and Rodrigo Martins, Oxides and the

challenges of the future, Nanotech France 2019, 26 - 28 June, Paris, France — invited

Posters

1.

A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
Solution-based multicomponent oxide semiconductor nanowires for electronic

applications, EMRS Spring Meeting, 1-5th May, Lille, France, 2016
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10.

A. Rovisco, A. Pimentel, D. Nunes, P. Barquinha, E. Fortunato and R. Martins, Metal-
oxide nanostructures synthesized under microwave irradiation, Jornadas do CENIMAT
2016, July 2016

A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
Solution-based multicomponent oxide semiconductor nanowires for electronic

applications, Encontro Ciéncia 2016, Centro de Congressos de Lisboa, 4-6 July, Portugal

A. Rovisco, R. Branquinho, E. Fortunato, R. Martins and P. Barquinha, Solution-based
multicomponent oxide semiconductor nanowires for electronic applications, Encontro

Ciéncia 2017, Centro de Congressos de Lisboa, 3-5 July, Portugal

Ana Rovisco, Rita Branquinho, Elvira Fortunato, Rodrigo Martins and Pedro Barquinha,
Zinc-tin Oxide Nanowires: Electrical Characterization inside SEM, 5th Dresden

Nanoanalysis Symposium, Dresden, September 1st, Germany, 2017

Ana Rovisco, Rita Branquinho, Jorge Martins, Maria Jo&o Oliveira, Daniela Nunes,
Elvira Fortunato, Rodrigo Martins and Pedro Barquinha, ZnSnO3 Nanowires: Synthesis
and Electrical Characterization inside SEM, 17th International Conference on
Nanoimprint and Nanoprint Technologies, September 18-20, INL | Braga, Portugal, 2018

Ana Rovisco, Rita Branquinho, Jonas Deuermeier, Elvira Fortunato, Rodrigo Martins
and Pedro Barquinha, ZnSnOs3 phase identification by XRD, EDS and XPS analyzes,
Spring School and Workshop on Quantitative methods in X-ray spectrometry, May 2019,
Lisbon, Portugal

Ana Rovisco, Rita Branquinho, Jorge Martins, Elvira Fortunato, Rodrigo Martins and
Pedro Barquinha, Seed-layer free ZnSnOz nanowires by hydrothermal synthesis: effect

of physical parameters, 6th Nano Today Conference, 16-20 June 2019, Lisbon, Portugal

A. Rovisco, R. Branquinho, Jonas Deuermeier, E. Fortunato, R. Martins and P.
Barquinha, ZnSnOs phase identification by XRD, EDS and XPS analyzes, Encontro
Ciéncia 2019, Centro de Congressos de Lisboa, 8-10 July, Portugal

A. Rovisco, A.d.Santos, R. Igreja, R. Branquinho, E.Fortunato, R. Martins and P.
Barquinha, Micro-structured composite of PDMS and ZnSnOs nanowires for energy
harvesting, E-MRS Fall Meeting, 16-19th September 2019, Warsaw, Poland

Contribution in posters:

1.

J.V. Pinto, A. Rovisco, T. Calmeiro, S. Nandy, P. Barquinha, R. Martins, E. Fortunato,
Electrical Characterization of ZTO NWs by Electrical Mode AFM, 5th Euro AFM Forum,
University of Geneva, 22-24 June 2016

D. Nunes, A. Pimentel, A. Rovisco, A. Gongalves, A.C. Marques, S. Pereira, L. Santos,
P.Barquinha, E. Fortunato and R. Martins, Metal-oxide nanostructures synthesized under

microwave irradiation, I3N Annual Meeting 2017, Lisboa, February 2017
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3. Suman Nandy, Sumita Goswami, Ana Rovisco, Pedro Barquinha, Rodrigo Martins,
Elvira Fortunato, Atomic force microscopy: Impact on nanoscale charge-transport
dynamics, 6th Dresden Nanoanalysis Symposium, Dresden, August 31st, Germany,
2018

Awards

1. Second Place in the Science as Art Competition, 2018 MRS Fall Meeting

2. Coverimage in Nano Today (Volume 21) — Winner of Cover Competition 2018 (Chapter
8 - Appendix 1)

3. Coverimage in Nano Today (Volume 26) — Winner of Cover Competition 2019 (Chapter
8 - Appendix 2)
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Chapter 1 — Literature review on green multicomponent oxide semiconductor
nanostructures

Chapter 1 — Literature review on green
multicomponent oxide semiconductor

nanostructures

The first chapter presents itself as a framing of the work in this thesis under the field of
nanotechnology. It starts by presenting the state of the art concerning the relevance of
multicomponent semiconductor oxide nanostructures, including the properties of the
nanomaterials that are relevant forthis work and its applications. Special attention is given to

green materials, due to the importance of avoiding critical raw materials.
The contents of this Chapter are adapted from the following paper:

= A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
Literature review on green multicomponent oxide semiconductor nanostructures,

under preparation 2019




Chapter 1 — Literature review on green multicomponent oxide semiconductor
nanostructures

1.1. Abstract

Herein, a comprehensive review of the literature on green multicomponent oxide
semiconductor nanostructures is presented. This review pretends to highlight the importance of
these materials for the post-Si era, as their properties can be appropriately tuned by either
changing the cations or the cationic ratio. The demand for environmentally friendly materials, as
well as the need for reducing the costs inthe industry increases the demand for novel materials
and simpler methods. Thus, potential materials for meeting these requirements, while still
enabling good performances, are here explored and summarized. The importance of these
materials further increases with their potential to be implemented in future smart and self-
sustainable surfaces, where their multifunctionality, derived from their varied excellent properties,
allows the combined integration of multiple devices such as sensors, harvesters and electronic
components. In this context, the viability of the different oxide nanostructure materials and

morphologies for specific applications is also described.

1.2. Introduction

Nanotechnology attracted a very high attention over the last decades, leading to a very fast
development of materials and processing routes. Different areas such as electronics, chemical
sensors, medicine/biology, optoelectronics, energy, and others, have profited from this rapid
growth. Particularly, for electronic and sensors applications there is an increasing demand for
flexible and transparent devices and also for miniaturization to meet near-future concepts such
as internet-of-things and smart surfaces where low-cost, sustainability and high-integration level
are crucial.! Having in mind the environmental issues that we are facing in the modern era, the
importance of searching for environmentally friendly, recyclable and low-cost nanomaterials and

fabrication processes is essential.2

Oxide materials have been widely used in thin-film technology, since they allow not only for
good electrical properties but also fortransparency, large area uniformity and good mechanical
flexibility.34 This is well aligned with the requirements highlighted above for smart surfaces.
Depending on the metal cations (and on the metal to oxygen ratio), metal oxides can be
considered as dielectrics, semiconductors oreven conductors.>-8 Dielectrics are usually based
on the metal ions of Si, Ta, Al and Hf, while semiconductors and conductors typically contain In,

Zn, Cd and Sn metal ions.®

One of the very interesting properties of oxide (semi)conductors composed of multiple post-
transition-metal cations is that their carrier transport is fairly insensible to structural randomness.
Unlike conventional covalent semiconductors where carrier transport paths are composed of
strongly directive sp3 orbitals, in multicomponent oxides neighboring metal 4s or 5s orbitals

largely overlap and constitute the bottom of the conductionband, and this is not severally affected
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even in an amorphous state.19 Indium-gallium-zinc oxide (IGZO) thin films are perhaps the most
striking example of this: while single crystalline films prepared at temperatures exceeding 1000 °C
exhibit hall mobility (un) in the range of 10-20 cm?/Vs, very similar values are obtained for

polycrystalline or even amorphous films, even if processed at room temperature.10.11

Owing to their remarkable electrical properties, In-based materials are currently the
multicomponent oxide conductors and semiconductors with larger market relevance in large area
electronics.>2 Indium-tin oxide (ITO) is traditionally seen as the reference transparent conductor,
with low electrical resistivity of = 104 Q.cm and optical transmittance in visible range of
= 85 - 90 %.13.14|GZO enables high field-effect mobility >10 cm?/Vs and low off-current <100 fA
in thin-film transistors, TFTs) and excellent large area uniformity, being currently one of the
dominant semiconductor technologies for display applications.1516 However, indium is an
expensive material, due to its scarcity and high market value, appearing in the current (2017) list
of the critical raw materials for the European Commission (Figure 1.1).17 While slightly less
critical, the same can be said for Gallium, another element of IGZO. This way, the replacement

of these materials is imperative to assure long-term sustainability.2
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Figure 1.1. List of critical raw materials for the EU in 2017, adapted from the European
Commission report.17
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The considerations mentioned above for thin-film oxide electronics are also important when
heading towards oxide nanostructures. Indeed, while oxide materials such as SnO2, ZnO and
In203, have been extensively explored as semiconductor nanostructures, multicomponent oxide
materials have great potential to enhance properties and enlarge the range of applications of
oxide materials. The properties of these multicomponent oxide nanostructures can be tuned by
adjusting the cationic ratio.%151819 Therefore, several structures can be achieved, such as
perovskites (ABOs3), spinel structures (AB204) and other AxByO: structures, allowing different
electrical, optical, mechanical, chemical and physical properties.29-22 Materials properties such as
ferroelectricity, superconductivity, magnetism and piezoelectricity have been demonstrated.16 A
good demonstration of the potential of a multicomponent approach foroxide nanostructures is the
significant enhancement of piezoelectric response reported for ZnSnO3 compared to ZnO, owing
to the larger displacement of the Zn atom in the ZnOs octahedral cell compared to the one of the
Sn atom in the SnOs octahedral cell, resulting in large spontaneous polarization in the crystal

structure along the c-axis.23

However, the synthesis of these multicomponent nanomaterials is significantly more complex
due to the presence of two (or more) cations.1® Thus, achieving a well-controlled reaction with the
desired stoichiometry at the nanoscale can be very challenging, especially when considering low-

complexity and low-cost methods.

The literature review presented in the next sections will cover the different multicomponent
oxide semiconductor nanostructures, the methods for their fabrication and characterization and
finally their applications. Especial attention will be held to materials and methods which are

environmentally friendly and with low complexity and associated costs.

1.3.  Nanostructures of green multicomponent oxide

semiconductors

A nanostructure is, by definition, a structure for which at least one of its dimensions is less
than 100 nm. Nevertheless, materials with dimensions in the range of 1 nm to 250 nm are
governed either by the quantum effects of atoms and molecules or the bulk properties of
materials.?* Materials with structures at the nanoscale have unique optical, electronic, or
mechanical properties when compared to the respective bulk materials, which arise from the
quantum effects or from the much more significant contribution from the surface in comparison to
the bulk. Additionally, these properties are dependent on the size of the structures, unlike in bulk

materials, and can then be adjusted.

Depending on their morphologies, nanostructures can be considered as having zero, one,
two orthree dimensions (Figure 1.2), and each type of nanostructures can be suitable fordifferent

applications as their properties vary with shape and size. In the next sub-sections, nanostructures
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having each of these dimensions will be described in more detailed, as well as the main green

multicomponent oxides semiconductors that have been produced in the latter years for each.

O@d/ r

99
2,9
Quantum dots Nanotubes, fibers, Nanosheets, Polycrystals, bulk
and clusters rods and wires nanoplates and films nanostructures
oD 1D 2D 3D
Figure 1.2. Schematic of the nanomaterials according to their different dimensions: 0D, 1D,
2D and 3D.
1.3.1. 0D nanostructures

The OD nanostructures generally consist in small spherical nanoparticles with diameters
lower than 100 nm, consequently, all their dimensions are in the nanometers range. These
nanostructures are normally called quantum dots or clusters, which are isotropic structures, due

to the electron confinement in all the 3 dimensions. 2>

Regarding multicomponent oxide semiconductors, several materials can be produced with
zero dimensions being that Zn, Ca, Ti, Sn, Fe and Cu are some of the most common cations

used.

Zn2Sn0a4 is one of the most reported ternary oxides as 0D nanostructures. Lehnen et al.
reported very small Zn2SnOs quantum dots (with diameters below 30 nm), produced with a
microwave-assisted hydrothermal synthesis, followed by high-temperature annealing.2°
Numerous other reports on Zn2SnOs4 nanoparticles have been shown, either using standard

hydrothermal synthesis or solvothermal synthesis.26-33

Another Zn-based ternary oxide is the ZnCr204.343> Nanoparticles of this material were
reported by Mousavi et al., and they were produced by a precipitation method, followed by a
calcination at 700 °C for 3 h.3> ZnMn204 nanoparticles were also reported, by Moran-Lazaro et
al., which used a microwave-assisted colloidal method to produce ZnMn204 nanoparticles (Figure
1.3a).36

Such as ZnCr204 and ZnMn20s4, spinel structure nanospheres of CuFe20s4 were also
shown.37:38 |n 2013, Zhu et al. reported a hydrothermal method to produce CuFe204 nanospheres

with an average size of 60 nm, as shown in Figure 1.3b.3°

Perovskites from ABOzs class are also commonly reported as 0D structures, with SrTiOs and

ZnSnOs being a few examples of these materials. 40
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Figure 1.3. TEM images of: (a) ZnMn2Os nanoparticles from ref. % and (b) CuFe2Os
nanospheres from ref. 3,

SrTiO3 nanoparticles have also been synthesized by hydrothermal synthesis, for example,

Shen et al. reported a hydrothermal synthesis of the material at 120 °C for 36 h.41

Regarding ZnSnOsz nanoparticles, several hydro and solvothermal routes have been
reported for its synthesizes.#2-4> For instance, Beshkar et al. reported the use of the Pechini
method at 80 °C to synthesize fcc-ZnSnOs nanopatrticles, followed by a calcination at 700 °C for

2 h.%6 Figure 1.4 shows ZnSnOs nanoparticles from different synthesis routes.

Figure 1.4. SEM images of fcc-ZnSnOsz nanoparticles produced (a) at CENIMAT by
hydrothermal synthesis; (b) by Pechini method using gelling agent, from ref. %; and (c) FE-
SEM image of fcc-ZnSnOz nanoparticles annealed at 400 °C from ref. 4.

Other ternary structures, such as ABOs, have been reported in the form of OD
nanostructures. Hu et al. reported CaWOa4 and Ca1xZnxWO4 nanocrystals produced by a solution

chemistry at room temperature.*8

In summary, several multicomponent oxide semiconductor materials have been reported as
0D nanostructures. These materials are essentially based on Zn, Sn and Ti, metals. Besides the
simple hydrothermal synthesis, a combination of a chemical method followed by a calcination (at
high temperature) has shown to be a very common and efficient route to produce 0D

nanostructures.
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1.3.2. 1D nanostructures

The 1D nanostructures can have different forms such as wires, tubes, belts, and rods. In
these structures only one of its dimensions (the length) is not in the nanometer range, with
diameters normally being tens of nanometers. Nanowires and nanorods are distinguished by their
length to diameter ratio: while ratios of 100-1000 are usually reported as nanowires, nanorods

are typically thicker and have length to diameter ratios between 3 and 5.49

These structures have raised high interest in the scientific community, as they are the
smallest structures showing an efficient transport of electrons and optical excitations. 6 They
present large surface to volume ratio resulting in spatial confinement of electrons, phonons and
electric fields around the particles. These properties make them suitable for applications such as

catalysis, optoelectronic and sensors.2°

The synthesis of multicomponent oxide nanostructures is complex, and the complexity
further increases when the desired morphology is not very stable or not the structure with the
faster nucleation.! 1D morphologies are seldom the most favorable, thus 1D nanostructures are
normally hard to achieve. Nevertheless a few multicomponent materials have been reported in
the form of nanowires so far, with a few review papers having been published on the
topic.1516215051 yvapor phase methods are often used to produce 1D nanostructures, by suppling
enough energy to induce the desired growth. Alternatively, nanoscale patterning methods, such
as e-beam lithography, nanoimprint lithography and focused-ion-beam (FIB) writing, can be
combined with conventional deposition methods to pattern materials at a nanoscale level, for

instance in the form of nanowires.1:52

The AB20a4 class of materials is one of the most reported for 1D materials. In 2009, Fan et
al. reviewed the Zn-based ternary oxide nanotubes and nanowires.?! Several Zn-based materials

were reported by the authors, such as Zn2TiO4, ZnMn204 and Zn2SnOa.

Kim et al. reported the synthesis and application of ZnMn204 nanowires (Figure 1.5a).53 The
a-MnO2z nanowires were firstly synthetized by hydrothermal reaction and were then mixed with
Zn(CHsCOO)2 in high purity ethanol and diethylamine, for several hours. Finally, the ZnMn20a4

nanowires are formed with a calcination at 480 °C in an O2 atmosphere for 12 h.

While several reports on Zn2SnO4 nanowires also exist, these consist essentially in vapor
phase methods, more specifically in thermal evaporation at high temperature,* showing the
difficulty in obtaining the nanowire form as mentioned before.5% This Zn2Sn0Oa4 phase theoretically
requires 750 °C forits formation, making it rather complex to obtain nanowires with this phase.
This is emphasized by the fact that there are only a few reports for Zn2SnO4 nanowires from
solution processes, mostly assisted by seed-layers. For example, Zn2SnO4 nanowires were

grown on a stainless steel seed-layer and from Mn30O4 nanowires.56:57
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Chen et al. produced nanowires with an interesting “zig zag” form by thermal evaporation
(catalyst-free method) at 920 °C.58 Similar structures of Zn2TiO4 were reported by Yang et al.,

(called twinned nanowires by the authors), produced by vapor-phase transport (VPT) at 950 °C.>°

CuFe204 was also reported as a 1D material, for example, Zhao et al. showed a simple
electrospinning method, followed by a high temperature annealing, to produce hollow fibers of

this material (Figure 1.5b).80

Figure 1.5. SEM images of: (a) ZnMn204 nanowires from ref. 33, (b) CuFe204 hollow fibers
fabricated by simple electrospinning after an annealing at 700 °C for 2 h, from ref. %,

Regarding the ABO3 perovskite materials, the Zn:Sn:O system can result in the ZnSnO3
phase. Nevertheless, being a metastable phase, only a few reports for nanowires from these
structures exist, consisting typically in carbon-thermal reaction, thermal evaporation or CVD
processes 1861 Regarding reports on solution processing of ZnSnOs nanowires, there are reports
employing FTO seed-layers,2-64 and an interesting approach where ZnO nanowires are
transformed into ZnSnOs nanowires®. Recently, ZnSnOs nanowires were produced by a one-
step solution process without any seed-layer, under the context of the present dissertation
work.*5.66 Electrospinning also started to be widely used for producing nanofibers, and ZnSnOs

nanofibers is one the materials already reported.57.68

Other 1D perovskites have been reported, being actually very commonly reported one-
dimension nanostructured materials.16.6%.70 As early as 2011, Rervik et al. made a review of one-
dimensional nanostructures of ferroelectric perovskites.® Titanites such as SrTiOs, CaTiOs are
also very oftenreported as 1D nanostructures.16.6%.71.72 For example, Figure 1.6 shows CaTiOs

nanofibers produced by electrospinning used for drug release.
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Figure 1.6. SEM images (a-d) of CaTiOz nanofibers with differentconditions of synthesis. The
images’ scale baris 1 ym.™

An alternative approach for producing 1D perovskites was reported by Barrocas et al.,
showing the fabrication of CaMn3Os nanorods by RF-sputtering film deposition, using an
unconventional nanopowder target of the same material produced by combustion, followed by a

post-annealing treatment at 800 °C for 6 h in an air atmosphere. 70

Concerning ABOastructures, this class has also been reported in one-dimensional form. For
example, NiMoO4 nanowires were reported by several groups, with Guo et al.”* showing the
hydrothermal synthesis of these structures on carbon cloths (Figure 1.7), while Cai et al.

presented the hydrothermal synthesis of NiMoO4 nanowires on a Ni foam.”®
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Figure 1.7. (a) Schematic and (b and c) SEM images of the hydrothermal synthesis of NiMoO4
nanowires on carbon cloths.™

In summary, a wide range of green multicomponent oxide materials 1D structure were
already reported. Nevertheless, these are often synthesized using expensive methods (vapor-
phase methods) associated with elevated temperatures, whereas a much harder task is achieving
1D nanostructures by solution processes, with reports typically presenting a much higher degree
of complexity. This way the fabrication of this type of structures through simpler and low-cost

methods is still a challenging goal to be achieved.

1.3.3. 2D nanostructures

The 2D nanostructures have only one dimensionconfined at the nanoscale. These structures
present a very high surface to volume ratio.”® Different 2D structures have been reported, such

as nanosheets, thin films, nanowalls, nanoprisms, nanoflakes, nanoplates and nanodisks.””

Regarding thin films, itis a technology that has been widely developed, forwhich amorphous
films are typically used. Usually they involve either vapor phase methods or other cumbersome
techniques. In-based materials are the most common for thin films, as mentioned before®

Nevertheless, due to environmental issues and the scarcity of the material, In-free thin films have
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been increasingly explored. For example, ZTO thin-films have gained high attention in the last
years, especially as semiconductor layer in electronic devices, due to their great electrical
performance, and have been produced not only by physical processes (such as sputtering) but

also by solution processes (as combustion).78-80

Concerning 2D nanocrystals, some of the most common multicomponent oxide materials are
based-on Co, Bi or V. Nevertheless, environmentally friendly materials such as Zn-based
materials are also very common. Recently, 2D ZnSnOs nanostructures, produced by
hydrothermal synthesis, were reported.81.82 Particularly interesting are the face-centered ZnSnOs
flakes (Figure 1.8) synthesized by a hydrothermal method at only 100 °C.8 Figure 1.8 presents

2D ZnSnOs3 nanostructures (nanoplates and nanosheets).

Figure 1.8. SEM images of: (a) ZnSnOs nanosheets;® (b) ZnSnOs nanoplates;®?and (c) face
centered ZnSnOs nanoflakes.&

Also a ABOs material, SrTiOz nanosheets were reported as well, synthesized via

solvothermal route with ethylene glycol, for example.84

Nanoplates with Zn2SnOa4 structure were also already reported, with Cherian et al. showing
its production by hydrothermal synthesis.5® Concerning spinel materials, Zhang et al. reported

CuFe204 nanodisks produced by hydrothermal synthesis at 180 °C for 24 h.38

In the previously mentioned report by Cai et al. regarding NiMoOs nanowires, the

hydrothermal synthesis of ultrathin mesoporous NiMoO4nanosheets on Ni foam is also shown.”®

Furthermore, Guo et al. reported orthorhombic Ho2Cu20s nanoplates produced via
coordination-complex methods with and without N2 environment, showed in Figure 1.9, both

employing high temperatures (= 800 °C).8%
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Figure 1.9. (a) SEM images of Ho2Cu20s nanoplates produced by coordination-complex
method under Nz; (b) High-contrast SEM images of Ho2Cu20s nanoplates produced by
coordination-complex method.®

As 2D nanostructures have received increased attention in the last years, due to their high
surface area, many materials have been developed in different 2D structures. While a very
common technique to produce nanosheets is the exfoliation of layered materials, to the authors
best knowledge there are no reports using this method to produce 2D nanostructures of
environmentally friendly multicomponent oxide materials.® For these materials the hydrothermal
method is the most employed for 2D nanostructures, unlike the case for 1D structures where the

vapor-phase methods are predominantly used.

1.3.4. 3D structures

In 3D nanostructures, there is no confinement in any of the dimensions, with all of them being
larger than 100 nm. There are several forms of 3D nanostructures reported, such as nanoflowers,

nanocones, octahedrons, nanoballs, nanocubes, nanocoils and nanopillars.””

Hollow spheres are an interesting example, with application in drug delivery, but the
complexity of both composition and morphology make it very hard to synthesize.8” Nevertheless,
there are a few examples of multicomponent oxide hollow spheres. SrTiOs hollow spheres were
synthesized through a simple and rapid "TEG-sol" method, by Hao et al..88 Also, Gao et al.
reported the synthesis of ZnSnOs3 hollow spheres (Figure 1.10a) by hydrothermal synthesis at
120 °C for3h.8°

A very common 3D structure is a nanocube shape. For instance, Chen et al. reported a
synthesis which could result in ZnSnOz nanocubes (Figure 1.10b) or ZnSnOs3 nanosheets,
depending on the processing temperature.®l Other example was shown by Zhang et al., who

reported CuFe204 nanocubes, produced by hydrothermal synthesis at 180 °C for 24 h.38

Another common 3D structure is the octahedron shape. Octahedrons of Zn2SnO4 have been
reported by several different groups, and this was identified as the most stable phase and shape

for ZTO (Figure 1.10c). Zn2SnOa4 octahedrons constituted by nanoplates, as shown in Figure
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1.10d, can also be formed.%-91 Another example of octahedrons was shown by Sato et al., who

reported the hydrothermal synthesis of delafossite CuAIO2.92

S 1um

. .
L g )

N

Figure 1.10. SEM images of: (a) orthorhombic ZnSnO3 hollow spheres from ref & and (b)
Face-centered ZnSnOs nanocubes from ref. 8 (c) Fe-SEM images of Zn;SnO4 octahedrons
from ref.%; and (d) SEM image of Zn.SnO4 octahedrons formed from nanoplates from ref.%,

Another common example for 3D nanostructures is the nanoflower-like, which are very
common for Co-based materials. Still, Zn2SnO4 nanoflowers have also been reported. Jaculine et
al. showed Zn2SnO4 nanoflowers produced by hydrothermal synthesis for 48 h at 220 °C.%4
Another example is ZnMn204 nanoflowers that were produced via template-free hydrothermal
synthesis.®® This type of nanostructures is very interesting due to their high surface area, an

important characteristic for applications such as sensing or catalysis.

In summary, like was shown for OD, 1D and 2D nanostructures, several multicomponent
semiconductor oxide 3D nanostructures have already been reported, with Zn-based materials
being once again the most commonly reported. Some of the crystalline structures for these
nanostructures are complex and consequently a well-controlled process for their production is

hard to achieve.

1.4. Synthesis methods

Different approaches can be followed in order to induce the desired nanostructures’

formation. The nanostructures can be obtained by chemical reaction or by nanomanipulation
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techniques, such as template membranes or (nano)lithography processes.1%9:97 Thus, they can
be produced in the form of powder or directly grown on substrates, the latter often involving the

use of seed-layers to induce the nanostructures’ growth.25

Nevertheless, whichever the followed approach, there are several chemical and physical
methods based on either vapor phase or solution phase processes, for synthesizing the

multicomponent oxide nanostructures.%8

14.1. Vapor phase methods

Vapor phase (VP) methods are the most common processes to synthesize metal-oxide
nanostructures. These methods can be categorized by either a vapor-liquid—solid (VLS)
mechanism or a vapor—solid (VS) mechanism, with the most common VP processes being
chemical vapor deposition (CVD), laser ablation (pulsed laser deposition), thermal evaporation

and sputtering.18.54.99

Briefly, in VLS methods a catalyst is used to direct the nanostructures’ growth, being that
these catalysts are formed at high temperatures, followed by the adsorption and dissolution of a
gaseous precursor and finally the precipitation of the nanostructures. This process is very
commonto produce nanowires, where the size is easily controllable by adjusting the catalyst size.
Nevertheless, catalyst remains are usually left attached to the nanowires. Regarding VS
processes, catalysts are not required, with the growth of the nanostructures being controlled both
by the materials’ crystalline structure and the employed reaction parameters (temperature,

pressure, etc.).98

The advantages of these VP methods over solution-based ones are related with excellent
crystallinity and uniformity.%® However, these techniques are cumbersome, expensive, and
generally demand high temperatures (>700 °C).190 Thereby, solution-based methods are
imperative fordecreased complexity, costand temperature, requirements of mostof theindustrial

applications.

1.4.2. Solution-based methods

Solution synthesis of nanostructures consists in the mixture of well-defined quantities of
different ions, which are then submitted to controlled conditions of heat, pressure and
temperature, resulting in a precipitate formed by insoluble compounds. This resultant precipitate
(the nanostructures) is collected and usually cleaned and dried.?* In some cases additional
annealing treatments of the nanopowders are performed inorder to obtainthe desired crystallinity.
Furthermore, by varying the different synthesis parameters it is possible to control the
morphology, size and crystalline structure of the synthesized nanostructures. In these methods a
wide array of chemical precursors (which supply the desired ions to the solution) as well as several

types of solvents and additives can constitute the solution.101
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Solution methods present themselves as a great alternative for the synthesis of
nanostructures: they permit a decrease of complexity, cost and temperature (being compatible
with different technologies such as flexible substrates 9 and paper electronics 102), while also
enabling very satisfactory levels of performance. Moreover, these methods have a high yield
(product ratio to reagent), allow the fabrication of awide variety of compounds and can be easily

scaled in volume, a fundamental advantage when considering their industrial prodution.15.24.96

Nevertheless, there are some drawbacks concerning these solution-based processes. For
example, concerning the synthesis of 1D metal oxide nanostructures, directing the growth of the
structures may require additional aspects to be considered such as the use of surfactants,
templates or seeds (thin films, 1D structures, etc.). This is even more relevant when aiming for

1D nanostructures of complex materials, such as perovskites.101

The main challenge of the solution processes is to well-understand and control the reaction
kinetics, often being hard to achieve a good reproducibility and to have a perfect control over the
obtained nanostructures’ crystallinity and morphology. This is especially true for the syntheses of
multicomponent oxides, for which the complexity is significantly higher.1>16 Nevertheless, there
are several solution-based processes that have been reported as nanostructures’ fabrication
methods, such as combustion, electrospinning, spray pyrolysis, sol-gel, electrochemical
deposition, and hydro/solvothermal methods.15103 The latter are the most frequently used and

they are described next, 98,100,104

Hydro/solvothermal methods

The hydrothermal methods have been widely explored and developed in the last
years.100.101,104 This method consists in a chemical reaction in an aqueous solution, under high
pressure (> 1 atm) and at temperatures usually ranging between 100 °C and 300 °C. In case of
using non-aqueous solvents, the method is called solvothermal.100.191 Typically, the solution is
kept inside an autoclave and a conventional oven is used as heat source. The pressure inside
the autoclave is dependent both on the temperature and the volume used, and very high values
can typically be supported. This allows foran elevated energy supply for the reactions even at

relatively low temperatures.

While the typical nucleation and growth mechanism of the oxide nanostructures in these
reactions is thought to consist mainly in dissolution—reprecipitation, these mechanisms are often
not well understood. The mechanism consists on the precursors’ dissolution followed by the
diffusion of their species and their reaction/precipitation resulting in the final compound. Both
dissolution and diffusion of the species during the synthesis are strongly determined by the
solvent (as well as the employed hydrothermal parameters) playing then a very important role in
this process. When the precursors’ solubility is not high enough, precluding an efficient reaction,

mineralizer agents can be used (NaOH, KOH, etc.) to increase the solubility of the species.100.101
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While inexpensive and simple, this technique still allows for a well-controlled obtention of the
desired nanostructures’ shape and structure with a high reproducibility, thus presenting as an

excellent alternative to the conventional physical methods.32:105

Additionally, while conventional ovens are typically used as the heat source, recently
microwave-assisted synthesis have been widely explored and have shown to allow to reduce the

synthesis duration due to its more efficient (and more homogeneous) heat transfer process.1%-
108

1.5. Characterization techniques

To properly identify the synthesized material and study its properties, a wide range of
techniques can been used to analyze either the crystallinity, morphology, size, element
concentration, and the electrical, optical and mechanical properties.1% In this review special
emphasis will be given to the techniques usually employed for identification of the nanomaterials,
which normally are used in complement to each other. A sub-section will be dedicated to the most

common techniques for determination of the optical, mechanical and electrical properties.

15.1. Scanning electron microscopy (SEM)

The scanning electron microscopy (SEM) is the one of the most used techniques to analyze
the morphology of the nanostructures, by imaging the samples surfaces. The basis of this
technique consists in the incidence of a highly energetic and focused electron beam in a surface,
consequently emitting primary electrons from the interaction while the materials emit secondary
electrons, backscattered electrons (BSE) and X-rays being that some electrons are also
transmitted. High resolution images (presently at atomic scale, 1-5 nm) of the sample’s surface
are created by the secondary and backscattered electrons.119 The electron beam can be
generated either using a tungsten filament cathode, by thermionic emission, or by a field-emission
gun, with the electron energy typically in a range between 1 to 30 keV. In the electron column the
beam is oriented by a pair of scanning coils or deflector plates for scanning a specific area of the
sample. As the emission of secondary electrons is dependent on the angle of incidence between
the beam and the sample, an image generated by these electrons presents contrast between flat
and steep regions of the material, thus giving information about the surface topography. On the
other hand, the electron backscattering is dependent on the atomic weight of an element, thus,
images obtained through these electrons show contrast according to elemental composition of

the material, providing useful information about the chemical composition of the sample.
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15.2. X-ray diffraction (XRD)

X-ray diffraction (XRD) is commonly used to investigate the crystallinity of materials, allowing
to identify the structure, phase, lattice parameters and crystalline grain size for crystalline
materials.109.111.112 A5 50, this technique one of the most employed for the nanostructures’
characterization.1%° It should be noted that material identification using this technique is only

possible for crystalline materials, whereas amorphous materials result in no identifiable patterns.

The qualitative and quantitative analysis is based on the Bragg’'s law of diffraction,

represented by the following equation:
nd = 2dy,; sin 6 1)

Where n is the order of diffraction, A the X-ray’s wavelength, d,,, the interplanar spacing,
and @ the incident and diffraction angle, which is swept during the measurement. According to
this relation, peaks observed in the pattern formed from the collected x-ray intensity provide
structural information about the analyzed material. This technique can also be performed under
temperatures up to 1200 °C, allowing to study phase changes under temperature. Nevertheless,
similar patterns often existfordifferent materials, and thus other techniques are usually combined

with XRD for the proper identification a material.

1.5.3. Energy-dispersion X-ray spectroscopy (EDS)

Energy-dispersive X-ray spectroscopy (EDS) is a very useful technique that provides
gualitative and quantitative surface element analysis. This technique is often integrated in SEM
systems where an X-ray detector is integrated. This technique is based on the detection of
secondary X-rays emitted from a material as a result of the interaction between a highly energetic
electron beam (10-20 keV) with its surface. This X-ray emission is generated up to a depth about
2 um and is dependent on the elemental composition of the material. Scanning the sample thus
results in an elemental mapping. While a quantitative analyzes by peak-height ratio comparison
to known standards can be made, the energy peaks correspond to different energy-level shells
that often coincide between different elements and so this technique is usually combined with

others for a proper material identification.110.113

1.5.4. X-ray photoelectron spectroscopy (XPS)

The X-ray photoelectron spectroscopy (XPS) is based-on the photoelectric effect. This
technique can provide information about the surface of the sample, namely electronic structure,
elemental composition, oxidation state and ligand binding (surface-sensitive), with most of the
signal arising from the top 1-10 nm.1%° In XPS, photoelectrons are emitted from the sample after

it is stricken by soft monochromatic X-rays with energies between 200 and 2000 eV. The kinetic
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energy of the ejected electrons is determined by a spectrometer and is related to the binding

energy of the atom from which it was ejected. This relation is given by:
hv =E; +Eg + ¢ 2

where h is the Planck constant, v the frequency of the incident X-ray, Ey the electron kinetic
energy, Eg the binding energy of the electron to the nucleus relative to the Fermi level and ¢ the

work function of the material (in case of being a solid).114

1.55. Fourier-transformed infrared spectroscopy (FTIR)

While the Fourier-transformed infrared spectroscopy (FTIR) was initially used in the
investigation of organic materials, it is now very commonly used to analyze inorganic materials.
By detecting the presence of OH groups its very suitable for the identify of hydroxides.
Moreover, the technique can be realized with materials in the different matter phases: liquid, solid
or gas.!1In this technique, a sample is irradiated with electromagnetic radiation with wavelengths
within the mid-infrared region (4000-400 cm-1), and by deducing the transmitted radiation from the
total irradiated the absorbed fraction is measured. Molecules absorb frequencies that are
characteristic of their structure, being that these resonant frequencies matching the vibrational
frequencies allowed in the molecule. As these energies dependent on the shape of the molecular
potential energy surfaces, the masses of the atoms, and the associated vibrionic coupling, the
method thus provide information on molecular structures and interactions. In inorganic materials,
such as the case of the nanomaterials in this scope, oxide bonds between constituents of the

material result in absorption bands that can be used as fingerprints for identification. 11

1.5.6. Raman spectroscopy

Raman spectroscopy is a technique based on the inelastic scattering of photons at the
electrode cloud of a molecule. The samples (solid, liquid or vapor) are irradiated with a
monochromatic light (typically a laser) with wavelength either in the near-IR, visible or near-Uv
range, and the light emitted from the sample is collected in a monochromator. The differencein
energy between incident photons and emitted photons (Raman shift) gives the energy shift
between rotational-vibrational-electronic (rovibronic) states in the molecule. The intensity of this
effect is proportional to the electric dipole-electric dipole polarizability of the molecules, and thus
dependsits rovibronic states. As these states are specificto chemical bonds, they are a fingerprint
for material identification, and provide information about the chemical structure and physical form

of the materials.115.116
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15.7. UV-visible spectroscopy

This technique is used to measure optical parameters such as the absorption coefficient,
refractive index, optical band gap and transparency of a material. Furthermore, the technique is
very interesting for nanostructures as it allows to determine the size and concentration, while
being capable of also giving information on agglomeration state as well as some information on
the nanoparticles shape.1% In this technique a UV/visible light beam irradiates the sample and
both the transmitted as well as the reflected light (with the help of an integrating sphere) are
collected, from which the absorbed light can then be inferred. The absorption spectra can then

be constructed which is related to the electronic structure of the material.11°

15.8. Photoluminescence (PL) spectroscopy

This technique is used for characterization of the electronic structure of materials. PL can be
used to quantify optical emission efficiencies and other material properties such as composition,
impurity content and thickness.11” The technique consists in using a fixed wavelength excite
electrons in the sample material (photo-excitation), and then measure the different wavelengths
emitted from the relaxation of these electrons to lower energy states. These corresponding energy
levels can give information on material imperfections and impurities, e.g. in the case of the metal

oxide materials defect levels associated to oxygen vacancies can be observed.118

15.9. Atomic force microscopy (AFM)

This technique consists in the physical scanning of a surface by a probe with an atomic-scale
tip, producing a high-resolution image of the material surface. While this technique pictures the
topography of the sample, several other modules are available forproperties’ such as electrostatic
force microscopy (EFM), Kelvin probe (KPFM), conductive AFM (C-AFM), piezoresponse (PFM)
which can provide further morphological, electrical and mechanical information. This technique
can provide valuable information for nanomaterials such as size, shape, structure, dispersion,

and aggregation.110

1.6. Integration and applications

The numerous nanostructure types in which multicomponent oxide materials can be grown
result in a varied array of properties which can be tuned regarding the nanostructures’ morphology
(shape, size, structure) and composition (oxygen content, defects, material stoichiometry, etc.).
As so, these nanostructures have been explored for awide range of applications. Regarding their
implementation, the nanostructures can either be directly produced in the desired substrates (for

which seed-layers can be employed to induce specific structures in specific substrate areas) or
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in the form of powder forwhich post-processing transfer methods are then required for device

integration.

The transfer of the nanostructures presents as one of the main challenges in their application,
as these transfer methods are often either difficult to perform or inefficient. Still, these methods
are typically associated with low costs and allow for a greater flexibility to obtain different phases
within a material system during the synthesis process itself. Additionally, when increasingly more
demanding substrates (e.g, conformal and transparent) are required by concepts suchas the loT,

the flexibility in integration given by transfer methods gains even more importance.119

Several transfer methods have already been explored, the most common being drop -casting
and spin-coating, spray-coating, printing and dielectrophoresis (electrodeposition).120-123 While
challenging, the further development of these methods to a point where they permit a reliable
nanostructure integration is key, as the multicomponent oxide nanostructures’ wide range of

applications demands for significantly different approaches and architectures to be explored.

The most common applications for these nanostructures will be presented next, referencing
the main materials that have been used for each application, with the focus being maintained on

multicomponent materials containing non-critical elements.

1.6.1. Electronic Applications

Due to market implications, electronics applications are always a relevant drive formaterials.
The multicomponent semiconductor nanostructures are particularly interesting for these
applications, with wide band gap semiconductors allowing for high-power and high-frequency

operations.100

In Figure 1.11 the electronic density of states for semiconductors with different dimensions
is presented. As observed, the electronic confinement alters the shape of the density of states
which, in the case of no confinement effects, presents the typical parabolic distribution known for
most semiconductors. As previously mentioned, the designation of the nanostructures relates to
the number of dimensions in which the electrons are not confined: in a OD nanostructure the
electrons are confined in all dimensions, in a 1D nanostructures the electrons are confined in 2
dimensions (and move in one dimension), in 2D nanostructures the electrons are confined in 1
dimension (and move in 2 dimensions) while for 3D nanostructures the electrons are not confined

in any dimension.

The size-dependency of properties is a very interesting phenomena for the tuning of
nanostructures for specific applications and while this dependency is higher the more confined
the nanostructures are, 1D nanostructures still present several advantages over 0D
nanostructures, being in fact the more commonly sought for electronic aplications.124 In these
structures, the quantum confinement results in high density of electronic states near the edges of

the conductionand valence bands, with the discretization of the energy states beginning to dictate
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the material’'s properties.12* Additionally, the carriers’ movement is limited to a single dimension,
leading to a reduction of the low-angle scattering. All this results in efficient charge transport
characteristics with high electrical mobilities being found for these materials, which is desirable
for different applications but especially for electronics.% Furthermore, the high aspect ratio of

these structures facilitates the electrical contacting.
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Density of States
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Figure 1.11. Density of states of a semiconductor with a: (a) 0D structure (quantum dots), (b)
1D structure (nanowire), (c) 2D structure (nanosheets, thin films) and (d) 3D (bulk) structure.

Field effect Transistors

Field effecttransistors are the key element in today’s electronics. Its miniaturization is always
pursued, and for the Sitechnology transistors fabricated in 7 nm-nodes are already a reality. With
nanoelectronics demanding for a new generation of materials to circumvent the limitations of
conventional Sitechnology, multicomponent metal oxide semiconductor nanostructures appear
as interesting candidates. Due to their excellent electrical properties, as previously discussed, 1D
structures are the most interesting in this regard, having already shown a great applicability as a
semiconductor material in field-effect transistors.50.98.125126 A few transistors based on
multicomponent oxide nanostructures have been reported lately, however, as with the thin fim

technology, most consist in In-based materials.5-7:98.120,127-130
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For the thin film technology, promising In-free multicomponent oxide materials have already
been shown. A prime example is ZTO, a candidate forthe replacement of IGZO, forwhich devices
produced both by physical and solution processes have been reported by several groups.131-13#
Forinstance, in CENIMAT (our research group) ZTO produced both by sputtering and by solution
based processes was already demonstrated has having great potential: Fernandes et al. showed
the use of amorphous ZTO TFTs produced with low thermal budgets (£ 180 ° C) for inverters and
amplifiers, while Salgueiro et al. showed ZTO TFTs by solution combustion synthesis.”®80 As in
thin film technology, ZTO is also one of the most promising multicomponent metal oxides for
transistors with nanostructures.58.126.135 Demonstrations of discrete Zn2SnO4 nanotransistors were
already made using nanotransfer moulding of ZTO inks followed by annealing at 500 °C, or by
simple pick-and-place approach of drop-casted ZTO nanowires prepared by CVD above 700 °C
(Figure 1.12) and by thermal evaporation at 1000 °C.18:52.99

(@) —

D (NTO)

N;o- (Gl.\

G (IT0O)

Si or Quarntz wafer

Figure 1.12. (a) Cross-sectional view of a bottom-gated nanowire transistor structure. (b) FE-
SEM image of the nanowire channel region for a Zn.SnO4 nanowire transistor. Adapted from
ref. %,

Different architectures can be considered forsingle nanowire transistors, as shown in Figure
1.13. As the simpler approach, a typical TFT structure can be emulated by replacing the usual
semiconductor film by a horizontal nanowire using either a simple pick-and-place method or
another transfer method. Nevertheless, architectures such as those employing gate-all-around
the 1D nanostructures are very interesting approaches as the excellent gate control they provide
allows for very high on/off ratios, steep subthreshold slopes and low threshold voltages.'®
Moreover, vertical architectures trough aligning the nanowires perpendicularly to the substrate

enable increased device density.

An alternative approach are transistors employing random nanowire networks. While
resulting in poorer performance than single wire architectures, these are considerably less
demanding in terms of manufacture and have the potential to bring a significant boost to the field-

effect mobility achieved with oxide semiconductor thin films. 126,137
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B e Top gate

Gate-all-around Vertical FET

Figure 1.13. Schematic of nanowire transistor structures: horizontal nanowire FET with a (a)
back-gate, (b) top-gate (c) gate-all-around geometry and (d) vertical nanowire FET with gate-
all-around geometry. Adapted from ref 13,

Resistive Switching Memories

Other electronic devices than transistors can greatly benefit from the properties of
semiconductornanostructures. For instance, these materials have also been used forthe resistive
switch layer in an emerging type of memory devices known as memristors. Resistive switching
memories (or memristors) have been proposed as a superior alternative to conventional
memories by possessing both elevated integration capability (higher than flash) and non-volatility,
while enabling access speeds close to that of dynamic random-access memory (DRAM).
Memristors are typically composed by a metal-oxide-metal structure, where the modification of
the resistance state is due to the change of an internal state variable in the oxide layer.13% Wide
band gap semiconductors are good candidates for this application due to its highly mobile Fermi
level, allowing for a strong modulation of the resistance state.® From the various oxide materials
that have been explored for this application, TiO2 and ZnO have attracted the most attention due
to their high dielectric constant, wide band gap and fast resistive switching behavior.140
Additionally, ferroelectric materials have been reported as active layers in these devices, with
nanostructured ferroelectric materials presenting better performance than film-based ones.1%
Concerning nanostructures, reports show ZTO as the active material in memristors in different
forms, such as amorphous thin films, Zn2SnO4 nanowires and ZnSnO3 nanocubes, being the latter

a known ferroelectric material, and thus specially relevant for this application.141-148
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Circuits integration

Several nanocircuits using these electronic devices were implemented in the last years, and
Figure 1.14 shows a schematic of the devices that can be integrated in the same nanowire-based
chip.149 For example, Yan et al. developed programmable nanowire circuits for processors, using
Ge/Si core/shell nanowires, while Ju et al. reported AMOLED displays driven exclusively by
ZnO/In203 nanowire electronics and showed that such displays can be optically transparent.150-
152 To the authors’ best knowledge, there is no demonstrations of circuits integration using
environmentally friendly multicomponent oxide semiconductor nanomaterials. Also, a
demonstration of high-density integration with oxide nanotransistors with controlled properties on
large areas is yet to be seen, owing mostly to the inefficient transfer or direct grow methods of

these materials.

NW Sensors

NW Power

NW Nonvolatile Memory
NW Logic

CMOS Circunt

Substrate

Figure 1.14. Schematic of a 3-D multifunctional nanowire-based chip.#°

1.6.2. Sensors

Multicomponent oxides nanostructures are very interest for sensor applications. Their
smaller crystallite size, high surface-to-volume ratios and surface reactivity result in enhanced
sensitivities/selectivity with multicomponent materials typically presenting smaller response times
and superior stabilities compared to binary oxides.153 Moreover, the implementation of these
nanostructures in sensors allows miniaturization of the devices, as well as costreduction. Several
types of nanostructures have been employed in sensor devices, such as nanoparticles (0D),
nanowires (1D), nanosheets (2D) and nanocubes (3D).11° Different sensing application have been
explored using multicomponent oxide nanostructures such as gas sensors, humidity sensors,

photosensors and biosensors, as described next.

32



Chapter 1 — Literature review on green multicomponent oxide semiconductor
nanostructures

Gas sensors

Environmental issues coming from the use of insecticides and pesticides in agriculture,
combustion of fossil fuels, and others, are a concern nowadays.>* Under this scope, gas sensors
are the most commonly reported application for oxide nanostructures. Besides the typically high
surface-to-volume ratio of nanostructures another important aspect regarding the metal oxides
nanostructures is their surface defect density which results in a high conductance change as
carriers are activated fromtheir trapped states to the conductionband when exposed to the target
gases.1%® This results in an increased response by the sensors, given by the resistance change
of the material.36.154.156 Additionally, catalytic activity as that known for transition metal oxides has
been related to increase gas adsorption capability.154157 ZnO was shown to be capable of
detecting a variety of gases (CO2, H2S, NO2, NO, NH3, C3Hs and CHa4), and studies on the
influence of morphology showed that changing the nanostructures’ shape allows to enhance the
sensors’ sensibility to different gases.® ZnMn204 nanoparticles were already used as gas
sensors for propane and carbon monoxide detection.3¢ ZnTiOs nanoparticles were used on a
sodium super ionic conductor for detection of toluene.58 Zn2Sn04 and ZnSnOs nanostructures of
different forms, such as nanopatrticles, nanofibers and nanowires have also been widely used for
gas sensing applications.%7.159 Notably, 1D nanostructures are specially advantageous when FET

architectures are considered for the gas sensing.1%°

Humidity sensors

Multicomponent oxide nanostructures have also been used as active layer for humidity
sensors. Their surface reactivity provides the humidity sensing properties, as the interaction
between their surface and water molecules generates an electrical resistance change.*?
Therefore the nanostructures’ morphology, surface defects and interfacial properties control their
sensing performance.*” In comparison to binary oxides, multicomponent oxides present a higher
stability in aqueous environments, increasing their reliability forthese applications.69ZnSnOs has
been reported as an excellent humidity sensor, in different nanostructure forms such as

nanoparticles or in a composite of ZnSnO3s nanocubes and Ag nanowires. 4247

Photosensors

Oxide semiconductors are known to be great light sensors due to their
photoconductivity.161.162 Most of the multicomponent oxides being considered here have wide
band gaps being well suited for UV detection.1%3 UV photodetectors play an important role in
biological applications, space exploration, environmental sensors, and also in fire monitoring. 164
Additionally, photoconductors are important for concepts such as light-wave communication,
binary switches in imaging techniques, optoelectronic circuits and next-generation memories. For
the latter, it is expected that light-sensitive memristive devices can be used to overcome the
processor-memory communication bottleneck, with oxide materials being a prime candidate due
to their properties. 1D nanomaterials have already shown high sensitivity to light in experimental

devices, attributed to their high surface-to-volume ratio and Debye length comparable to their
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size.165 Nevertheless, the most common multicomponent oxide materials for photosensors are
also based onindium, gallium and germanium, as verified forother electronic applications.1%0ZTO
appears as the most promising environmentally friendly 1D multicomponent oxide material for
photosensing applications.163 Zn2SnO4 has been widely explored for this, with different shapes
such as nanoparticles, nanowires and nanocubes having been reported.28.166-169 ZnSnO3
nanostructures were also reported as photoconductors. 61 While the optical band gap of these
materials is typically in the UV energy levels (hence their transparency), quantum confinement
effects or even defect levels near the band edges can be explored to increase the absorption for

lower energy levels.

Biosensors

The metal oxides’ strong electron-transfer kinetics and adsorption capability make them
interesting materials for biosensing devices. Thus, multicomponent oxides have also been used
forbiosensing applications. For instance, SrTiO3 nanoparticles were used forlabel-free capacitive
biosensors for Escherichia coli detection, ZnSnOs nanoparticles were used as electrochemical
biosensors for label free sub-femtomolar detection of cardiac biomarker troponin T and a composite

of Zn2SnO4 nanoparticles and graphene was used for morphine and codeine detection.170-172

1.6.3. Catalysis

Industrial actions and human activities play a negative environmental impact, raising high
water pollution, among other issues.”® Metal oxide nanostructures are being used for
photoelectrochemical (PEC) water splitting, production of hydrogen, CO:2 reduction and
photocatalysis for pollutant degradation.174-176 Regarding the breakdown of water pollutants,
these materials present great advantages for this application as their band gaps are close to the
visible light range and they have high surface-to-volume ratios.1?7 Titanium oxide, zinc-based
oxides and manganites are some of the most common materials for this application.160.175,178-182
As multicomponent oxides present a higher stability in aqueous environments when compared
with binary oxides, they have a significant advantage for the photocatalytic applications.1®
Differentforms of these materials, such as normal spinel, inverse spinel and perov skite structures
have been employed.174176183 |n fact, piezoelectricity and ferroelectricity (associated with
perovskite structures) have shown to play an important role in photocatalysis, since the
photogeneration of electron-hole pairs is enhanced by the dipole moment formed by the
polarization electric field across the polar materials.184.185 Several spinel structures have been
reported as showing excellent photocatalytic activities, namely ZnM20a4 (with M = Fe, Mn or Al),
and CuFe204.38186-188 ZnMn204 nanoparticles were shown to have high photocatalytic activity,
degrading both 96 % of Congo red dye and 45 % of organic carbonin just 15 min.187 The same
material was used for degradation of rhodamine B under visible-light.186 Inverse spinel structures

such as Zn2SnOs nanostructures have also been widely used.!819 For instance, Zn2SnO4
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nanocrystals were used for the degradation of 50 % of reactive red 141 dye in 270 min under

sunlight.189

Regarding perovskites (ABOs) nanostructures, different ZnSnOs structures such as
nanowires and nanoplates were already used as photocatalysts for organic pollutants (for
example, methylene blue and rhodamine B).46:191.192 Dye to its high optical band gap (3.6-3.9 eV)
UV light is usually required to photoactivate this material. Nevertheless, fcc-ZnSnOs nanoparticles
were already reported with a very satisfactory photocatalytic behavior on methylene blue
degradation under visible light (0.0156 min1).177 SrTiOs nanoparticles synthesized by
hydrothermal synthesis were used for degradation of methyl orange, with a rate of
0.01013 min-1.41 Recently, an alternative photocatalytic approach has been explored, with
piezoelectric materials such as ZnSnO3 (nanowires and nanoplates) and BaTiOz (nanoparticles,
nanoplates and nanowires) being used for piezophotocatalysis.6264193-196 Regarding
photocatalytic hydrogen generation, Zielifiska et al. showed the performance of alkaline-earth
titanates (CaTiOs, BaTiOsz and SrTiO3) in the presence of electron donors, with the best
performance being achieved for SrTiO3.197 Other materials such as CaMnszOs nanorods were also
successfully applied as photocatalysts for rhodamine 6G under visible light, showing a
degradation ratio of 0.3926 h™1.70

Not only the phase but also the morphology has been reported as controlling the
photocatalytic properties. Dong et al. showed the influence of CaTiOs nano/microstructures’
morphology in the degradation of several organic pollutants, finding an optimal activity for
butterfly-like dendrites to degrade rhodamine B (2.069 min-1).198 Other interesting applications of
photocatalytic properties have been reported, such as the photocatalytic inactivation of
Escherichia Coli using ZTO nanocubes under visible light. Only a 10 % surviving rate was found
forthe bacteria, whereas the absorption of the visible light was attributed to the inherent surface
defects enhancing the absorption edge in the visible region.16% With this in mind, lower cost
methods for nanostructure production (as hydrothermal methods), which typical result in more
defective structures, might be advantageous for this applications as defect levels near the band

edges may increasing the absorption forlower energy levels.

1.6.4. Energy applications

Energy Harvesting — nanogenerators

Nanogenerators are devices that can convert mechanical vibrations into electrical energy,
being highly interesting for smart and self-sustainable surfaces and forthe loT, as they can be
used for sustainable energy sources, biomedical systems and smart sensors. 1% Vibration energy
is a great renewable electricity source and can be harvested by three effects: piezoelectric,
electrostatic and electromagnetic transduction.200.201 While lead zirconate titanate (PZT) is the
material with the highest piezoelectric constant, it is environmentally harmful.8 Several metal

oxides have been explored for this application, with BaTiOs and ZnSnOs being the most common
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due to their piezoelectric properties.23202-204 Nanostructures of these materials are often
incorporated in polymers, enabling the robustness required for device practicality.82:205 Several
BaTiO3 nanostructures were already explored for this application (being the most employed
material in this regard), an example being shown in Figure 1.15 where a nanogenerator based-
on BaTiOs nanowires is depicted.2%* Nevertheless, with Ba being a critical material, alternative
materials such as ZnSnOs are pursued and, in fact, several nanostructures from this material
(such as nanocubes, nanowires, and nanoplates) have already been reported for energy

harvesting devices.23.82:202203206-212

Ti foil/
PEDOT:PSS

Ultra-long
BaTiO,
NWs

Figure 1.15. Vibration sensing and energy harvesting device with ultra-long BaTiO3
nanowires.?%

Solar Cells

While solar cell devices allow fora conversion process of solar light (energy) into electric
energy, they often demand expensive methods and materials.>* Multicomponent metal oxides
have been used for dye-sensitized solar cells (DSSCs). DSSCs present high efficiency and low
fabrication costs, and demand forwide band gap porous semiconductor materials as electrode,
with long electron diffusion length, for supporting dye molecules and transporting the
photoinjected electrons.?6 These requirements can be met by multicomponent semiconductor
oxides, as their properties can be tuned forthem to function as transparent conductive oxides
(TCOs), and the control of the size/morphology of nanostructures can ensure high surface area
for dye adsorption.2® For instance, Zn2SnO4 has been widely used as photoanode for dye solar

cells in different nanostructure morphologies as nanoparticles and nanowires.26.56.213,214

Electrochemical energy devices: Li-batteries and supercapacitors

Electrochemical capacitors (supercapacitors), rechargeable lithium-ion Dbatteries are
promising candidates regarding energy storage and conversion. Li-batteries are one of the most
commonly reported systems for electrochemical energy storage employing ternary oxide

nanomaterials.””215 Several multicomponent oxide nanostructures have been used for this
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application, specially ZnO-based compounds such as ZnFe204, Zn2Sn04, and ZnAl204 as shown
in different reviews.2..77.216 For instance, Cherian et al. compared the performance of nanowires

and nanoplates of Zn2SnOa for Li-batteries.5°

Supercapacitors (SC) can also be considered for this technology. Redox SCs are one type
of SCwhere the charge storage is given by fast redox reactions of active species on the surface
of electroactive materials.?1” Metal oxides have been widely used for this application due to their
high specific capacitance and energy density, being that ternary metal oxides have shown higher
supercapacitive performance than binary metal oxides due to their multiple oxidation states.?!7 In
2015, Chen et al. published a review on ternary oxide nanostructures forsupercapacitors, inwhich
most of the reported materials contained the critical raw material cobalt (Co), whereas only 3
nanostructures without critical elements where shown: NiMoO4 nanosheets (with a capacitance
of 2840 F-g1), CuFe204 nanospheres (334 F-.g1) and MnFe204 with graphene nanosheets
(120 F-g1).39.75.217 Recently, holey C@ZnFe204 nanoflakes growth on carbon soot were also
applied for supercapacitors resulting in a capacitance of 1452 F-g-1.218 NiMoO4 nanowires
supported on carbon cloth were also tested as supercapacitor resulting in a capacitance of
1587 F-g-1.74 Additionally, Zn2SnO4/MnO2 core shell in carbon fibers showed a capacitance of
621.6 F.g 1.219

1.7. Conclusions

Near-future concepts such as the internet-of-things (IoT) require an increasing number of
objects to have embedded electronics, sensors and connectivity, driving a demand for compact,
smart, multifunctional and self-sustainable technology with low associated costs. While
nanomaterials are thought to be able to meet these requirements, playing an important role in the
future technological world, low-cost and sustainable technologies are a demand. For this, both
low cost methods of fabrication and sustainable materials must be considered. In this regard,
multicomponent oxide nanostructures appear as prime candidates, due to their wide array of
excellent properties and compatibility with low-cost fabrication methods even when considering
only available and sustainable materials. An overview on these materials was here presented,
along with their synthesis methods, and their wide applicability was made clear by showcasing
some of the several examples of their applicationin relevant areas such as energy, electronics

and sensing.

From the broad range of multicomponent metal oxide semiconductor materials that have
been synthesized in different nanostructures (often Zn, Sn and Ti-based), zinc-tin oxide appears
as one of the most promising. In the Table 1.1 the optical, electrical and piezoelectric properties
of some of the more employed oxide semiconductor nanostructures are presented. These

properties show the potential of zinc-tin oxide compared with other binary and ternary oxides, to
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achieve the desired multifunctionality to meet the concepts of 10T and smart surfaces while

avoiding the use of critical raw materials.

Table 1.1. Optical, electrical and piezoelectric properties of some of the more employed oxide
semiconductor nanostructures. The properties markedwith * are referentto the bulk materials
and with ** to theoretical calculations. Abbreviations: n/a— not applicable; n/f —not found.

Properties Lo Piezoelectric
Band gap Resistivity or
. constant or References
. (eV) Conductivity
Material Polarization
Sn0O; 3.60 0.46 (Q-cm) 1 n/a 220
TiO2 3.00 - 3.40 1.09 Q-cm n/a 178,221
ZnO 3.37 14-2x10%Q-cm* 14.3-26.7 pm/V 222-224
IGZO 3.67 >10% — 102 Q-cm * n/a 120,225,226
BaTiOs3 3.47 1.6x10713 — 4.3x1012 S.m1 31.1 pm/V 227-230
CaMnOs3 5.30 n/f 4 puClem? ** 70,231
NiMoOg4 2.20 107 Q-cm * n/a 232,233
ZnSn03 3.90 ~73 Q-cm 59 nC/cm? 234,235
Zn2Sn0g 3.30 - 3.60 1.6 Q-cm n/a 183,234
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Chapter 2 — Synthesis and characterization of

zinc-tin oxide nanowires

This chapter aims to present the results regarding the hydrothermal synthesis of seed -layer
free ZTO nanostructures developed during this thesis project, with particular emphasis on the
optimization of all the parameters leading to the achievement of ZnSnOs nanowires. The
nanostructures syntheses and characterization were performed in the CENIMAT and CEMOP

laboratory resources.
The contents presented in this chapter are adapted from the following publications:

= A. Rovisco, R. Branquinho, J. Martins, M. Jo&o Oliveira, D. Nunes, E. Fortunato, R.
Martins and P. Barquinha, Seed-Layer Free Zinc Tin Oxide Tailored Nanostructures for
Nanoelectronic Applications: Effect of Chemical Parameters. ACS Appl. Nano Mater. 1,
3986-3997 (2018), DOI: 10.1021/acsanm.8b00743

= A. Rovisco, R. Branquinho, J. Martins, E. Fortunato, R. Martins and P. Barquinha,
Growth Mechanism of Seed-Layer Free ZnSnOs Nanowires: Effect of Physical
Parameters. Nanomaterials 9, 1002 (2019), DOI: 10.3390/nano9071002
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2.1. ZnSnO3 nanowires synthesis: influence of the chemical

parameters

2.1.1. Abstract

Semiconductor nanowires are mostly processed by complex, expensive and high
temperature methods. In this work, with the intent of developing zinc tin oxide nanowires (ZTO
nanowires) by low-cost and low-complexity processes, we show a detailed study on the influence
of chemical parameters in the hydrothermal synthesis of ZTO nanostructures at temperatures of
only 200 °C. Two different zinc precursors, the ratio between zinc and tin precursors, the
concentration of the surfactant agent and of the mineralizer were studied. The type and the
crystallinity of the nanostructures was found to be highly dependent on the used precursors and
on the concentration of each reagent. Conditions for obtaining different ZTO nanostructures were
achieved, namely Zn2SnOa4 nanoparticles and ZnSnO3 nanowires with length = 600 nm, with the
latter being reported for the first time ever by hydrothermal methods without the use of seed
layers. The low-temperature hydrothermal methods explored here proved to be a low-cost,
reproducible and highly flexible route to obtain multicomponent oxide nanostructures, particularly
ZTO nanowires. The diversity of the synthetized ZTO structures have potential applicationin next-
generation nanoscale devices such as field effect nanotransistors, nanogenerators, resistive

switching memories, gas sensors and photocatalysis.

2.1.2. Introduction

The increasing demand to have smart and multifunctional surfaces on all sorts of objects
and shapes is pushing flexible and transparent electronics to unprecedented performance and
integration levels.! For this end, it is highly desirable a material system offering sustainability in
terms of raw materials and processes to synthetize its low-dimensional structures, combined with
a wide range of properties to enable its use on transistors, sensing or even energy-harvesting
components. Metal oxides are one of the material classes with highest potential to fulfill all these
needs. In fact, ZnO-based nanostructures have been widely explored over the last decade.23ZnO
nanowires are a good example of the multifunctionality of oxides, enabling for instance
nanogenerators to act as gas sensors and biosensors.#5 Moving from single to multicomponent
oxides, e.g., from ZnO to zinc-tin oxide (ZTO), has been one of the current trends, enabling one
to obtain different properties by adjusting the cationic ratio, resulting in a wider range of
applications for a given material system.® Concerning sustainability, ZTO also has a great
advantage over other multicomponent oxides as the well-established indium-gallium-zinc oxide

(IGZO) in thin-film technologies, since it avoids the use of critical raw materials as In and Ga.’

ZTO can crystallize through solid-state reaction in the metastable perovskite (orthorhombic

or ordered face centered, fcc)8 or rhombohedral ® forms (ZnSnOs) and the more stable inverse
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spinel orthostannate (Zn2Sn04).1911 |In Figure 2.1 the crystalline structure of both phases is

presented.

(b

)
@ 2Zn* tetrahedral site ‘ﬁ\
2  Zn*'l 8n*" octahedral site W
@ o w

.Zn.Sn .()

Figure 2.1. Crystal structure of (a) inverse spinel cubic Zn,SnO4 (reproduced from Ref 12 with
permission of The Royal Society of Chemistry), (b) perovskite ZnSnOs adapted from Ref 3 with
permission of The Royal Society of Chemistry. Perovskite ZnSnO3s can be face-centered or
orthorhombic (in which a # b # ). (c) Crystal structure of rhombohedral LN-type ZnSnOzreprinted
with permission from Ref 4. Copyright(2012) American Chemical Society.
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Zn2Sn0s4 is an n-type semiconductor with mobilities higher than 112 cm2V-1s-land a wide
band gap of 3.6 eV being reported in nanostructures.1®1¢ On the other hand, ZnSnOs has been
reported as an excellent piezoelectric material, with a piezoelectric polarization along the c-axis
=59 puC/cm2, more than one order of magnitude higher than that of ZnO (=5 uC/cm?2),17-1° and also
as a ferroelectric material.2® Its band gap was reported as being 3.9 eV, higher than for
Zn2Sn04.2122 These ZTO nanostructures can be synthetized by vapor phase processes as
chemical vapor deposition (CVD)Z® and thermal evaporation,® which present high efficiency.
However, these are cumbersome and expensive techniques, which demand high temperatures
(>700 °C). Thereby, solution-based methods are imperative to decrease complexity, cost and
temperature, while still enabling good performance of the synthesized nanostructures. Solution-
based hydrothermal methods were already used to obtain ZTO nanostructures such as
nanoparticles (NPs),2* nanowires (NWs),25 nanorods,!2 octahedrons,26 nanocubes (NCs)27:28 and
nanoflowers?®. These nanostructures have demonstrated interesting properties for numerous
applications as photocatalysis,3 sensors,31-33 nanogenerators,14.34.35 resistive switching
memories13:36 and solar cells,3” reinforcing the multifunctionality of ZTO for next-generation

nanoscale devices.

A proper control of the synthesis process to achieve the target structure and shape is crucial.
As an example, for gas sensing it was already reported that within ZnSnOs structures an
orthorhombic phase (as the one obtained in this study) possess a much higher sensitivity than
the fcc. The dimension of the obtained structures also plays an importantrole, with higher specific

surface areas resulting in improved gas sensing performance. 38

However, two important drawbacks need to be solved: first, it is well known that obtaining a

single phase (ZnSnOs or Zn2Sn04) and a single nanostructure shape (e.g. NP or NW), by solution
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processes is quite challenging.32:4% This can limit the usefulness of ZTO for different applications,
as the properties are heavily dependent on phase and shape; also, low-cost hydrothermal
methods, highly desirable from an upscaling perspective, always require seed-layers to achieve
ZnSnO3 nanowires.3941 While the use of a seed-layer can enable easier fabrication of vertical
structures such as gate-all-around transistors,4243 synthesizing ZTO nanowires without a seed
layer also brings multiple advantages: imposes less constrains to the synthesis conditions to be
studied, which is crucial to investigate in detail the role of each synthesis parameter in controlling
phase, shape and size of the nanostructures;1%44 allows forless processing steps to obtain the
nanostructures; provides higher degree of freedom to integration, by relying on a wide variety of
available transfer methods to obtain random and aligned networks of nanowires on any
substrate;*® finally, the nanostructures do not incorporate on their final shape any undesired

residuals from the seed layers.46

In these following sections, we present different multicomponent ZTO nanostructures
produced by a seed-layer free, one-step hydrothermal method, at only 200 °C. The chemical and
structural influence on the solution-based synthesis of the zinc salt, the ratio between zinc and tin
precursors, the concentration of the surfactant agent (H20:EDA ratio), and the mineralizer (NaOH)
concentration were studied with the aim of obtaining ZTO nanowires. We are particularly
interested in 1D structures given their efficient charge transport, crucial for conceiving

nanoelectronic devices.4?

Herein we show a simple hydrothermal method where we can control the phase and shape
of the nanostructures, by tuning the chemical parameters of the synthesis. ZnSnO3 nanowires
were successfully achieved, without the support of seed-layers and using two different zinc

precursors.

2.1.3. Experimental Section

Nanostructures’ synthesis

ZTO nanostructures were synthesized via hydrothermal method, using a modified version of
the synthesis reported by Li et al.15, without the use of a seed layer (in 1° a stainless steel mesh
seed-layer is used). Figure 2.2a shows the schematic of the synthesis where the precursor
concentrations used were 0.020 M of SnCl4-5H20 and 0.040 M of Zn(CH3COOQ)2:2H20. The
precursors were separately dissolved in 7.5 mL of water Millipore and were then mixed together.
Afterwards, 7.5 mL of the surfactant etylenediamine (EDA) were added and the mixture was left
stirring for 30 min. Finally, 0.240 M of NaOH were added. The precursors were smashed in a
mortar before being added to water to help dissolution. The reagents used were all commercially
available: zinc acetate dihydrate 99.0 % (Zn(CH3COQ)2-:2H20), sodium hydroxide 298 % (NaOH)
and etylenediamine 99 % (EDA) from Sigma-Aldrich, tin (IV) chloride 5-hydrate (SnCls-5H20)

extra pure from Riedel-de Haén and zinc chloride 98 % (ZnCl2) from Merck.
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To study the influence of the zinc precursor, zinc acetate was replaced by zinc chloride,
maintaining the same concentration of zinc in the solution. Different Zn:Sn ratios (molar
concentration) were studied, namely, 2:1, 1:1 and 1:2. The ratio between H20 and EDA was
variated (H20:EDA - 15:0, 9:6, 8:7, 7.5:7.5, 7:8, 6:9, 0:15), as well as the concentration of NaOH
(0.100 M, 0.175 M, 0.240 M and 0.350 M). When the solution was ready, it was transferred into a
45 mL Teflon-lined stainless-steel autoclave, filling 33 % of the total autoclave volume. The
mixture was kept in an electric oven (Thermo Scientific) at 200 °C for 24 hours, with a heating
ramp of 200 °C/h. The autoclave was cooled to ambient temperature naturally. The resultant
precipitate, comprising the nanostructures, was centrifuged at 4000 rpm and washed several
times with de-ionized water and isopropyl alcohol, alternately. The nanostructures were finally

dried at 60 °C, in vacuum, for 2 hours, as schematized in Figure 2.2b.

Add Ethylenediamine
@)

m After 30’ stirring
Add NaOH - -

SR

Stainless Steel
Teflon tube Autoclave

ZnAc SnCl,.5H,0

ll

Dissolvedin H,0

(b)

Synthesis result

H,0
or
IPA

Nanostructures | |
~\

Centrifuge Desiccator

Figure 2.2. Schematic representation of (a) the hydrothermal synthesis process and (b) drying of
the nanostructures.

Nanostructures’ characterization

Structural characterization by X-Ray diffraction (XRD) was performed using a PANalytical's
X'Pert PRO MRD diffractometerwith Cu Ka radiation. The XRD data was acquired in the 10 — 90 °
26 range with a step size of 0.033 °, using the nanostructures in the form of powder. Fourier-
transform infrared (FTIR) spectroscopydatawas recorded using an Attenuated Total Reflectance
(ATR) sampling accessory (Smart iTR) equipped with a single bounce diamond crystal on a

Thermo Nicolet 6700 Spectrometer. The spectra were acquired with a 45° incident angle in the
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range of 4000-525 cm™! and with a 4 cm™ resolution. Raman spectroscopy measurements were
carried out in a Renishaw inVia Reflex micro-Raman spectrometer equipped with an air-cooled
CCD detector and a HeNe laser operating at 50 mW of 532 nm laser excitation. The spectral
resolution of the spectroscopic system is 0.3 cm-1. The laser beam was focused with a 50x Leica
objective lens (N Plan EPI) with a numerical aperture of 0.75. Anintegration time of 2 scans (10 s
each) was used for all measurements to reduce the random background noise induced by the
detector, without significantly increasing the acquisition time. The intensity of the incident laser
was 50 PW. All spectra were obtained in triplicate for each sample at room temperature in the
100-1600 nm range. A