2,588 research outputs found

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    CODEWEAVE: exploring fine-grained mobility of code

    Get PDF
    This paper is concerned with an abstract exploration of code mobility constructs designed for use in settings where the level of granularity associated with the mobile units exhibits significant variability. Units of mobility that are both finer and coarser grained than the unit of execution are examined. To accomplish this, we take the extreme view that every line of code and every variable declaration are potentially mobile, i.e., it may be duplicated or moved from one program context to another on the same host or across the network. We also assume that complex code assemblies may move with equal ease. The result is CODEWEAVE, a model that shows how to develop new forms of code mobility, assign them precise meaning, and facilitate formal verification of programs employing them. The design of CODEWEAVE relies greatly on Mobile UNITY, a notation and proof logic for mobile computing. Mobile UNITY offers a computational milieu for examining a wide range of constructs and semantic alternatives in a clean abstract setting, i.e., unconstrained by compilation and performance considerations traditionally associated with programming language design. Ultimately, the notation offered by CODEWEAVE is given exact semantic definition by means of a direct mapping to the underlying Mobile UNITY model. The abstract and formal treatment of code mobility offered by CODEWEAVE establishes a technical foundation for examining competing proposals and for subsequent integration of some of the mobility constructs both at the language level and within middleware for mobility

    A Principled Exploration of Coordination Models

    Get PDF
    Coordination is a style of interaction in which information exchange among independent system components is accomplished by means of high-level constructs designed to enhance the degree of decoupling among participants. A de-coupled mode of computation is particularly important in the design of mobile systems which emerge dynamically through the composition of independently developed components meeting under unpredictable circumstances and thrust into achieving purposeful cooperative behaviors. This paper examines a range of coordination models tailored for use in mobile computing and shows that the constructs they provide are reducible to simple schema deïŹnitions in Mobile UNITY. Intellectually, this exercise contributes to achieving a better operational-level understanding of the relation among several important classes of models of mobility. Pragmatically, this work demonstrates the immediate applicability of Mobile UNITY to the formal speciïŹcation of coordination constructs supporting mobile computing. Moreover, the resulting schemas are shown to be helpful in reducing the complexity of the formal veriïŹcation eïŹ€ort

    An observational model for spatial logics

    Get PDF
    Spatiality is an important aspect of distributed systems because their computations depend both on the dynamic behaviour and on the structure of their components. Spatial logics have been proposed as the formal device for expressing spatial properties of systems. We define CCS∄, a CCS-like calculus whose semantics allows one to observe spatial aspects of systems on the top of which we define models of the spatial logic. Our alternative definition of models is proved equivalent to the standard one. Furthermore, logical equivalence is characterized in terms of the bisimilarity of CCS∄

    About compositional analysis of pi-calculus processes

    Get PDF
    We set up a logical framework for the compositional analysis of finite pi-calculus processes. In particular, we extend the partial model checking techniques developed for value passing process algebras to a nominal calculus, i.e. the pi-calculus. The logic considered is an adaptation of the ambient logic to the pi-calculus. As one of the possible applications, we show that our techniques may be used to study interesting security properties as confidentiality for (finite) pi-calculus processes

    Language Based Techniques for Systems Biology

    Get PDF

    05081 Abstracts Collection -- Foundations of Global Computing

    Get PDF
    From 20.02.05 to 25.02.05, the Dagstuhl Seminar 05081 on ``Foundations of Global Computing\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • 

    corecore