

C

Consiglio Nazionale delle Ricerche

About compositional analysis
of pi-calculus

FF.. MMaarrttiinneellllii

IAT B4-19/2001

Technical Report

Dicembre 2001

Istituto per le Applicazioni Telematiche

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

About compositional analysis of π–calculus
processes?

Fabio Martinelli

Istituto per le Applicazioni Telematiche - C.N.R., Pisa, Italy.
e-mail: Fabio.Martinelli@iat.cnr.it

Tel: +39 050 3153425; Fax: +39 050 3152593

Abstract. We set up a logical framework for the compositional anal-
ysis of finite π–calculus processes. In particular, we extend the partial
model checking techniques developed for value passing process algebras
to a nominal calculus, i.e. the π–calculus. The logic considered is an
adaptation of the ambient logic to the π–calculus. As one of the pos-
sible applications, we show that our techniques may be used to study
interesting security properties as confidentiality for (finite) π–calculus
processes.

1 Introduction

The π–calculus [22] is a compact and expressive language for describ-
ing concurrent systems. This calculus is suitable for describing processes
whose communication topology may change during the computation. Pro-
cesses communicate by performing sending or receiving actions on chan-
nels. Actions may be performed only on channels whose name is known by
the process. Thus, the notion of name plays a central role in this calculus.
Processes can send and receive names. So, if P sends the name n to Q
then also Q can communicate on the channel n. Consider the following
two terms:

P
.= c〈n〉

Q
.= c(y).y〈m〉

denoting two π–calculus processes. The process P emits on the channel
c the name n (although note that both c and n are names in the π–
calculus). The process Q is willing to receive a name on the channel c and
after it emits the name m on that channel. The parallel composition of
P and Q, i.e. P |Q, evolves in the process n〈m〉 through a reduction, i.e.
an internal communication between P and Q. This fact is represented as
P |Q −→ n〈m〉. Thus, the process Q now is able to communicate on the
? Work partially supported by Microsoft Research Europe and by CSP/CNR project

“SeTAPS”.

channel n. Another interesting feature is the possibility for processes to
create new local names, i.e. names which no other process can refer to.
Consider the process P ′ defined as

P ′ .= νn(c〈n〉 |n(y))

The idea is that n is a name different from all the others outside the
restriction ν. Note that also restricted (or private) names can be commu-
nicated. When this happens, the scope of the restriction changes (scope
extrusion) by including also the receiving process, e.g.:

P ′ |Q = νn(c〈n〉 |n(y)) |Q −→ νn(n(y) |n〈m〉)
This models n is a private name of P ′ and Q after the reduction.

In this paper, we are interested in extending the compositional anal-
ysis techniques called partial model checking (e.g., see [2, 13]) to the
π–calculus. Basically, suppose we want to verify that a system P |Q en-
joys a property expressed by a formula A of a certain logic. Then, we can
simply study if one of the two components, say Q, satisfies a property
A′ which encodes the necessary and sufficient conditions on Q s.t. P |Q
enjoys A.

The advantages of such a compositional reasoning for concurrent sys-
tems are various. In [2], partial model checking has been proposed as
an efficient method for performing model checking of µ–calculus formu-
las w.r.t. Labeled Transition Systems (LTSs). The idea is the following.
Consider to check whether the composition of k processes P1 | . . . |Pk |01

satisfies a formula A. By applying once the partial model checking we
obtain a formula A1 that P2 | . . . |Pk |0 must satisfy. Here, one could ap-
ply some equivalence reductions on the formula A1, in order to obtain a
smaller and so more tractable formula. After k applications of the partial
model checking, we obtain that the stuck process 0 must satisfy a formula
Ak. The model checking of a formula w.r.t. the stuck process is usually
very efficient2. Thus, the model checking of a system which consists of k
parallel-running processes is reduced, through partial model checking, to
the model checking of the stuck process 0.

Another application of such compositional analysis techniques is dur-
ing the system design. It is common first to delineate the general ar-
chitecture of a complex system and next implement its components. In
1 The tail 0 is the process that does nothing; in several calculi, and also in the π–

calculus, P |0 is considered “equivalent” to P .
2 Unfortunately, this is not true for the full logic we adopt here, as we show in the

remainder of the paper.

2

particular, with partial model checking, it is possible to derive the prop-
erties that specific sub-components must ensure in such a way that the
whole system respects its requirements. So, assume we are designing a
system that must satisfy some requirements expressed by a logical for-
mula A. Moreover, assume that, somehow, we have already a component
of this system, say P ; for instance, this could be a plant which needs a
control device. So, we wish to derive the description of the corresponding
controller, say C, s.t. C |P satisfies A. As a matter of fact, by means of
partial model checking, we can find the necessary and sufficient conditions
on the controller C s.t., whenever this is composed with the plant, the
overall system enjoys its specification. Thus, we can directly work only
on the specification for the controller without considering the plant.

There are also specific analysis problems, like the verification of se-
curity protocols, where the compositional analysis provided by partial
model checking is particularly useful. Indeed, the verification scenario for
security protocols is to check the whether the protocol participants are
able to successfully complete their assigned roles even in the presence of
an enemy which tries to interfere with the execution (e.g., see [11]). Let
P be the process describing the behavior of honest agents of the proto-
col. The enemy could be whatever process one may specify in a given
language, say X, possibly enjoying certain initial assumptions (e.g., the
set of messages it knows). Thus, by following [16, 18, 19], we can state
security properties as:

∀X P |X |= A

and then apply partial model checking techniques to reduce such verifi-
cation problem to a validity one, i.e.:

∀X X |= A′

which may be faced by using standard results of logic. So far, this idea
has been applied to the analysis of several security properties for systems
which may be described through variants of the CCS process algebra [20],
and properties expressed with modal logics as the Hennessy-Milner one
or the µ−calculus [12].

In this paper, as logic for describing the process properties, we adopt
a restriction of the ambient logic developed by Cardelli and Gordon in
[5, 6] to the π–calculus. The reason is that this logic is suitable for reason-
ing about free and restricted names. Furthermore, this logic is defined in
terms of structural congruence between processes. This equivalence rela-
tion takes into account the spatial structure of processes, e.g. how many

3

parallel processes are running and how these are related by the scope
of restriction operators. To the best of our knowledge, this is the first
attempt to develop a partial model checking analysis for a nominal calcu-
lus, and moreover, for a logic with operators which can express also the
spatial structure of processes.

The techniques we develop here, even though present some restrictions
to their application, are powerful enough to study interesting properties
of the π–calculus. In particular, we obtain an effective method for the
verification of confidentiality properties for finite π–calculus processes, i.e.
if a (restricted) name is leaked to the external environment. As noticed in
[22], restricted names may be used to control the access rights to system
resources; the leakage of such names may cause unauthorized accesses to
such resources.

Organization of the paper. In Section 2, we describe the version of
the π–calculus we adopt. In Section 3, we introduce the logic we use, i.e.
a restriction of the ambient logic to the π–calculus. Section 4 is the main
one and presents the partial model checking techniques. In Section 5 we
show how to apply partial model checking techniques to study security
properties, in particular the so–called Dolev-Yao confidentiality [9]. In
Section 6, we discuss about some further work in this topic.

2 Asynchronous π–calculus

In this section we briefly recall some basic concepts about the asyn-
chronous π–calculus (e.g., see [3, 21]).

Given a countable set of names N (ranged over by a, b, . . . , n, m, . . .)
the set of π–calculus processes is defined through the following BNF
grammar:

P, Q ::= 0 (Zero)
| a〈n〉 (Output)
| a(n).P (Input)
| (νn)P (Restriction)
| P | Q (Parallel composition)

The name n is said bound in the terms (νn)P and a(n).P . Given a term
P we inductively define the set of free names of P , namely fn(P), as:

fn(0) = ∅
fn(n〈n′〉) = {n, n′}

fn(n(n′).P) = (fn(P) \ {n′}) ∪ {n}
fn(νnP) = fn(P) \ {n}
fn(P |Q) = fn(P) ∪ fn(Q)

4

We give an intuitive explanation of the operators of the calculus:

– 0 is the stuck process that does nothing.
– a〈n〉 is the output process. Briefly, it denotes a communication on the

channel a of the name n. Note that channel names can be communi-
cated.

– a(n).P is the input construct. A name is received on the channel a
and its value is substituted to the free occurrences of the name n.

– (νn)P is the name restriction. The idea is that n is a local name of
P .

– P |Q is the parallel composition of two processes P and Q.

We also define the structural congruence as follows3. Let ≡ be the least
congruence relation over processes closed under the following rules:

1. P ≡ Q, if P is obtained through α–conversion from Q.
2. P |0 ≡ P ;
3. P |Q ≡ Q |P ;
4. P |(Q |R) ≡ (P |Q) |R;
5. νn0 ≡ 0;
6. νnνmP ≡ νmνnP ;
7. νnνn(P) ≡ νn(P);
8. νn(a〈m〉) ≡ a〈n〉, if n /∈ {a,m};
9. νn(a(m).P) ≡ a(m).νn(P), if n /∈ {a,m};

10. νn(P |Q) ≡ P | νnQ if n /∈ fn(P).

For convenience, we often write νN(P) for νn1 . . . νnj(P) where N =
{n1, . . . , nj}. When N is empty, we assume that νN(P) = P . (We do not
loose information by considering νN(P) instead of νn1..νnj(P) because
of the rules on structural congruence.)

We give the reduction semantics for the asynchronous π–calculus. Pro-
cesses communicate among them by exchanging messages. An internal
communication (or reduction) of the process P is denoted by P −→ P ′.
We have the following rules for calculating the reduction relation between
processes:

a〈n〉 | a(m).P −→ P [n/m]
(1)

P ≡ Q,Q −→ Q′, Q ≡ P ′

P −→ P ′ (2)

3 Several sets of axioms are given in the literature for describing such congruence.
We use the definition and related results given in [10]. (Note that this set is not
necessarily minimal.)

5

P −→ P ′

P |Q −→ P ′ |Q (3)

P −→ P ′

νn(P) −→ νn(P ′)
(4)

where P [n/m] denotes the process P where all the free occurrences of m
are replaced with n.

3 A logic on π–calculus

In this section we describe the logic we use to express properties of
π−processes. This is a restriction of the ambient logic of Cardelli and
Gordon [5, 6] to π–calculus4. The syntax of formulas is given in Tab. 1.
The logic permits us to express both temporal and spatial properties of

A ::= T Logical constant true

¬A Negation

A1 ∨A2 Disjunction

η〈η′〉A Output

η(η′)A Input

©A Reduction

A ·R η Hiding

η ·R A Revelation

0 Zero

A |B Composition

A ¤ B Adjunct of the composition

∀xA Universal quantification

where η(η′) are variables x ∈ V or names n ∈ N .

Table 1. Syntax of the logic.

processes; moreover it allows to treat with restricted names in a conve-
4 Recently in [3], Cardelli and Caires adapted several concepts of the ambient logic

to the π−calculus by adding also recursion. Clearly, the logic we use here is also a
restriction of the one of Cardelli and Caires (although we adopt slightly different
input/output modalities).

6

nient way. The logic, besides the usual constants and operators of propo-
sitional logic, has three modalities for expressing the temporal behavior
of processes:

– η〈η′〉A. This formula expresses a process may send the name η′ on the
channel η and then it satisfies A.

– η(η′)A. This formula expresses that a process may receive the name
η′ on the channel η and then it satisfies A.

– ©A. This formula expresses that a process performs a reduction (an
internal communication) and then it satisfies A5.

Moreover, the logic permits us to represent the spatial structure of pro-
cesses, in particular:

– 06. This formula requires that the process is structurally equivalent
to 0.

– A |B. This formula expresses that the process is (or better is struc-
turally equivalent to) a composition of two processes. One of them
satisfies A, while the other satisfies B.

– A ¤ B. This formula expresses that the composition of the process
with whatever process satisfying A enjoys the formula B.

But, the main feature of this logic is its treatment of the (restricted)
names. The logic uses two operators for managing names.

– A ·R n. This formula expresses that a process, after the restriction of
the name n enjoys A.

– n·RA. This formula expresses that a process is a equivalent to another
one under the restriction of n. After that the restriction is removed,
the resulting process enjoys A.

We have also a universal quantifier ∀xA, which may be used to state
that a property A always holds when one substitutes any name for the
variable x.

The truth relation |= for the logic is inductively defined in Tab. 2.

5 In [6], a different operator is used, namely ♦, whose semantics is similar to ©A where
the reduction relation is replaced with its reflexive and transitive closure. Thus, all
the reachable processes through finite sequences of reductions are inspected instead
of the ones reachable with only one reduction step. However, when dealing with finite
π–calculus processes, the ♦ modality may often be equivalently expressed through
the © one plus the disjunction operator (e.g., see Section 5).

6 Note that there is an overloading of the symbols 0 and | used both in the logic and
in the process calculus. However, they respectively represent the same concept in the
two languages and their actual role should be clear from the context.

7

P |= T For all P

P |= A ∨B iff P |= A or P |= B

P |= ¬A iff Not P |= A

P |= a〈n〉A iff P ≡ a〈n〉 | P ′ and P ′ |= A

P |= a(n)A iff P ≡ νN(a(m).P ′ | P ′′), with a, n /∈ N,

and νN(P ′[n/m] |P ′′) |= A

P |= ©A iff P −→ P ′ and P ′ |= A

P |= n ·R A iff P ≡ νnP ′ and P ′ |= A

P |= A ·R n iff νnP |= A

P |= 0 iff P ≡ 0

P |= A |B iff P ≡ Q′ |Q′′ and Q′ |= A, Q′′ |= B

P |= A ¤ B iff ∀P ′ |= A we have P | P ′ |= B

P |= ∀xA iff ∀n ∈ N we have P |= A[n/x]

Table 2. Formal semantics of the logic.

Note 1. We added two operators, i.e. η〈η′〉A and η(η′)A, to the logic in
[6]. Actually, if one introduces the output operator, then the input one
can be derived by using the adjunct of the composition and the output
one. But, in this way, we mix two operators which denote conceptually
different aspects, i.e. the temporal and the spatial structure of processes.
(A similar situation arises if one defines the output modality, as η〈η′〉 and
then our output modality as derived one, i.e. η〈η′〉 |A.) With our choice, it
is straightforward to tell apart the full logic from sub-logic which specifi-
cally deals with the temporal aspects, i.e. the full logic without 0, | and ¤.
This may be useful if one wishes to study the process equivalence induced
by the logic: we make no claims but we feel that the equivalence induced
by the sub-logic without spatial operators should coincide with barbed
congruence while the one induced by the full logic with structural congru-
ence (see the results of Sangiorgi in [23] for the ambient logic). However,
we stress that the choice of input/ output modalities is only matter of
taste; our results still hold with different input/output modalities.

We give some examples of the usage of the logic for expressing prop-
erties of π–calculus processes. As usual, we define ∃xA as ¬∀x¬A, A∧B
as ¬(¬A ∨ ¬B), A =⇒ B as ¬A ∨B and F = ¬T.

8

Example 1. We can define the equality between η and η′ in the logic as
((η〈η′′〉0) |(η′(η′′)0)) =⇒©T. Indeed, η〈η′′〉0 expresses that a process is
able to emit on the channel η the free name η′′ and after it is equivalent 0.
This also means that it cannot perform other actions. Similarly, η′(η′′)0
means that the process may only receive a message on the channel η′.
The parallel composition of the previous formulas says that the process
is able to send a message on η and at the same time to receive the same
message on η′. Now, if we have a reduction it means that η = η′ (no other
reductions are possible). Moreover, if η = η′ then clearly a reduction may
be performed.

Example 2. To express that a process P emits a restricted name, we can
check whether P |= ∃x(n ·R (x〈n〉 ∧ ¬x = n)). The revelation operator
picks a restricted name of P , if any, call it n and then checks if n is
emitted on some channel x, when x 6= n. Note, that we can reveal a name
n only if n is not a free name of the process. Indeed, the formula n ·R T
states that n is not free in a process (and thus it can be revealed).

Example 3. The adjunct of the composition is an interesting operator
whose definition involves the quantification over processes. It is interesting
to note that, through this operator, it is possible to encode in the logic,
the schema for defining the security properties given in the introduction.
In particular, we can encode:

∀X P |X |= B

as
P |= T ¤ B

We have the following lemma that basically tells that two processes
that are structurally congruent cannot be distinguished by a formula of
the logic.

Lemma 1. Given a formula A, if P ≡ Q then P |= A iff Q |= A.

Let Names(A) be the set of all names appearing in a formula A.
The following lemma (see [6]) basically states that the truth relation

is invariant w.r.t. the renaming of fresh names.

Lemma 2. Consider a formula A and a process Q. Let N ′′ be a set of
names s.t. N ′′ ∩ (Names(A) ∪ fn(Q)) = ∅. Then,

Q |= A iff Q[N ′′/N] |= A[N ′′/N]

9

Corollary 1. Under the hypothesis lemma, suppose also that N∩fn(Q) =
∅ then

Q |= A iff Q |= A[N ′′/N]

Note 2. When fn(P) ∩ N ′′ = ∅, we have that P [N ′′/N][N/N ′′] ≡ P .
When Names(A) ∩N ′′ = ∅, we have that A[N ′′/N][N/N ′′] = A.

4 Compositional analysis of processes

In this section we provide a technique to reason compositionally about
the satisfaction of the properties of the logic.

Our aim is to find the necessary and sufficient condition, expressed by
a formula A′, on the process X s.t.

P | X |= A iff X |= A′

Thus, instead of reasoning about the whole system, we can directly work
on one (or more) of its (parallel) components.

Example 4. To show how this works consider, for instance, a process P =
n〈n′〉 and a formula A = n〈n′〉T. Then, from the definition of the truth
relation, we have P |X |= A iff there exists P ′ s.t. P |X ≡ n〈n′〉 |P ′ and
P ′ |= T. Note that P |X ≡ n〈n′〉 |P ′ iff P ′ is X, or P ′ ≡ P |X ′ and
X ≡ n〈n′〉 |X ′. Thus, the former case imposes no conditions on X, i.e.
X could be whatever process; the latter one imposes that X |= n〈n′〉T.
By putting together the conditions on X we get X |= T ∨ n〈n′〉T, which
is equivalent to require that X |= T. Indeed, the process P is enough
to satisfy A. The situation slightly changes if we take A = n〈n′′〉, with
n′′ 6= n′. In this case, the condition on X is X |= n〈n′′〉, since P cannot
contribute to the satisfaction of the formula A.

We must face a specific problem directly related with the restriction op-
erator of the π–calculus and its scope extrusion mechanism. Indeed, the
process P |X may perform a reduction which depends on a communica-
tion of a private name of P (resp. of X) to X (resp. P). Thus, we may
have P |X −→ νn(P ′ |X ′). So, the evaluation context is changed. Note
that this situation does not arise for CCS-like process algebras (e.g., see
[2]), where the channel restriction is a static operator, i.e. it does not
change its scope, whereas in the π–calculus is dynamic. Thus, we perform
the partial model checking of more general contexts, as:

νN(P |())

10

where N could be possibly empty.
Another specific problem that we encounter in this study is that the

definition of the semantics of both the π–calculus and the logic heav-
ily depend on the structural congruence. Instead, the previously defined
frameworks for partial model checking usually rely on Labeled Transition
Systems (LTSs) (e.g., see [2, 13]). Note that it is possible to give a seman-
tics of the π–calculus in terms LTSs, however the spatial operators of the
logic require the notion of structural congruence (while for the others it is
possible to give a semantics through a suitable notion of LTSs). Thus, we
develop the partial model checking techniques in a framework completely
based on structural congruence.

We introduce some auxiliary lemmas that show how it is possible
to decompose processes in several formats, up to structural equivalence.
Most of them are straightforwardly derived from the results about struc-
tural congruence by Engelfriet and Gelsema (see [10]).

Given a name n, we can find only a finite number of processes P ′, up
to structural equivalence, such that P is structurally equivalent to the
restriction of n in P ′.

Lemma 3. Given a process P , we can effectively compute a finite set of
processes res(P, n) s.t.:

1. P ≡ νnP ′ implies that there exists P ′′ ∈ res(P, n) s.t. P ′′ ≡ P ′;
2. P ′′ ∈ res(P, n) implies P ≡ νnP ′′.

Given a process a〈n〉, we can find only a finite number of processes P ′,
up to structural equivalence, such that P is structurally equivalent to
composition of the output process a〈n〉 with P ′. This gives us all the
possible continuations of the process P after an output.

Lemma 4. Given a process P , we can effectively compute a finite set of
processes Co(a〈n〉, P) s.t.:

1. P ≡ a〈n〉 |P ′ implies that there exists P ′′ ∈ Co(a〈n〉, P) s.t. P ′′ ≡ P ′;
2. P ′′ ∈ Co(a〈n〉, P) implies P ≡ a〈n〉 |P ′′.

Given a process a〈n〉, we can find only a finite number of processes P ′,
up to structural equivalence, such that P is structurally equivalent to the
composition of the output process a〈n〉 with P ′ under the restriction of
n. This gives us all the possible continuations of the process P after the
output of a restricted name.

Lemma 5. Given a process P , we can effectively compute a finite set of
processes Cro(a〈n〉, P) s.t.:

11

1. P ≡ νn(a〈n〉 |P ′), with a 6= n, implies there exists P ′′ ∈ Cro(a〈n〉, P)
s.t. P ′′ ≡ P ′;

2. P ′′ ∈ Cro(a〈n〉, P) implies P ≡ νn(a〈n〉 |P ′′), with a 6= n.

A process P after the receiving on a channel a of a name n may be only
finitely decomposed, up to structural equivalence, as the restriction on a
set of channels different from a and n of a composition of two processes s.t.
one is the residue after the communication. This gives us all the possible
continuations after the reception of the value n.

Lemma 6. Given a process P , we can effectively compute a finite set of
triples Ci(a(−), n, P) s.t.:

1. P ≡ νN(a(m).P ′ |P ′′), with a, n /∈ N , implies there exists (N1, P
′
1, P

′′
1)

∈ Ci(a(−), n, P) s.t. N ∩ fn(a(m).P ′ |P ′′) = N1, P
′[n/m] ≡ P ′

1 and
P ′′ ≡ P ′′

1 ;
2. (N1, P

′
1, P

′′
1) ∈ Ci(a(−), n, P) implies P ≡ νN1(a(m).P ′ |P ′′), with

a, n /∈ N1, P ′
1 = P ′[n/m] and P ′′

1 = P ′′.

A process P may be finitely represented as the composition of pairs of
processes, up to structural equivalence.

Lemma 7. Given a process P , we can effectively compute a finite set of
pairs Ccomp(P) s.t.:

1. P ≡ P ′ |P ′′, implies that there exists (P ′
1, P

′′
1) ∈ Ccomp(P) s.t. P ′ ≡ P ′

1

and P ′′ ≡ P ′′
1 ;

2. (P ′
1, P

′′
1) ∈ Ccomp(P) implies P ≡ P ′

1 |P ′′
1 .

Note that we can study the fact that a process performs a reduction,
by considering its possible decompositions. In particular, the following
lemma states the possible decompositions on P and Q s.t. νN(P |Q) −→
R.

Lemma 8. We have that νN(P |Q) −→ R iff one of the following cases
holds:

1. P −→ P ′ and R ≡ νN(P ′ |Q);
2. P ≡ a〈n〉 |P ′, Q ≡ νN ′′(a(m).Q′ |Q′′), with a, n /∈ N ′′, and R ≡

νN(P ′ |
νN ′′(Q′[n/m] |Q′′));

3. P ≡ νn(a〈n〉 |P ′), Q ≡ νN ′′(a(m).Q′ |Q′′), with a, n /∈ N ′′, a 6= n, n /∈
fn(Q) and R ≡ ν(N ∪ {n})(P ′ | νN ′′(Q′[n/m] |Q′′));

12

4. Q −→ Q′ and R ≡ νN(P |Q′);
5. Q ≡ a〈n〉 |Q′, P ≡ νN ′′(a(m).P ′ |P ′′), with a, n /∈ N ′′, and R ≡

νN(Q′ |
νN ′′(P ′[n/m] |P ′′));

6. Q ≡ νn(a〈n〉 |Q′), P ≡ νN ′′(a(m).P ′ |P ′′), with a, n /∈ N ′′, a 6= n, n /∈
fn(P) and R ≡ νN ∪ {n}(Q′ | νN ′′(P ′[n/m] |P ′′)).

We make some assumptions that help us to make more tractable the
partial model checking problem. In particular, we consider only compo-
nents X whose set of free names is fixed a priori. Moreover, we consider
only formulas where the adjunct of the composition has the following for-
mat A∧fn⊆(N)¤B, where fn⊆(N) is a short-cut for ∀x(x·RT∨∨n∈Nx =
n). Basically, fn⊆(N) is satisfied by a process P iff fn(P) is contained
in N . We also require that the quantification is only present within the
definition of fn⊆(N). Call L\∀ such sub-logic.

We have now the technical notions to state the main result of this
paper.

Proposition 1. Let A be a formula in L\∀. Consider a finite set of names
φ, a context νN(P |()), with Names(A) ∩ N = ∅, and process X with
fn(X) ⊆ φ. Then, we have:

νN(P | X) |= A iff X |= A//P,N,φ

where A//P,N,φ is the formula defined in Tab. 3.

Requiring that the names of the formula A are not in N is not restrictive.
Indeed, by Corollary 1, we can simply rename each name of A in N with
fresh ones and then perform the analysis w.r.t. this new formula.

Remark 1. Note that with the previous proposition we are able to reduce
some model checking problems for the logic to validity checking problems.
For instance, checking that P |= A′ ¤ B holds, where A′ is equivalent to
require that the free names of the process are contained in φ, can be
reduced to checking that A′ =⇒ B//P,∅,φ is valid. Indeed, P |= A′ ¤ B
iff for all X with fn(X) ⊆ φ we have P |X |= B; by partial model
checking we obtain that X must satisfy B//P,∅,φ. On the other hand,
note that validity problems may be encoded as model checking problems.
For instance, in order to establish whether or not A is valid, one can
simply check if 0 |= T ¤ A holds. Indeed, by definition, 0 |= T ¤ A iff
∀P |= T we have 0 |P |= A. By Lemma 1, we have 0 |P |= A iff P |= A.

13

T//P,N,φ
.
= T

(A ∨B)//P,N,φ
.
= A//P,N,φ ∨B//P,N,φ

(¬A)//P,N,φ
.
= ¬(A//P,N,φ)

(a〈n〉A)//P,N,φ
.
= A1 ∨A2, where

A1
.
= a〈n〉(A//P,N,φ) if {a, n} ⊆ φ

A2
.
= ∨P ′∈Co(a〈n〉,P)A//P ′,N,φ

(a(n)A)//P,N,φ
.
= A1 ∨A2, where

A1
.
= a(n)(A//P,N,φ∪{n}) if a ∈ φ

A2
.
= ∨(N′,P ′,P ′′)∈Ci(a(−),n,P)A//νN′(P ′|P ′′),N,φ

(©A)//P,N,φ
.
= ∨P ′:P−→P ′A//P ′,N,φ

∨ ∨a∈φ ∨P ′∈Co(a〈n〉,P) a(n)(A//P ′,N,φ∪{n})

∨ ∨a∈φ ∨P ′∈Cro(a〈n′〉,P) a(n′)(A//P ′,N∪{n′},φ∪{n′})

∨ ©(A//P,N,φ)

∨ ∨a,n∈φ ∨(N1,P ′,P ′′)∈Ci(a(−),n,P) a〈n〉(A//νN1(P ′|P ′′),N,φ)

∨ ∨a∈φ ∨(N1,P ′,P ′′)∈Ci(a(−),n′,P) n′ ·R a〈n′〉(A//νN1(P ′|P ′′),N∪{n′},φ∪{n′})

where n′ is s.t. n′ /∈ fn(P) ∪ φ ∪N ∪Names(A)

(A ·R n)//P,N,φ
.
= (A[n′/n])//P,N∪{n},φ

where n′ is s.t. n′ /∈ fn(P) ∪ φ ∪N ∪Names(A)

(n ·R A)//P,N,φ
.
= A1 ∨A2 ∨A3, where

A1
.
= n ·R T ∧ (∨n′∈N (A[n′/n])//P,N\{n′},φ) if n /∈ fn(P) \N

A2
.
= n ·R (A//P,N,φ∪{n}) if n /∈ fn(P) ∪N

A3
.
= n ·R T ∧ (∨P ′∈res(P,n)A//P ′,N,φ) if n /∈ fn(P) ∪N

0//P,N,φ
.
= 0 if P ≡ 0

A | B//P,N,φ
.
= ∨(P ′,P ′′)∈Ccomp(P),fn(P ′)∩N=∅

(fn¬(N) ∧A//P ′,∅,φ\N) | (B//P ′′,N,φ)∨
(fn¬(N) ∧B//P ′,∅,φ\N) | (A//P ′′,N,φ)

where fn¬({n1, . . . , nk}) .
= ∧l∈{1,...,k}nl ·R T

(A′ ¤ B)//P,N,φ
.
= A′ ¤ (B//P,N,φ∪N1)

where A′ = A ∧ fn⊆(N1)

Table 3. Partial model checking function for the context νN(P |()). The “else” branch
in the definition of auxiliary formulas Ai, with i = 1..3, is always ¬T.

14

5 An application to confidentiality analysis

The results of the previous section, even if deal only with a subset of the
logic, are strong enough to prove interesting properties as the confiden-
tiality one.

Consider a protocol P , which runs in a hostile environment X. We
may be interested to study whether a name of P remains confined among
the agents of P or it is leaked to the outside environment. (This form
of confidentiality is sometimes called Dolev-Yao secrecy.) This leakage
may be represented as the sending on an open channel, say pub, of the
confidential value, say v.

Definition 1. Given a context νN(P |) and a process X, with v ∈
fn(P), pub ∈ fn(X) \ N, v /∈ fn(X) ∪ N , we say that v is leaked to
X, if νN(P |X) −→∗ Q | pub〈v〉. If a name v is not leaked, we say it is
confidential (w.r.t. X).

Remark 2. Similarly, we could define the leakage of a restricted name n
of P ≡ νnP ′, with n ∈ fn(P ′) to a process X. But, this kind of property
may be treated as an instance of the previous definition, i.e. as the leakage
of the free name n of P ′ to a process X ′ s.t. n /∈ fn(X ′).

Note that if it could be possible to fix an upper bound to the number of
possible interactions between whatever intruder and the system P then
it would be possible to express in the logic the confidentiality property.
For a while, assume that such bound is n. Then, the formula7

leakedn
v = ∨1≤i≤n ©i pub〈v〉

may be used to state that v is leaked by P (where pub〈v〉T is abbreviated
as pub〈v〉) and ¬leakedn

v that v is confidential. We can prove that such
bound actually exists. First, we give an estimation for the maximal length
of possible interactions of a system P with its environment. Let ml(P)
be recursively defined as:

ml(0) = 0
ml(νnP) = ml(P)
ml(a〈n〉) = 1

ml(a(n).P) = 1 + ml(P)
ml(P |P ′) = ml(P) + ml(P ′)

7 We use ©iF to denote

i︷ ︸︸ ︷
© . . .© F .

15

Thus, νN(P |X) −→∗ may consists of at most ml(P) interactions be-
tween P and X plus the interactions internal to the process X. Consider
now the situation where X does not contribute to the computation with
internal actions. Thus, we have:

νN(P |X) −→∗ Q | pub〈v〉
iff

νN(P |X)

n′︷ ︸︸ ︷
−→ . . . −→ Q | pub〈v〉 with n′ ≤ ml(P)

iff
νN(P |X) |= leaked

ml(P)
v

We show how to build a process X ′ s.t. if νN(P |X) −→∗ Q | pub〈v〉
then also νN(P |X ′) −→∗ Q′ | pub〈v〉 but X ′ does not perform internal
reductions.

Lemma 9. If νN(P |X) −→∗ Q | pub〈v〉 then we can find a process X ′

s.t. νN(P |X ′) −→∗ Q′ | pub〈v〉, with fn(X) = fn(X ′) and X ′ during
this computation does not perform any internal reduction.

Note also that we can consider as intruders only processes X s.t. fn(X) ⊆
(fn(P) ∪ {pub}) \ {v}.
Lemma 10. Assume that νN ′(P |X) −→∗ Q | pub〈v〉, with pub, v /∈ N ′

and v /∈ fn(X). Then, there exists X ′, with fn(X ′) ⊆ (fn(P) ∪ {pub}) \
{v}, s.t.:

νN ′(P |X ′) −→∗ Q | pub〈v〉.

Moreover, we can restrict ourselves to consider the analysis of the formula
leaked

ml(P)
v only for contexts νfn(P)(P |X), where fn(X) ⊆ fn(P) ∪

{pub}. Thus, we can study whether the value v ∈ fn(P) is confidential
in P , by requiring that there is no process X, with fn(X) ⊆ (fn(P) ∪
pub) \ {v}, s.t.:

P |X |= leakedml(P)
v

By partial model checking, we can find

F = leakedml(P)
v //P,∅,(fn(P)∪{pub})\{v}

that is satisfiable by some process (whose set of free names is contained
in (fn(P) ∪ pub) \ {v}) if and only if v can be leaked. Alternatively, v
is confidential iff F is not satisfiable. Note that the formula obtained,

16

after the partial model checking, only consists of logical constants, dis-
junctions, revelations, outputs, inputs and reductions. We can produce a
satisfiability procedure for such kind of formulas.

Lemma 11. Let A be a formula which consists only of logical constants,
disjunctions, inputs, outputs, revelations and reductions. Then, the prob-
lem of establishing whether or not there exists a process X, with fn(X) ⊆
φ, s.t. X |= A is decidable.

Thus, as a simple application of our theory we have that the confidential-
ity analysis for our processes is decidable.

Proposition 2. The confidentiality analysis for finite π–calculus pro-
cesses is decidable.

It is worthy noticing that, from results in [15, 17], several authentication
properties can be encoded as properties of the intruder knowledge, and
ultimately as confidentiality properties. Thus our results may be used to
deal also with authentication properties of finite π–calculus processes.

Remark 3. In Remark 1, it has been shown how by using ¤ operator one
can encode validity checking problems as model checking ones. This fea-
ture makes the model checking problem for the full logic rather difficult.
Indeed, in [7], where the model checking problem for the ambient logic
have been studied, no positive results have been given about fragments
with the ¤ operator. By means of partial model checking and by Lemma
11, we are able to give a decision procedure for a small class of proper-
ties defined in the logic with this operator. In particular, we are able to
perform the model checking of formulas like fn⊆(N) ¤ B where N is a
finite set of names and B is a formula which consists only of logical con-
stants, disjunctions, inputs, outputs, revelations, hidings and reductions.
The key point is that the partial model checking of the formula B does
not introduce other operators (and moreover the hidings are removed)8.

5.1 An example

We consider as example the analysis of the protocol where a value is
transmitted on a private channel between two users. We formally prove
that a hostile environment X which does not know the value v , i.e.
8 Actually, the partial model checking for revelation introduces some conjunctions

with simple revelations. However, these can be simply treated by modifying the
satisfiability procedure defined in the proof of Lemma 11.

17

v /∈ fn(X), is not able to retrieve it in communication with the users in
the system. Consider the following processes:

P = cPQ〈v〉
Q = cPQ(n).0

Sys = νcPQ(P |Q)

with fn(Sys) = v. We can prove that there exists no process X, with
v /∈ fn(X) and pub ∈ fn(X), s.t. Sys |X −→∗ T | pub〈v〉. First, we
compute ml(Sys) = 2. Then, we build leaked2

v and we perform the partial
model checking. We illustrate only the partial model for the disjunct
©2pub〈v〉//Sys,∅,{pub}, since the others are analyzed as particular instances
of this one. Thus, we have

(©© pub〈v〉)//Sys,∅,{pub}
.=

©pub〈v〉//νCPQ0,∅,{pub} ∨©(©pub〈v〉//Sys,∅,{pub})

since the two unique possibilities are that Sys performs and internal re-
duction otherwise is X that perform such reduction. Then, we have

©pub〈v〉//νCPQ0,∅,{pub}
.=©(pub〈v〉//νCPQ0,∅,{pub})
.=©¬T

and

©pub〈v〉//Sys,∅,{pub}
.=©(pub〈v〉//νCPQ0,∅,{pub}) ∨©(pub〈v〉//Sys,∅,{pub})
.=©(¬T) ∨©(¬T)

since pub〈v〉//νCPQ0,∅,{pub} is ¬T because v /∈ {pub} and pub〈v〉//Sys,∅,{pub}
.= ¬T because Sys is not structurally equivalent to pub〈v〉 |P ′ for any P ′

and v /∈ {pub}.
Note that a formula like ©(¬T) is never satisfiable and thus it follows

that leaked
ml(P)
v is not satisfiable and we get the thesis.

6 Further work

In this paper, we performed some preliminary steps towards a compo-
sitional analysis framework for a nominal calculus, i.e. the π–calculus.
So far, we have considered only finite π–calculus processes and a simple
logic without recursion and without universal quantification. This clearly
limits the range of application of such techniques. For dealing with uni-
versal quantification one could try to resort to infinite conjunctions or to

18

a symbolic semantics for the π–calculus ([14]). A recent work [3] of Caires
and Cardelli shows that the interplay between new name generation and
recursion is rather complex and interesting. Whether it is possible to ex-
tend the partial model checking techniques to a calculus and a logic with
some form of recursion deserves further investigation. However, we argue
that the results in this paper and the semantics of Cardelli and Caires
for the logic with recursion may be considered as building blocks for such
a study. In particular, we plan to consider the partial model checking
problem for finite-control processes which may have infinite behavior but
whose model checking problem (actually for a different logic) may be
solved (see [8]). On the other hand, some preliminary investigations show
that it is possible to extend the same ideas applied in this paper to other
nominal calculi such as the spi–calculus [1] and ambient calculus [4].

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

[2] H. R. Andersen. Partial model checking (extended abstract). In Proceedings of
10th Annual IEEE Symposium on Logic in Computer Science, pages 398–407.
IEEE Computer Society Press, 1995.

[3] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). In Proc.
Fourth International Symposium on Theoretical Aspects of Computer Science,
volume 2215 of Lecture Notes in Computer Science, 2001. To appear.

[4] L. Cardelli and A. Gordon. Mobile ambients. In Proc. Foundations of Software
Science and Computation Structures, volume 1378 of LNCS, pages 140–155, 1998.

[5] L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL-00), pages 365–377, N.Y., Jan. 19–
21 2000. ACM Press.

[6] L. Cardelli and A. D. Gordon. Logical properties of name restriction. In In-
ternational Conference on Typed Lambda Calculi and Applications (TCLA 2001,
Krakow, Poland), volume 2044 of LNCS, pages 46–60. Springer, 2001.

[7] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, , and J.-M. Talbot.
The complexity of model checking mobile ambients. In F. Honsell and M. Mic-
ulan, editors, Proceedings of the 4th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS 2001), volume 2030 of
LNCS, pages 52–167. Springer, 2001.

[8] M. Dam. Model checking mobile processes. Information and Computation,
129(1):35–51, 1996.

[9] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(12):198–208, 1983.

19

[10] J. Engelfriet and T. Gelsema. Multisets and structural congruence of the π-
calculus with replication. Theoretical Computer Science, 211(1–2):311–337, 1999.
Previously published as Leiden University Report 95-02, 1995.

[11] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proceedings of 27th International Colloquium in Au-
tomata, Languages and Programming, volume 1853 of Lectures Notes in Computer
Science, pages 354–372, 2000.

[12] D. Kozen. Results on the propositional µ−calculus. Theoretical Computer Sci-
ence, 27(3):333–354, 1983.

[13] K. G. Larsen and L. Xinxin. Compositionality through an operational semantics
of contexts. Journal of Logic and Computation, 1(6):761–795, 1991.

[14] H. Lin. Symbolic bisimulations and proof systems for the pi-calculus. Technical
Report 94:07, School of Cognitive and Computing Sciences, University of Sussex,
1994.

[15] D. Marchignoli and F. Martinelli. Automatic verification of cryptographic pro-
tocols through compositional analysis techniques. In Proceedings of the Interna-
tional Conference on Tools and Algorithms for the Construction and the Analysis
of Systems (TACAS’99), volume 1579 of Lecture Notes in Computer Science,
1999.

[16] F. Martinelli. Analysis of security protocols as open systems. Technical Report
IAT-B4-006, July 2001. Accepted for publication on TCS (under minor revisions).

[17] F. Martinelli. Encoding several security properties as properties of the intruder’s
knowledge. Technical Report IAT-B4-020, December 2001. Submitted for publi-
cation.

[18] F. Martinelli. Languages for description and analysis of authentication protocols.
In Proceedings of 6th ICTCS, pages 304–315. World Scientific, 1998.

[19] F. Martinelli. Partial model checking and theorem proving for ensuring security
properties. In Proceedings of 11th Computer Security Foundations Workshop,
pages 44–52. IEEE Computer Society Press, 1998.

[20] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[21] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[22] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, 1992.

[23] D. Sangiorgi. Extensionality and intensionality of the ambient logics. In The 28th
ACM Symposium on Principles of Programming Languages, pages 4–13, 2001.

A Proofs

The reduction semantics is an elegant and compact way to describe the
behavior of systems. However, the presence of structural congruence in its
definition makes it difficult to perform the proofs with this technical ma-
chinery. Thus, many authors prefer to resort to the so-called commitment

20

relation, which is the counterpart of the labeled transition semantics in the
π–calculus. We adapt the description given in [1] to the asynchronous π–
calculus. We need some new syntactic forms, in particular: Abstractions,
concretions, and agents. An abstraction is term of the form (x).P where
x is bound and P is a process. Roughly, (x).P waits a message y and
behaves as P [y/x]. A concretion, is a term of the form νN〈m〉P , where
P is a process. Roughly, this is a process willing to send a message m
(possibly restricted if m ∈ N) and then behaves as P . Finally, agents are
either processes, abstractions, or concretions. We extend the restriction
and composition operators to arbitrary agents as follows:

νm((x).P) .= (x′).νm(P [x′/x])
R |(x).P .= (x′).(R |P [x′/x])

assuming that x′ /∈ fn(R) ∪ fn(P) ∪ {m}. For a concretion, we set:

νmνN〈m′〉P .=
{

ν({m} ∪N)〈m′〉P if m = m′ or m ∈ N
νN〈m′〉νmP otherwise

R | νN〈m′〉P .= νN ′〈m′[N ′/N]〉(R |P [N ′/N])

assuming that N ′ ∩ (fn(R)∪ fn(P)∪ {m′}) = ∅. We can define the dual
composition A |R symmetrically. Abstractions and concretions are com-
plementary, thus, it is natural to define their composition, or interaction
@, as follows:

F@C
.= νN(P [m′/x] |P ′)

C@F
.= νN(P ′ |P [m′/x])

where F = (x).P and C = νN〈m′〉P ′. An action is a name a or a co-name
a, or a distinguished silent action τ . The commitment relation is written
as P

α−→ A, where P is a closed process, α is an action and A is a closed
agent. We define this relation inductively as follows:

a(x).P a−→ (x).P
(5)

a〈m′〉 a−→ ν∅〈m′〉
(6)

P
a−→ F Q

a−→ C

P |Q τ−→ F@C
(7)

P
a−→ C Q

a−→ F

P |Q τ−→ C@F
(8)

P
α−→ A

P |Q α−→ A |Q
(9)

21

Q
α−→ A

P |Q α−→ P |A
(10)

P
α−→ A α /∈ {a, a}

νa(P) α−→ νa(A)
(11)

(12)

Note that P
a−→ F represents the fact that the process P is committed

to receive a message through an action a. Q
a−→ C represents the fact

that the process Q is committed to send a message through an action a
(which is the complementary action of a). Thus, the two processes may
interact (this interaction is denoted by the silent action τ) by obtaining
a process which consists of the abstraction F where x is replaced with
m (the abstraction has been instantiated with the received value m) and
the continuation of Q.

Lemma 12. 1. If P
a−→ (x).P ∗ then there are P1, P2, and names N1

s.t. a /∈ N1, P ≡ νN1(a(x).P1 |P2), and P ∗[n/x] ≡ (νN1(P1 |P2))[n/
x] for any n.

2. If P
a−→ νN1〈n〉P ∗, then there is P1 and names N2 s.t. a, n /∈ N2,

a /∈ N1 P ≡ νN1νN2(P1 | a〈n〉) and P ∗ ≡ νN2(P1).
3. If P

τ−→ P ′ then P −→ P ′.

An interesting proposition relates the silent actions of the commitment
relation and reductions.

Proposition 3. P −→ P ′′ iff there exists P ′ s.t. P
τ−→ P ′ and P ′ ≡ P ′′.

This proposition is useful since permits to investigate the possible
reductions of P , whose calculation involves the notion of structural con-
gruence, to the calculations of the commitment relation for the silent
actions, which can be calculated more easily.

Indeed, we show the proof of Lemma 8.

Lemma 8 We have that νN(P |Q) −→ R iff one of the following cases
holds:

1. P −→ P ′ and R ≡ νN(P ′ |Q);
2. P ≡ a〈n〉 |P ′, Q ≡ νN ′′(a(x).Q′ |Q′′), with a, n /∈ N ′′, and R ≡

νN(P ′ |
νN ′′(Q′[n/x] |Q′′));

22

3. P ≡ νn(a〈n〉 |P ′), Q ≡ νN ′′(a(x).Q′ |Q′′), with a, n /∈ N ′′, a 6= n, n /∈
fn(Q) and R ≡ ν(N ∪ {n})(P ′ | νN ′′(Q′[n/x] |Q′′));

4. Q −→ Q′ and R ≡ νN(P |Q′);
5. Q ≡ a〈n〉 |Q′, P ≡ νN ′′(a(x).P ′ |P ′′), with a, n /∈ N ′′, and R ≡

νN(Q′ |
νN ′′(P ′[n/x] |P ′′));

6. Q ≡ νn(a〈n〉 |Q′), P ≡ νN ′′(a(x).P ′ |P ′′), with a, n /∈ N ′′, a 6= n, n /∈
fn(P) and R ≡ νN ∪ {n}(Q′ | νN ′′(P ′[n/x] |P ′′)).

Proof. The if direction is easy and thus we concentrate on the only if one.
We can note that νN(P |Q) −→ R, then, by Proposition 3, there ex-

ists R1 s.t. νN(P |Q) τ−→ R1 and R1 ≡ R. Thus, by inspecting the opera-
tional rules for the commitment relation, it follows that νN(P |Q) τ−→ R1

iff P |Q τ−→ R2 and R1 = νN(R2). We may have several cases depending
on the last rule applied to infer the reduction:

– Rule 9. Then, we have P
τ−→ P ′. By Lemma 12 (3), we have P −→ P ′.

Thus, the thesis follows (see case (1)).
– Rule 10. As above (see case (4)).
– Rule 7. Then, we have P

a−→ F = (x).P ∗ and Q
a−→ C = νN3〈n〉Q∗,

with F@C = νN3(P ∗[n/x] |Q∗).
By Lemma 12 (1), we have P ≡ νN1(a(x).P1 |P2), with a /∈ N1,
P ∗[n/x] = (νN1(P1 |P2))[n/x]. We can also assume that x /∈ N1,
since x /∈ fn(P2), as follows from the definition of abstraction for
parallel composition. Thus, we have P ∗[n/x] ≡ νN1(P1[n/x] |P2).
By Lemma 12 (2) Q ≡ νN3νN2(Q1 | a〈n〉), with a, n /∈ N2, and Q∗ ≡
νN2(Q1).
Thus, we have

R2 = F@C = νN3(P ∗[n/x] |Q∗)

and
R1 = νN(R2) = νNνN3(P ∗[n/x] |Q∗).

We have two cases depending whether n ∈ N3 or not:
• n /∈ N3. Then N3 can be considered as ∅. This situation is take

into account by case (5). Indeed, let Q′ be νN2(Q1), P ′ be P1 and
P ′′ be P2. As requested, we have P ≡ νN1(a(x).P ′ |P ′′) and:

Q ≡ νN2(Q1 | a〈n〉)
≡ (νN2(Q1) | a〈n〉)
= Q′ | a〈n〉

23

We finally need to show that R ≡ νN(Q′ | νN1(P ′[n/x] |P ′′)). Note
that R ≡ R1 = νN(R2) and so:

R ≡ R1 ≡ νN(R2) ≡ def. of R2

νNνN3(P ∗[n/x] |Q∗) ≡ def. of P ∗, Q∗

νN(νN1(P1[n/x] |P2) | νN2Q1) ≡ def. of P ′, P ′′

νN(νN1(P ′[n/x] |P ′′) |Q′)

• n ∈ N3. Thus, we can freely assume, by definition of restriction
over concretions, that N3 = {n}. This situation is take into ac-
count by case (6). Indeed, let Q′ be νN2(Q1), P ′ be P1 and P ′′ be
P2. As requested, we have:

Q ≡ νnνN2(Q1 | a〈n〉)
≡ νn(νN2(Q1) | a〈n〉)
= νn(Q′ | a〈n〉)

and P as above. We finally need to show that

R ≡ νNνn(Q′ | νN1(P ′[n/x] |P ′′))

Note that R ≡ R1 = νN(R1) and so:

R ≡ R1 ≡ νN(R2) ≡ def. of R2

νNνN3(P ∗[n/x] |Q∗) ≡ def. of P ∗, Q∗

νNνn(νN1(P1[n/x] |P2) | νN2Q1) ≡ def. of P ′, P ′′

νNνn(νN1(P ′[n/x] |P ′′) |Q′)

– Rule (8). As above (see cases (2) and (3)).

Proposition 1 Let A be a formula in L\∀. Consider a finite set of names
φ, a context νN(P |()), with Names(A) ∪ N = ∅, and process X with
fn(X) ⊆ φ. Then, we have:

νN(P | X) |= A iff X |= A//P,N,φ

where A//P,N,φ is the formula defined in Tab. 3.

Proof. By induction on the structure of A:

– T. For every process X we have that νN(P |X) |= T. Thus, T is the
necessary and sufficient condition on X s.t. the whole composition
satisfies T.

24

– A ∨ B. Given a process X, we have that νN(P |X) |= A ∨ B iff
νN(P |X) |= A or νN(P |X) |= B. Thus, by structural induction,
we have νN(P |X) |= A (νN(P |X) |= B) iff X |= A//P,N,φ (X |=
B//P,N,φ). Thus, we have ν(P |X) |= A ∨ B iff X |= A//P,N,φ ∨
B//P,N,φ.

– ¬A. Analogous to the previous reasoning.
– a〈n〉A. Given a process X, we have that νN(P |X) |= a〈n〉A iff

νN(P |X) ≡ a〈n〉 |Q′ and Q′ |= A. We might only consider two differ-
ent cases: 1) The subterm a〈n〉 belongs to X; 2) otherwise it belongs
to P , i.e:

• In the case 1), we have that X ≡ a〈n〉 |X ′ and νN(P |X ′) |= A.
By structural induction, we have that νN(P |X ′) |= A iff X ′ |=
A//P,N,φ. By putting together the conditions on X we get X |=
a〈n〉(A//P,N,φ).
On the other hand, if X |= a〈n〉(A//P,N,φ) then νN(P |X) |=
a〈n〉A.

• In the case 2), we have that P ≡ a〈n〉 |P ′ and νN(P ′ |X) |= A. By
Lemma 4 (1), we know that for some P ′′ ∈ Co(a〈n〉, P) we have
P ′′ ≡ P ′. Thus, by Lemma 1, νN(P ′ |X) |= A iff νN(P ′′ |X) |= A.
By structural induction, we have that νN(P ′′ |X) |= A iff X |=
A//P ′′,N,φ. Thus, X |= A//P ′′,N,φ for some P ′′ ∈ Co(a〈n〉, P). On
the contrary if X |= A//P ′′,N,φ for some P ′′ ∈ Co(a〈n〉, P), then
by structural induction, ν(P ′′ |X) |= A. Moreover, by Lemma 4
(2), we have that P ≡ P ′′ | a〈n〉, and so νN(P |X) |= a〈n〉A.

– a(n)A. Given a process X, we have that νN(P |X) |= a(n)A iff
νN(P |X) ≡ νN∗(a(m).Q′ |Q′′), with a, n /∈ N∗, and νN∗(Q′[n/
m] |Q′′) |= A holds. We may consider only the following two different
cases: 1) The subterm a(m).Q′ belongs to X; 2) otherwise it belongs
to P .

• In the case 1), we have that X ≡ νNX(a(m).X ′ |X ′′), with a, n /∈
NX and a ∈ φ, for some X ′, X ′′ and possibly n ∈ fn(X ′[n/m]).
We can freely assume that fn(P)∩NX = ∅. As a matter of fact, we
could always choose NX s.t. the previous equality holds, because of
α−conversion of structural congruence and by the fact that fn(P)
is a finite set. Thus, we get:

νN(P |X) ≡
νN(P | νNX(a(m).X ′ |X ′′)) ≡
νNνNX(a(m).X ′ |(P |X ′′))

25

and it must be that νNνNX(X ′[n/m] |(P |X ′′)) |= A. By struc-
tural induction, we know that

νN(P | νNX(X ′[n/m] |X ′′)) |= A iff
νNX(X ′[n/m] |X ′′) |= A//P,N,φ∪{n}

By putting together the conditions on X we get

X |= a(n)(A//P,N,φ∪{n})

On the other hand, if X |= a(n)(A//P,N,φ∪{n}), we have X ≡
νNX(a(m).X ′ |X ′′), with a, n /∈ NX and νNX(X ′[n/m] |X ′′) |=
A//P,N,φ∪{n}. By structural induction, we know that

νN(P | νNX(X ′[n/m] |X ′′) |= A

So, νN(P |X) ≡ νN(P | νNX(a(m).X ′ |X ′′)) |= a(n)A (recall
that a, n /∈ N).

• In the case 2), we have that P ≡ νN ′(a(m).P ′ |P ′′), with a, n /∈
N ′. We can freely assume that N ′∩φ = ∅. We have νNνN ′((P ′[n/
m] |P ′′) |X) |= A. By Lemma 6 (1), there exists (N1, P

′
1, P

′′
2) ∈

Ci(a(−), n, P) s.t.

νN ′(P ′[n/m] |P ′′) ≡ νN1(P ′
1 |P ′′

2)

Thus, by Lemma 1, we have

νN(νN ′(P ′[n/m] |P ′′) |X) |= A iff νN(νN1(P ′
1 |P ′′

2) |X) |= A

and, by structural induction, it follows

νN(νN1(P ′
1 |P ′′

2) |X) |= A iff X |= A//νN1(P ′1 |P ′′2),N,φ

for some (N1, P
′
1, P

′′
2) ∈ Ci(a(−), n, P). On the other hand, if

X |= A//νN1(P ′1 |P ′′2),N,φ for some (N1, P
′
1, P

′′
2) ∈ Ci(a(−), n, P)

then, by structural induction, we have νN(νN1(P ′
1 |P ′′

2) |X) |= A.
Moreover, by Lemma 6 (2), we have P ≡ νN1(a(m).P ′ |P ′′), with
a, n /∈ N1, P

′[n/m] ≡ P ′
1 and P ′′ ≡ P ′′

2 . Thus, νN(P |X) |= a(n)A
holds.

– ©A. Given a process X, we have νN(P |X) |= A iff ν(P |X) −→ P1

and P1 |= A. By Lemma 8, we may only have the following cases:
1. The reduction is due to an internal reduction of P . Thus, consider

a process P ′ s.t. P −→ P ′. Then, νN(P |X) −→ νN(P ′ |X) and
νN(P ′ |X) |= A. By structural induction, we have νN(P ′ |X) |=
A iff X |= A//P ′,N,φ. On the other hand, if X |= A//P ′,N,φ for
some P ′ s.t. P −→ P ′, then we have νN(P |X) |= ©A.

26

2. The reduction is due to an output of P . Thus, we have P ≡
a〈n〉 |P ′, X ≡ νNX(a(m).X ′ |X ′′), with a, n /∈ NX and possi-
bly n ∈ fn(X ′[n/m]), and νN(P ′ | νNX(X ′[n/m] |X ′′)) |= A. By
Lemma 4, we know that there exists P1 ∈ Co(a〈n〉, P) s.t. P ′ ≡ P1.
Thus, by Lemma 1, we have

νN(P ′ | νNX(X ′[n/m] |X ′′)) |= A iff
νN(P1 | νNX(X ′[n/m] |X ′′)) |= A

and, by structural induction, we have

νN(P1 | νNX(X ′[n/m] |X ′′)) |= A iff
νNX(X ′[n/m] |X ′′) |= A//P1,N,φ∪{n}

By putting together the conditions on X we get that, for some
P1 ∈ Co(a〈n〉, P), X |= a(n)(A//P1,N,φ∪{n}). On the other hand,
if X |= a(n)(A//P1,N,φ∪{n}), for some P1 ∈ Co(a〈n〉, P), then
νN(P |X) |= a(n)A holds.

3. The reduction is due to an output of a restricted name of P . Thus,
we have P ≡ νn(a〈n〉 |P ′), X ≡ νNX(a(m).X ′ |X ′′), with n /∈
fn(X), a 6= n, and

νN ∪ {n}(P ′ | νNX(X ′[n/m] |X ′′)) |= A

We can freely assume that n /∈ (fn(P)∪φ∪N ∪Names(A)), since
n is a restricted name. By Lemma 5, we know that there exists
P1 ∈ Cro(a〈n〉, P) s.t. P ′ ≡ P1. Thus, by Lemma 1, we have:

νN ∪ {n}(P ′ | νNX(X ′[n/m] |X ′′)) |= A iff
νN ∪ {n}(P1 | νNX(X ′[n/m] |X ′′)) |= A

and, by structural induction, we have:

νN ∪ {n}(P1 | νNX(X ′[n/m] |X ′′)) |= A iff
νNX(X ′[n/m] |X ′′) |= A//P1,N∪{n},φ∪{n}

By grouping the conditions on X we get that, for some P1 ∈
Cro(a〈n〉, P), X |= a(n)(A//P1,N∪{n},φ∪{n}). Note that we need to
consider a single name n with the previous properties.
On the other hand, if

X |= a(n)(A//P1,N∪{n},φ∪{n})

for some P1 ∈ Cro(a〈n〉, P), then νN(P |X) |= ©A holds.

27

4. The reduction is due to an internal reduction of X. Thus, consider
that X −→ X ′ and ν(P |X ′) |= A. By structural induction, we
have ν(P |X ′) |= A iff X ′ |= A//P,N,φ. Thus, the condition on X
is expressed by the formula X |= ©(A//P,N,φ).

5. The reduction is due to an output of X. Thus, we have X ≡
a〈n〉 |X ′, P ≡ νN ′(a(m).P ′ |P ′′), with a, n /∈ N ′, and νN(νN ′(P ′[n/
m] |P ′′) |X ′) |= A. By Lemma 6 (1), there exists (N1, P

′
1, P

′′
2) ∈

Ci(a(−), n, P) s.t. P ′[n/m] ≡ P ′
1, P

′′ ≡ P ′′
2 and νN ′(P ′[n/m] |P ′′) ≡

νN1(P ′
1 |P ′′

2). By Lemma 1 (1), we have:

νN(νN ′(P ′[n/m] |P ′′) |X ′) |= A iff νN(νN1(P ′
1 |P ′′

2) |X ′) |= A

and, by structural induction, we get

νN(νN1(P ′
1 |P ′′

2) |X ′) |= A iff X ′ |= A//νN1(P ′1,P ′′2),N,φ

By grouping the conditions on X we get that, for some (N1, P
′
1, P

′′
2) ∈

Ci(a(−), n, P), X |= a〈n〉(A//νN1(P ′1,P ′′2),N,φ). On the other hand, if
X |= a〈n〉(A//νN1(P ′1,P ′′2),N,φ), then we have that νN(P |X) |= ©A
holds.

6. The reduction is due to an output of a restricted name of X.
Thus, we have X ≡ νn(a〈n〉 |X ′), with a 6= n and possibly n ∈
fn(X ′), P ≡ νN ′(a(m).P ′ |P ′′), with a, n /∈ N ′, and

νN ∪ {n}(νN ′(P ′[n/m] |P ′′) |X ′) |= A

Note that we can freely assume that n /∈ (fn(P) ∪ φ ∪ N ∪
Names(A)).
By Lemma 6 (1), there exists (N1, P

′
1, P

′′
2) ∈ Ci(a(−), n, P) s.t.

P ′[n/m] ≡ P ′
1, P

′′ ≡ P ′′
2 and νN ′(P ′[n/m] |P ′′) ≡ νN1(P ′

1 |P ′′
2).

By Lemma 1 (1), we have:

νN ∪ {n}(νN ′(P ′[n/m] |P ′′) |X ′) |= A iff
νN ∪ {n}(νN1(P ′

1 |P ′′
2) |X ′) |= A

and, by structural induction, we know that:

νN ∪ {n}(νN1(P ′
1 |P ′′

2) |X ′) |= A iff
X ′ |= A//νN ′(P ′1,P ′′2),N∪{n},φ∪{n}

By grouping the conditions on X we get that, for some (N1, P
′
1, P

′′
2) ∈

Ci(a(−), n, P), X |= n ·R a〈n〉(A//νN1(P ′1,P ′′2),N∪{n},φ∪{n}). On the
contrary if X |= n ·R a〈n〉(A//νN1(P ′1,P ′′2),N∪{n},φ∪{n}), we can check
that νN(P |X) |= ©A.

28

– A·Rn. By definition we have νN(P |X) |= A·Rn iff νnνN(P |X) |= A.
Let n′ be a name s.t. n′ /∈ (fn(P) ∪ φ ∪ N ∪ Names(A)). Then, by
Lemma 2, we have

νnνN(P |X) |= A iff νnνN(P |X) |= A[n′/n]

By induction hypothesis, it follows that νnνN(P |X) |= A[n′/n] iff
X |= A([n′/n])//P,N∪{n},φ.
On the other hand, if X |= A([n′/n])//P,N∪{n},φ then, by induction
hypothesis, we have that νN ∪ {n}(P |X) |= A[n′/n]. Since, n and n′

are not a free names of νN ∪ {n}(P |X), we get

νN ∪ {n}(P |X) |= A[n′/n] iff
νN ∪ {n}(P |X)[n/n′] |= A[n′/n][n/n′] iff

νN ∪ {n}(P |X) |= A iff
νN(P |X) |= A ·R n

– n ·R A. By definition we have νN(P |X) |= n ·R A iff νN(P |X) ≡
νn(P ′) and P ′ |= A. Note that n cannot be a free name of νN(P |X),
i.e. n /∈ (fn(P)∪ fn(X)) \N (recall that n does not occur in N). We
only need to consider three different cases:
1. n is a name in N (up to renaming since, by assumption, in n ·R A

cannot be names in N). Thus, we have P ′ ≡ (νN \{n′}(P |X))[n/
n′] and (νN \ {n′}(P |X))[n/n′] |= A. (We are performing an α–
renaming of n′ with n.)
By Lemma 2, we know that:

νN\{n′}(P |X)[n/n′] |= A iff νN\{n′}(P |X)[n/n′][n′/n] |= A[n′/n]

since n′ ∈ N and, by assumption, in n ·R A there are no names also
in N . Note that νN \ {n′}(P |X)[n/n′][n′/n] ≡ νN \ {n′}(P |X).
By structural induction, we have:

νN \ {n′}(P |X) |= A[n′/n] iff X |= A[n′/n]//P,N\{n′},φ

We need to consider every possible name n′ in N . We must have
also that n /∈ fn(X) \ N ; since n /∈ N by assumption, we can
simply require that n /∈ fn(X), which can be logically expressed.

2. n is a restricted name of X. Thus, we must have X ≡ νnX ′, with
n /∈ fn(P), and P ′ ≡ νN(P |X ′) |= A (since n /∈ N) with possibly
n ∈ fn(X ′). By structural induction we have X ′ |= A//P,N,φ∪{n}
and so X |= n ·R (A//P,N,φ∪{n}). On the other hand, if X |= n ·R

29

(A//P,N,φ∪{n}), and n /∈ fn(P) ∪ N , then it must be that X ≡
νnX ′, and X ′ |= (A//P,N,φ∪{n}). By structural induction, we have
νN(P |X ′) |= A and so νnνN(P |X ′) ≡ νN(P |X) |= n·RA, since
n /∈ fn(P) ∪N .

3. n is a restricted name of P . First, it must be P ≡ νnP1, with
n /∈ fn(X), and P ′ ≡ νN(P1 |X). By Lemma 3, we know that
there exists P ′

1 ∈ Cres(P, n) s.t. P1 ≡ P ′
1. Thus, by Lemma 1, we

have νN(P1 |X) |= A iff νN(P ′
1 |X) |= A. By structural induction,

we have:
νN(P ′

1 |X) |= A iff X |= A//P ′1,N,φ

On the other hand, if X |= A//P ′1,N,φ, for some P ′
1 ∈ Cres(P, n)

and n /∈ fn(P)∪N , then it follows νnνN(P ′
1 |X) ≡ νN(P |X) |=

n ·R A.
– 0. By definition we have νN(P |X) |= 0 iff νN(P |X) ≡ 0. This is

possible if and only if P |X ≡ 0. Thus, it must be P ≡ 0 and X ≡ 0.
– A |B. By definition, we have νN(P |X) |= A |B iff νN(P |X) ≡

P ′ |P ′′ and P ′ |= A and P ′′ |= B. It must be that P |X ≡ Q′ |Q′′ and
fn(Q′)∩N = ∅ (otherwise it is not possible that νN(P |X) ≡ P ′ |P ′′).
Q′ may consist of parts of both P and X. Thus P ≡ P1 |P2, X ≡
X1 |X2 and fn(P1) ∩ N = ∅ = fn(X1) ∩ N . Thus, νN(P |X) ≡
(P1 |X1) | νN(P2 |X2). We have to consider that either:
• P1 |X1 |= A and νN(P2 |X2) |= B, or
• P1 |X1 |= B and νN(P2 |X2) |= A.

Consider a pair (P ′
1, P

′
2) in Ccomp(P) s.t. P1 ≡ P ′

1 and P2 ≡ P ′
2. Then,

by Lemma 1, we have either:
• P ′

1 |X1 |= A and νN(P ′
2 |X2) |= B, or

• P ′
1 |X1 |= B and νN(P ′

2 |X2) |= A.
By structural induction, we have either:
• X1 |= A//P ′1,∅,φ\N and X2 |= B//P ′2,N,φ, or
• X1 |= B//P ′1,∅,φ\N and X2 |= A//P ′2,N,φ.

Note also that it must be X1 |= fn¬(N). Thus, by grouping together
the previous conditions on X we obtain:

X |= (fn¬(N) ∧A//P ′1,∅,φ\N |B//P ′2,N,φ)∨
(fn¬(N) ∧B//P ′1,∅,φ\N |A//P ′2,N,φ)

– A ∧ fn⊆(N1) ¤ B. Recall that N1 ∩ N = ∅. By definition, we have
νN(P |X) |= A ¤ B iff for all Q s.t. Q |= A and fn(Q) ⊆ N1

30

we have that νN(P |X) |Q |= B holds. We have νN(P |X) |Q ≡
νN(P |(X |Q)). We apply the induction hypothesis and obtain that:

νN(P |(X |Q)) |= B iff
X |Q |= B//P,N,φ∪N1 iff

X |= (A ∧ fn⊆(N1)) ¢ (B//P,N,φ∪N1)

Lemma 9 If νN(P |X) −→∗ Q | pub〈v〉 then we can find a process X ′

s.t. νN(P |X ′) −→∗ Q′ | pub〈v〉, with fn(X) = fn(X ′) and X ′ during
this computation does not perform any internal reduction.

Proof. By induction on the length n of the computation.

– n = 0. We are done, let X ′ be X.
– Induction step. Assume that

νN(P |X) −→ νN1(P1 |X1) −→∗ Q | pub〈v〉

We may have three different cases depending on the nature of the first
internal communication:
1. The first communication is internal to P . Then we have X1 = X.

By inductive hypothesis we have that there exists a process X ′
1

s.t. νN1(P1 |X ′
1) −→∗ Q | pub〈v〉. So, simply consider X ′ as X ′

1.
2. The first communication is due to an interaction between P and

X. This interaction may be due only for the following reasons:
• X ≡ c〈m〉 |X2 and X1 = X2. We have that νN1(P1 |X2) −→∗

Q | pub〈v〉. Thus, by inductive hypothesis, we have that there
exists X ′

2 s.t. νN1(P1 |X ′
2) −→∗ Q′ | pub〈v〉. We consider X ′ as

c〈m〉 |X ′
2.

• The case when m is restricted is similar.
• X ≡ νNX(c(m).X ′ |X2), P ≡ c〈n〉 |P1, with c, n /∈ NX , and

X1 = νNX(X ′[n/m] |X2). Thus, by inductive hypothesis, there
exists a process X ′

1 s.t. νN1(P1 |X ′
1) −→∗ Q′ | pub〈v〉. Now con-

sider as X ′ = c(m).X ′′
1 , where X ′′

1 = X ′
1[m/n]. Then we get the

thesis.
• The case when n is restricted is similar.

3. The first communication is due only to an action of X. Then, by in-
ductive hypothesis, we have that there exists X ′

1 s.t. νN(P |X ′
1) −→∗

Q′ | pub〈v〉. Consider X ′ as X ′
1.

31

Lemma 10 Assume that νN ′(P |X) −→∗ Q | pub〈v〉, with pub, v /∈ N ′

and v /∈ fn(X). Then, there exists X ′, with fn(X ′) ⊆ (fn(P) ∪ {pub}) \
{v}, s.t.:

νN ′(P |X ′) −→∗ Q | pub〈v〉.

Proof. Indeed, assume that νN ′(P |X) −→∗ Q | pub〈v〉; then to study the
confidentiality of the value v in P is equivalent to study the confidentiality
of νNνN ′(P |X) −→∗ Q′ | pub〈v〉, provided that pub, v /∈ N . Now, recall
that v is not a free name of X. So, let N be fn(X)\{pub}. Thus, also T =
νfn(X)\{pub}νN ′(P |X) −→∗ Q′′ | pub〈v〉. Now, by applying the rule for
the structural congruence, we get that T ≡ T ′ = νfn(P)νN ′(P | νfn(X)\
{pub} \ fn(P)X) −→∗ Q′′ | pub〈v〉. Thus, let X ′ be νfn(X) \ {pub} \
fn(P)X. Note that fn(X ′) ⊆ (fn(P) ∪ {pub}) \ {v}.

Lemma 11 Let A be a formula which consists only of logical con-
stants, disjunctions, inputs, outputs, revelations and reductions. Then,
the problem of establishing whether or not there exists a process X, with
fn(X) ⊆ φ, s.t. X |= A is decidable.

Proof. By induction on the depth of A. If A is satisfiable we are able to
construct a model of it, call it XA.

– A = T. Every process X is a model of this formula. Let XA be 0.
– A = F. No process X is a model of this formula.
– A = a〈n〉A′. We have that A is satisfiable by a process X with free

names in φ iff X ≡ a〈n〉 |X ′ iff a, n ∈ φ and A′ is satisfiable by a pro-
cess X ′ whose free names are contained in φ. By induction hypothesis,
we are able to establish whether or not such process X ′ exists. If so,
let XA = a〈n〉 |XA′ .

– A = a(n)A′. We have that A is satisfiable by a process X with free
names in φ iff X ≡ νN(a(m)X1 |X2), with a, n /∈ N , and νN(X1[n/
m] |X2) |= A′. Thus, we have A is satisfiable iff a ∈ φ and A′ is
satisfiable by a process X ′ with free names in φ ∪ {n}. By induction
hypothesis, we are able to establish whether or not such process X ′

exists. If so, it must be that XA′ ≡ νN(X ′
1 |X ′

2), where n ∈ fn(X ′
1)

and n /∈ N . Thus, consider XA = νN(a(m).X ′
1[m/n] |X ′′).

32

– A = n ·R A′. We have that A is satisfiable by a process X whose
free names are contained in φ iff X ≡ νnX ′ and X ′ |= A′. Note that
possibly fn(X ′) ⊆ φ ∪ {n}. By induction hypothesis, we are able to
establish whether or not such process X ′ exists. If so, let XA = νnXA′ .
Then, we have that XA |= A and fn(XA) ⊆ φ.

– A = ©A′. We have that A is satisfiable by a process X whose free
names are contained in φ iff X −→ X ′ and X ′ |= A′. Note that
fn(X ′) ⊆ fn(X) ⊆ φ. By induction hypothesis, we are able to es-
tablish whether or not such process X ′ exists. On the one hand, as-
sume that XA′ is a model of A′. Then, let n be s.t. n /∈ φ. Then,
XA = νn(n〈n〉 |n(n).XA′) is able to perform a reduction by reaching
a process structurally equivalent to XA′ . On the other hand, if A′ is
not satisfiable, then also A is not satisfiable.

– A = A1 ∨ A2. A is satisfiable iff either A1 or A2 are satisfiable. The
proof proceeds by induction induction.

33

