507 research outputs found

    Reliable Multicast in Heterogeneous Mobile Ad-hoc Networks

    Get PDF
    In disaster scenarios, communication infrastructure could be damaged orcompletely failed. Mobile Ad-hoc Networks (MANETs) can be used to substitutefailed communication devices and thus to enable communication. As group communicationis an important part in disaster scenarios, multicast will be used to addressseveral nodes. In this paper, we propose our new reliable multicast protocol RMDA(Reliable Multicast over Delay Tolerant Mobile Ad hoc Networks). We introducean efficient group management approach and a new method for reliable multicastdelivery over Delay Tolerant Networks. We show, that our protocol is adaptive todifferent kinds of MANETs, e.g. with or without clusterheads, respectively. Forthose without, we use our name resolution over adaptive routing approach

    Naming and Address Resolution in Heterogeneous Mobile Ad hoc Networks

    Get PDF
    This doctoral thesis deals with naming and address resolution in heterogeneous networks to be used in disaster scenarios. Such events could damage the communication infrastructure in parts or completely. To reestablish communication, Mobile Ad hoc Networks (MANETs) could be used where central entities have to be eliminated broadly. The main focus of the thesis lies on two things: an addressing scheme that helps to find nodes, even if they frequently change the subnet and the local addressing, by introducing an identifying name layer; and a MANET-adapted substitution of the Domain Name System (DNS) in order to resolve node identities to changing local addresses. We present our solution to provide decentralized name resolution based on different underlying routing protocols embedded into an adaptive routing framework. Furthermore, we show how this system works in cascaded networks and how to extend the basic approach to realize location-aware service discovery.Auch im Buchhandel erhƤltlich: Naming and Address Resolution in Heterogeneous Mobile Ad hoc Networks / Sebastian Schellenberg Ilmenau : Univ.-Verl. Ilmenau, 2016. - xvi, 177 Seiten ISBN 978-3-86360-129-4 Preis (Druckausgabe): 17,60

    IF-MANET: Interoperable framework for heterogeneous mobile ad hoc networks

    Get PDF
    The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation

    Integrated Architecture for Configuration and Service Management in MANET Environments

    Full text link
    Esta tesis nos ha permitido trasladar algunos conceptos teĆ³ricos de la computaciĆ³n ubicua a escenarios reales, identificando las necesidades especĆ­ficas de diferentes tipos de aplicaciones. Con el fin de alcanzar este objetivo, proponemos dos prototipos que proporcionan servicios sensibles al contexto en diferentes entornos, tales como conferencias o salas de recuperaciĆ³n en hospitales. Estos prototipos experimentales explotan la tecnologĆ­a Bluetooth para ofrecer informaciĆ³n basada en las preferencias del usuario. En ambos casos, hemos llevado a cabo algunos experimentos con el fin de evaluar el comportamiento de los sistemas y su rendimento. TambiĆ©n abordamos en esta tesis el problema de la autoconfiguraciĆ³n de redes MANET basadas en el estĆ”ndar 802.11 a travĆ©s de dos soluciones novedosas. La primera es una soluciĆ³n centralizada que se basa en la tecnologĆ­a Bluetooth, mientras la segunda es una soluciĆ³n distribuida que no necesita recurrir a ninguna tecnologĆ­a adicional, ya que se basa en el uso del parĆ”metro SSID. Ambos mĆ©todos se han diseƱado para permitir que usuarios no expertos puedan unirse a una red MANET de forma transparente, proporcionando una configuraciĆ³n automĆ”tica, rĆ”pida, y fiable de los terminales. Los resultados experimentales en implementaciones reales nos han permitido evaluar el rendimiento de las soluciones propuestas y demostrar que las estaciones cercanas se pueden configurar en pocos segundos. AdemĆ”s, hemos comparado ambas soluciones entre sĆ­ para poner de manifiesto las diferentes ventajas y desventajas en cuanto a rendimento. La principal contribuciĆ³n de esta tesis es EasyMANET, una plataforma ampliable y configurable cuyo objetivo es automatizar lo mĆ”ximo posible las tareas que afectan a la configuraciĆ³n y puesta en marcha de redes MANET, de modo que su uso sea mĆ”s simple y accesible.Cano Reyes, J. (2012). Integrated Architecture for Configuration and Service Management in MANET Environments [Tesis doctoral no publicada]. Universitat PolitĆØcnica de ValĆØncia. https://doi.org/10.4995/Thesis/10251/14675Palanci

    Reliable multicast in heterogeneous mobile ad-hoc networks

    Get PDF
    In disaster scenarios, communication infrastructure could be damaged or completely failed. Mobile Ad-hoc Networks (MANETs) can be used to substitute failed communication devices and thus to enable communication. As group communication is an important part in disaster scenarios, multicast will be used to address several nodes. In this paper, we propose our new reliable multicast protocol RMDA (Reliable Multicast over Delay Tolerant Mobile Ad hoc Networks). We introduce an efficient group management approach and a new method for reliable multicast delivery over Delay Tolerant Networks. We show, that our protocol is adaptive to different kinds of MANETs, e.g. with or without clusterheads, respectively. For those without, we use our name resolution over adaptive routing approach

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    Information Centric Networking in the IoT: Experiments with NDN in the Wild

    Get PDF
    This paper explores the feasibility, advantages, and challenges of an ICN-based approach in the Internet of Things. We report on the first NDN experiments in a life-size IoT deployment, spread over tens of rooms on several floors of a building. Based on the insights gained with these experiments, the paper analyses the shortcomings of CCN applied to IoT. Several interoperable CCN enhancements are then proposed and evaluated. We significantly decreased control traffic (i.e., interest messages) and leverage data path and caching to match IoT requirements in terms of energy and bandwidth constraints. Our optimizations increase content availability in case of IoT nodes with intermittent activity. This paper also provides the first experimental comparison of CCN with the common IoT standards 6LoWPAN/RPL/UDP.Comment: 10 pages, 10 figures and tables, ACM ICN-2014 conferenc
    • ā€¦
    corecore