
Department of Information Engineering, University of Pisa, Italy
Ph.D. Thesis - XIX Cycle

MANETs: Internet Connectivity
and Transport Protocols

Ph.D. Candidate Advisor

Emilio Ancillotti Prof. Giuseppe Anastasi

April 2007

.

2

List of Publications

Journals

• E. Ancillotti and R. Bruno and M. Conti and E. Gregori and A. Piniz-
zotto. A Layer-2 Framework for Interconnecting Ad Hoc Networks to
Fixed Internet: Test-bed Implementation and Experimental Evaluation.
Computer Journal, To appear.

• E. Ancillotti, G. Anastasi, M. Conti and A. Passarella. A Comprehensive
Study of TPA: a Transport Protocol for Ad hoc Networks, submitted
to The Computer Journal, Special Issue on Performance Evaluation of
Wireless Networks.

Conferences

• E. Ancillotti, G. Anastasi,M. Conti and A. Passarella, Experimental anal-
ysis of a transport protocol for ad hoc networks (TPA), Proceedings of
the ACM International Workshop on Performance Evaluation of Wireless
Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2006), October
2 2006, Torremolinos (Spain), ACM Press

• E. Ancillotti, R. Bruno, M. Conti, E. Gregori and A. Pinizzotto. A Layer-
2 Architecture for Interconnecting Multi-hop Hybrid Ad Hoc Networks
to the Internet. In Proceedings of WONS 2006. January, 18–20 2006.
Les Menuires, France. pp. 87–96.

• G. Anastasi, E. Ancillotti, M. Conti and A. Passarella. TPA: A Transport
Protocol for Ad Hoc Networks. ISCC ’05: Proceedings of the 10th IEEE
Symposium on Computers and Communications (ISCC’05). Cartagena
(Spain). June 27-30 2005. pp. 51–56. IEEE Computer Society.

• E. Ancillotti and R. Bruno and M. Conti and E. Gregori and A. Piniz-
zotto. Experimenting a Layer 2-based Approach to Internet Connectivity
for Ad Hoc Networks. IEEE ICPS Workshop on Multi-hop Ad hoc Net-
works (REALMAN 2005). July 14, 2005. Santorini (Greece).

Book Chapters

• E. Ancillotti, G. Anastasi, M. Conti and A. Passarella, Experimental
Analysis of TCP Performance in Static Multi-hop Ad Hoc Networks.

3

Chapter 6 in Mobile Ad Hoc Networks: from Theory to Reality, Nova
Science Publisher.
Also available at http://www2.ing.unipi.it/ o1653499/papers.htm.

• E. Ancillotti and R. Bruno and M. Conti and E. Gregori and A. Piniz-
zotto. Implementation and Experimentation of a Layer-2 Architecture for
Interconnecting Heterogeneous Ad Hoc Network to the Internet. chap-
ter in Mobile Ad Hoc Networks: from Theory to Reality, (M. Conti, J.
Crowcroft, A. Passarella, Editors). Nova Science Publisher.

• E. Ancillotti, G. Anastasi, M. Conti and A. Passarella. Design, Imple-
mentation and Measurements of a Transport Protocol for Ad Hoc Net-
works. Chapter in MobileMAN (M. Conti, Editor), Sprinter. To appear.
Also available at http://www2.ing.unipi.it/ o1653499/papers.htm.

• E. Ancillotti and R. Bruno and M. Conti and E. Gregori and A. Piniz-
zotto. A MobileMAN Approach for the Interconnection of Heterogeneous
Ad Hoc Networks to the Internet. chapter in MobileMAN (M. Conti, Ed-
itor), Springer. To appear.

4

Acknowledgments

This thesis is the outcome of about three years (since January 2004) of research
work at the Department of Information Engineering at the University of Pisa
and at the Institute for Informatics and Telematics of the National Research
Council of Pisa. I am really grateful to many people that directly or indirectly
contributed to this work. I do apologize if I do not explicitly name all of them
here, but I indeed thank everyone who helped me.

First I want to express my gratitude to my advisor, Prof. Giuseppe Anas-
tasi. His trust in my work even when things seemed not to be on track was
fundamental for my success. His advices always helped me to overcame the
difficulty that I encountered during my research work. Professor Giuseppe
Anastasi also gave me the opportunity to being part of a team of people work-
ing at the Institute for Informatics and Telematics of the National Research
Council of Pisa. This team includes Dr. Marco Conti, Ing. Enrico Gregori, Ing.
Raffaele Bruno, Ing. Andrea Passarella, Ing. Franca DelMastro, Ing. Eleonora
Borgia, Ing. Luciana Pelusi, and Ing. Antonio Pinizzotto. I express a special
appreciation to Dr. Marco Conti, Ing. Andrea Passarella and Ing. Raffaele
Bruno, that gave me a valuable contribution during my research work.

The research discussed in this dissertion contains materials previously pub-
lished in papers [13, 16, 17, 18, 19, 24, 23, 21, 20, 22]. I express a special
appreciation to all the co-authors for their valuable contribution that have
made the success of this doctorate possible.

At the end of this page, I wish to thank the people who made it all possible:
my mother, Loretta, my father, Augusto, my brother Andrea, and my girlfriend
Ilaria.

5

Contents

1 Introduction 2
1.1 Mobile Ad hoc Networks . 2
1.2 Problems Statement and Proposed Solutions 3
1.3 Structure of the document . 7

I Preliminary Information 9

2 Introduction 10

3 IEEE 802.11 Architecture and Protocols 11
3.1 Distributed Coordination Function (DCF) 11
3.2 Common Problems in Wireless Ad Hoc Networks 13

4 Routing Protocols for MANETs 17
4.1 Ad hoc On-demand Distance Vector

(AODV) . 18
4.2 Optimized Link State Routing (OLSR) 20

5 Transmission Control Protocol 22
5.1 TCP Segment Structure . 22
5.2 TCP Connection Management 24

5.2.1 Connection Setup and teardown 24
5.3 Reliable Data Transfer . 26
5.4 Flow Control . 27
5.5 Round Trip Time and Timeout 28
5.6 Congestion Control . 30
5.7 TCP Variants . 31

5.7.1 TCP Tahoe . 32
5.7.2 TCP Reno . 32
5.7.3 TCP NewReno . 33
5.7.4 TCP Sack . 33
5.7.5 TCP Vegas . 34

5.8 TCP Extensions . 35
5.8.1 Delayed Acknowledgments (DA) 35

6

CONTENTS 7

5.8.2 Limited Transmit . 36
5.8.3 Explicit Congestion Notification (ECN) 37

6 Miscellaneous Protocols 38
6.1 Background on the Mobile IP Protocol 38
6.2 Network Address Translation (NAT) 39
6.3 Address resolution Protocol (ARP) 40

II Interconnecting MANETs and Internet 42

7 Introduction 43

8 Basic Design Challenges 46

9 Existing solutions 49
9.1 Mobile IP-based approaches . 49
9.2 NAT-based approaches . 53
9.3 Layer 2.5 solutions . 56
9.4 Proposals for IPv6-based MANETs 56

10 Proposed Architecture 58
10.1 Address autoconfiguration . 60
10.2 Interconnecting ad hoc nodes to the fixed Internet 62

10.2.1 Intranet connectivity. 62
10.2.2 Internet connectivity . 65
10.2.3 Support for gateway handoffs 65
10.2.4 Example . 66

11 Implementation and Experimental Results 69
11.1 Testbed description . 69
11.2 Path life characteristics . 70
11.3 Performance constraints of Internet Access 78
11.4 Performance constraints with gateway handoffs 82

11.4.1 Lessons learned from the test-bed 84

12 Conclusion 86

III Transport Protocols in MANETs 88

13 Introduction 89

14 TCP over MANET 92
14.1 Introduction . 92
14.2 TCP’s challenges . 92

14.2.1 Lossy channel . 93
14.2.2 Interaction between TCP and MAC Protocols 93

14.2.3 Path Asymmetry . 96
14.2.4 Node Mobility . 96
14.2.5 Routing Protocol Strategies 97
14.2.6 Power Constraints . 98

14.3 Related Work . 98
14.3.1 Proposals to Distinguish Between Losses Due to Route

Failures and Congestion 99
14.3.2 Proposals to Reduce Route Failures 103
14.3.3 Proposals to Reduce Wireless Channel Contention . . . 107
14.3.4 Proposals to Improve TCP Fairness 110
14.3.5 Ad hoc Transport Protocols 112

15 The TPA Protocol 114
15.1 Introduction . 114
15.2 TPA Segment Structure . 115
15.3 Data Transfer . 117
15.4 Route Failure Management . 118
15.5 Route Change Management . 119
15.6 Congestion Control Mechanism 120
15.7 ACK Management . 121
15.8 TPA/TCP interoperability . 122
15.9 TPA Protocol Implementation 122

15.9.1 Application Programming Interface 124
15.9.2 Software organization 125
15.9.3 Timer implementation 129

16 Experimental Analysis of TPA 131
16.1 Introduction . 131
16.2 Testbed Description . 132
16.3 Performance measures . 133
16.4 Experimental Methodology . 134
16.5 TCP Analysis . 135

16.5.1 Influence of the maximum congestion window size . . . 135
16.5.2 Influence of Hello messages 139
16.5.3 Influence of the background traffic 141
16.5.4 Analysis with OLSR routing protocol 142
16.5.5 Conclusions . 142

16.6 TPA VS. TCP . 143
16.6.1 Chain Topology . 143
16.6.2 Cross Topology . 155
16.6.3 Roaming Node . 157

16.7 Conclusions . 160

8

CONTENTS 1

17 Simulative Analysis of TPA 163
17.1 Introduction . 163
17.2 Performance Measures . 164
17.3 TCP with Adaptive Pacing . 165
17.4 Cross and Parallel Topology . 166
17.5 Grid Topology . 169
17.6 Static Random Topology . 172
17.7 Mobile Scenario . 173
17.8 Conclusions . 175

18 Conclusion 176

IV Summary and Conclusion 178

Chapter 1

Introduction

1.1 Mobile Ad hoc Networks

A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected
together over a wireless medium, which self-organize into an autonomous multi-
hop wireless network. Nodes in ad hoc networks work as both hosts and routers,
and so each node is able to forward data for its neighbors. This model design
is needed because each node counts on a limited transmission range to reach
its intended destination node. Hence, when a given node have data to send to
another node that is not in its transmission range, it uses one of its neighbors
to forward the data toward the destination. This process may involve multiple
intermediate nodes, and it may produce the establishing of a multihop con-
nection (multi-hop ad hoc network) between sender and receiver, as depicted
in Figure 1.1. These networks are appropriate for scenarios in which wired
networks are not possible or not desirable such as disaster recovery, battlefield,
short-lived networks as in conference spots, etc. In addition, in the last few
years MANETs are also emerged as a flexible and low-cost extension of wired
infrastructure networks.

MANETs inherit the traditional problems of wireless communication and
wireless networking, like high bit error rate, high sensitivity of wireless channel
from outside signals, the possibility of path asymmetry, and so on. In addition,
the multihop nature of connections, the lack of a fixed infrastructure, and nodes
mobility add new problems, such as network partitions, route failures, and the
hidden (or exposed) terminal. These new problems pose a number of design
constraints that are specific to ad hoc networking.

Research on MANETs spanned a large number of issues. Transport proto-
cols, roting protocols and MAC protocols are active fields of research. In the
first place, this thesis examines the problem of interconnect Ad hoc network to
Internet, and presents a practical architecture to logically extend traditional
wired LANs using multi-hop ad hoc networking technologies. In the second
place, this thesis presents the problems encountered by TCP when it operates
over multi-hop ad hoc networks, and proposes a novel transport protocol for

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Multi Hop path between two communicating nodes.

ad hoc networks, named TPA, that is specifically tailored to the characteristics
of the MANET environment. All the proposed solutions have been prototyped
and evaluated in a real ad hoc testbed, as well as using the ns-2 simulator [3].
In the following, I briefly present the problems and the solutions that I studied
during my Ph.D.

1.2 Problems Statement and Proposed Solutions

The recent advances in mobile and ubiquitous computing, and the development
of inexpensive, portable devices are extending the application fields of ad hoc
networking. Mobile users are looking for multi-purpose networking platforms
in which cost is an issue and Internet access is a must. As a consequence, nowa-
days, multi-hop ad hoc networks do not appear only as isolate self-configured
networks, but also emerge as a flexible and low-cost extension of wired infras-
tructure networks, coexisting with them. A new class of networks is emerging
from this view, in which a mix of fixed and mobile nodes interconnected via het-
erogeneous (wireless and wired) links forms a multihop heterogeneous ad hoc
network integrated into classical wired/wireless infrastructure-based networks.

Three different categories of solutions have been proposed for enabling in-
terconnection between ad hoc networks and the Internet. One approach uti-
lizes the Network Address Translation (NAT) mechanism, implemented on each
gateway that interconnect the ad hoc network with the wired infrastructure net-
work. With this approach, the mobile nodes do not need a globally routable
IP address because the NAT gateway translates the source private IP address
of outgoing traffic with a public IP address, which is routable on the fixed In-
ternet. An alternative approach relies on the design of techniques capable of
automatically configuring a unique, topology-dependent and globally routable
IP address for each mobile node visiting an ad hoc network (IPv6 based solu-
tions). Finally, a third category of solutions assumes that a Mobile IP Foreign
Agent is implemented in the ad hoc nodes that act as Internet gateways. With

this approach, the mobile nodes need a permanent and unique globally routable
IP address (i.e., their home address), which is used during the registration pro-
cedures with the foreign agents of the visiting ad hoc network.

However, all the solutions that have been proposed in literature have a
number of disadvantages. For example, the Mobile IP based solutions have
several drawbacks. The first is that, in order to allow Mobile IP and ad hoc
networking to cooperate, it is needed to introduce further complexities and
sub-optimal operations in the implementations of both Mobile IP and ad hoc
routing protocols. In addition, Mobile IP was designed to handle mobility of
devices in case of relatively infrequent mobility. Thus, the overheads introduced
to manage roaming and handoffs between foreign agents are a relevant issue in
MANETs. Finally, when the technique of default routes is used to route the
traffic from the mobile nodes to the closest gateway, the use of Mobile IP can
easily lead to triangle routing. In fact, when the mobile node moves, it can get
closer to a gateway different from the one to which it is currently registered.
As a consequence, the forward traffic leaves the ad hoc network through one
gateway, while the return traffic enters the ad hoc network through the new
gateway to which the mobile node is registered. To solve this problem, some
authors propose not to use default routes. They instead propose to use Mobile
IP reverse tunnelling [69], or explicit tunnelling to one of the gateway used to
leave ah hoc network. However, the tunnelling mechanism introduces a non
negligible overhead in the communication between nodes.

Also the NAT based solutions have some drawbacks. For example, they
encounter problems in multi-homed networks, i.e., when multiple gateways are
present in the ad hoc network. Indeed, to avoid transport-layer session breaks,
it is necessary to ensure that each packet from the same session is routed over
a specific gateway, since a NAT router translates both outgoing and incoming
packets. To solve this problem, some NAT based solutions adopts the IP-in-IP
encapsulation mechanism to tunnel the packets towards the desired gateway.
Employing explicit tunnelling ensures that each packet of the same transport-
layer session is consistently routed through the same gateway, even if the source
node moves. However, it introduces a non negligible overhead in every packet
sent. In addition, NAT is not very suitable for incoming connections and this
fact causes significant difficulties for peer-to-peer applications.

These observations motivated me to study an alternative, and more efficient
and lightweight solution to provide Internet connectivity for ad hoc networks.
Specifically, in the first part of my Ph.D. activity, I investigated how MANETs
can be used to extend the range of traditional Wireless Local Area Networks
(WLANs) [4] over multiple radio hops, in order to provide seamless and unteth-
ered mobility support for mobile/portables devices in the local area environ-
ment. In my work, I envisaged an heterogeneous network environment in which
wired and multi-hop wireless technologies transparently coexist and interoper-
ate (see Figure 1.2). In this network, separated groups of nodes without a
direct access to the networking infrastructure form ad hoc islands, establishing
multi-hop wireless links. Special nodes, hereafter indicated as gateways, having
both wired and wireless interfaces, are used to build a wired backbone inter-

4

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Envisaged an heterogeneous network environment.

connecting separated ad hoc components. In addition, the gateways use their
wired interfaces also to communicate with static hosts belonging to a wired
LAN. The network resulting from the integration of the ad hoc network with
the wired LAN is an extended LAN, in which static and mobile hosts transpar-
ently communicate using traditional wired technologies, or ad hoc networking
technologies.

The solution I presented during my Ph.D. [24, 23, 21, 20, 22] is a simple
yet practical approach that relies only on basic ARP capabilities [103] and
standard IP routing rules to logically extend a wired LAN. In addition, my
solution includes a distributed protocol for the address autoconfiguration of ad
hoc nodes. This protocol relies on DHCP servers located in the wired part of
the network, and it does not require that new ad hoc nodes have direct access
to the DHCP servers. Using my scheme, mobile nodes can dynamically obtain
a unique IP address that is topologically correct within the extended LAN.
During my Ph.D., I have also prototyped the main components of my architec-
ture in a general and realistic test-bed. Using this test-bed, I have conducted
a large variety of experiments, comparing the throughput performance of In-
ternet access provided by my proposed scheme and an alternative well-known
NAT-based solution [48]. The shown experimental results demonstrate that:
i) my scheme ensures higher per-connection throughputs than the NAT-based
solution, ii) node mobility does not cause permanent transport-layer session
breaks, iii) node mobility induces drastic throughput degradations when using
the NAT-based solution, while my proposed technique performs more efficient
gateway handoffs, and iv) the network performances can be significantly im-
proved by properly setting the routing protocol parameters such as to increase
route stability.

In this thesis I also analyse the problems encountered by TCP when it
operates over MANETs. Research on efficient transport protocols for ad hoc
networks is one of the most active topics in the MANET community. Such a
great interest is basically motivated by numerous observations showing that,
in general, TCP is not able to efficiently deal with the unstable and very dy-
namic environment provided by multi-hop ad hoc networks. This is because
some assumptions, in TCP design, are clearly inspired by the characteristics of
wired networks dominant at the time when it was conceived. More specifically,
TCP implicitly assumes that packet loss is almost always due to congestion
phenomena causing buffer overflows at intermediate routers. Furthermore, it
also assumes that nodes are static (i.e., they do not change their position over
time). Unfortunately, these assumptions do not hold in MANETs, since in this
kind of networks packet losses due to interference and link-layer contentions
are largely predominant, and nodes may be mobile.

Many papers have pointed out that the drastic differences between MANETs
and the legacy Internet may lead to poor performance of TCP over MANETs.
However, almost all these studies rely on simulation, and many of them do not
consider some important details (e.g., the routing protocol is often omitted).
To the best of my knowledge, very few experimental analyses have been carried
out so far [57, 71]. On the other side, previous experimental studies have shown
that certain aspects of real MANETs are often not effectively captured in simu-
lation tools [14]. Furthermore, available software and hardware products often
use parameters settings different from those commonly assumed in simulation
tools. Finally, real operating conditions are often different from those modeled
in simulation experiments. For example, interferences caused by WiFi hotspots
or other devices in the proximity are inevitable in practice. For all the above
reasons, I spent some time to analyse TCP performance in a real testbed, us-
ing a network having a chain topology with variable length, and using different
routing protocols [19]. My experimental outcomes are normally aligned with
simulation results, and they show that TCP performance in multi hop ad hoc
networks is sub-optimal and strong depends on the link quality and on the
routing protocol parameters. In addition, I also found some results contrasting
with simulation. Specifically, I discovered that in a real world the TCP optimal
operating point moves with respect to that measured by simulation.

To address the problems experienced by TCP in MANETs, a number of
proposals have been presented. The vast majority of these proposals are TCP
modifications that address some particular TCP inefficiency. The main design
requirement is indeed to keep the improved transport protocol backward com-
patible with the legacy TCP, so that “improved” and “legacy” users may be
able to communicate with each other. While I acknowledge the importance
of TCP compatibility, int his thesis I advocate a different approach. The dif-
ferences between MANETs and traditional wired networks are so many, that
TCP would need a large number of modifications to work in this environment.
Consequently, it might be worth to design a transport protocol from scratch,
without worrying too much – at the design stage – about backward compati-
bility with the legacy TCP. Interoperability with TCP could be implemented

6

CHAPTER 1. INTRODUCTION 7

at a later stage, as a single and coherent patch to the new protocol. Follow-
ing this approach, the last activity of my Ph.D. consisted in the design of a
new transport protocol named Transport Protocol for Ad hoc networks (TPA)
[13], specifically tailored to the MANETs characteristics. TPA is a lightweight
transport protocol that provides a connection-oriented, reliable type of service.
It differs from TCP in a number of ways. Specifically, the data transfer and
the congestion control algorithms have been re-designed. Furthermore, TPA
explicitly detects and deals with both route failures and route changes. TPA
can leverage cross-layer interactions with the routing protocol, when available.
For example, it is able to intercept and interpret route failure and route re-
establishment messages. However, TPA works also with routing protocols that
do not provide this type of information.

This thesis reports the complete description of TPA protocol. In addition,
it reports the results of a performance analysis of TPA [17, 18, 16]. Differ-
ently from the most of the researches on ad hoc networks, that realize only on
simulation analysis, this thesis reports the analysis of TCP and TPA perfor-
mance in a real, as well as, in a simulation environment. Specifically, I used
real word experiments to compare TCP and TPA performance over a wide
range of reproducible network topology, like the string and the cross topology.
I also used real word experiments to analyse TCP and TPA performance in a
very simple but realistic mobile scenario, like the roaming node scenario. The
obtained results show that TPA always outperforms TCP. Specifically, TPA
throughput is between 5% and 19% greater than the TCP throughput, and,
furthermore, TPA retransmits between 64% and 94% less data segments. I in-
stead used simulative analysis to study TPA performance over simple network
topologies, like the cross and the paralles topologies, and over more complex
network topologies, like the grid topology and a random topology (50 nodes
randomly distributed in a area A=1000m× 1000m). I also analysed TPA per-
formance over a highly dinamic environment, where 50 nodes move over a 1000
x 1000 area. The simulative show that TPA is able to achieve an increment in
throughput up to 6%, and an increment in fairness up to 34% respect to TCP.

To conclude TPA study, I used a simulative analysis to study the well-
known unfairness problems among concurrent connections that affects TCP as
well as TPA. I integrated in TPA the Adaptive Pacing mechanism, a popular
proposal for improving TCP fairness [46], and I showed that TPA with Adaptive
Pacing outperforms TCP with Adaptive Pacing. In all cases I have investigated,
TPA is able to improve the performance of TCP. Specifically, TPA delivers
greater throughput with respect to TCP (up to 39% increase), while granting
an increment in fairness up to 5.6% respect to TCP. In addiction, TPA is able
to reduce the number of retransmitted segment up to 78.7%.

1.3 Structure of the document

This thesis is structured into three parts. In the first part I present background
information for each of the areas I have explored. Part I includes an overview

of the Transmission Control Protocol (TCP), and some of its main variants
and extentions. It also includes a review of the main features of MANETs,
introducing the IEEE 802.11 architecture and protocols, and providing back-
ground information on routing protocols for MANETs, with a special attention
on the Ad hoc On-demand Distance Vector (AODV) protocol and on the Op-
timised Link State Routing (OLSR) protocol. Finally, Part I briefly describes
some mechanisms and protocols used in Part II, like the Mobile IP Protocol,
the Address Resolution Protocol (ARP), and the Network Address Translation
(NAT) mechanism.

In the second Part, I describe the activity about the interconnection between
ad hoc networks and Internet. Part II first discusses the variety of architectural
issues and design options that need to be considered to interconnect ad hoc
networks to fixed IP networks. Then it introduces existing approaches to tackle
the internetworking of MANETs with the fixed Internet and reviews the most
well known solutions. Finally, Part II describes the design principles and the
protocol details of my proposed solution, and shows experimental results on
the network performance in various test-bed configurations.

In the third Part, I describe my activity about the study of TCP perfor-
mance over MANETs. Part III first describes the main specificity of MANETs
that condition TCP behaviour and also discusses the major proposal aimed to
improve TCP’s performance in such environment. Then, it reports the com-
plete description of TPA features, and also reports the description of TPA
prototype implementation. Finally, Part III reports the results of the analysis
of TCP and TPA performance in a real, as well as, in a simulation environment.

8

Part I

Preliminary Information

9

Chapter 2

Introduction

This Part presents preliminary information and concepts that will be used in
the rest on the thesis. It is organized as follow. Chapter 5 presents an overview
of the Transmission Control Protocol (TCP), and also presents some of its
variants and extentions. Chapter 3 reviews the main features of MANETs,
introducing the IEEE 802.11 architecture and protocols. Chapter 4 provides
background information on routing protocols for MANETs, focusing special
attention on the Ad hoc On-demand Distance Vector (AODV) protocol and
on the Optimized Link State Routing (OLSR) protocol, that was been used
in the thesis activity. Finally, Chapter 6 briefly describes some mechanisms
and protocols used in the first part of this thesis, like the Mobile IP Protocol,
the Address Resolution Protocol (ARP), and the Network Address Translation
(NAT) mechanism.

10

Chapter 3

IEEE 802.11 Architecture
and Protocols

This section focuses on the IEEE 802.11 architecture and protocols as defined
in the original standard [2], with a particular attention to the MAC layer. The
IEEE 802.11 [2] is the standard for Ad hoc networks, and it specifies both
the MAC and the Physical layer. The MAC layer offers two different types
of service: a contention free service provided by the Distributed Coordination
Function (DCF), and a contention-free service implemented by the Point Co-
ordination Function (PCF). These service types are made available on top of
a variety of physical layers. Specifically, three different technologies have been
specified in the standard: Infrared (IF), Frequency Hopping Spread Spectrum
(FHSS) and Direct Sequence Spread Spectrum (DSSS).

The DCF provides the basic access method of the 802.11 MAC protocol
and is based on a Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) scheme. The PCF is implemented on top of the DCF and is
based on a polling scheme. It uses a Point Coordinator that cyclically polls
stations, giving them the opportunity to transmit. Since the PCF can not be
adopted in ad hoc mode, it will not be considered hereafter.

3.1 Distributed Coordination Function (DCF)

According to the DCF, before transmitting a data frame, a station must sense
the channel to determine whether any other station is transmitting. If the
medium is found to be idle for an interval longer than the Distributed Inter-
Frame Space (DIFS), the station continues with its transmission (see Figure
3.1). To guarantee fair access to the shared medium, a station that has just
transmitted a packet and has another packet ready for transmission must per-
form the backoff procedure before initiating the second transmission. On the
other hand, if the medium is busy the transmission is deferred until the end
of the ongoing transmission. A random interval, henceforth referred to as the

11

backoff time, is then selected, which is used to initialize the backoff timer.
The backoff timer is decreased for as long as the channel is sensed as idle,
stopped when a transmission is detected on the channel, and reactivated when
the channel is sensed as idle again for more than a DIFS. The station is enabled
to transmit its frame when the backoff timer reaches zero. For example, the
backoff timer of Station 3 in Figure 3.1 is disabled while Station 2 is transmit-
ting its frame; the timer is reactivated a DIFS after Station 2 has completed
its transmission. The backoff time is slotted. The backoff time is an integer
number of slots uniformly chosen in the interval (0, CW-1). CW is defined
as the Backoff Window, also referred to as Contention Window. At the first
transmission attempt CW = CWmin, and it is doubled at each retransmission
up to CWmax. In the standard CWmin and CWmax values depend on the
physical layer adopted. For example, for the FHSS Physical Layer CWmin and
CWmax values are 16 and 1024, respectively [2].

Figure 3.1: Basic Access Method.

Obviously, it may happen that two or more stations start transmitting
simultaneously and a collision occurs. In the CSMA/CA scheme, stations are
not able to detect a collision by hearing their own transmissions (as in the
CSMA/CD protocol used in wired LANs). Therefore, an immediate positive
acknowledgement scheme is employed to check the successful reception of a
frame. Specifically, upon reception of a data frame, the destination station
initiates the transmission of an acknowledgement frame (ACK) after a time
interval called Short InterFrame Space (SIFS). The SIFS is shorter than the
DIFS (see Figure 3.2) in order to give priority to the receiving station over
other possible stations waiting for transmission. If the ACK is not received
by the source station, the data frame is presumed to have been lost, and a
retransmission is scheduled. The ACK is not transmitted if the received packet
is corrupted. A Cyclic Redundancy Check (CRC) algorithm is used for error

12

CHAPTER 3. IEEE 802.11 ARCHITECTURE AND PROTOCOLS 13

detection.

Figure 3.2: ACK generation.

After an erroneous frame is detected (due to collisions or transmission er-
rors), a station must remain idle for at least an Extended InterFrame Space
(EIFS) interval before it reactivates the backoff algorithm. Specifically, the
EIFS shall be used by the DCF whenever the physical layer has indicated to
the MAC that a frame transmission was begun that did not result in the correct
reception of a complete MAC frame with a correct FCS value. Reception of
an error-free frame during the EIFS re-synchronizes the station to the actual
busy/idle state of the medium, so the EIFS is terminated and normal medium
access (using DIFS and, if necessary, backoff) continues following reception of
that frame.

3.2 Common Problems in Wireless Ad Hoc Net-
works

This section discusses some problems that can arise in wireless networks, mainly
in the ad hoc mode. The characteristics of the wireless medium make wireless
networks fundamentally different from wired networks. Specifically, as indi-
cated in [2]:

• the wireless medium has neither absolute nor readily observable bound-
aries outside of which stations are known to be unable to receive network
frames;

• the channel is unprotected from outside signals;

• the wireless medium is significantly less reliable than wired media;

• the channel has time-varying and asymmetric propagation properties.

In wireless (ad hoc) network that relies upon a carrier-sensing random access
protocol, like the IEEE 802.11 DCF protocol, the wireless medium character-
istics generate complex phenomena such as the hidden-station and exposed-
station problems. Figure 3.3 shows a typical hidden station scenario. Let us
assume that station B is in the transmitting range of both A and C, but A and

C cannot hear each other. Let us also assume that A is transmitting to B. If C
has a frame to be transmitted to B, according to the DFC protocol, it senses
the medium and finds it free because it is not able to hear A’s transmissions.
Therefore, it starts transmitting the frame but this transmission will results in
a collision at the destination Station B.

Figure 3.3: Hidden Station.

The hidden station problem can be alleviated by extending the DCF basic
mechanism by a virtual carrier sensing mechanism that is based on two control
frames: Request To Send (RTS) and Clear To Send (CTS), respectively. Ac-
cording to this mechanism, before transmitting a data frame, the station sends
a short control frame, named RTS, to the receiving station announcing the
upcoming frame transmission (see Figure 3.4). Upon receiving the RTS frame,
the destination station replies by a CTS frame to indicate that it is ready to
receive the data frame. Both the RTS and CTS frames contain the total dura-
tion of the transmission, i.e., the overall time interval needed to transmit the
data frame and the related ACK. This information can be read by any listening
station that uses this information to set up a timer called Network Allocation
Vector (NAV). While the NAV timer is greater than zero the station must re-
frain from accessing the wireless medium. By using the RTS/CTS mechanism,
stations may become aware of transmissions from hidden station and on how
long the channel will be used for these transmissions.

Figure 3.5 depicts a typical scenario where the exposed station problem may
occur. Let us assume that both Station A and Station C can hear transmis-
sions from B, but Station A can not hear transmissions from C. Let us also
assume that Station B is transmitting to Station A and Station C receives a
frame to be transmitted to D. According to the DCF protocol, C senses the
medium and finds it busy because of B’s transmission. Therefore, it refrains
from transmitting to C although this transmission would not cause a collision
at A. The exposed station problem may thus result in a throughput reduction.

However, even with the RTS/CTS mechanism enabled, the hidden termi-
nal problems still exist [55, 128]. Figure 3.6 depicts a typical scenario where
the hidden and exposed terminal problems may occur in the presence of the
RTS/CTS mechanism. Let us assume that node C is transmitting to station
D and node A want to transmit a frame to station B. Node A, according to

14

CHAPTER 3. IEEE 802.11 ARCHITECTURE AND PROTOCOLS 15

Figure 3.4: Virtual Carrier Sensing Mechanism.

Figure 3.5: Exposed Station.

the DFC protocol, senses the medium and finds it free because it is not able
to hear C’s transmissions. Therefore, it starts transmitting the RTS frame but
this transmission will results in a collision at the destination Station B. Even
if the collision doesn’t happen, node B cannot reply to node A, since it has the
NAV set. Also node F cannot communicate to node E, since node E has its
NAV set.

Figure 3.6: Hidden and Exposed Station in the presence of the RTS/CTS
mechanism.

The explanation above is a very simplified way of describing the hidden node
and exposed node problems. The actual propagation model of 802.11 counts on
three communication ranges: the Transmission Range, the Interference Range,
and the Physical Carrier Sensing Range. The Transmission Range is the range
(with respect to the transmitting station) within which a transmitted packet
can be successfully received. It is mainly determined by the transmission power
and the radio propagation properties. The Physical Carrier Sensing Range is
the range (with respect to the transmitting station) within which the other sta-
tions detect a transmission. It mainly depends on the sensitivity of the receiver
(the receive threshold) and the radio propagation properties. The Interference
Range is the range within which stations in receive mode will be “interfered
with” by a transmitter, and thus suffer a loss. The interference range is usu-
ally larger than the transmission range, and smaller then the Physicall Carrier
Sensing Range. It is a function of the distance between the sender and receiver,
and of the path loss model. It is very difficult to predict the interference range
as it strongly depends on the ratio between power of the received “correct”
signal and the power of the received “interfering” signal. Both these quantities
heavily depend on several factors (i.e., distance, path, etc.) and hence to esti-
mate the interference is needed a detailed snapshot of the current transmission
and relative station position. In simulation studies the following relationship
has been generally assumed:

TX range ≤ IF range ≤ PCS range

For example, in the ns-2 simulation tool [3] the following values are used to
model the characteristics of the physical layer:

TX range = 250m, IF range = PCS range = 550m

16

Chapter 4

Routing Protocols for
MANETs

Development of routing protocols for ad hoc networks has been one of the
hottest topics within this area in recent years. As a consequence, a large number
of routing protocols have been designed, either by modifying Internet routing
protocols, or proposing new routing approaches [101, 89, 100, 68, 58, 37, 38,
78, 75, 81, 134, 123, 94]. In the following, I present a high-level classification of
MANET routing protocols, and then I describe the two routing protocol used
in my thesis.

MANET routing protocols are typically subdivided into two main cate-
gories [25]: proactive routing protocols [101, 89, 100] and reactive on-demand
routing protocols [100, 68]. Proactive routing are derived from the traditional
distance vector and link state protocols developed for Internet. The primary
characteristic of proactive approaches is that each node in the network main-
tains a route to every other node in the network at all times. Route creation
and maintenance is accomplished through some combination of periodic and
event-triggered routing updates. This approach have the advantage that routes
are available at the moment they are needed. A source can simply check its
routing table, when it has data packets to send to some destination, and begin
packet transmission. However, the primary disavantage of these protocols is
that the control overhead can be significant in large. Further, the amount of
routing state maintained at each node scales as O(n), where n is the number
of nodes in the network.

Reactive on demand routing protocols take a very different approach than
proactive protocols, since they do not maintain a route between all pairs of
network nodes. Instead, reactive protocols discover the route to a destination
only when there is a demand for it. Specifically, when a source node needs
to send date packets to some destination, it checks its routing table to deter-
mine whether it has a route. If no route exists, it performs a route discovery
procedure to find a path to the destination. Hence, route discovery becomes
on-demand. With this approach, if two nodes never need to talk to each other,

17

then nodes in the network do not need to utilize their resources maintaining
a path between each other. The benefit of this approach is that signalling
overhead is likely to be reduced compared to proactive approaches, particu-
larly in networks with low to moderate traffic load. When the number of data
sessions in the network becomes high, then the overhead generated by the re-
active routing protocols may even surpass that of the proactive approaches.
The drawback of reactive approaches is the introduction of a route acquisition
latency. That is, when a route is needed by a source node, there is some finite
latency while the route is discovered. In contrast, with a proactive approach,
routes are typically available at the moment they are needed.

4.1 Ad hoc On-demand Distance Vector
(AODV)

The Ad hoc On-Demand Distance Vector (AODV) [100] is a well know reactive
routing protocol. With this protocol, each node maintains a routing table
in which next hop routing information for destination nodes is stored. Each
routing table entry has an associated lifetime value to expire the route if it is not
utilized within the lifetime period. In addition, every node under AODV keeps
two counters: a node sequence number and a broadcast ID. These counters are
used for loop freedom, duplicates detection, and for ensuring selection of the
most recent routing path.

When a node has data packets to send to some destination, it first checks its
routing table to determine whether it already has a route to the destination. If
such a route exists, it can use that route for packet transmissions. Otherwise, it
must initiate a route discovery procedure to find a route. A node starts route
discovery by broadcasting a route request (RREQ) packet to its neighbors.
The receiving neighbors forward the RREQ to their neighbors and so on, until
the packet reaches either the destination itself or an intermediate node that
contains a fresh enough table entry pointing to the destination.

When a neighboring node receives a RREQ, it first creates a reverse route
to the source node. Then it checks whether it has an unexpired route to the
destination. If it does not have a valid route to the destination, it simply
rebroadcasts the RREQ to it neighbors. In this manner, the RREQ floods the
network in search of a route to the destination. Instead, if the node has a valid
route to the destination, then it checks if its routing table entry is at least
as recent as the source node’s last known route to the destination (see [100]
for details). This condition also guarantees loop freedom. If this condition is
met, the node can create a route replay (RREP) message. After creating the
reply, the node unicasts the message to its next hop towards the source node.
Thus, the reverse route that was created by the RREQ is utilized to forward
the RREP back to the source node.

When the next hop receives the RREP, it first creates a forward route entry
for the destination node, using the node from which it received the RREP as
the next hop toward the destination. Once the node has created the forward

18

CHAPTER 4. ROUTING PROTOCOLS FOR MANETS 19

route entry, it forwards the RREP to the source node. The RREP is thus
forwarded hop by hop to the source node. Once the source node receives the
RREP, it can utilize the created path for the transmission of data packets.

Once a route is established, it must be maintained as long as it is needed
(a route that has been recently utilized for the transmission of data packets is
called an active route). Node mobility and link layer contention may produce
link break along the path followed by the route. Breaks on links that are not
being utilized for the transmission of data packets do not require any repair.
Breaks in active routes, instead, must be quickly repaired. When a link break
along an active route occurs, the node upstream of the break invalidates the
routes to each of those destinations in its routing table passing through the
broken link. It then creates a route error (RERR) message. This message
lists all of the destinations that are now unreachable due to the loss of the
link. After creating the RRER message, the node sends the RERR message to
its upstream neighbors that were also utilizing the broken link. These nodes,
in turn, invalidate the broken routes and send their own RRER messages to
their upstream neighbors that were utilizing the link. The RERR message thus
traverses the reverse path to the source node. Once the source node receives
the RERR, it can perform a new RREQ to repair the route, if it is still needed.
An optimization of AODV is the the local repair of link breaks in active routes.
When a link break occurs, instead of sending a RERR message back to the
source, the node upstream of the break can try to repair the link locally itself.
If successful, fewer data packets are dropped because the route is repaired more
quickly. If the local repair attempt fails, a RERR message is sent to the source
node as previously described.

An important feature of AODV is that it can use two different mechanisms
for neighbour discovery and local connectivity maintenance, i.e., link layer feed-
back information provided by the underlying MAC protocol, or Hello mes-
sages. Hello messages are periodic broadcast messages that are utilized by
each node to announce its presence in the one-hop neighbourhood. In AODV,
Hello messages and broadcast messages can server the same function. For
example, RREQ messages are broadcast IP packets; therefore, reception of a
RREQ indicates the presence of a link. Hence, the term Hello message is
used to loosely refer to all broadcast control messages. In AODV, reception
of a Hello message indicates bidirectional connectivity to the sender. Once a
link is established, failure to receive several Hello messages from a neighbour
indicates a loss of connectivity. When Hello messages are used, each node
broadcasts Hello messages at least once every HELLO INTERVAL sec-
onds. Failure to receive a Hello message for ALLOWED HELLO LOSS ∗
HELLO INTERV AL seconds indicates a loss of connectivity to that neigh-
bour.

In contrast to Hello messages, link layer feedback is able to quickly identify
link failures during transmission of a data packet to another node. This feed-
back must be provided by the underlying MAC protocol, i.e. the IEEE802.11
MAC protocol. In IEEE 802.11, a unicast packet is first queued for trans-
mission at the MAC layer. If the packet cannot be transmitted after multiple

MAC layer retries, an indication is given to the higher layers, that a failure has
occurred. This results in immediate notification of a broken link as soon as a
packet fails to be transmitted.

4.2 Optimized Link State Routing (OLSR)

The OLSR protocol [37] is an optimization of the classical link state algorithm
tailored to mobile ad hoc networks. More precisely, being a proactive routing
protocol, OLSR periodically floods the network with route information, so that
each node can locally build a routing table containing the complete information
of routes to all the nodes in the ad hoc network running the OLSR protocol.
The OLSR routing algorithm employs an efficient dissemination of the network
topology information by selecting special nodes, the multipoint relays (MPRs),
to forward broadcast messages during the flooding process. More precisely,
each node independently selects its multipoint relays among its one-hop neigh-
bours such as to ensure that all its two-hop neighbours receive the broadcast
messages retransmitted by these selected relays. The link state reports, which
are generated periodically by MPRs, are called Topology Control (TC)
messages. These TC messages are flooded to all the nodes in the network, but
only the MPRs are allowed to forward the control messages received from other
nodes, in order to reduce the number of retransmissions needed to cover the
entire network.

OLSR employs a neighbour discovery procedure based on Hello messages.
The Hello packets contain the list of neighbours known to the node and their
link statuses. Thus, Hello messages allow each node to discover its one-hop
neighbours, as well as its two-hop neighbours, which are needed during the
MPR selection procedure. The neighbourhood information and the topology
information are updated periodically, and they enable each node to locally com-
pute the least-cost routes to any possible destination in the ad hoc network,
by using the Dijkstra’s shortest path algorithm. This routing table is recom-
puted whenever there is a change in either the neighbourhood information or
the topology information.

In order to enable the injection of external routing information into the ad
hoc network, the OLSR protocol defines the Host and Network Associ-
ation (HNA) message. The HNA message binds a set of network prefixes to
the IP address of the node attached to the external networks, i.e., the gate-
way node. Consequently, each ad hoc node is informed about the network
address and netmask of the network that is reachable through each gateway.
In other words, the OLSR protocol exploits the mechanism of default routes
to advertise Internet connectivity. For instance, a gateway that advertises the
conventional default route 0.0.0.0/0, will receive each packet destined to IP
addresses without a known route on the local ad hoc network.

The periodic exchange of OLSR control packets is regulated by a set of
parameters that establish the timing for the OLSR operations. These pa-
rameters define the generation period of each control packet and the valid-

20

CHAPTER 4. ROUTING PROTOCOLS FOR MANETS 21

ity time related to the information provided with the control packet. The
default constant values for these parameters are defined in the OLSR RFC
[37]. For example, Hello messages are generated by each node with period
equal to HELLO Interval, and the information provided in Hello messages
is considered valid for a NEIGHB HOLD TIME. The TC messages, instead,
are generated by the each MPRs every TC Interval, and their validity time
is TOP HOLD TIME. Finally, each gateway being connected to external net-
works, generates HNA messages every HNA Interval, and their information is
valid for HNA HOLD TIME.

Chapter 5

Transmission Control
Protocol

Transmission Control Protocol (TCP) is the de facto standard for reliable
connection-oriented transport protocols, and is normally used over IP (Internet
Protocol) to provide end-to-end reliable communications to Internet applica-
tions. TCP provides a reliable, connection-oriented, and full duplex type of
service. In addition, TCP implements both flow control and congestion con-
trol mechanisms. The former prevents the TCP receiver’s buffer from being
overflowed. The second is an end-to-end congestion control mechanism, that
prevents process to inject into the network an excessive traffic load.

This chapter introduces TCP and discusses the main concepts and mecha-
nisms associated with it. In addition it describes some TCP variants, like TCP
Reno, TCP NewReno, TCP Sack, and TCP Vegas. Moreover, it introduces
some TCP extentions, like Delayed Acknowledgments (DA), Explicit Conges-
tion Notification (ECN) and Limited Transmit.

5.1 TCP Segment Structure

The TCP segment consists of an header field and a data field. The data field
contains a chunk of application data. The MSS (Maximum Segment Size) limits
the maximum size of a segment’s data field. When TCP sends a large file it
typically breaks the file into chunks of size MSS. However, the size of the data
field can be smaller that MSS. For example with application like Telnet, the
data field in the TCP segment is often only one byte. The smallest TCP header
is composed of 20 bytes, but if options are used then its size may be as large as
60 bytes. TCP options are used to allow a TCP connection to carry different
control fields without changing the structure of the basic header. These options
are defined at the beginning of the connection between sender and receiver.

Figure 5.1 shows the structure of the TCP segment. The header includes
the following fields:

22

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 23

Figure 5.1: TCP header.

• Source and Destination port number fields: these fields are used for multi-
plexing/demultiplexing data from/to upper layer applications. These two
values combined with the source and destination fields in the IP header,
uniquely identify each connection.

• Sequence Number field : TCP views data as an unstructured, but ordered
stream of bytes. The sequence number field is the byte-stream number
of the first byte in the segment. This 32-bit fields is used by TCP to
implement a reliable data transfer service, as discussed in Section 5.3.

• Acknowledgment Number field : TCP is full-duplex. This means that an
host A may be receiving data from host B while it sends data to host
B (as part of the same TCP connection). Each of the segments sent by
host B have a sequence number for the data flowing from B to A. The
acknowledgment number that host A puts in its segment is the sequence
number of the next byte host A is expecting from host B. This 32-bit
fields is used by TCP to implement a reliable data transfer service, as
discussed in Section 5.3.

• Header Length field : This field specifies the length of the TCP header
in 32-bits words. The TCP header can be of variable length due to the
TCP option field. By having 4 bits, this field limits the header size to 60
bytes. The length of a TCP header with no options set is 20 bytes.

• Reserved field : This fields was reserved for future use. For example,
some bits of this field are used by the Explicit Congestion Notification
mechanism [104, 108].

• Flag field : This fields contains 6 bits. The URG bit specifies that the
Urgent Pointer filed is valid (there is data in the segment marked as
“urgent”). The ACK bit indicates that the value carried out in the
acknowledgment number field is valid. The PSH bit indicates to the
receiver that it should pass the data to the upper layer immediately. The
RST bit resets the connection. The SYN and FIN bits are used for
connection setup and teardown (see Section 5.2).

• rcvr window size field : This field contains the size of the receiver window,
which defines the number of bytes the TCP receiver is willing to accept
from the sender (see Section 5.4).

• Checksum field : This field is used for error detection. It is calculated by
the sender considering not only the header but also the data field. The
receiver may check the data integrity by checking this field.

• Urgent Pointer field : This field is valid only if the URG flag is set. It
specifies a part of the data filed that must be sent quickly to the receiver.

• Options Field : This field is used by a sender and receiver pair to negotiate
TCP options, such as the maximum segment size (MSS), timestamps,
Window Scale Option, etc.

5.2 TCP Connection Management

TCP is a connection oriented transport protocol. This means that before one
application process can being to send data to another, the two processes must
first perform an handshake to open a TCP connection with each other. During
the TCP connection establishment, both sides of the connection will initialize
many TCP “state variables” associated with the TCP connection. The connec-
tion state resides entirely in the two end systems. The intermediate network
elements do no maintain TCP connection state.

A TCP connection provides for full duplex data transfer. If there is a TCP
connection between process A and B, the application-level data can flow from A
to B and from B to A at the same time. A TCP connection is also always point-
to-point, that is, between a single sender and a single receiver. Multicasting is
not possible with TCP.

Now, I will briefly describe the procedures used by TCP to setup and tear-
down a connection.

5.2.1 Connection Setup and teardown

To establish the connection, either end nodes (hosts) may start the procedure
by sending a request packet to the opposed side. The full procedure is com-
monly referred to as “three-way handshake” since it involves the exchange of
three packets in total. The end node starting the connection establishment is
called client host and the other side is the server host. The three-way hand-
shake makes use of the SYN flag (1 bit) in the TCP header to mark the packets
used exclusively for connection setup reasons. Figure 5.2 illustrates the three-
way handshake’s exchanges [41].

The client host first sends a special segment to the server host requesting a
connection setup. This segment is generally named SYN segment and does not
contain any data. It only contains the header with the SYN flag set to one and
the desired initial sequence number X. Provided that the server host is able
to accept the connection, it allocates the TCP buffers and variables associated

24

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 25

Figure 5.2: TCP three-way handshake.

with the connection, and sends back an acknowledgment to the client host.
This acknowledgment also does not contain any data, has the SYN flag set
to one, and has the sequence number field set with the server host’s desired
value Y. Additionally, this packet has the acknowledgment field in the TCP
header set to sequence number of the received SYN plus one, i.e., its sequence
number is X+1. This informs the client host that the request has been received
and accepted, and that the receiver expects to receive the next data packet
with sequence number X+1. This packet is generally called SYN,ACK. Upon
receipt of the acknowledgment of the server host, the client host also allocates
buffers and variables associated with the connection, and transmits another
acknowledgment to the server host. This last packet has its SYN flag set to
zero and may contain data. Its sequence number is the requested one plus one,
i.e. X+1, and its acknowledgment field is also incremented by one relative to
the received sequence number, i.e., Y+1. After these packet exchanges, the
SYN flag is permanently set to zero and the regular data transmission begins.

The connection termination takes place in an analogous manner, in which
any of the two end nodes may initiate the procedure. After the connection
termination, both end nodes have their resources freed. As an example, suppose
that client decides to close the connection, as show in Figure 5.3. The client
TCP sends a special TCP segment to the server. This segment is generally
named FIN segment since it has the FIN flag set to 1. When the server receives
this segment, it sends the client an acknowledgment in return. The server,
when the application decides it want to close the TCP connection, sends its
own shutdown segment, which has the FIN bit set to 1. Finally, the client
acknowledges the server’s FIN segment. At this point, all the resources in the
two hosts are de-allocated.

Figure 5.3: TCP connections teardown.

5.3 Reliable Data Transfer

TCP implements a reliable data-transfer service. This service ensures that
the byte stream received by the application is exactly the same byte stream
that was sent by the end system on the other side of the connection (no gaps,
no corrupted packets, no out of order packets). TCP provides a reliable data
transfer service by using positive acknowledgments and timers (retransmission
timer). Each time TCP passes a data segment to IP, it starts a timer for
that segment. If this timer expires, TCP reacts retransmitting the segment in
timeout.

On ACK reception, the sender must determine whether the ACK is a new
ACK for a segment for which it has not yet received an acknowledgment, or a
duplicate ACK that re-acknowledges a segment for which it has already received
an acknowledgment. In the case of a new ACK, the sender discovers that all
data up to the byte being acknowledged has been received correctly at the
receiver. Consequently, it updates its state variable that tracks the sequence
number of the last byte that is know to have been received correctly and in
order by the receiver. If the TCP sender receives three duplicate ACKs for
the same data, it assumes that the segment following the segment that has
been ACKed three times has been lost. In this case, TCP performs a Fast
Retransmission [10], retransmitting the missing segment before that segment’s
timer expires. The Fast Retransmit saves the time the sender would waste by
waiting for the retransmission timer expiration.

On the receiver side, TCP generates ACKs on reception of an in-order
segment with expected sequence number, and if there are no gaps in the received
data. In this case TCP sends a cumulative ACK, acknowledging all received
in-order segments. The TCP receiver, instead, generates a duplicate ACK

26

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 27

when it detects a gap in the data stream (there are missing segments). This
happen if it receives a segment with a sequence number that is larger than the
next, expected, in-order sequence number. In this case, TCP re-acknowledges
(generates a duplicate ACK) the last acknowledged segment.

If the Delayed ACK mechanism [28] is used by the TCP receiver, TCP
generates an ACK only if it receives an in-order segment with expected sequence
number, there is one other in-order segment waiting for ACK transmission, and
there are no gaps in the received data. If, after a predefined interval on the
reception of the first ACK, the next in-order segments does not arrive, TCP
sends an ACK.

5.4 Flow Control

The sending rate of a TCP connection is regulated by two distinct mechanisms,
the flow control and the congestion control. Both these mechanisms, use a
sliding window mechanism to manage data transmission. Thus, the TCP sender
contains a variable, denoted window, determining the amount of segments it
can send into the network before receiving an ACK. This variable changes
dynamically over time to properly limit the connection’s sending rate. This
section describes the flow control mechanism. Section 5.6 instead, describe the
congestion control mechanism.

On each side of a TCP connection there is a receiver buffer. This is the buffer
where TCP places data for application. Specifically, when TCP connection
receives bytes that are correct and in sequence, it places these in the receiver
buffer. However, the application process will read data from this buffer not
necessarily at the instant the data arrives. Consequently, if the application is
relatively slow, the TCP sender can overflow the connection’s receiver buffer.
Flow control is implemented to avoid that a TCP sender overflows the receiver’s
buffer. With this mechanism, the receiver uses the rcvr window size field of
the TCP header of every ACK transmitted, to advertise a window limit to the
sender. This window is named receiver advertised window (rwin) and changes
over time depending on both the traffic conditions and the application speed in
reading the receiver’s buffer. The flow control mechanism throttles the rate at
which TCP is sending to the rate at which the receiving application is reading
data, avoiding thus buffer overflow at the receiver.

To implement flow-control, the receiver side of a TCP connection maintains
two variables:

• LastByteRead : the number of the last byte in the data stream read from
the receiver buffer by the application.

• LastByteRcvd : the number of the last byte in the data stream that has
arrived from the network and has been placed in the receiver buffer.

Not to overflow the receiver buffer, we must have:

LastByteRcvd− LastByteRead <= RcvBuffer

where RcvBuffer is the size of the receiver buffer. Thus, the TCP receiver
must set the rwin window size field of each segment sent to the following value:

RcvWindow = RcvBuffer − [LastByteRcvd− LastByteRead]

where RcvWindow is the receive window (i.e., the available space of the receiver
buffer). On the sender side, instead, TCP maintains the following two variables:

• LastByteSent: the number of the last byte in the data stream sent to
the destination.

• LastByteAcked: the number of the last byte in the data stream received
by the destination.

The difference between these two variables is the amount of unacknowledged
data. By keeping this value less than the value of the received RcvWindow,
there is no overflow at the receiver buffer.

5.5 Round Trip Time and Timeout

AS described in Section 5.3, TCP uses positive acknowledgments and timers
to ensure a reliable service. Specifically, when TCP sends a segment, it starts
a timer. If the timer expires before the reception of an acknowledgment for the
data in the segment sent, TCP retransmits the segment. The duration of the
timer is called retransmission timeout (RTO). RFC 2988 [96] is the most up-
to-date specification for computing the RTO value. This RFC is a refinement
of the algorithm proposed by Jacobson in [63]. The algorithm specified in RFC
2988 is describe below.

A TCP sender maintains two state variables for computing RTO, the av-
erage of the measured round-trip time (ERTTrtt) of the TCP connection, and
the round-trip time variation (DEVrtt). Additionally, a clock granularity of G
seconds is assumed in the computation. The rules governing the computation
of ERTTrtt, DEVrtt and RTO are as follows.

1. Until a RTT measurement has been made for a packet sent between
sender and receiver, the sender should set RTO to three seconds.

2. When the first RTT measurement R is made, the sender must set:

ERTTrtt = R

DEVrtt = R/2

RTO = ERTTrtt(n) + max(G, K ×DEVrtt), where K = 4

28

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 29

3. When a subsequent RTT measurement R(n) is made, the sender must
update the variables as follows:

DEVrtt(n) = (1− β)×DEVrtt(n− 1) + β × |ERTTrtt(n)−R(n)|

ERTTrtt(n) = (1− α)× ERTTrtt(n− 1) + α×R(n)

RTO = ERTTrtt(n) + max(G, K ×DEVrtt(n)), where K = 4

where: i) ERTTrtt(n) and DEVrtt(n) are the average value and the stan-
dard deviation of the RTT estimated at the nth step. α and β are nor-
mally set to 1/8 and 1/4, respectively

4. The minimum value of RTO should be one second, and the maximum
one may be any value above sixty seconds.

When not using timestamps option [64], RTT samples must not be taken
for packets that were retransmitted, as specified in the Karn’s algorithm [70].
Additionally, the RTT measurements are usually taken once per RTT. The
recommendations of RFC 2988 for managing the retransmission timer are:

1. Every time a packet containing data is sent (including retransmission),
if the timer is not running, start it running so it will expire after RTO
seconds.

2. When all outstanding data have been acknowledged, turn off the retrans-
mission timer.

3. When an ACK is received acknowledging new data, restart the retrans-
mission timer so that it will expire after RTO seconds.

When the retransmission timer expires, do the following:

1. Retransmit the earliest packet that has not been acknowledged by the
TCP receiver.

2. TCP takes a timer expiration as a sign of network congestion. Under
this hypothesis, using the same RTO for the new segment to send would
not make sense, as it could easily lead to new expiration of the timer.
Consequently, TCP adopts a binary exponential backoff mechanism to
retransmits the segment. Specifically, after consecutive timeout expira-
tion, the sender doubles the RTO up to a given limit.

3. Restart the retransmission timer, such that it expires after the current
RTO.

5.6 Congestion Control

Congestion control is concerned with the traffic inside the network. Its purpose
is to prevent collapse inside the network when the traffic source (sender) is
faster than the network in forwarding data. To this end, the TCP sender
uses a limiting window called congestion window (cwnd). Assuming that the
receiver is not limiting the sender, cwnd defines the amount of data the sender
can send into the network before an ACK is received.

Considering both flow control and congestion control, the sender faces two
limiting factors for its window size, namely the rwin and the cwnd. To conform
with both control schemes, the TCP sender adjusts its window in such a way
that the amount of unacknowledged data within the TCP connection may not
exceed the minimum of cwnd and rwin, that is:

LastByteSent− LastByteAcked <= min(cwnd, rwin)

In general, however, cwnd is considered the limiting factor of a TCP sender
because the receiver’s buffer is mostly large enough not to constrain the sender’s
transmission rate.

To implement congestion control, each side of a TCP connection keep track
of the cwnd variable and also uses another variable named threshold. This
variable affects how cwnd grows. In the following I will assume that the TCP
receive buffer is so large that the receiver window constraint can be ignored.
In this case, the size of the transmission window is solely limited by cwnd.
Further, I will assume that the sender has a very large amount of data to send
to the receiver.

At the start of TCP connection, the congestion window is equal to one
MSS. After this, TCP increases its cwnd using the Slow Start algorithm. The
idea behind Slow Start is to make the connection rate to start slowly and then
rapidly rises toward the communication channel capacity. To do so, it adopt
an exponential enlargement of cwnd. Specifically, in Slow Start, for each ACK
received the sender increases its cwnd by one MSS and so transmits two new
data segments. This phase of the algorithm is called Slow Start because it
begins with a small congestion window equal to one MSS.

After reaching a certain rate, the cwnd increasing rate should no longer be
too aggressive, since that may adversely induce losses. Hence, the Slow Start
threshold (ssthresh) is used to switch the cwnd growth control from Slow Start
to Congestion Avoidance. Congestion Avoidance imposes a linear increase to
cwnd. Specifically, if W is the current value of the congestion window, after W
acknowledgments have arrived, TCP replaces W with W + 1.

The Congestion Avoidance phase continues as long as the acknowledgments
arrive before the corresponding tomeouts. But the rate at which the TCP
sender can send, cannot increase forever. Eventually, TCP will saturate the
links along the path, at which point loss (and a resulting timeout at the sender)
will occur. When a timeout occurs, the value of ssthresh is set to half the value
of the current congestion window, and the congestion window is reset to one
MSS. The sender then again grows the congestion window using Slow Start

30

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 31

until the congestion window hits the threshold, and then using Congestion
Avoidance.

In summary, using packets instead of bytes to denote the congestion window
size, the growth experienced by TCP window during Slow Start and Conges-
tion Avoidance is generally performed as follows:

cwnd =

{
cwnd + 1 if cwnd < ssthresh Slow Start

cwnd +
1

cwnd
if cwnd ≥ ssthresh Congestion Avoidance

The TCP congestion control algorithm just described is often referred to as
Tahoe. One problem of this TCP version is that, when a segment is lost, the
sender side of the application may have to wait a long period of time for the
timeout. For this reason, a variant of Tahoe, called Reno, was proposed by
Jacobson [63]. This variant introduces the Fast Recovery mechanism. Fast
Recovery works in conjunction with the Fast Retransmit mechanism by spec-
ifying that under packet loss detection by Fast Retransmit, the cwnd should
be reduced in half instead of set to one. Moreover, the algorithm should go
directly to Congestion Avoidance rather than Slow Start. In short, the only
difference between TCP Reno and TCP Tahoe is the use of the Fast Recovery
mechanism.

This variant of congestion control is often referred to as an Additive Increase
Multiplicative Decrease (AIMD) algorithm [35]. The name AIMD comes from
the behaviour of the mechanism when increasing and decreasing the congestion
window. When expanding its cwnd in Congestion Avoidance, the TCP sender
additively and cumulatively increments it by 1

cwnd , as shown above. This con-
tinues until either a dropped segment is perceived or the cwnd limit is reached.
Using this incremental rate renders the cwnd to be increased by one packet per
window of data acknowledged. When detecting a lost packet by the Fast Re-
transmit mechanism, cwnd is halved, which means a multiplicative decrease by
two. Hence, assuming no retransmission by timeout, cwnd increase/decrease
in Congestion Avoidance occurs as follow:

cwnd =

↑ cwnd +

1
cwnd

, Additive Increase

↓ cwnd

2
, Multiplicative Decrease

5.7 TCP Variants

This section presents the main TCP variants that have been investigated in the
literature. Each variant has its own features tailored to a specific problem faced
by TCP congestion control, and in most cases each new variant represents an
evolution of the previous one. Slight refinements to these implementation have

been described in the RFCs 2581, 2582, and 3782 [10, 50, 51], but the general
concepts remain unchanged.

5.7.1 TCP Tahoe

Tahoe represents the basic TCP version that was specified by Jacobson in [63].
It was the first TCP designed to solve the congestion collapse affecting the Inter-
net. Modern TCP implementations still use most of the mechanisms developed
for Tahoe, as it will be shown below. In addition to the retransmit timeout
mechanism, which was already implemented in early TCP-like transport pro-
tocols, TCP Tahoe counts on the three key mechanisms already explained:
Fast Retransmit, Slow Start, and Congestion Avoidance. Thus, Tahoe works
exactly as explained in section 5.6. Although Tahoe solved the congestion col-
lapse problem mentioned above, it rapidly proved to be too conservative by
always reseting its cwnd to one upon a lost packet.

5.7.2 TCP Reno

TCP Reno [110] conserved the three essential mechanisms of the basic TCP
Tahoe, namely Slow Start, Congestion Avoidance and Fast Retransmit. As ex-
plained in section 5.6, the novelty introduced into TCP Reno is the Fast Recov-
ery mechanism. This mechanism prevents the communication path (“pipe”)
from going empty after Fast Retransmit, thereby avoiding the need to Slow
Start to re-fill it after a single packet loss.

Fast Recovery is generally invoked when a TCP sender receives a predefined
threshold of duplicate ACKs, just after the Fast Retransmit mechanism. This
threshold, usually known as tcprexmtthresh, is generally set to three. Once
the threshold of dup ACKs is received, the the sender retransmits the packet
that seems to have been dropped and reduces its congestion window (cwnd)
by one half. Unlike TCP Tahoe, TCP Reno does not invoke Slow Start, but
uses the additional incoming duplicate ACKs to clock out subsequent outgoing
data packets.

Fast Recovery assumes that each dup ACK received represents a single
packet having left the pipe. Thus, during Fast Recovery the TCP sender is able
to make intelligent estimates of the amount of outstanding data. Specifically,
during Fast Recovery the usable TCP window is defined as min(rwin, cwnd +
ndup), where rwin refers to the receiver advertised window and ndup tracks the
number of duplicate ACKs received. By using the ndup variable, the sender
may estimate the amount of packets in flight. After entering Fast Recovery
and retransmitting a single packet, the sender effectively waits until half a
window of dup ACKs have been received, and then sends a new packet for each
additional dup ACK that is received. Upon receipt of an ACK for new data
(called a “recovery ACK”), the sender exits Fast Recovery by setting ndup to
0.

TCP Reno is optimized for the case when a single packet is dropped from
a window of data. In such cases, the TCP sender can retransmit at most one

32

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 33

dropped packet per Round-trip Time (RTT). TCP Reno is more efficient than
its predecessor (Tahoe) but does not work so well when more than one packet
is dropped from a window of data. The problem is that TCP Reno may reduce
the cwnd multiple times for recovering the lost packets, leading the connection
to experience poor performance.

5.7.3 TCP NewReno

NewReno [50, 51] improves the Reno implementation with regard to the Fast
Recovery mechanism. The objective of TCP NewReno is to prevent a TCP
sender from reducing its congestion window multiple times in case several pack-
ets are dropped from a single window of data. NewReno can also avoid retrans-
mission by timeout in scenarios where the involved congestion window is small
preventing enough ACK packets from reaching the sender. In TCP Reno, when
the sender receives a partial ACK packet it exits Fast Recovery. The term par-
tial ACKs refers to ACK packets that acknowledges some but not all of the
data packets that were outstanding when the Fast Recovery was started. Upon
receipt of a partial ACK, the Reno sender brings the usable window back to the
congestion window size, and so exits Fast Recovery. If there are sufficient out-
standing packets, the sender may receive enough duplicate ACKs to retransmit
the next lost packet (or packets) until all dropped packets are retransmitted
by the Fast Recovery mechanism. At every invocation of the Fast Recovery,
cwnd is halved. If there are not enough packets outstanding due to a low win-
dow size, then the sender needs to wait for the expiration of the retransmission
timer. In this case the cwnd is reset to one, inducing bandwidth wastage.

Differently from Reno, the NewReno do not exit Fast Recovery when it
receives partial ACKs. Instead, TCP NewReno treats partial ACKs received
during Fast Recovery as an indication that the packet immediately following
the acknowledged packet in the sequence space has been lost, and should be
retransmitted. Thus, when multiple packets are lost from a single window of
data, TCP NewReno can recover without a retransmission timeout, retrans-
mitting one lost packet per round-trip time until all of the lost packets from
that window have been retransmitted. TCP NewReno remains in Fast Recov-
ery until all of the data outstanding when Fast Recovery was initiated has been
acknowledged. In this way, TCP NewReno avoids multiple reductions in the
cwnd or unnecessary retransmit timeout with Slow Start invocation, thereby
improving the end-to-end performance.

5.7.4 TCP Sack

TCP Sack (Selective Acknowledgment) [82] preserves the basic principles of
TCP Reno. In fact, it uses the same algorithms of Reno for increasing and
decreasing its congestion window. The novelty in TCP Sack lies in its behaviour
when multiple packets are dropped from one window of data, similarly to TCP
NewReno. In Sack, the receiver uses the option fields of TCP header (Sack
option) for notifying the status of data received and queued by the receiver.

The SACK option field contains a number of SACK blocks, where each SACK
block reports the received and queued bytes of data that are contiguous and
isolated (there are gaps in the data stream). The first block in a SACK option
is required to report the most recently received segment, and the additional
SACK blocks repeat the most recently reported SACK blocks. The sender
keeps a data structure called scoreboard to keep track of the Sack options
(blocks) received so far. In this way, the sender can infer whether there are
missing packets at the receiver. If so, and if its congestion window permits,
the sender retransmits the next packet from its list of missing packets. In case
there are no such packets at the receiver and the congestion window allows,
the sender simply transmits a new packet.

Like TCP Reno, the Sack implementation also enters Fast Recovery upon
receipt of generally three duplicate acknowledgments. Then, its sender retrans-
mits a packet and halves the congestion window. During Fast Recovery, SACK
monitors the estimated number of packets outstanding in the path (transmitted
but not yet acknowledged) by maintaining a variable called “pipe”. This vari-
able determines if the sender may send a new packet or retransmit an old one.
The sender may only transmit if pipe is smaller than the congestion window.
At every transmission or retransmission, pipe is incremented by one, and it is
decremented by one when the sender receives a duplicate ACK packet contain-
ing a SACK option informing it that a new data packet has been received by
the receiver. The Fast Recovery terminates when the sender receives an ACK
acknowledging all data that were outstanding when Fast Recovery was entered.

If the sender receives a partial ACK, i.e., an ACK that acknowledges some
but not all outstanding data, it does not exit Fast Recovery. For partial ACKs,
the sender reduces pipe by two packets instead of one, which guarantees that a
SACK sender never recovers more slowly than it would do if a Slow Start had
been invoked. If it happens that a retransmitted packet is dropped, the SACK
implementation reacts exactly as the Reno implementation. In such cases, the
sender times out, retransmits and enters Slow Start.

SACK incorporates all the advantages found in NewReno and may recover
multiple lost packets in a window of data in just one single RTT. A SACK
implementation requires changes at both sender and receiver, though.

5.7.5 TCP Vegas

Differently from the above examined TCP versions, TCP Vegas [29] is not an
ACK-clocked congestion control. Specifically, TCP Vegas does not increase its
congestion as a function of the number of ACKs received. Yet, while the previ-
ous TCP variants detect network congestion by lost packets, TCP Vegas does
so by monitoring the changes in the RTTs associated to the packets that it has
sent previously through the connection. If the observed RTTs increase, the Ve-
gas sender infers incipient network congestion and so it reduces the congestion
window (cwnd) by one. Otherwise, if the observed RTTs decrease, the sender
interprets that as an indication that the network is free of congestion, and so
it rises the cwnd by one. There is a RTT range in which the cwnd remains

34

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 35

unchanged. The extension of this range is determined by two parameters: α
and β. The dynamics of the cwnd in TCP Vegas is as follow:

cwnd =

cwnd + 1, if Diff < α

base rtt

cwnd− 1, if Diff > β
base rtt

Unchanged, if α
base rtt < Diff < β

base rtt

With,

Diff =
cwnd

base rtt
− cwnd

rtt

Where rtt means the measured RTT, base rtt is the smallest value of observed
RTTs so far, and α and β are some constant values. This equation indicates
that if RTTs of the segments are stable, TCP Vegas keeps the window size
unchanged. This to prevent losses inside the network. The key idea here is to
use the actually available network bandwidth without causing excessive traffic
within the network.

TCP Vegas has another feature in its congestion control algorithm. During
Slow Start, TCP Vegas increments its cwnd slower than TCP Tahoe. Specifi-
cally, to be able to detect and avoid congestion during Slow Start, Vegas allows
exponential growth only every other RTT. In between, the congestion window
stays fixed so a valid comparison of the expected and actual rates can be made.

5.8 TCP Extensions

5.8.1 Delayed Acknowledgments (DA)

As stated in RFC 813 [36], the acknowledgment mechanism is at the heart of
TCP. When data arrives at the receiver, the protocol requires that the receiver
sends back an acknowledgment for reliability reasons. The data packets are
sequentially numbered so the receiver can acknowledge data by sending to the
sender the sequence number of the highest data packet it has in its buffer.
The acknowledgment scheme is cumulative, which means that by receiving the
highest sequence number, the sender infers that all prior data were success-
ful received. Thus, a TCP receiver does not necessarily have to transmit an
acknowledgment for every incoming data packet.

RFC 813 [36] introduces a new mechanism that optimizes transmission
efficiency by reducing the number of acknowledgments generated by a TCP
receiver. This RFC shows that reducing the number of ACKs provides two
benefits: lower processing overhead at the sender and robustness against the
well-known Silly Window Syndrome (SWS). Measurements of TCP implemen-
tations, in particular on large operating systems, suggest that most of the
overhead involved in a packet handling is not in the TCP or IP layer process-
ing. In fact, the most significant processing occurs in the scheduling of the
handler that must deal with the packet at the sender [36].

The delay ACK mechanism optimizes transmission efficiency by reducing
the number of acknowledgments generated by a TCP receiver. However, if the
network is facing constraints, additional mechanisms are needed to make sure
that the receiver does not lead the sender to miss ACKs. Hence, RFC 813
recommends the use of a timer at the receiver to trigger ACK transmissions
for data packets that do not arrive at the receiver in due time. This timer
should be reset at every new income data packet and its duration could be
either a fixed interval on the basis of the channel characteristics such as typical
RTT or be adaptive to the channel conditions. Although RFC 813 establishes
the foundation for the delayed ACK mechanism, it does not specify clearly
the actions to be taken by the receiver under a constrained channel. For in-
stance, it does not specify any action to out-of-order data packets or how many
packets may be delayed in sequence. The standard Delayed Acknowledgment
(DA) strategy was first defined in RFC 1122 [28] and refined in RFC 2581
[10]. The former specifies that a TCP receiver should acknowledge every other
data packets but should not delay more than 500 ms. In addition, RFC 1122
clearly states that delayed ACKs can substantially reduce protocol overhead by
diminishing the overall number of packets to be processed. However, delaying
ACKs excessively can disturb the Round-Trip Time estimation as well as the
packet clocking algorithm in the sender. The term packet clocking refers to the
senders dependence on ACKs to transmit new data packets, i.e., every ACKs
trigger a new transmission at the sender.

RFC 2581 further specifies the concept of delayed acknowledgments by in-
cluding responses of the receiver for out-of-order packets. In order to speed up
the loss recovery at the sender, a TCP receiver should immediately acknowl-
edge data packets that are either out-of-order or filling in a gap in the receivers
buffer. Out-of-order packets are most likely the result of dropped data packets
and so it is reasonable to acknowledge them promptly in order to accelerate
the sender reaction and avoid timeout. Data packets that are filling in a gap
in the receivers buffer are retransmitted packets for a missing data at the re-
ceiver. These data packets must also be retransmitted immediately to mitigate
disturbances for the sender.

5.8.2 Limited Transmit

RFC 3042 [9] specifies the Limited Transmit as an enhancement for TCP loss re-
covery when a connections congestion window is small, or when a large number
of packets are lost in a single transmission window. Without limited transmit,
when a packet is dropped the sender starts receiving duplicate ACKs from the
receiver and only retransmits the lost packet when it gets the third duplicate
ACK. The sender does not transmit any data packet when it receives the first
and the second duplicate ACKs. The problem is that if the receiver works with
small cwnd, it might happen that it will not receive sufficient (three) duplicate
ACKs since there are just a few data packets in transit in such cases. If that
happens, the sender can only react to the dropped packet when its retransmis-
sion timer expires. Using the limited transmit, a TCP sender should send a

36

CHAPTER 5. TRANSMISSION CONTROL PROTOCOL 37

new data packet for each of the first two duplicate acknowledgments received
at the sender. Provided that these two new data packets get at the receiver,
they trigger two extra ACKs to be received by the sender. This procedure aims
at increasing the probability that TCP can recover from a single lost packet
using the Fast Retransmit/Fast Recovery algorithms instead of using a costly
retransmit timeout. Specifically, the limited transmit algorithm imposes that
a TCP sender only sends new data packets in response to incoming duplicate
ACKs if the following conditions are met:

• The receivers advertised window allows the transmission of the new packet.

• The amount of outstanding data would remain less than or equal to the
cwnd plus 2 packets, i.e., the sender can only send two packets beyond
the cwnd size.

Furthermore, the algorithm specifies that the cwnd must not be changed when
these new data packets are transmitted. This increases the probability that
the sender infers loss using the standard Fast Retransmit threshold of three
duplicate ACKs.

5.8.3 Explicit Congestion Notification (ECN)

The ECN scheme specified in RFC 3168 [104] proposes to use network feed-
back to assist a TCP connection in reacting to congestion effects. By using
this mechanism, TCP does not need to await a dropped packet due to buffer
overow to detect congestion and properly slow down. Rather, it is informed by
the intermediate nodes (routers) when incipient congestion starts. ECN can
prevent time wastage at the sender that, without ECN, always has to wait for
either three duplicate acknowledgments or a timeout timer expiration.

The implementation of ECN requires specific flags in both IP and TCP
headers. Two bits are used in each header for proper signalling among sender,
routers and receiver. The active queue management (AQM) [27, 104] inside the
routers marks packets when congestion reaches a given threshold. The receiver
simply echos back the congestion indication into the ACKs to the sender which
reduces its sending rate to prevent severe congestion.

ECN is appealing to be used in the Internet since it does not render any
overhead regarding the current IP flows. Its drawback lies in the fact that to
be effective, it requires changes to every network element.

Chapter 6

Miscellaneous Protocols

6.1 Background on the Mobile IP Protocol

The Mobile IP protocol [99] was developed to enable the roaming in Internet
of mobile nodes between different networks. Normal IP routing adopts a hi-
erarchical addressing scheme, in which the IP address is location dependent
and composed of two parts: the network identifier and the host identifier. If
a mobile node moves from its home network, i.e., the network to which its
IP address belong, to another network without changing address, the routers
will not be able to correctly route packets addressed to it. To manage the IP
mobility, the Mobile IP solution introduces two entities: the home agent (HA)
and the foreign agent (FA). The HA is a host or router in the node’s home
network that is responsible to keep tracking the mobile node location and to
tunnel packets to the node while it is away from its home network. The FA
is a host or router in the mobile node’s visited (foreign) network, which regis-
ters the entrance of mobile nodes, detunnels and forward traffic to the visiting
node. To make mobility transparent to applications and higher layer protocols,
the mobile node should continue to use its home address to receive data, even
when it leaves its home network. However, when the mobile node is attached
to a network other than its home network, specific procedures are executed to
assign to the new node an IP address belonging to the visited network, called
care-of-address. If the care of address is one of the addresses announced by the
FA, it is known as foreign agent care-of-address. If the mobile node is able to
acquire an IP address valid on the foreign network that it is visiting (e.g., using
a DHCP server), such a care-of-address is called co-located care-of-address. To
be able to receive packets while visiting a foreign network, the mobile nodes
should register with the HA its care-of-address, which provides the information
about the current mobile node’s point of attachment to the Internet. To ac-
complish this task, the mobile node send a Registration Request message
directly (if it is using the co-located care-of address) or via the FA (if it using
the FA care-of-address) to its HA, which in turn responds with a Registra-
tion Reply message. Data packets sent to the mobile node’s home address

38

CHAPTER 6. MISCELLANEOUS PROTOCOLS 39

are intercepted by its HA, which tunnels those packets to the mobile node’s
care-of-address.

One of the key mechanisms in Mobile IP is the procedure for updating the
location information of mobile nodes. Mobile IP uses a proactive approach
since both HAs and FAs periodically broadcast Agent Advertisement mes-
sages to announce their presence. A mobile node uses these messages to de-
termine whether it is attached to its home network or it is visiting a foreign
network. In addition, the Agent Advertisement messages enable the visit-
ing mobile nodes to discover the care-of-address of the advertised FA. When a
mobile node receives Agent Advertisement messages from more than one
FA, there are several algorithms to manage the FA selection and the handoff to
a new FA, such as the Lazy Cell Switching (LCS) and the Eager Cell Switch-
ing (ECS) [102]. In addition, mobile nodes can proactively search for FAs by
sending Agent Solicitation messages. Upon receiving this type of message,
the FA should reply with a unicast Agent Advertisement message to the
mobile node that issued the solicitation.

6.2 Network Address Translation (NAT)

The process of Network Address Translation (NAT) is used to enable multiple
hosts on a private network to access Internet using a public IP address associ-
ated to the gateway. More precisely, a router with a NAT module implemented
on it, behaves as an address translator, dynamically mapping the set of private
addresses used in the local domain to a set of globally valid network addresses.
Figure 6.1 shows a typical scenario where the NAT is used. In this scenario
there is a private network (192.168.0.1/24) that access Internet through a gate-
way implementing a NAT daemon. The gateway is connected to the private
network using a private address (192.168.0.1) and is also connected to the In-
ternet with a single ”public” address or multiple ”public” addresses. As traffic
passes from the local network to the Internet, the NAT daemon translates the
source address in each packet from the private addresses to one public address
belonging to the set of globally valid network addresses associated with the
gateway. When a reply returns to the router, the NAT daemon replaces the
destination address with that of the internal host that must receive the reply.

A variant of basic NAT is the Network Address Port Translation, or NAPT
[109]. It permits to translate multiple private IP addresses to a single globally
routable IP addresses by using different transport layer ports. NAPT works as
follow. When an host on the private network sends a packet to an host in Inter-
net, the NAPT daemon replaces the private IP address in the packet header’s
source field (sender’s address) with the NAPT device’s public IP address. It
then assigns the connection a port number from a pool of available ports, in-
serts this port number in the packet header source port field, and places the
packet on the outside network. The NAPT device then makes an entry in its
translation table containing the private IP address, private source port, and
assigned port. Subsequent packets belonging to the same connection and sent

Figure 6.1: NAT example.

to Internet are translated using the same outside port number. The host re-
ceiving a data packet will move the source IP address and source port as the
corresponding destination fields in any response it sends back. When NAPT
receives packets from the Internet, it operates as follow. If NAPT doesn’t find
the destination port number of the incoming packet in the translation table,
it drops the packet, because the NAPT device doesn’t know where to send it.
Otherwise, it replaces the destination IP address and the destination port in
the incoming packet header, with that obtained from the translation table. The
packet is then placed on the inside network. The NAPT device periodically
deletes translations from its table when they no longer appear to be in use.

6.3 Address resolution Protocol (ARP)

IP-based applications address a destination host using its IP address. On the
other hand, on a physical network individual hosts are known only by their
physical address, i.e., MAC address. The ARP protocol [103] is then used
to translate, inside a physical network, an IP address into the related MAC
address.

The ARP protocol works as follow. As a packet is sent down through the
network layers, routing determines the protocol address of the next hop for the
packet. At this point, to forward the packet to the destination, the Address
Resolution module must be consulted to convert the IP address of the next hop
to a MAC address. The Address Resolution module at first tries to convert
the IP address using a table. If it finds this, it gives the corresponding MAC

40

CHAPTER 6. MISCELLANEOUS PROTOCOLS 41

address back to the caller, which then can transmits the packet. If it does not,
the ARP module broadcasts the ARP Request message to all hosts attached
to the same physical network. This packet contains the IP address the sender
is interested in communicating with. The target host, recognizing that the IP
address in the ARP Request packet matches its own, returns its MAC address
to the requester using an unicast ARP Reply message. The ARP protocol
uses the ARP table to keep a cache of ARP responses received by the host, to
avoid continuous ARP requests. An rare usage of ARP is gratuitous ARP. This
mechanism is used by a host to announce the mapping between an IP address
(generally its own IP address), and its MAC address on a physical network. A
gratuitous ARP request is an ARP Reply for which no request has been made.

In addition to these basic functionalities, the ARP protocol has been en-
hanced with more advanced features. For instance in [103] it has been proposed
the Proxy-ARP mechanism, which allows constructing local subnets. Basically,
the Proxy ARP technique allows one host to answer the ARP requests intended
for another host. This mechanism is particularly useful when a router connects
two different physical networks, say NetA and NetB, belonging to the same IP
subnet (see Figure 6.2). By enabling the Proxy ARP on the router’s interface
attached to NetB, any host B in NetB sending an ARP request for a host A in
NetA, will receive as response the router’s MAC address (host C). In this way,
when host B sends IP packets for host A, they arrive to the router C, which
will forward such packets to host A.

Figure 6.2: Subnetting with Proxy ARP.

Part II

Interconnecting MANETs
and Internet

42

Chapter 7

Introduction

The recent advances in mobile and ubiquitous computing, and the development
of inexpensive, portable devices are extending the application fields of ad hoc
networking. Mobile users are looking for multi-purpose networking platforms
in which cost is an issue and Internet access is a must. As a consequence, nowa-
days, multi-hop ad hoc networks do not appear only as isolate self-configured
networks, but also emerge as a flexible and low-cost extension of wired infras-
tructure networks, coexisting with them. A new class of networks is emerging
from this view, in which a mix of fixed and mobile nodes interconnected via het-
erogeneous (wireless and wired) links forms a multihop heterogeneous ad hoc
network integrated into classical wired/wireless infrastructure-based networks.

Three different categories of solutions have been proposed for enabling in-
terconnection between ad hoc networks and the Internet. One approach uti-
lizes the Network Address Translation (NAT) mechanism, implemented on each
gateway that interconnect the ad hoc network with the wired infrastructure net-
work. With this approach, the mobile nodes do not need a globally routable
IP address because the NAT gateway translates the source private IP address
of outgoing traffic with a public IP address, which is routable on the fixed In-
ternet. An alternative approach relies on the design of techniques capable of
automatically configuring a unique, topology-dependent and globally routable
IP address for each mobile node visiting an ad hoc network (IPv6 based solu-
tions). Finally, a third category of solutions assumes that a Mobile IP Foreign
Agent is implemented in the ad hoc nodes that act as Internet gateways. In this
case, the mobile node needs a permanent and unique globally routable IP ad-
dress (i.e., its home address), which is used during the registration procedures
with the foreign agents of the visiting ad hoc network.

However, all the solution that have been proposed in literature have a num-
ber of disadvantage. For example, the Mobile IP based solutions have several
drawbacks. The first is that in order to allow Mobile IP and ad hoc network-
ing to cooperate it is needed to introduce further complexities and sub-optimal
operations in the implementations of both Mobile IP and ad hoc routing proto-
cols. In addition, Mobile IP was designed to handle mobility of devices in case

43

of relatively infrequent mobility. Thus the overheads introduced to manage
roaming and handoffs between foreign agents are a relevant issue in MANET
environments. Finally, when the technique of default routes is used to route
the traffic from the mobile node to the closest gateway, the use of Mobile IP
can easily lead to triangle routing. In fact, when the mobile node moves it can
get closer to a gateway different from the one to which it is currently registered.
As a consequence, the forward traffic leaves the ad hoc network through one
gateway while the return traffic enters the ad hoc network through the new
MIP-FA gateway to which the mobile node is registered. To solve this problem
the authors of [48] have proposed to use Mobile IP reverse tunnelling [69], or
explicit tunnelling to one of the gateway instead of using default routes. How-
ever, the tunnelling mechanism introduces a non negligible overhead in the
communication between nodes.

Also the NAT based solutions have some drawback. For example they
encounter problem in multi-homed networks, i.e., when multiple gateways are
present in the ad hoc network. Indeed, to avoid transport-layer session breaks
it is necessary to ensure that each packet from the same session is routed over
a specific gateway since a NAT router translates both outgoing and incoming
packets. To solve this problem, some NAT based solutions adopts the IP-in-IP
encapsulation mechanism to tunnel the packets towards the desired gateway.
Employing explicit tunnelling ensures that each packet of the same transport-
layer session is consistently routed through the same gateway, even if the source
node moves. However, it introduces a non negligible overhead in every packet
sent. In addition, NAT is not very suitable for incoming connections and this
fact causes significant difficulties for peer-to-peer applications.

In this Part I will describe the solution that I proposed during my Ph.D. to
provide Internet connectivity for ad hoc networks. This soltion is a simple yet
practical approach to logically extend a wired LAN by employing proactive ad
hoc networking technologies in a way that is transparent for the wired nodes.
One of the main innovations of my solution is to rely only on basic ARP capa-
bilities [103] and standard IP routing rules. By positioning my architecture at
the data link layer, I may avoid undesired and complex interactions with the
IP protocol and provide global Internet connectivity in a very straightforward
manner. In addition, my solution includes a distributed protocol for the ad-
dress autoconfiguration of ad hoc nodes, which relies on DHCP servers located
in the wired part of the network and does not require that new ad hoc nodes
have direct access to the DHCP servers. Using my scheme, mobile nodes can
dynamically obtain a unique IP address that is topologically correct within
the extended LAN. During my Ph.D., I have also prototyped the main com-
ponents of my architecture in a general and realistic test-bed using the OLSR
protocol [37] as the ad hoc routing protocol. In this test-bed, I have conducted
a large variety of experiments, comparing the throughput performance of In-
ternet access provided by my proposed scheme and an alternative well-known
NAT-based solution [48]. The shown experimental results demonstrate that:
i) my scheme ensures higher per-connection throughputs than the NAT-based
solution, ii) node mobility does not cause permanent transport-layer session

44

CHAPTER 7. INTRODUCTION 45

breaks, iii) node mobility induces drastic throughput degradations when using
the NAT-based solution, while my proposed technique performs more efficient
gateway handoffs, and iv) the network performances can be significantly im-
proved by properly setting the OLSR protocol parameters such as to increase
route stability.

This Part is organized as follow. Chapter 8 discusses the variety of architec-
tural issues and design options that need to be considered to interconnect ad
hoc networks to fixed IP networks. Chapter 9 introduces existing approaches
to tackle the internetworking of MANETs with the fixed Internet and reviews
the most well known solutions. Chapter 10 describes the design principles and
the protocol details of my proposed solution. Chapter 11 shows experimental
results on the network performance in various test-bed configurations. Finally,
chapter 12 draws concluding remarks and discusses future work.

Chapter 8

Basic Design Challenges

To design my solution, I envisage a heterogeneous network environment in
which wired and multi-hop wireless technologies transparently coexist and in-
teroperate (see Figure 8.1). In this network, separated group of nodes without
a direct access to the networking infrastructure form ad hoc “islands”, estab-
lishing multi-hop wireless links. Special nodes, hereafter indicated as gateways,
having both wired and wireless interfaces, are used to build a wired backbone
interconnecting separated ad hoc components. In addition, the gateways use
their wired interfaces also to communicate with static hosts belonging to a
wired LAN. The network resulting from the integration of the ad hoc network
with the wired LAN is an extended LAN, in which static and mobile hosts trans-
parently communicate using traditional wired technologies or ad hoc networking
technologies.

The characteristics of the ad hoc networking differ substantially from the
conventional IP architecture. Therefore, the interconnection of ad hoc networks
to the fixed Internet brings up several issues regarding addressing, routing, mo-
bility management and gateway selection. In this section, I discuss in partic-
ular the substantial conflicts between the routing and addressing architectures
of MANETs and the fixed Internet.

One of the fundamental characteristics of the fixed Internet is the adoption
of a hierarchical addressing architecture with the IP addresses divided into a
network identifier and a host identifier. All the hosts in a certain network seg-
ment have to share the same network identifier (also called network prefix).
Consequently, the IP address has a location-specific topological meaning and
the conventional IP routing protocols can use one single route to address an
entire IP subnet (i.e., a network consisting of hosts that share the same network
prefix). Note that the use of structured addressing in the Internet has been
a fundamental factor in enabling Internet scalability. On the contrary, in the
traditional view of ad hoc networking structured addresses are not required and
IP addresses have been seen as unique identifiers without a specific topologi-
cal meaning. Consequently, ad hoc networks are usually autonomous systems
without hierarchy and organized adopting a flat private address space. Thus,

46

CHAPTER 8. BASIC DESIGN CHALLENGES 47

Figure 8.1: Reference network architecture.

routing in ad hoc networks is typically performed using host specific routes.
It is evident that non-trivial issues arise to allow the interoperability between
routing protocols adopting either network-specific routes or host-specific routes.

Another thing that distinguishes ad hoc routing and conventional IP routing
is the use of multi-hop communications within the ad hoc network. This implies
that hosts residing in the same network do not always share a common physical
link. On the contrary, nodes in a fixed Internet sharing the same network prefix
expect to have link-layer connectivity. Several basic mechanisms employed
by conventional IP-based protocols (such as Mobile IP) heavily rely on this
assumption. This means that these mechanisms should be modified and/or
extended to be applied in multi-hop ad hoc networks.

Another problem that needs to be addressed to interconnect ad hoc net-
works to the fixed Internet is how to determine that an address is not present
in the ad hoc domain. This is a trivial issue when using a structured addressing
architecture, because it is always possible to decide whether a destination is
located within same network by simply looking at the destination’s network
prefix. Furthermore, in this case default routes can be used when no route
exists to that destination. On the other hand, these features cannot be consid-
ered as implicitly granted by the ad hoc routing protocol. For these reasons,
several ad hoc routing protocols implement specific route discovery mechanisms
that are executed before deciding whether the destination is within the ad hoc
network or not.

When the ad hoc node has somehow determined that the destined node is
not present on the MANET, it has to detect available gateways that it can
use to reach that destination. Thus, specific gateway discovery procedures and
gateway selection algorithms should be designed. In addition, gateway selec-
tion is particularly critical when managing mobility inside the ad hoc network.
In fact, frequent and unnecessary changes of selected gateways can introduce a
significant burden to the routing protocol and drastically degrade the perfor-

mance of transport-layer connections.
An issue that is strictly related to the gateway selection is how to ensure

that the incoming traffic returning from the Internet is correctly routed to the
gateway and then back to the originator ad hoc node. To allow this, the ad
hoc node needs an IP address that is routable from the rest of the Internet. A
variety of solutions can be devised to accomplish this, such as either implicit
address translation at the gateway or some kind of explicit signalling between
the ad hoc node and the gateway. However, at least the gateway must have a
globally routable IP address because it resides on the edge between the ad hoc
domain and the external Internet.

48

Chapter 9

Existing solutions

The following subsections review the existing solutions for enabling the inter-
networking of ad hoc and fixed networks, pointing out how they cope with
the main challenges introduced in Section 8. This survey is focused on the
mechanisms that can be applied to IPv4-based MANETs because the mecha-
nism proposed in this thesis is especially designed for IPv4 networks. For the
sake of completeness, the end of this section also briefly discuss the approaches
proposed for IPv6 networks, providing references to the most consolidated pro-
posals.

9.1 Mobile IP-based approaches

One of the possible approaches to provide Internet connectivity for ad hoc
networks is based on the integration of Mobile IP1 [99] with the ad hoc routing
protocols. The reader is referred to Section 6.1 for an overview of the Mobile
IP protocol.

The key idea behind the integration of Mobile IP and ad hoc networking is to
set up a Mobile IP Foreign Agent (MIP-FA) in the gateways that interconnect
the ad hoc network with external networks, and to run an extended version
of classical Mobile IP in the MANET. This approach requires that each mobile
node has a permanent and unique routable IP address (i.e., an “home address”).
When a mobile node visits an ad hoc network it adopts its home address as a
unique identifier, and exploits conventional ad hoc routing protocols to establish
a multi-hop route with one of the foreign agents present in the MANET. After
registering with one of the available MIP-FA gateways, the visiting node will
be globally routable on the Internet. Although the basic design principles
are simple, several problems arise when adapting the Mobile IP to operate
in multi-hop ad hoc networks. The first obstacle comes from the fact that
standard Mobile IP protocol assumes that FAs and visiting nodes have link-
layer connectivity to rely on link-local broadcast for signalling and control. On

1In this section I consider only Mobile IPv4 and the IP version is omitted for brevity.

49

the contrary, in multi-hop wireless networks broadcast transmissions consume
a great amount of network resources (i.e., bandwidth and energy) because
broadcast messages flood the whole ad hoc network [88]. In addition, the Mobile
IP protocol adopts a proactive approach for agent discovery and for executing
movement detection and handoff, which is based on periodic broadcasting of
agent advertisements. In some situations, this behaviour clashes with the ad
hoc routing protocol operations, especially when they are carried out in an on-
demand manner. Finally, since the addressing architecture in ad hoc networks
is usually flat, specific techniques have to be designed to allow mobile nodes
to decide whether a destination is located within the ad hoc network or in
the Internet. The remaining of this section, reviews the different solutions
that have been proposed to cope with these problems, both for proactive and
reactive ad hoc networks, pointing out advantages and limitations of each of
them.

Early research on MANETs focused on the design of proactive ad hoc rout-
ing protocols. Consequently, initial solutions for interconnecting ad hoc net-
works to the Internet described mechanisms for using Mobile IP on top of
proactive routing. For instance, in [31] an initial design is presented to in-
tegrate standard IP routing to DSR [68], a source-based on demand ad hoc
routing protocol. The basic principle is that each node participating in the
same ad hoc network selects its home address from a common IP subnet. In
this case, the gateway can be configured as a standard IP router between the
MANET subnet and the external Internet. Mobile IP is then used to sup-
port the migration of mobile nodes from the Internet into and out of ad hoc
networks. The idea is that mobile nodes piggyback Mobile IP Agent Solic-
itation on DSR Route Requests to register with the FA colocated with
the gateway. In addition, when the mobile node wants to communicate with
a node outside of the ad hoc network, the FA sends a proxy Route Reply
listing itself as the last hop in the route to the intended destination.

An alternative, and more elaborate, solution to provide Internet connec-
tivity for reactive ad hoc networks is described in [69], and it is known as
MIPMANET. This scheme assumes that ad hoc nodes forward traffic using
AODV [100], a table-driven on-demand routing algorithm. In contrast with
the approach adopted in [31], the MIPMANET architecture does not require
that the mobile nodes’ home addresses belong to the same IP subnet. When a
mobile node wants Internet access it simply register its arbitrary home address
with one of the available FAs, and tunnels each packet to the foreign agent
with whom it is registered, which decapsulates the packets and forwards them
to the destination. This tunnelling is used to emulate the concept of default
routes into the on-demand ad hoc routing protocol. Since MIPMANET does
not impose any network-prefix semantic within the ad hoc network, the sender
must initiate a route discovery process using the AODV routing protocol to
decide whether a destination is located within the ad hoc network or not. If
the destination is not found within the ad hoc network, than the mobile node
infers that the destination is in the wired Internet and tunnels the packets ad-
dressed to that destination to the FA. Furthermore, MIPMANET uses reverse

50

CHAPTER 9. EXISTING SOLUTIONS 51

Internet

FA1

FA2

HA

MN

Agent Advertismets

Agent Solicitations

D

IP tunnel

Normal IP routing

Foreign
Network

Home
Network

Figure 9.1: Illustration of the MIPMANET solution.

tunnelling as defined in [84], establishing an IP tunnel both in the forward
direction (from home agent address to foreign agent care-of-address) and in
the reverse direction. Figure 9.1 illustrates the fundamental components of the
MIPMANET architecture. Concerning the foreign agent discovery mechanism,
the MIPMANET scheme adapts the Mobile IP protocol to operate in a more
on-demand fashion allowing FAs to periodically unicast Agent Advertise-
ment messages to registered nodes. In addition, MIPMANET utilizes a new
algorithm, called MIPMANET Cell Switching (MMCS), to determine when
mobile nodes should register with a new foreign agent upon moving.

In [115] a solution similar to MIPMANET is presented to implement a Mo-
bile IP foreign agent on a gateway for ad hoc networks running the AODV rout-
ing protocol. However, the scheme proposed in [115] adopts a somehow simpler
approach, limiting the use of IP tunnels inside the ad hoc network. More pre-
cisely, MIP-FA gateways periodically advertise their presence through Agent
Advertisement messages, and each mobile node maintains a list containing
the IP addresses of available FAs. A mobile node that wants Internet access
can register with the closest FA one of the care-of-addresses announced in the
received Agent Advertisement messages, and then it updates the location
information maintained by its HA. In addition, mobile nodes can proactively
search for foreign agents by issuing RREQ packets addressing the All Mobility
Agents multicast group [99]. When a FA receives a RREQ for a destination
to which it has not an explicit route (note that the FA has explicit routes
only for mobile nodes registered with it) it replies with a special RREP, called
FA-RREP, informing the sender that the destination can be reached through
the gateway. In other words, the gateway generates proxy RREP packets on
behalf of nodes that might be present on the external Internet. Upon receiving
a FA-RREP the source node does not use immediately this route, but waits
for receiving normal RREP messages indicating that the destination node is
located within the ad hoc network. Moreover, by properly setting the destina-

tion sequence numbers in the RREP message it is also possible to ensure that
routes to nodes in the MANET will always have higher priority than routes
established using FA-RREPs sent by gateways. The advantage of using FA-
RREPs is that data packets can be transmitted to the FA using standard IP
forwarding and it is not needed to use tunnelling within the ad hoc network.

The solutions described so far integrate reactive ad hoc routing protocols
(DSR or AODV) with the Internet routing and the Mobile IP architecture.
However, the basic design of many of the Mobile IP mechanisms, such as agent
discovery, movement detection and reachability of the mobile node, follows
proactive principles. Thus, it is opportune to find a trade-off between the
on-demand operations of reactive ad hoc routing protocols and the overhead
introduced by periodically broadcasting agent advertisements. For instance,
MIPMANET proposed to use the MMCS algorithm [69] to detect and move to
new foreign agents. According to this algorithm, a mobile node should register
with another foreign agent if it is at least two hops closer to this new foreign
agent than to its previous foreign agent, for at least two consecutive agent ad-
vertisements. In [105] it is described a protocol that limits the flooding of agent
advertisements in an n-hop neighbourhood by using TTL scoping. In [7], Mo-
bile IP is extended to manage multiple simultaneous connections with foreign
networks. Based on the registered care-of addresses, multiple paths can be used
for packets to and from a mobile node. Thus, enhanced throughput and a more
reliable connection can be achieved. An alternative scheme is proposed in [30].
In that work, some heuristics are described to classify the traffic load of the
gateways, such as to avoid selecting congested route to gateways. In addition,
to reduce the flooding overhead due to solicitations, optimized searching algo-
rithms are used such as the Expanding Ring Search method [100]. However,
some intrinsic limitations of on-demand routing protocols as the inability to
support default routes and to easily determine that an address is not present
on the MANET, cannot be overcome without relying on complex address allo-
cation schemes or resource-consuming IP-in-IP encapsulation [97].

For these reasons, recently, the integration of Mobile IP with proactive ad
hoc routing protocols has gathered a lot of attention in the research commu-
nity. A hierarchical approach to accomplish this integration is proposed in [26].
More precisely, Mobile IP is used to support macro-mobility between different
IP domains, while the OLSR ad hoc routing protocol is adopted to support
micro-mobility inside the MANET environment. As in prior work, the archi-
tecture proposed in [26] contains a gateway implementing a MIP-FA, allowing
the OLSR-IP access network to be connected to the Internet. In addition, in
this hierarchical architecture special nodes, called OLSR Base Stations, have
been introduced to reduce the number of global location updates performed
by Mobile IP. These base stations have both wired and wireless interfaces and
implement the OLSR protocol on both of them. When a mobile node enters an
IP-OLSR access network, it receives either periodic Agent Advertisement
messages broadcasted by the gateways or unicast Agent Advertisement
messages sent by the gateways in reply to the node’s Agent Solicitation.
Once the mobile node is registered, it is attached to the OLSR-IP access net-

52

CHAPTER 9. EXISTING SOLUTIONS 53

work. This implies that the node has a host specific entry in the routing table
for each IP destination address known locally on the MANET, while all the
traffic for external networks is forwarded along a possible default route out of
the MANET through the gateway. The HNA messages2 issued by the gateway
establish this binding between the gateway itself and the external networks.
In such a way, it is not needed to have an explicit procedure to determine if
a destination is present or not in the MANET. Note also that the use of IP
tunnelling is limited to the communications between FA and HA, but it does
not occur within the ad hoc network.

Albeit the considerable effort devoted to the design of solutions enabling an
efficient integration of Mobile IP with the ad hoc routing protocols to provide
a global mobility between Internet and MANETs, Mobile IP-based solutions
have still a number of drawbacks. The first one is that in order to allow
Mobile IP and ad hoc networking to cooperate it is needed to introduce further
complexities and sub-optimal operations in the implementations of both Mobile
IP and ad hoc routing protocols. Probably an integrated design of Mobile IP
and ad hoc routing functionalities might be much more efficient, minimizing the
overheads. In addition, Mobile IP was designed to handle mobility of devices in
case of relatively infrequent mobility. Thus the overheads introduced to manage
roaming and handoffs between foreign agents are a relevant issue in MANET
environments, where handoff functions operating at the data link layer may be
more suitable. Finally, when the technique of default routes is used to route
the traffic from the mobile node to the closest gateway, the use of Mobile IP
can easily lead to triangle routing. In fact, when the mobile node moves it can
get closer to a gateway different from the one to which it is currently registered.
As a consequence, the forward traffic leaves the ad hoc network through one
gateway while the return traffic enters the ad hoc network through the new
MIP-FA gateway to which the mobile node is registered. To solve this problem
the authors of [48] have proposed to use Mobile IP reverse tunnelling [69], or
explicit tunnelling to one of the gateway instead of using default routes. Note
that changing between two MIP-FA based gateways do not cause a transport-
layer session break because the mobile node has simply to register the new FA
with its HA. As I will discuss in the following section, changing gateways in
NAT-based solutions is much more critical.

9.2 NAT-based approaches

An alternative category of solutions to interconnect MANETs to the Internet
is based on the implementation of Network Address Translation (NAT) mod-
ules [109] on the gateways. Traditionally, basic NAT is used to allow hosts
in a private network to transparently access the external Internet. More pre-
cisely, a router with a NAT module implemented on it, behaves as an address
translator, which dynamically maps the set of non-routable private addresses
(selected from a reserved address range) used internally in the local domain to

2See Section 4.2 for a description of the OLSR protocol.

a set of globally routable network addresses. A variant of basic NAT is the
Network Address Port Translation, or NAPT [109], which translates private IP
addresses to a single globally routable IP address by using different transport
layer ports. When implementing a NAT module in a gateway of the hoc net-
work, this gateway translates the source IP address of outgoing packets with
its IP address, which is routable on the external network. The return traffic
is managed similarly, with the destination IP address (i.e., the NAT-gateway
address) replaced with the IP address of the ad hoc source node. Note that
NAT-based approaches impose a limited addressing structure within the ad hoc
network. In fact, the ad hoc network is identified by one or more network-
prefixes designated to be used in private networks, while the host-specific part
of the address is autonomously administered within the MANET.

One of the earliest implementation of this method for reactive ad hoc net-
works was developed by the Uppsala University for the AODV routing pro-
tocol [1]. In that implementation mobile nodes are not aware of the avail-
able gateways enhanced with NAT capabilities, and these gateways use Proxy
RREP messages to reply to RREPs destined for hosts on the Internet. The
use of Proxy RREP messages is clearly inspired by work done in [31, 115]. To
reduce the complexity of the implementation, the AODV-UU NAT solution
assumes that all the addresses on the ad hoc network are allocated from the
same private IP subnet. Thus, the gateways replies only to RREQ messages
targeting destinations external to the ad hoc network. To avoid this limita-
tion, it is possible to apply solutions similar to the ones defined in [115] for
a MIP-FA based gateway. More precisely, the NAT gateway can be allowed
to reply to all the received RREQ messages generating a Proxy RREP with
the same sequence number of the received RREQ. Hence, a direct route to the
designated destination not traversing the gateway will always have preference
on the route announced by Proxy RREP messages.

Solutions based on the use of Proxy RREPs do not work correctly in multi-
homed networks, i.e., when multiple gateways are present in the ad hoc network.
Indeed, to avoid transport-layer session breaks it is necessary to ensure that
each packet from the same session is routed over a specific gateway since a NAT
router translates both outgoing and incoming packets. However, it is difficult
to control the gateway selection for an ad hoc node that is moving. To solve
this problem, in [47] an alternative approach to provide Internet connectivity
for on-demand routing protocols is described. First of all, the solution proposed
in [47] defines a method for implementing gateway discovery using the AODV
protocol. When a mobile node searches a route to its designated destination,
it initially floods the network with normal RREQ messages. If the source node
does not receive any reply, it issues a special RREQ message with a “Gateway”-
flag set. Upon receiving this type of RREQ messages the gateways are allowed
to reply with Proxy RREPs on behalf of external nodes. When the source node
receives these replies, it becomes aware of the available gateways. Then, the
ad hoc node selects one of these gateways according to some heuristic and it
tunnels the packets addressed to external destinations to the selected gateway
using for example IP-in-IP encapsulation [97]. Furthermore, the NAT gateway

54

CHAPTER 9. EXISTING SOLUTIONS 55

Internet

NAT1

NAT2

MN

D

Normal IP routing

IP tunnel
IP payload

src = transl.
dst= D

IP payload
src = MN
dst= D

src = MN
dst= NAT1

Figure 9.2: Illustration of the tunnelling operations in NAT-based solutions [48,
47].

will also tunnel the incoming packets returning from the Internet to the source
nodes. Figure 9.2 illustrates how the IP-in-IP encapsulation method works
when tunnelling the packets for an external host via a NAT gateway.

As described in [48], NAT gateways can be implemented also in proactive
ad hoc networks. By using proactive routing protocols it is easy to advertise
gateways within the ad hoc network, and default routes can be established
between the mobile nodes and the closest gateway. However, instead of using
default routes to send packets addressed to host located in the external Inter-
net as proposed in [26], the solution proposed in [48] requires that each sender
node establishes a tunnel with the selected gateway (e.g., by using IP-in-IP
encapsulation [97] or minimal IP encapsulation [98]) to deliver packets ad-
dressing external IP networks. Employing explicit tunnelling instead of default
routes ensures that each packet of the same transport-layer session is consis-
tently routed through the same gateway, even if the source node moves. In
papers [47] and [48] it is also addressed the problem of how enabling gateways
adopting different mechanisms to cooperate while providing Internet connectiv-
ity. For instance, in multi-homing scenario some gateways may be NAT-based,
and other gateways may be MIP-FA based. Again, a working solution for this
issue is the use of explicit tunnelling that forces the packets generated from
the same session to be routed the gateway selected at the beginning of the
session itself. This prevents the session break when the source node gets closer
to another gateway. However, this method requires that special techniques be
implemented to allow source nodes to discover the different capabilities of the
available gateways. To this end, extensions of the ad hoc routing protocols have
to be devised. Finally, it is worth pointing out that most of the schemes de-
scribed in this section rely heavily on the use of IP tunnels. However, tunnelling
introduces a fixed overhead in the tunnelled IP packet headers. For instance, in
case of IP-in-IP encapsulation 20 bytes of overhead are added in every outgoing

packet. Experimental results presented in [48] indicate that in some situations
the throughput obtained by a TCP session can suffer a 30% decrease. This
clearly motivates the need of designing more efficient and lightweight solutions
to provide Internet connectivity for ad hoc networks.

Although the NAT-based approach has undoubtedly advantages, such as to
allow the ad hoc network to continue to use a private address internally, as well
as it simplicity, it also arises several concerns from the application layer stand-
point. In particular, NAT is not very suitable for incoming connections and
this fact causes significant difficulties for peer-to-peer applications. Recently a
few workarounds have been proposed to reduce the problems created by NAT,
such as NAT-traversal techniques. However, a clear solution interoperable with
existing NAT devices is still not available.

9.3 Layer 2.5 solutions

Recently other schemes have been proposed to provide ad hoc support below
the IP layer. For example, in [6] label switching was employed to put rout-
ing logic inside the wireless network card. More recently, the LUNAR [121]
ad hoc routing framework and the Mesh Connectivity Layer (MCL) [43] have
been proposed. These solutions locate the ad hoc support between the data
link layer and the network layer. This “layer 2.5” is based on virtual interfaces
that allow abstracting the design of ad hoc protocols from both the specific
hardware components and the network protocols. However, this interconnec-
tion layer requires its own naming and addressing functionalities distinct from
the layer-2 addresses of the underlying physical devices. This significantly in-
creases the system complexities and introduces additional header overheads.
On the contrary, my proposed architecture exploits existing ARP capabilities,
reducing implementation complexity, providing fully backward compatibility
and ensuring minimal overheads.

9.4 Proposals for IPv6-based MANETs

Most of the research aimed at combining IPv6 and ad hoc networking has fo-
cused on the design of mechanisms to configure globally routable IPv6 addresses
within a MANET. In general, these approaches treat the ad hoc network as an
IPv6 subnet. According to this view, gateway nodes present in the ad hoc
network act as default routers receiving all the traffic destined for IP sub-
nets outside the MANET. Consequently, in this category of solutions, gateway
discovery mechanisms and address autoconfiguration techniques are strictly
interdependent.

The standard IPv6 architecture includes a stateless address autoconfigura-
tion technique [119] but it cannot be applied in multi-hop topologies. There
have been numerous proposals to extend this autoconfiguration protocol to
operate in a MANET considering multi-hop operations, network partitioning
and merging (for example, see [49]). However, the proposals that have received

56

CHAPTER 9. EXISTING SOLUTIONS 57

more attention in the research community are the schemes that deal both with
address autoconfiguration and gateway discovery. One solution is described
in [124], which defines both proactive and reactive strategies to discover the
gateways within the ad hoc network. The network prefix, which is distributed
by these Internet gateways, can then be used for configuring a (typically glob-
ally) routable IPv6 address for each ad hoc node. In [124] it is also described
how Mobile IPv6 can be modified to be used in ad hoc network. In particu-
lar, Internet gateway advertisements will be used to detect node’s movement
instead of the neighbour discovery mechanisms used in conventional Mobile
IPv6. In addition, the mobile node uses the globally routable address acquired
from the Internet gateway as its care-of-address. Hence, no foreign agents are
needed in the ad hoc subnet. Finally, packets sent outside the MANET contain
a routing header that includes the address of the default gateway. This is a
sort of emulation of the tunnel towards the gateway used in the MIPMANET
protocol to avoid address reconfigurations after gateway handoffs. An alter-
native solution to interconnect IPv6-based MANETs to the fixed Internet is
described in [66]. This scheme introduces the concept of “prefix continuity”.
More precisely, in the same MANET multiple subnets (i.e., network prefixes)
can be used, but the network identifiers are assigned to visiting nodes such as
that any node that selected a given prefix has at least one neighbour with the
same prefix on its path to the selected gateway. This implies that the MANET
is organized in clusters of hosts sharing the same network prefix. This network
organization reduces the overheads introduced by flooding gateway advertise-
ments.

For a comprehensive survey of the several approaches proposed for enabling
Internet connectivity for IPv6-based MANETs, and a detailed description of the
protocol operations, the interested reader is reminded to [106] and references
herein.

Chapter 10

Proposed Architecture

The basic design principle I adopted during the definition of my proposal was
to provide transparent communications between static nodes, which use tradi-
tional wired technologies, and mobile nodes, which use more advanced ad hoc
networking technologies, employing mechanisms that run below the IP layer.
As discussed in the introduction, in this work I address two major problems:
address autoconfiguration and global Internet connectivity. However, before
describing the details of my solutions, it is useful to illustrate the complete
network architecture I propose for interconnecting heterogeneous ad hoc net-
works to the Internet. To this end, Figure 8.1 depicts the reference network
architecture I consider in this work.

As illustrated in the figure, I envision an extended LAN composed of a
conventional LAN (the wired component) and several ad hoc clouds. In this
network mobile/portable nodes not in close proximity of the fixed network-
ing infrastructure establish multi-hop wireless links to communicate with each
other (e.g., using the IEEE 802.11 technology [5]) using an ad hoc routing pro-
tocol. The wired LAN and the ad hoc components are interconnected using
gateways, which are special nodes provided with both wired and wireless in-
terfaces. I also assume that the ad hoc routing protocol is running on both
the gateways’ interfaces. This implies that separate (i.e., not in direct radio
visibility) ad hoc clouds are not disconnected because an ad hoc node can ex-
change routing messages with any other ad hoc node in the extended LAN
also through the wired LAN. As explained in later sections, this architectural
design allows transparent support for node mobility and facilitates the Intranet
communications.

In my architecture multi-homing is permitted, i.e., multiple gateways can be
located within the same ad hoc component. Consequently, specific mechanisms
are required to support the handoff between gateways without transport-layer
connection breaks. In general, between pairs of gateways in radio visibility of
each other, two direct links can be established, both wired and wireless. The
choice between the two links is demanded to the routing protocol. However,
we can assume that the wired link has a lower link cost than the wireless

58

CHAPTER 10. PROPOSED ARCHITECTURE 59

link because wired technologies are still more reliable and have higher capacity
than standard wireless technologies. As a consequence, a routing protocol
selecting least-cost paths will always give preference to the wired path for inter-
gateway communications. In Section 10.2, I will explain the implications of this
assumption.

Concerning the addressing architecture of my network, I assume that the
extended LAN is a single address space. Namely, all the nodes in the extended
LAN, both ad hoc nodes and static ones, have an IP address with the same net-
work identifier. To indicate the network identifier I use the standard notation
IPS/L, in which IPS indicates the network prefix, and L is the network mask
length. For instance, in my test-bed I used IPS/L = X.Y.96.0/22. It is worth
pointing out that my solution does not impose any addressing hierarchy within
the extended LAN, and both ad hoc and wired nodes may have an arbitrary IP
address belonging to the IPS/L subnet. This implies that the wired nodes are
not aware of which are the ad hoc hosts and vice versa.

Standard IP routing is used to connect the extended LAN to the core Inter-
net. Regarding the ad hoc routing protocol, my scheme is specifically designed
for being integrated with proactive routing protocols. Examples of these type or
routing protocols for MANETs are the Optimized Link State Routing (OLSR)
protocol [37] or the Topology Dissemination Based on Reverse-Path Forward-
ing (TBRF) routing protocol [89]. The motivation behind this design choice is
that proactive routing protocols usually support gateway advertisements, al-
lowing the gateways to use special routing messages to set up specific default
routes in the ad hoc network. In addition, proactive routing protocols, adopt-
ing classical link state approaches, build complete network-topology knowledge
in each ad hoc node. This topology information could significantly simplify the
operations needed to acquire Internet connectivity. In this work, the reference
ad hoc routing algorithm is OLSR, but my architecture is general and it is
equally applicable to other proactive routing protocols.

To build and make operational this extended LAN, I have designed three
main mechanisms:

• An address autoconfiguration protocol for the ad hoc nodes that takes
advantage of the DHCP servers located in the wired LAN, which does
not require that mobile nodes are aware of the identity/location of these
DHCP servers;

• An adaptive proxy-ARP capability, which allows the gateways to inter-
cept packets generated by the wired nodes and addressing the ad hoc
nodes;

• An automatic procedure to set the proper network-specific routing en-
tries needed by the ad hoc nodes to correctly forward their traffic to the
external networks.

The following sections describe the operations performed by the aforemen-
tioned techniques and how the ad hoc components are transparently integrated
into the wired infrastructure.

DHCP_RequestDHCP_Request

DHCP_ACKDHCP_ACK

Conf_ReqConf_Req

Conf_AckConf_Ack

N H1
H2

H3
H4 DHCP

Server

Neighbour_ReqNeighbour_Req

Neighbour_ReplyNeighbour_Reply

DHCP_ACKDHCP_ACK

GW

Ad hoc Ad hoc
componentcomponent

wiredwired
componentcomponent

Figure 10.1: Message exchanges during the address autoconfiguration.

10.1 Address autoconfiguration

A prerequisite for proper routing is that all nodes are configured with a unique
address. Thus, various protocols have been proposed in the literature for the
purpose of address autoconfiguration in MANETs. Generally speaking, with
protocols using stateless approaches nodes arbitrarily select their own address,
and a Duplicate Address Detection (DAD) procedure is executed to verify its
uniqueness and resolve conflicts. On the other hand, protocols based on stateful
approaches maintain either centralized or distributed address allocation tables,
and they execute distributed algorithms to establish a consensus among all the
nodes in the network on the new IP address, before assigning it. Protocols
proposed in [122] and [86] are well-known examples of the former and latter
approach, respectively. A limitation of most of the early solutions is that
they are designed to work in stand-alone MANET. To address this problem,
the Internet Engineering Task force (IETF) has established the AUTOCONF
working group with the main purpose of standardizing mechanisms to be used
by ad hoc nodes for configuring unique local and/or globally routable IPv6
addresses1. In fact, it is now evident that using a unified strategy to select a
global node address, to route the packets and to access the Internet may be
beneficial, because complexities and overheads are reduced.

In this work, I propose a simple but effective protocol to assign a glob-
ally routable IPv4 address to the mobile nodes of the extended LAN by tak-
ing advantage of the easy access to the fixed infrastructure. In general, in a
wired LAN unconfigured hosts may use the Dynamic Host Configuration Proto-

1For a general overview of the main approaches for address autoconfiguration in MANET,
and the description of the most well-known protocols the reader is referred to [126]. In
addition, draft specifications from the Autoconf WG can be found at http://tools.ietf.

org/wg/autoconf/.

60

CHAPTER 10. PROPOSED ARCHITECTURE 61

col [44] to query centralized servers to obtain IP configuration parameters (i.e.,
a unique IP address, a common netmask and, eventually, a default gateway).
However, this solution is not straightforwardly applicable to ad hoc networks
because the node running the DHCP server may not be permanently reachable
by all nodes. In addition the legacy DHCP-server discovery procedure requires
link-level connectivity between unconfigured nodes and the DHCP servers. To
overcome these limitations, my scheme assumes that DHCP servers are located
only in the wired LAN and employs a novel mechanism to allow unconfigured
nodes to contact the DCHP servers through multi-hop paths. To achieve my
goal I partially reuse some mechanisms from the MANETconf protocol de-
scribed in [86]. In particular, in MANETconf a node requesting an address
first searches for already configured nodes and selects one of its neighbours as
initiator of the configuration process. However, MANETconf can be used only
to allocate unique and private addresses to nodes in a stand-alone MANET. In
my scheme, a mobile node not yet associated with the extended LAN executes
a preliminary message handshake to discover reachable and already configured
ad hoc nodes. Then, the unconfigured node that wants to join the ad hoc
component elects one of the discovered neighbours as DHCP relay agent. A
DHCP relay is an entity that is capable of relaying DHCP Discover broad-
casts from a LAN which does not include a DHCP server to a network which
does have one [44]. The proposed address autoconfiguration protocol is ba-
sically an extension of the functionalities of the legacy DHCP relay agents.
More precisely, as illustrated in Figure 10.1, an unconfigured node N broad-
casts special messages, called Neighbour Req, to discover other nodes that
are within its radio visibility and that can interconnect him to the ad hoc com-
ponent. To make the protocol more robust against messages losses and network
dynamics, node N can periodically generate new Neighbour Req messages
scanning each channel and operating mode (e.g., 802.1 a/b/g) supported by
its interface. When a node that is already part of the ad hoc network cor-
rectly receives a Neighbour Req message, it discovers the physical address
of the node N and it can unicast a Neighbour Reply message to node N .
From the received Neighbour Reply messages, node N can build a list of
available DHCP relay agents, and it will select one of them according to some
heuristic (e.g., the one with the best signal quality, or the last one to reply).
In the example shown in Figure 10.1, node N has selected node H2 as its
proxy DHCP relay agent. Node H2 is informed about this choice through a
Conf Req message. Node H2 acknowledges the correct reception of this re-
quest sending a Conf Ack message to node N . After that, node H2 activates
its proxy DHCP relay agent, which initiates the process of address assignment
on behalf of node N using the standard DHCP protocol. Note that node H2
can contact the DHCP servers located in the wired LAN using unicast DHCP
control messages, because node H2 is already part of the ad hoc component.
The DCHP messages generated by node H2 are routed through one of the
gateways according to the mechanisms that will be described in the following
sections. The DHCP server receiving the request, will answer to the DHCP
relay agent with a DHCP Ack, containing the IP configuration parameters

for the new node N . The configuration process is concluded when the DHCP
relay forwards the DHCP Ack message to the initial node N , which can now
join the network. After joining the ad hoc component, node N may also turn
itself into a DHCP relay agent for the DHCP server from which it received the
IP configuration parameters, in order to support the configuration process of
new mobile nodes. Finally, it is worth noting that my scheme does not need
any initialization procedure because the gateways are directly connected to the
wired LAN and can broadcast a DHCP Discover message to locate available
servers. Hence, the first mobile node to enter the ad hoc network may find at
least one gateway capable of initiating the illustrated configuration process.

A limitation of the proposed autoconfiguration protocol is that the wired
LAN should be permanently reachable by the ad hoc nodes in order to permit
renewing the address lease with the DHCP servers. However, in the considered
network scenario this limitation may be considered not problematic because it
is reasonable to assume that the network is not highly dynamic. In fact, the
extended LAN I envision will be used mostly as a flexible and cost-effective ex-
tension of the fixed networking infrastructure in enterprise buildings or campus
facilities. In these contexts, users are semi-static or nomadic and are interested
in having a continuous access to Internet and its centralized services (e.g., web
browsing, access to centralized data repository, etc.).

10.2 Interconnecting ad hoc nodes to the fixed
Internet

The basic assumptions of my architecture are the following: i) A proactive ad
hoc routing protocol is used in the ad hoc components. This implies that ad
hoc nodes’ routing tables are populated with entries specifying the next-hop
neighbour to forward a message to any other ad hoc node in the extended LAN;
and ii) all the hosts in the extended LAN share the same IP network prefix.
As previously introduced, the key mechanisms I propose to interconnect the ad
hoc components (see Figure 8.1) to the wired LAN and the external Internet
rely on the use of network-specific routes and some extended functionalities
of the ARP protocol. For clarity, in the following I separately describe how
communications are established and maintained between ad hoc nodes and
hosts in the wired LAN (i.e., Intranet communications) or hosts in the external
Internet (i.e., communications routed through the default router R shown in
Figure 8.1).

10.2.1 Intranet connectivity.

As discussed in Chapter 8, the main problem to solve to support the Intranet
connectivity is to guarantee that each ad hoc node can identify whether the
destination node is within the ad hoc part or the wired part of the network,
and vice versa. To explain how my scheme addresses this issue let us initially
analyse the case of an ad hoc node N that wants to communicate with a wired

62

CHAPTER 10. PROPOSED ARCHITECTURE 63

host H. To perform its routing decisions, normally node N has three types
of routing information in its routing table. First, the node N ’s routing table
contains host-specific entries to reach any other ad hoc node, which are in-
serted by the proactive ad hoc routing protocol. Second, there is an entry that
is automatically inserted by the TCP/IP protocol stack at the network boot,
which provides the local reachability on its wireless interface. Namely, since
the node N ’s IP address belongs to the IP subnet identified by the IPS/L net-
work/mask pair, then N ’s routing table contains a generic entry that indicates
that all the IP addresses matching this network prefix may be directly reached
through the wireless interface if a more precise routing entry is not known.
Finally, node N ’s routing table contains the generic routing entry 0.0.0.0/0,
which is the default route advertised by the gateways. When the ad hoc node
N wants to send a packet addressed to a wired node H, node N checks its
routing table. Since node N has not a host-specific routing entry for node H’s
IP address, it believes that node H is directly reachable on its wireless inter-
face, and it will issue an ARP Request message targeting node H’s physical
address. This ARP Request fails because node H is not directly reachable on
node N ’s wireless interface. To solve this inconsistency, node N needs a specific
mechanism to discover that node H can be reached only through a gateway,
although it shares with node N the same network prefix. To this end, I exploit
the properties of the longest-matching rules used by the standard IP routing.
Specifically, I configure the gateways such as to advertise two additional and
more precise network-specific routes, which announce the reachability of the
wired LAN through the gateways’ wired interfaces. These network-specific
routes are addressing the {IPSLow/(L+1) and {IPSHigh}/(L+1) subnetworks,
i.e., the two disjoint IP subnets whose union is equal to IPS/L2. The use of
these additional network-specific routes, which are more precise than the route
providing local reachability to IPS/L, ensures that each ad hoc node will for-
ward the traffic to its closest gateway to communicate with any host on the
local wired LAN.

The use of the two network-specific routes previously specified is a sim-
ple but effective way to guarantee correct routing of egress traffic from the
ad hoc components. However, they may cause an inconsistent behaviour in
the gateways. In fact, each gateway can directly communicate with a wired
host H through its wired interface. On the other hand, each gateway also
receives HNA messages sent by other gateways, setting up the additional rout-
ing entries advertised in these messages. Hence, when a gateway wants to send
packets to a wired host on the local wired LAN (e.g., node H), the routing table
lookup will choose one of the routing entries targeting the {IPSLow}/(L+1) and
{IPSHigh}/(L+1) subnets, instead of the entry indicating the local reachability
of the host H on the gateway’s wired interface. The effect is that the IP packet
will loop among the gateways until the TTL expires, without reaching the cor-
rect destination H. To resolve this problem I again exploit the properties of the

2To clarify this concept, let us assume that IPS/L = X.Y.96.0/22. Then, this net-
work prefix can be split into the two smaller subnets {IPSLow}/(L+1) = X.Y.96.0/23 and
{IPSHigh}/(L+1) = X.Y.98.0/23. Note that this procedure is always possible for L < 32.

longest-matching rules used by the standard IP routing. Specifically, each gate-
way automatically configures two additional routing entries bound to its wired
interface. These two additional entries have the same network/mask as the ones
announced in the HNA messages (i.e., {IPSLow}/(L+1) and {IPSHigh}/(L+1)),
but with lower metric. Hence, when a gateway wants to communicate with a
host in the wired LAN, it will always give preference to its wired interface.

Let us now consider the reverse direction, i.e., a wired host H that wants
to communicate with an ad hoc node N . Since node H is running standard IP
routing, normally its routing table will have only two types of routing entries.
First, there is an entry that is automatically inserted by the TCP/IP protocol
stack at the network boot, which provides the local reachability on its wired
interface. Second, there is a generic entry related to the default router (node R
in Figure 8.1) and used to forward the packets addressing external IP subnets.
Hence, node H has no sufficient routing information to decide whether the
destination is in the ad hoc or wired part of the network. As stated previously
my objective is to design a solution that does not require modifications of
routing behaviours in the pre-existing wired part of the network. To achieve
this goal, I implemented in each gateway an enhanced proxy-ARP server that
masquerades the IP addresses of all the ad hoc nodes reachable through the
gateway’s wireless interface. When node H wants to communicate with node
N , it issues a conventional ARP Request message targeting node N ’s physical
address because host H believes that node N is locally reachable on its wired
interface. When a gateway receives this ARP Request searching for an IP
address that is reachable through its wireless interface, the gateway publishes
its MAC address. As a consequence, that gateway intercepts all the packets sent
by node H to node N . The intercepted traffic is then forward to the designated
destination inside the ad hoc network using the ad hoc routing protocol.

The proxy-ARP mechanism I have designed differs from the standard proxy-
ARP functionality defined in the RFC 1027 [32], because it is capable of adapt-
ing to the topology changes. More specifically, each proxy-ARP server will
proactively check the gateway’s routing table to publish on the gateway’s wired
interface only the IP addresses related to host-specific routing entries bounded
to the gateway’s wireless interface (this condition ensures that the gateway is
the closest one to that ad hoc node). When there is a change in the routing
table due to node mobility, the proxy-ARP reactively updates the list of IP ad-
dresses published on the gateway’s wired interface. This ensures a transparent
handoff between different gateways, as explained in details in Section 10.2.3.
Finally, it is worth pointing out that there are not interdependencies between
the OLSR protocol and the proxy-ARP servers running on the gateways. In
fact, the OLSR protocol maintains the gateway’ s routing table, which is inde-
pendently read by the local proxy ARP server to build its list of masqueraded
IP addresses. Legacy operations of both OLSR and ARP protocols are not
affected by the proxy-ARP server actions.

The last aspect that needs to be discussed is the existence of some network
configurations where asymmetric routing may occur, i.e., the forward path is
different from the return path. Let us consider the case in which node N

64

CHAPTER 10. PROPOSED ARCHITECTURE 65

discovers two gateways, say GW1 and GW2, which are at the same distance
(in terms of hops) from node N . In this situation, the OLSR routing algorithm
will randomly select one of these gateways as default gateway for node N .
However, both gateways are allowed to send ARP replies for ARP requests
issued by the wired node H for the ad hoc node N ’s IP address. In this case,
the wired node H will update its ARP table using the information delivered in
the last received ARP Reply. Let us assume that GW1 is the default gateway
for node N , but GW2 has sent the last ARP reply to node H. In this case,
node H sends the traffic destined to node N to GW2, which routes it to node
N . On the other hand, node N sends packets destined to node H to GW1,
which forwards them to node H. It is important to note that asymmetric paths
are not necessarily by themselves a problem. Indeed, both node N and node
H correctly receive and send their packets. In addition the asymmetric routing
occurs only in symmetric topologies. Thus, it is reasonable to assume that in
this local environment both paths are characterized by similar delays.

10.2.2 Internet connectivity

Providing Internet connectivity for the ad hoc nodes is now intuitive since Inter-
net connectivity can be considered as a special case of the Intranet connectivity
explained above. The only additional requirement is that the gateways know
the default router’s IP address. However, the default router for the LAN is one
of the IP configuration parameters that are provided in the DHCP Ack mes-
sages used to configure both wired hosts and ad hoc nodes. Thus, when an ad
hoc node wants to send a packet addressing external IP subnets, it will simply
forward the packet to the gateway. Then, the gateway will deliver the packet
to the default router using the same mechanisms adopted to communicate with
any wired host in the LAN. Similarly the incoming traffic received from the
Internet and targeting the IP address of an ad hoc node, will be forwarded
by the default router to the gateway that operates the proxy-ARP for that
IP address. Note that assuming a single public address space for the extended
LAN permits a global reachability of the ad hoc nodes from nodes located in the
external Internet, avoiding the difficulties typical of NAT-based solutions.

10.2.3 Support for gateway handoffs

In general, solutions to support Internet connectivity for ad hoc networks using
default routes may experience transport-layer session breaks when the default
routes change, depending on the network dynamics. To avoid transport-layer
session breaks, in [47] it was proposed to replace default routes with explicit
tunnelling between the mobile nodes and the gateways. However, this signif-
icantly complicates the implementation and introduces relevant overheads as
shown in my experiments (see Chapter 11). On the contrary, in my architecture
the mobility is supported in a transparent way for the higher protocol layers.
In fact, when an ad hoc node moves and gets closer to a different gateway,
there is only a change in the ARP caches of the session endpoint located in

Figure 10.2: Illustrative Network Configuration.

the wired LAN, which does not cause the break of active transport sessions.
To better clarify the actions occurring during an handoff let us consider an
ad hoc node N with a TCP connection open with a wired node H, and using
gateway GW1 as default route to reach the wired LAN. This implies that the
node H’s ARP cache contains a mapping between the node N ’s IP address
and the gateway GW1’s MAC address. When node N moves and gets closer
to a different gateway GW2 it updates its routing table and uses GW2 as new
default gateway to reach the wired LAN. Simultaneously, GW2’s routing table
also changes because the next hop for node N switches from GW2’s wired in-
terface to GW2’s wireless interface. As a consequence, the proxy ARP running
on GW2 inserts node N ’s IP address in the list of IP addresses the gateway
GW2 publishes. In addition, it generates a Gratuitous ARP on the GW2’s
wired interface for node N ’s IP address. This Gratuitous ARP updates the
ARP tables in all the wired hosts that have a stale ARP entry for the node
N ’s IP address, which was mapped with the MAC address of GW1’s wired
interface. After this update the traffic destined to and/or originated from node
N is correctly routed only through gateway GW2.

10.2.4 Example

To explain how the presented mechanism work, this section describes what
happen in the simple network configuration depicted in Figure 10.2. For
illustrative purposes I assume that the IP subnet of the extended LAN is
IPS/L=X.Y.96.0/223. I also assume that the mobile node involved in commu-
nication is the node N (IPN =X.Y.97.151/22).

Table 10.1 shows the node N ’s routing table. The entries 8, 9, and 11 are
the ones induced by the HNA messages arrived from GW1. The entry 10 is

3On the gateways’ wireless interfaces I set up private IP addresses to save address space.
In this way, the gateways are globally reachable using the IP address on their wired interfaces.

66

CHAPTER 10. PROPOSED ARCHITECTURE 67

automatically set up by the operating system when the wireless interface is
configured with the IP parameters. Suppose that node N wants to deliver
packets to the wired node H (IPH =X.Y.99.204/22). In this case, the routing
table lookup on node N will indicate that the node H is reachable through
the routing table entry 9. This because the routing table entry 9 is more
specific than the entry 10. Consequently, the longest-match criterion applied
to the routing table lookup, will result in node N correctly forwarding traffic
to gateway GW1 (i.e, the nearest one) to reach node H.

Table 10.2 shows the GW1 ’s routing table. In this example, eth0 is the
GW1 ’s wireless interface and eth1 is the GW1 ’s wired interface. When gateway
GW1 wants to send packets to node H, it will found two routing table entries
matching the same number of bits of node H ’s IP address. These are entry 9
(derived from HNA messages received from GW2) and entry 11 (automatically
configured on the gateway). However, entry 11 has a lower metric than entry 9
(i.e., metric 0 against metric 1). As a consequence, the packets destined to host
H can be correctly forwarded to the host H on the local wired LAN through
the GW1 ’s wired interface.

In the reverse direction the behaviour of the presented mechanism is as
follow. Suppose that node H wants to send packets to the an ad hoc node N.
Node H assumes that node N is on the same physical network. Hence, node
H checks its ARP table for IP-MAC mapping and, if it is not present, it sends
an ARP request. On the other hand, gateway GW1 has an entry for node
N ’s IP address in it’s routing table with a netmask 255.255.255.255, which is
related to its wireless interface, while GW2 does not. Consequently, only GW1
is allowed by the Proxy ARP server to answer with an ARP reply to node H.
This ARP reply will insert the mapping [node N ’s IP address - MAC address
of GW1 ’s wired interface] into the node H ’s ARP table. Thus, the packets sent
from node H to node N will be delivered to GW1, which will forward them
to node N. On the other hand, node N will reply to node H using GW1, as
indicated by its routing table (see Table 10.1).

Table 10.1: Node N’s Routing Table.

Entry destination next hop metric interface

1 X.Y.97.51/32 X.Y.96.102 2 eth0
2 X.Y.96.102/32 0.0.0.0 1 eth0
3 X.Y.98.44/32 0.0.0.0 1 eth0
4 X.Y.98.24/32 X.Y.98.44 2 eth0
5 X.Y.96.18/32 X.Y.96.102 3 eth0
6 192.168.111.1/24 X.Y.96.102 2 eth0
7 192.168.111.2/24 X.Y.96.102 3 eth0
8 X.Y.96.0/23 X.Y.96.102 2 eth0
9 X.Y.98.0/23 X.Y.96.102 2 eth0
10 X.Y.96.0/22 0.0.0.0 0 eth0
11 0.0.0.0/0 X.Y.96.102 2 eth0
12 127.0.0.0/8 127.0.0.1 0 l0

Table 10.2: GW1’s Routing Table.

Entry destination next hop metric interface

1 X.Y.96.102/32 0.0.0.0 1 eth0
2 X.Y.97.151/32 X.Y.96.102 2 eth0
3 X.Y.98.44/32 X.Y.96.18 3 eth1
4 X.Y.98.24/32 X.Y.96.18 2 eth1
5 X.Y.96.18/32 0.0.0.0 1 eth1
6 192.168.111.2/32 X.Y.96.18 1 eth1
7 192.168.111.0/24 0.0.0.0 0 eth0
8 X.Y.96.0/23 X.Y.96.18 1 eth1
9 X.Y.98.0/23 X.Y.96.18 1 eth1
10 X.Y.96.0/23 0.0.0.0 0 eth1
11 X.Y.98.0/23 0.0.0.0 0 eth1
12 X.Y.96.0/22 0.0.0.0 0 eth1
13 0.0.0.0/0 X.Y.96.1 0 eth1
14 0.0.0.0/0 X.Y.96.18 1 eth1
15 127.0.0.0/8 127.0.0.1 0 l0

68

Chapter 11

Implementation and
Experimental Results

To validate the correctness of the proposed mechanisms and to evaluate the
system performance, I have deployed a small-scale testbed with two gateways
and five mobile nodes. In this testbed I have prototyped the core functionalities
of my architecture. In particular, I have developed the software components de-
scribed in Section 10.2 to support the internetworking with the fixed Internet,
while I have left to future work the implementation and testing of the address
autoconfiguration scheme described in Section 10.1. To demonstrate that my
solution provides higher performance in terms of per-connection throughputs
than NAT-based schemes, in my testbed I have also implemented the mech-
anisms described in [48] to integrate NAT gateways with MANETs running
OLSR routing protocol. Comparative tests have been conducted both in static
and mobile configurations.

11.1 Testbed description

To carried out my analysis I set up a testbed using seven IBM R-50 laptops
with Intel Pro-Wireless 2200 as integrated wireless card. All nodes used a Linux
2.6.12 kernel and run the OLSR Unik implementation in version 0.4.7, which
is fully compliant with the RFC specification and also implements additional
modules to support explicit tunnelling between ad hoc nodes and gateways.
The ad hoc nodes were connected via IEEE 802.11b wireless links, transmit-
ting at the maximum fixed rate of 11 Mbps. To generate asymptotic TCP
traffic I used the iperf tool 1, while the saturated UDP traffic was generated
with the MGEN tool 2. Differently from other studies [48, 26], in which the
network topology was only emulated by using the IP-tables feature of Linux,
my experiments were conducted in realistic scenarios, with hosts located at the

1http://dast.nlanr.net/Projects/Iperf/.
2http://cs.itd.nrl.navy.mil/work/mgen/.

69

ground floor of the CNR building in Pisa. Finally, to obtain statistically reli-
able results I replicated each experiments five times and I measured the 95%
confidence intervals.

11.2 Path life characteristics

A preliminary set of experiments was conducted to gather a better understand-
ing of the OLSR behaviour, and the performance trade-offs between protocol
overheads and responsiveness to network dynamics. The results of these tests
are fundamental to isolate performance limitations depending on routing in-
efficiencies from the overheads introduced by the interconnection between the
MANET and the fixed Internet. For these reasons, in the following I analyse
how the OLSR parameters’ setting influences the network performance and the
path life in particular. The path life, whose formal definition will be introduced
later in this section, is a measure of the routing protocol ability to maintain
reliable and up-to-date topological information. Ideally, the routing protocol
should be able to promptly react to link failures caused by radio link problems
and node mobility, such as to eventually find alternative optimal routes. To
this end, the OLSR routing protocol defines a set of procedures to monitor
the link quality and to identify link and route changes, such as link sensing,
neighbour detection and topology discovery. It is intuitive to note that the effi-
ciency of these mechanisms has a significant influence on the route stability, the
maintenance of end-to-end connectivity and the prompt reaction to topology
modifications. Therefore, initially I investigated more in depth the impact of
the routing protocol parameters on the performance of ad hoc networks, such
as to identify an “optimal” parameter setting to be used during the tests on
the Internet access performance.

First of all, I can notice that the OLSR protocol periodically generates
routing control packets in order to refresh the topology information. The
behaviours of the various OLSR procedures are therefore regulated by a set
of parameters that establish the timing for the OLSR operations. The de-
fault constant values for these parameters are defined in the OLSR RFC [37].
More precisely, each node generates, with a period equal to HELLO Interval,
Hello messages to perform link sensing. The information provided in Hello
messages is considered valid for a NEIGHB HOLD TIME. Furthermore,
periodic link reports, the TC messages, are generated by the MPRs. The va-
lidity time for TC message information is the TOP HOLD TIME, while the
repetition period is the TC Interval. Finally, each gateway, being connected
to external networks, generates HNA messages, providing information on the
reachability of non-OLSR networks. By analogy with previous parameters,
HNA HOLD TIME and HNA Interval are the validity time and repetition
period of HNA messages, respectively. It is intuitive to observe that I may en-
hance the routing reactivity to topological changes by reducing the maximum
time interval between periodic control message transmissions. However, the
effect of using different parameter settings from the default ones has not been

70

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS71

good

bad

1HYST_THRESH_UPHYST_THRESH_LOW0

L
in

k
st

at
us

Link quality

Figure 11.1: Illustration of the hysteresis process.

clearly quantified in the literature.
An additional feature of the OLSR protocol, which may impact the end-

to-end connectivity characteristics, is the link hysteresis process [37]. The
link hysteresis is a procedure designed to make more robust the link sensing
against bursty losses or transient connectivity between nodes. More precisely,
the OLSR protocol computes for each link between a node and its neighbours
a value, called link quality, which measures the reliability of that link. A link
is considered “bad” if it allows Hello messages to pass through it sometimes
but not very often. An established link, i.e. a symmetric and reliable link, is
considered pending and not usable for communications when its link quality
goes below a fixed threshold, known as HY ST THRESHOLD LOW . Note
that a pending link is not considered broken because the link properties are
still updated for each received Hello message. On the contrary, a link is
considered as lost when its validity time expires. In this case, the link is purged
from the neighbourhood list. On the other hand, a pending link is promoted to
the established status only when its link quality goes above a fixed threshold
known as HY ST THRESHOLD UP . It is quite obvious that it should be
HY ST THRESHOLD UP ≥ HY ST THRESHOLD LOW . Figure 11.1
illustrates the link hysteresis behaviour. The diagram points out that when
HY ST THRESHOLD LOW < link quality < HY ST THRESHOLD UP
the link status remains unchanged.

A key implementation requirement for the link hysteresis is the availabil-
ity of an appropriate measure of the link quality. If some measure of the
signal/noise level on a received message is available (e.g., as a link layer noti-
fication), then it can be used as an estimation of the link quality index (af-
ter being normalized to the range [0, 1]). The OLSR specification [37] de-
scribes an alternative algorithm to estimate the link quality, which does not
require the use of link-layer information. This algorithm monitors the num-
ber of lost OLSR messages, Then, the exponentially smoothed moving average

of the OLSR-packet transmission success rate is adopted as a measure of the
link quality. Formally, every time an OLSR message is correctly received
link quality = (1−HY ST SCALING) · link quality + HY ST SCALING,
where the HY ST SCALING value is the smoothing factor of the estimator,
which is a number fixed between 0 and 1. When an OLSR message is lost, the
instability rule [37] is applied, that is link quality=(1−HY ST SCALING) ·
link quality. Note that the status of a new discovered link is initially set
pending and its link quality value is fixed to HY ST SCALING.

The behaviour of the hysteresis strategy is clearly determined by the spe-
cific setting of the algorithm parameters, and in particular by the memory size
of the link quality estimator and the threshold values. The OLSR specifica-
tion suggests as default configuration HY ST THRESHOLD LOW =0.3 and
HY ST THRESHOLD UP =0.8, and it adopts HY ST SCALING = 0.5 as
scaling factor. According to these values, even a perfect link (i.e., a link with
link quality=1) will be purged from the routing tables when two consecutive
OLSR control packets are lost. I argue that the standard setting of the hystere-
sis parameters introduces a critical instability in the routing tables, because it
is not infrequent to loose broadcast packets (as the OLSR packets are) when
the channel is overloaded.

To validate my intuitions and to investigate the influence of the duration
of repetition periods on the path life characteristics I performed a set of ex-
periments considering various OLSR parameter settings. The network layout I
used in my tests is depicted in Figure 11.2. It is a chain topology consisting of
five wireless links. The distances between the ad hoc nodes are set up in such a
way to form a 5-hop chain topology with non-volatile wireless links. Node GW
is the gateway node attached to the wired LAN. Although derived in a specific
network scenario, I believe that my findings are applicable in generic situations
because the chain topology is one of the most critical network scenarios for
the OLSR protocol, which has been designed particularly for large and dense
networks.

I tested the effect of using four different OLSR configurations, which are
listed in Table 11.1. My goal was to validate my intuitions on the over-
pessimistic behaviour of the hysteresis process (the set1 configuration uses
default OLSR parameters as in the std configuration, but the link hysteresis is
disabled). In addition, I wanted to quantify the impact of reducing the time in-
terval for periodic control message transmissions, and to evaluate the trade-off
between improved protocol reactivity and increased protocol overheads. Thus,
in set2 and set3 configurations all the repetition intervals are twice and four
times shorter than the default ones, respectively. Note that the validity times
have not been changed from the default values indicated in [37]. As reference
scenario I consider a network without data traffic, where the OLSR protocol is
running using a default setting (hereafter indicated as std∗ configuration). Due
to space limits, in the following figures I show the experimental results related
to a 3-hop TCP connection activated from node MN3 to node GW but similar
results where obtained also for different path lengths.

The first performance index I measured during the tests was the OLSR

72

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS73

60 meters

4
0

 m
e

te
r
s

GW

MN1

MN3

MN4

MN2

MN5

Figure 11.2: Network layout used to conduct tests in static conditions.

Table 11.1: OLSR parameter configurations.

OLSR parameters std set1 set2 set3
HELLO INTERVAL(s) 2 2 1 0.5
NEIGHB HOLD TIME (s) 6 6 6 6
TC INTERVAL(s) 5 5 2.5 1.25
TOP HOLD TIME (s) 15 15 15 15
HNA INTERVAL(s) 5 5 2.5 1.25
HNA HOLD TIME (s) 15 15 15 15
Hysteresis yes no no no

overhead, defined as the average amount of OLSR traffic generated per unit
time by each node (expressed in terms of bps). As Figure 11.3 illustrates,
the routing protocol overheads increase by reducing the generation periods of
control traffic. It is evident that by halving the repetition period of OLSR mes-
sages I almost double the total routing overhead. However, the total overhead
is negligible because it is always lower than 2Kbps. From the shown results,
I notice that some nodes (i.e., MN1 and MN2) generate more control traffic
than others. This is due to the fact that in the OLSR protocol only the MPRs
generate link state reports, and in my experiments nodes MN1 and MN2 act
as MPRs for the other nodes. Node MN3 generates the least OLSR control
traffic because is the end-point of the chain and it sends only Hello messages.
Node GW produces more routing traffic than node MN3 because it is the
gateway node and it sends also HNA messages. On the other hand, it is less
intuitive to explain why there is a slight reduction of protocol overheads when
activating the TCP connection (std configuration) with respect to a network
without data traffic (the std∗ configuration). To provide clear reasons for this
phenomenon, I should consider that each Hello message contains the lists
of sending node’s single-hop and two-hop neighbours, while each TC message
contains the list of all the network links. Hence, the sizes of routing protocol
messages vary depending on the number of links that the routing protocol is
able to discover and to maintain valid. As I will better explain later, using
the std configuration instead of the std∗ increases the number of link timeouts
suffered from the OLSR routing (see Figure 11.5). Consequently, in the std
case the routing messages deliver less topological information than in the std∗
case. This explains the reduction in the generated overheads.

Figure 11.3 shows the amount of control messages produced by the rout-
ing protocol. However, not all the sent messages will be correctly received by
nodes’ neighbours due to collisions, radio problems, and so on. Therefore, to
understand the routing behaviours it is fundamental to evaluate the loss prob-
ability. In particular, I measured the loss probability of routing traffic in terms
of the percentage of OLSR control messages that a node has sent but that its
neighbours have not receive. Figure 11.4 shows the average loss probability for
OLSR traffic experienced by each node in the network. From the experimental
results I observe that in the presence of heavy-loaded traffic the loss probability
can be up to 20%. To explain these values I should note that the OLSR control
traffic is encapsulated into UDP packets that are sent as broadcast frames. It
is well recognized that the transmission of broadcast packets is unreliable on
wireless channel. However, if I consider the std∗ case the loss probability is
very small and always lower that 2%. It is safe to assume that this low number
of losses is mainly due to channel noise and the lack of layer-2 retransmissions
for broadcast frames. On the other hand, as soon as I introduce data traffic
in the network the loss probability of OLSR packets experiences an upsurge.
This can be explained by considering the increase of the collision probability
in an heavy-loaded network. While the MAC layer retransmit unicast frames
to recover from congestion situations, broadcast frames are vulnerable to the
collision events. Thus, the presence of data traffic inevitably degrades the per-

74

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS75

 0

 500

 1000

 1500

 2000

 2500

MN3MN2MN1GW

O
ve

rh
ea

d
(b

ps
)

Std*
 Std
Set1
Set2
Set3

Figure 11.3: Per-node OLSR protocol overheads (TCP case).

 0

 5

 10

 15

 20

 25

 30

MN3MN2MN1GW

L
os

s
pr

ob
ab

ili
ty

 (
%

)

Std*
 Std
Set1
Set2
Set3

Figure 11.4: Loss probability of OLSR control traffic (TCP case).

formance of the OLSR routing protocol and its ability to efficiently distribute
topology updates in case of radio problems or node mobility. Note that the
loss probability of OLSR messages measured on node MN2 is higher that the
loss probability measured on node MN1. By inspecting the experiment traces
I discovered that this difference was due to the fact that link between node
MN3 and MN2 was less reliable than the link between node MN2 and MN1.
As a consequence the OLSR messages, which are not protected by layer-2 re-
transmissions, sent by node MN3 to node MN2 were more frequently subject
to channel losses than the ones sent by node MN2 to node MN1.

To quantify the degradation of the routing protocol performance I introduce
the concept of path life. More precisely, this index measures the portion of
time during which the source has a valid route to its intended destination.
Figure 11.5 show the path life of the route between node MN3 and node GW .

 80

 85

 90

 95

 100

Set3Set2Set1StdStd*

Pa
th

 li
fe

 (
%

)

Figure 11.5: Path life of the route between node MN3 and node GW (TCP
case).

When the OLSR routing is running without the interference of data traffic,
the default parameter setting provides a 99% path life. However, the presence
of unicast traffic generated by a single persistent TCP connection reduces the
routing protocol reliability to 80%. By increasing the frequency the OLSR
messages are generated I rapidly counter-balance the negative impact of unicast
traffic and channel noise on broadcast routing messages. From the experimental
results, I observe that there is no gain in reducing more than four times the
repetition intervals because the set3 configuration is sufficient to ensure a 100%
path life between MN3 and GW nodes in static configurations.

I have replicated the same tests substituting the TCP traffic with asymp-
totic constant-bit-rate (CBR) UDP traffic. My goal was to distinguish between
the influence, if any, of flow controlled elastic traffic (TCP) and unresponsive
inelastic traffic (UDP) on the OLSR routing performance. From the experi-
mental results I observe similar trends but with a general decrease of routing
performance. In particular, Figure 11.6 illustrates the loss probability experi-
enced by each node in the network in the same configurations used during the
TCP case. From the experimental results I can notice that the loss probabil-
ities are higher for the central nodes when using UDP traffic instead of TCP
traffic, with an increase from a maximum loss probability of 20% to 35%. To
explain this increase in the loss probability I can observe that CBR traffic does
not regulate its sending rate to limit network congestion. Thus, even when
the routing protocol suffers a link failure, the UDP flow continues to generate
packets at the same rate. On the contrary, TCP traffic reduces its sending
rate when node MN3 looses its route to node GW . This is beneficial for the
routing control packets, which have more chances to be correctly received.

It is intuitive to note that this further reduction in the percentage of OLSR
control packets that are successfully distributed to neighbours, will negatively
impact the ability of the routing protocol to maintain a stable and reliable

76

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS77

 0

 5

 10

 15

 20

 25

 30

 35

 40

MN3MN2MN1GW

L
os

s
pr

ob
ab

ili
ty

 (
%

)

Std*
 Std
Set1
Set2
Set3

Figure 11.6: Loss probability of OLSR control traffic (UDP case).

end-to-end connectivity. To validate my observations, in Figure 11.7 I reports
the path life of the route between node MN3 and node GW when an asymp-
totic CBR UDP flow is delivering UDP traffic from node MN3 towards node
GW , saturating the wireless links. Concerning the std configuration there is a
decrease from 80% to 35% of path life changing TCP with UDP, while for the
set1 configuration the decrease is from 95% to 65%. It is necessary to employ
at least the set2 configuration to observe reliable routing behaviours.

To summarise my findings, in Figure 11.8 I compare the TCP and UDP
throughput for the various parameter settings considered in the experiments.
First, we can note that the UDP throughput is always greater than the TCP
throughput. This is obviously due to the additional overheads introduced by
the TCP return traffic, which consists of TCP ACK packets. It is also straight-
forward to note that the improvement in the path life stability leads to a cor-
respondent increase in the throughput performance. However, there is not an
additional gain by further increasing the repetition frequency of OLSR mes-
sages beyond the set3 configurations because the throughput curves flatten out.
A further observation derived from the shown results relates to the different
behaviour of TCP and UDP traffic due to the use of flow control mechanisms
in TCP flows. In particular, UDP flows utilize the channel resources in propor-
tion to the path life. For this reason, when the path life is 35% (std setting)
the UDP throughput is about 35% of the throughput obtained when path life
is 100% (set3 setting). On the contrary, TCP behaviour is complicated by the
use of flow-control that reduces the TCP sending rate when there is a packet
loss. As a consequence, when path life is 80% (std setting) the TCP connec-
tions experience losses and the maximum retransmission timeout increases up
to 16 seconds. This indicates that long time intervals separate consecutive re-
transmissions when the end-to-end connectivity is broken. Hence, even if the
path is re-established by the routing protocol the TCP flow may be not aware
of this because it has to wait for the retransmission timer expiration before

 30

 40

 50

 60

 70

 80

 90

 100

Set3Set2Set1StdStd*

Pa
th

 li
fe

 (
%

)

Figure 11.7: Path life of the route between node MN3 and node GW (UDP
case).

retransmitting the last sent segment. Note that the increase of path life from
80% to 95% (set1 setting) reduces the maximum TCP retransmission timeouts
to 4.5 seconds. this implies that TCP connections can utilize more efficiently
the available path without introducing useless delays between retransmissions.
Finally, using the set3 parameter setting the route instability is almost null and
the maximum TCP retransmission timeout is negligible (less than 0.3 seconds).

If not otherwise stated, in the subsequent sections, in which I compare the
efficiency of my proposed solution for interconnecting ad hoc networks to fixed
Internet with respect to the NAT-based solution defined in [48], I will configure
the OLSR protocol using the set3 parameter setting.

11.3 Performance constraints of Internet Ac-
cess

To measure the performance limits of Internet access I conducted experiments
in the network layout depicted in Figure 11.2. However, differently from the
tests performed in Section 11.2, the final destination of the data traffic is not the
GW node, but a server located in the wired part of the extended LAN. My goal
is to verify that my scheme introduces less overhead than a NAT-based scheme
using explicit tunnelling between ad hoc nodes and gateways. The network
performances are measured in terms of the throughput obtained by TCP and
UDP traffic. The differences between the per-connection throughput measured
using my proposed scheme and the NAT-based solution specified in [48] are
used to quantify the protocol overheads.

The first set of experiments is aimed at evaluating the impact on the per-
connection throughput of the number of wireless links traversed in the ad hoc
domain before reaching the gateway. In these tests the IP packet size is con-

78

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS79

 0

 500

 1000

 1500

 2000

 2500

Set3Set2Set1Std

T
hr

ou
gh

pu
t (

K
bp

s)

TCP
UDP

Figure 11.8: Comparison of TCP and UDP throughputs for a 3-hop chain.

 0

 1000

 2000

 3000

 4000

 5000

 6000

5 hops4 hops3 hops2 hops1 hop

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(-1.1%)

(-1.3%)

(-2.1%)
(-3.5%)

(-7.5%)

ARP-based
NAT-based

Figure 11.9: Comparison of TCP throughputs versus the number of hops.

stant and equal to 1500 bytes. Figure 11.9 compares the average throughput
of a single TCP flow measured using my scheme (indicated with the label
“ARP-based” in the plots) or the one proposed in [48] (indicated with the la-
bel “NAT-based” in the plots) versus the number of wireless hops needed to
reach the gateway. Figure 11.10 reports the results obtained in similar config-
urations considering UDP flows. In the parenthesis it is shown the percentage
difference between the throughput measured in the “NAT-based” case and the
one measured in the “ARP-based” case for each network configuration.

Several useful considerations can be drawn from the shown results. First,
my scheme guarantees a higher per-connection throughout in all the consid-
ered network scenarios. This can be easily explained by noting that in the
NAT-based scheme the IP tunnel established between the sender node and the
gateway uses IP-in-IP encapsulation. The additional IP header (20 bytes) can

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5 hops4 hops3 hops2 hops1 hop

U
D

P
T

hr
ou

gh
pu

t (
K

bp
s)

(-1.2%)

(-1.3%)

(-2.2%)

(-3.4%)
(-7.4%)

ARP-based
NAT-based

Figure 11.10: Comparison of UDP throughputs versus the number of hops.

appear a small overhead when compared to the overall packet size. In fact,
on a one-hop connection the throughput degradations is less than 2 percent.
However, this overhead is replicated on all the links traversed by the pack-
ets. Hence, the more hops are needed to reach the gateway, the higher is the
throughput decrease. In fact, for a five-hop connection the throughput mea-
sured in the NAT-based case is about 7 percent less than in the ARP-based
scheme. Another interesting observation derived from the shown results is that
in both schemes the UDP throughput decrease is almost proportional to the
number of hops (i.e., the throughput of a n-hop UDP flow is about n times
lower than the throughput of a one-hop UDP flow), while for the TCP flows
the throughput reduction is greater. This is due to the self-interference be-
tween the TCP data packets and the return TCP acknowledgements, which
are small packets reducing the channel capacity. It is worth pointing out that
my experiments were conducted at ground floor of the CNR building, where no
access points were installed. However, it is still possible that the experimental
measures would be affected by external interferences (e.g., access points located
at higher floors of CNR building or nearby buildings, employees walking in the
corridors, etc.). Hence, to guarantee homogeneous channel conditions between
experiments, I interleaved ARP-based tests with NAT-based tests.

In the previous experiments I considered an IP packet size equal to 1500 bytes,
and I measures the maximum throughput achievable in each network configu-
ration. However, it is widely recognized that in typical Internet traffic the IP
payload size is often smaller than the Ethernet maximum transmission unit [40].
It is intuitive to note that the overheads introduced by the IP-in-IP encapsula-
tion needed to establish a tunnel between the sender node and the gateway de-
grades the throughput performance when the packet size decreases. To quantify
this throughput reduction I conducted a second set of experiments measuring
the throughput obtained by a 3-hop TCP and UDP connection versus the IP
packet size, and I compared the results obtained with the ARP-based scheme

80

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS81

 0

 500

 1000

 1500

 2000

296B552B1064B1500B

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(-2.1%)

(-5.6%)

(-15.6%)

(-23.3%)

ARP-based
NAT-based

Figure 11.11: Comparison of TCP throughputs versus the IP packet size.

 0

 500

 1000

 1500

 2000

 2500

296B552B1064B1500B

U
D

P
T

hr
ou

gh
pu

t (
K

bp
s)

(-2.2%)

(-4.7%)

(-11.6%)

(-24.9%)

ARP-based
NAT-based

Figure 11.12: Comparison of UDP throughputs versus the IP packet size.

and the NAT-based scheme. Figure 11.11 shows the throughput measured for
a 3-hop TCP flow, while Figure 11.12 shows the results in the UDP case. The
shown results clearly indicate that the additional IP header added to the orig-
inal packet is a significant overhead for small IP packets. For instance, when
the IP packet size is 296 bytes, the throughput obtained using the NAT-based
scheme is about 25 percent lower than the one measured in my scheme.

11.4 Performance constraints with gateway hand-
offs

To test the mobility support in a multi-homed network configuration I consid-
ered the network layout illustrated in Figure 11.13. Note that the considered
network layout is a typical example of multi-homed scenarios because in the
same ad hoc cloud the mobile nodes can reach two different gateways. A similar
network configuration was also considered in [48].

The mobility test begins with the mobile node MN4 in position P1, where
it is in radio visibility of gateway GW1. During the test node MN4 has a
TCP (or UDP) flow established with a host H in the wired LAN. Using the
NAT-based scheme, when node MN4 is in position P1 it establishes a tunnel
with gateway GW1, and this tunnel is permanently maintained throughout the
experiment, independently of the MN4’s position. On the contrary, using the
ARP-based scheme, when node MN4 is in position P1 it sets up a default
route to GW1 to reach the external fixed network, but the default gateway
may change according to node mobility pattern. After 50 seconds it moves
to position P2. The time needed to move from one position to the next one
is always 10 seconds. On location P2, node MN4 reaches the gateway GW1
through MN1, i.e., using a 2-hop wireless path. After other 50 seconds, node
MN4 moves to position P3. In this location gateway GW2 is 2 hops away,
while gateway GW1 is 3 hops away. Consequently, using my scheme node MN4
switches to gateway GW2 to forward traffic addressing wired hosts. Moreover,
the new default gateway GW2 begins to act as proxy ARP for the mobile node.
On the contrary, using the NAT-based scheme, node MN4 continues to use
gateway GW1, which is at a distance of 3 hops from node MN4. Finally, after
other 50 seconds, host MN4 moves to position P4, where it is in radio visibility
of GW2. However, the NAT-based technique forces node MN4 to tunnel its
traffic towards gateway GW1 that is 3-hop away. Then, this movement pattern
is repeated on the way back to position P1.

Figure 11.14 shows the throughput obtained by node MN4 in case of TCP
traffic, while Figure 11.15 shows the throughput obtained by node MN4 in
case of UDP traffic. The experimental results confirm that both my scheme
and the NAT-based solution avoid a permanent TCP (or UDP) session break
when the sender moves. However, in my scheme this is achieved by supporting
a transparent handoff between the gateways GW1 and GW2, which does not
require node MN4’s address reconfiguration. On the contrary, the NAT-based
solution described in [48] achieves this result by ensuring that the packets sent

82

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS83

GW1 MN1

MN3
GW2

MN2

P1

MN4

P3

P4

P2

Figure 11.13: Network layout used to conduct tests with node mobility.

by node MN4 are always forwarded through gateway GW1, independently of
the node MN4’s position. This is highly inefficient, because in position P3
and P4, node MN4 is closer to gateway GW2 than to gateway GW1 and it
could use a shorter route to reach the wired LAN. For instance, in position P4
node MN4, using the NAT-based scheme, obtains a throughput that is three
times lower than the one measured using my proposed solution.

Another interesting observation that can be derived from the experimental
results regards the duration of the temporary connection breaks that may be
caused by node movements and gateway handoffs. In particular, Figure 11.14
and Figure 11.15 show that a TCP or UDP connection may be temporarily
unable to successfully deliver packets for intervals close to 15 seconds when
there is a change in the node MN4’ s routing table. The analysis of the causes
of these throughput holes is quite complex because there is the interplay of
different factors. Clearly, a fundamental role is played by the OLSR routing.
For instance, let us consider the movement of node MN4 from position P1 to
position P2. In this case node MN4 continues to use gateway GW1 to reach
the wired LAN, but now the gateway can be reached only through the node
MN1. The routing protocol may quickly discover that the gateway GW1 is
now reachable using a 2-hop route, but it will not immediately invalidate the
old 1-hop route to GW1. In fact, node MN4 continues to consider valid and
usable the shorter 1-hop route to GW1 until the validity time of the direct link
to GW1 does not expire (the link timeout is 6 seconds by default [37]). After
this timer expiration, node MN4 has to rebuild its routing table, and this may
require a few seconds. On the contrary, when node MN4 moves from position

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 60 120 180 240 300 360 420

M
bp

s

Time (sec)

P1 P2 P3 P4 P3 P2 P1

ARP-based
NAT-based

Figure 11.14: Comparison of TCP throughputs when node MN4 moves.

P2 to position P1 I do not observe a temporary loss of connectivity. This
can be explained by noting that, after this movement node MN4 gets closer
to gateway GW1 (from 2 hops to 1 hop). According to the OLSR routing
algorithm, when a shorter route is discovered, the routing table is immediately
updated and recomputed. Similar reasoning can be used to explain routing
behaviour during node MN4’s movements between the other positions. Note
that in my scheme the movement from position P2 to position P3 induces the
change of default gateway for node MN4, while in the NAT-based scheme it
causes the use of a 3-hop route instead of a 2-hop route to reach gateway GW1.

A second factor that affects the duration of throughput holes is the TCP
flow control. In fact, when there is a link breakage, a TCP flow may suffer
packet losses, increasing the retransmission timeouts. Hence, the delay intro-
duced between two consecutive TCP retransmissions contributes to increase
the interval during which no packets are sent on the channel. In other words,
the correct route may be available but the TCP flow does not send packets
because it is waiting for the expiration of the retransmission timer. Finally, a
third aspect that influences the duration of throughput holes is the queueing
delay. In fact, when there is a route change the mobile node has to issue a new
ARP Request to determine the mapping between the IP address and the
physical address of the new neighbour. However, in case of asymptotic UDP
traffic a large number of packets may be queued in the interface transmission
buffer and the transmission of the ARP message may experience significant
delays.

11.4.1 Lessons learned from the test-bed

Several lessons can be learned from the experiences gathered during the test-bed
implementation and the analysis of experimental results. My first observation
refers to the trade-offs related to the use of IP tunnels within multi-hop ad

84

CHAPTER 11. IMPLEMENTATION AND EXPERIMENTAL RESULTS85

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 60 120 180 240 300 360 420

M
bp

s

Time (sec)

P1 P2 P3 P4 P3 P2 P1

ARP-based
NAT-based

Figure 11.15: Comparison of UDP throughputs when node MN4 moves.

hoc environments. This technique is adopted in many existing solutions for
enabling interconnection between MANETs and the Internet. In fact, the use
of IP tunnels is beneficial to provide transparent support of multi-homing and
gateway handoffs. On the other hand, IP tunnelling introduces evident ineffi-
ciencies in multi-hop environments because it impedes the use of the shortest
paths available to reach the external networks. In multi-hop environments this
may lead to significant throughput degradations.

Another relevant practical aspect that should be considered when com-
paring different solutions for enabling interconnectivity between Internet and
multi-homed MANETs is the type of protocol overheads needed to support
gateway handoffs. In particular, existing solutions usually require the address
reconfiguration when the mobile node changes the default gateway. This ad-
dress reconfiguration requires time and may contribute to increase the duration
of temporary session breaks. Mobile-IP based solutions clearly introduce higher
overheads than NAT-based solutions because, upon moving, the mobile node
should register the new care-of-address with its home agent that may be far
from the MANET. To reduce this heavy burden, the solution proposed in [26]
introduces micro-mobility techniques. My scheme does not require address re-
configurations and the gateway handoff causes only an update in the lists of IP
addresses masqueraded by the proxy ARP servers running on the gateway.

Finally, the protocol complexity should also be taken into account when
evaluating the feasibility of a proposal. For instance, solutions employing over-
lay networks of underlay layers below IP may be introduce unacceptable imple-
mentation complexities. In addition, limiting the modifications to conventional
IP mechanisms helps to easily implement the proposed solution under different
environments and platforms.

Chapter 12

Conclusion

During my Ph.D. activity, I designed, prototyped and evaluated a practical
and lightweight architecture to logically extend traditional wired LANs using
multi-hop ad hoc networking technologies. The proposed architecture uses
existing ad hoc routing protocols and can transparently interoperate with the
fixed Internet infrastructure. I have shown that a simple approach exploiting
proxy ARP servers and basic properties of the longest-matching rules used by
standard IP routing is sufficient for establishing an heterogeneous network that
appears to the external Internet as a single IP subnet. The protocol changes are
quite limited and restricted to the gateway nodes. The experiments conducted
in a prototyped system demonstrate that the proposed architectural design
achieves an efficient use of network resources and provides superior throughput
performance than an alternative NAT-based scheme.

I believe that there are several related aspects that are worth being further
investigated in future work.

• The gateway selection procedure implicitly relies on the ad hoc routing
protocol. In the case of OLSR, it is accomplished using shortest-path
criteria. However, in a multi-homing scenario, several gateways can exist,
which may be implemented using different technologies and may have
different capabilities. Thus, there could be many benefits in designing
cooperative heuristics to select gateways such as to obtain load balancing
within the ad hoc network, or more efficient handovers.

• In this work I have considered basic IP services, i.e., unicast routing and
dynamic address allocation. However, more sophisticated functionalities,
such as multicast and QoS management, have been developed for the
Internet. Therefore, my proposed architecture should be extended to
facilitate the integration of these additional capabilities.

• The address allocation scheme described in this thesis allows the exploita-
tion of DHCP servers to assign IP addresses that are topologically correct
in the entire extended LAN. However, it is needed a detailed evaluation

86

CHAPTER 12. CONCLUSION 87

of the efficiency of my proposal and a comparative study with other auto-
configuration schemes. In addition, I intend to explore how to extend my
solution to deal with the typical problems that may arise due to node
mobility, such as message losses, and network partitions and merging.

Part III

Transport Protocols in
MANETs

88

Chapter 13

Introduction

Research on efficient transport protocols for ad hoc networks is one of the most
active topics in the MANET community. Such a great interest is basically
motivated by numerous observations showing that, in general, TCP is not able
to efficiently deal with the unstable and very dynamic environment provided
by multi-hop ad hoc networks. This is because some assumptions in its design
are clearly inspired by the characteristics of wired networks dominant at the
time when it was conceived.

To improve TCP performance in a MANETs environment, a number of
proposals have been presented. The vast majority of these proposals are TCP
modifications that address some particular inefficiency. The main design re-
quirement is indeed to keep the improved transport protocol backward com-
patible with the legacy TCP, so that “improved” and “legacy” users may be
able to communicate with each other. While I acknowledge the importance of
TCP compatibility, during my Ph.D. I advocate a different design approach.
The TCP inefficiencies over ad hoc networks are so many that a single patch
is in general not sufficient to address them all. Thus, TCP would need a large
number of modifications to work in a real environment. The practical inte-
gration and interoperability between such patches is a critical point, which is
still to be addressed. Instead of mixing together patches to fix single flaws, I
designed from scratch the Transport Protocol for Ad hoc networks (TPA), that
is a transport protocol specifically tailored to the MANETs characteristics. At
the design stage I don’t worry too much about backward compatibility with the
legacy TCP. I achieve interoperability with TCP at a later stage, as a single
and coherent patch to the new protocol.

TPA is a lightweight transport protocol that provides a connection-oriented,
reliable type of service. It differs from TCP in a number of ways. Specifically,
the data transfer and the congestion control algorithms have been re-designed.
Furthermore, TPA explicitly detects and deals with both route failures and
route changes. TPA can leverage cross-layer interactions with the routing
protocol, when available. For example, it is able to intercept and interpret
route failure and route re-establishment messages. However, TPA works also

89

with routing protocols that do not provide this type of information.
Many papers have pointed out that the drastic differences between MANETs

and the legacy Internet may lead to poor performance of TCP over MANETs.
However, almost all these studies rely on simulation, and many of them do
not consider some important details (e.g., the routing protocol is often omit-
ted). To the best of my knowledge, very few experimental analyses have been
carried out so far [57, 71]. On the other side, previous experimental studies
have shown that certain aspects of real MANETs are often not effectively cap-
tured in simulation tools [14]. Furthermore, available software and hardware
products often use parameters settings different from those commonly assumed
in simulation tools. Finally, real operating conditions are often different from
those modeled in simulation experiments. For example, interferences caused
by WiFi hotspots or other devices in the proximity are inevitable in practice.
For all the above reasons, I decided to perform a comparison between TCP
and TPA performance in a real multi-hop ad hoc network. To this end, I im-
plemented a TPA prototype (briefly described in Section 15.9), and set up a
multi-hop network testbed to compare TPA with TCP. Firstly, I focus on a
string network (throughout referred also as chain topology) with variable num-
ber of hops (Section 16.6.1). I used this network topology to analyse TCP
performance in a real testbed and over different routing protocols. My experi-
mental outcomes are normally aligned with simulation results, and show that
TCP performance in multi hop ad hoc networks is sub-optimal and strong de-
pends on the link quality and on the routing protocol parameters. In addition,
I also found some results contrasting with simulation. Specifically, I discovered
that in a real world the TCP optimal operating point moves with respect to
that measured by simulation. I also used this setup to investigate the sensi-
tiveness of TPA to its main parameters and its behaviour over different routing
protocols (i.e., OLSR and AODV), and to find its best configurations. The
comparison between TPA and TCP over the string topology show that TPA is
able to improve TCP performance (in its best configuration) both in terms of
increased throughput, and reduced number of (re)transmissions. Specifically,
TPA throughput is between 5% and 19% greater than the TCP throughput,
and, furthermore, TPA retransmits between 64% and 94% less data segments.
This is an important result, as it states that TPA delivers greater throughput,
while reducing energy consumption and network congestion at the same time.
I then consider different topologies (i.e., a cross topology, Section 16.6.2), and
mobile scenarios (Section 16.6.3). Also in these cases TPA outperforms TCP
with respect to both performance figures.

I also analysed TPA performance over more complex network topologies
(Chapter 17). Since it is difficult to construct sophisticated network topology
for testbed evaluation, I used, to complete my analysis, the ns-2 simulator [3].
Specifically, using ns-2 I compared TPA and TCP performance over simple
network topologies, like the cross and the parallels topologies. The simulative
results show that TPA is able to improve TCP performance both in terms
of throughput and fairness. Specifically, TPA throughput is between 5% and
6% greather than TCP throughput, and TPA fairness is between 7% and 16%

90

CHAPTER 13. INTRODUCTION 91

greater than TCP fairness. I then considered more complex network topologies,
like the grid topology and the random topology. Over this topologies, TPA
achieves an increment in fairness between 10% and 34%. However, while in the
grid topology TPA is able to improve the throughput of about 3.7%, over the
random topology TPA experiences a reduction of throughput between 1.5%
and 3.6% respect to TCP. Finally, I also considered a scenario where 50 nodes
moves over a 1000 x 1000 area. Also in this scenario TPA outperforms TCP.
Specifically, TPA achieves an increment in throughput between 1% and 4%,
and an increment in fairness between 3.2% and 18.6%.

To conclude TPA analysis, I start investigating how to address, the well-
known unfairness problems among concurrent connections (Section 17). I inte-
grated in TPA the Adaptive Pacing mechanism, a popular proposal for improv-
ing TCP fairness [46], and I compared the performance of TPA with Adaptive
Pacing and TCP with Adaptive Pacing over the previous scenarios. With the
adaptive pacing mechanism enabled, TPA is able to increase the TCP through-
put up to 39% granting an increment in fairness up to 5.6% respect to TCP.
In addiction, TPA is able to reduce the number of retransmitted segment up
to 78.7%. Also in this case I used the ns-2 simulator to perform my analysis.

The following thesis Part is organized as follow. Chapter 14 describes the
main specificity of MANET that condition TCP behaviour and the major pro-
posals aimed to improve TCP’s performance in such environment. Chapter
15 reports the complete description of TPA features, and the description of
TPA prototype implementation. Chapter 16 describes the testbed and the ex-
perimental methodology used to evaluate TPA and TCP performance in a real
testbed, and reports the results obtained from the analysis. Chapter 17 reports
the results of a simulative analysis of TPA. It also reports some results about
unfairness mitigation in TPA. Finally, Chapter 18 concludes this thesis Part.

Chapter 14

TCP over MANET

14.1 Introduction

TCP (Transmission Control Protocol) is the de facto standard for reliable
connection-oriented transport protocols, and is normally used over IP (Internet
Protocol) to provide end-to-end reliable communications to Internet applica-
tions. Although TCP is independent from the underlying network technology,
some assumptions in its design are clearly inspired from the characteristics of
wired networks dominant at the time when it was conceived. For example,
TCP implicitly assumes that nodes are static (i.e., they do not change their
position over time), and it also implicitly assumes that packet loss is almost
always due to congestion phenomena causing buffer overflows at intermediate
routers. Unfortunately, these assumptions do not hold in MANETs, and TCP
exhibits poor performance, when it operates in such environments.

In multi-hop ad hoc networks, packet losses due to interference and link-
layer contentions are largely predominant, while packet losses due to buffer
overflows at intermediate nodes are rare events. The TCP protocol reacts
to packet losses originated by link-layer contentions by activating the window-
based congestion-control mechanism. This may lead to throughput degradation
and instability [11, 55, 131, 130, 92]. In addition, in multi-hop ad hoc networks
nodes may be mobile. This may further degrade the TCP performance [93]. A
survey of TCP performance and improvements over Ad hoc Networks can be
found in [59].

The rest of this chapter is organized as follows. Section 14.2 describes the
main problem encountered by TCP over MANETs. Section 14.3 discusses the
major proposal aimed to improve TCP’s performance in such environment.

14.2 TCP’s challenges

The performances of TCP degrades in MANETs environment. This happen be-
cause TCP has been optimized for operate over wired networks. In MANETs,

92

CHAPTER 14. TCP OVER MANET 93

TCP has to face new challenges arising from the specificity of these new net-
works. In the following I describe the main specificity of MANET that impact
TCP behaviour.

14.2.1 Lossy channel

Wireless media are characterized by high, variable bit error rates (BERs). Com-
pared with wired networks, wireless networks are susceptible to loss rates about
two orders of magnitude higher. Wireless induced losses are caused primarily
by fading, interferences from other equipments, diverse environmental obstruc-
tions, and signal attenuation. Any of these factors may induce either single or
bursty packet losses. In multi-hop ad hoc networks the effects of channel error
are more serious, since a connection may travel over multi-hop wireless links.

In order to increase the transmission success, link layer protocols implement
mechanisms to recover from a transmission error. For example, the IEEE 802.11
MAC protocol uses link-layer retransmissions (see Chapter 3) to mitigate the
high BER. However, these mechanisms do not entirely solve the problem, and
the high BER can still impact TCP performance. For example, in 802.11 based
networks, broadcast packets are neither acknowledged nor retransmitted, and
hence they are highly vulnerable to collisions and channel errors. Since routing
protocol control packets are broadcast packets, the high BER can influence the
routing protocol behaviour. This may indirectly degrade TCP performance
(see Section 16.5.2).

14.2.2 Interaction between TCP and MAC Protocols

The interaction between TCP and the IEEE 802.11 medium access control
protocol is one of the most crucial problems to be addressed in multihop wireless
networks. The fact is that 802.11 relies on the assumption that every node can
reach each other or at least sense any transmission into the medium, which is
not always true in a multihop scenario. Consequently, in some conditions the
hidden and the exposed terminal problems (see Section 3) can arise inducing
throughput degradation on TCP flows and fairness related issue. A hidden node
is the one that is within the interfering range of the intended receiver but out
of the sensing range of the transmitter. The receiver may not correctly receive
the intended packet due to collision from the hidden node. An exposed node
is the one that is within the sensing range of the transmitter but out of the
interfering range of the receiver. Though its transmission does not interfere
with the receiver, it could not start transmission because it senses a busy
medium, which introduces spatial reuse deficiency. Since multi-hop ad hoc
networks are characterized by multi-hop connectivity, these problems heavily
affects their behaviour.

[130, 132] shown that the hidden and the exposed terminal problem may sig-
nificantly affect TCP performance in a multi-hop ad hoc environment. Specif-
ically, using a string topology network, Xu et al. [130, 132, 131] shown that
TCP may encounter the the following problems:

• instability problem: the instantaneous throughput of a TCP connection
may be very unstable (dropping frequently to zero) even when this is the
only active connection in the network.

• incompatibility problem: in case of two simultaneous TCP connections, it
may happen that the two connections can not coexist: when one connec-
tion develops the other one is shut down.

• one-hop unfairness problem: with two simultaneous TCP connections,
if one connection is single-hop and the other one is multiple-hop, it may
happen that the instantaneous throughput of the multiple-hop connection
is shut down as soon as the other connection becomes active (even if the
multiple-hop connection starts first). There is no chance for the multiple-
hop connection once the one-hop connection has started.

The above problems have been revealed in a string network topology like
the one shown in Figure 14.1 where the distance between any two neighboring
stations is 200 m and stations are static. According to the 802.11 based Wave-
Lan, the nominal transmission radius of each station has been set to 250 m (each
station can thus communicate only with its neighboring stations). Furthermore,
the sensing and interfering ranges have been set to twice the transmission range,
i.e., 500 m, the typical setting of the ns-2 simulator. Below I will provide a
brief explanation of how the instability problem arises.

Figure 14.1: Instability Problem.

Figure 14.1 shows one TCP connection, spanning from node N1 to node N5
(four-hop connection). Let us assume, for example, that node N4 is transmit-
ting a TCP segment to node N5, and node N1 wants to transmit a frame to
node N2. N1 cannot hear the RTS from N4 because it is out of its transmission
range and, thus, it is not aware of N4 transmission. Consequently, according to
the 802.11 MAC protocol, N1 tries to send an RTS frame to N2, and then wait
for the corresponding CTS frame. However, N2 never receives this CTS frame.
Most of the RTS transmission attempts tried by N1 results in a collision at N2
due to the interference of N4 (hidden station problem). N2 is in the interfering
range of N4 since in the considered setting the interfering range is twice the
transmission range. However, similar situation happens if we consider a smaller
interference range (which is more realistic). Let us assume that N2 is out of
the interference range of N4 . In this case, even if N2 successfully receives the
RTS frame, it is not able to reply with the corresponding CTS frame, again due

94

CHAPTER 14. TCP OVER MANET 95

to N4. This because N2 can sense the transmission of N4 since N4 is within
the sensing range of N2. This inhibits N2 from accessing the wireless medium
(exposed station problem). After failing to receive the CTS frame from N2 for
seven times, N1 reports a link breakage to its upper layer. If a reactive routing
protocol is used, like [68, 100], N1 starts a route discovery process. Obviously,
while looking for a new route no data packet can flow along the connection
and this makes the instantaneous throughput drop to zero. In sort, the hidden
and the exposed terminal problems may produce a lack of ACKs at the TCP
sender, leading it to activate the window-based congestion-control mechanism.
As soon as a timeout expires, TCP reduces the window size to one packet even
if the network isn’t congestionated, reducing the connection throughput.

The TCP congestion window size plays an important role on TCP perfor-
mance in such environment. [131] and [55] show that there exists an optimal
value of the TCP congestion window size at which the link-layer contention is
minimized and TCP throughput is maximized. However, TCP congestion con-
trol doesn’t operate around this optimal value, and typically grows its average
window size much larger. This produce an exacerbation of the hidden and the
exposed terminal problems, a decrease in throughput (in the order of 5-30%
with respect to the optimal case), and an increase in packet losses. Further-
more, the exponential backoff strategies used by TCP to compute the RTO
may exacerbates the situation. When a link failure happens, if multiple time-
outs occur, TCP tends to increase the RTO rapidly even there is no congestion.
This increase in RTO value may further harm TCP performance.

The above example explains how the instability problem arises. Similar
explanation can be provided for the one-hop unfairness problem. Figure 14.2
shows two TCP connections. The first connection is from node N1 to node N2
(one-hop connection), while the second connection is from node N5 to node N3
(two-hop connection). If we assume that N1 is transmitting a TCP segment
to N2, node N4 cannot contact node N3, for the same reason explained above.
However, there are other factor that affects the performance of the two-hop
connection. Since N4 is in the interfering range of N2, it has to defer when
N2 is sending. Therefore, N4 can transmit an RTS frame only when N2 is
not sending. In addition, in the one-hop connection as soon as N1 receives a
TCP ACK from N2, it can immediately prepares itself to send another TCP
segment. This means that N4 has very few opportunity to find the channel
free. Finally, TCP segments transmitted by N1 are usually much larger in size
than RTS frames that N4 tries to transmit. In conclusion, the time available
for N4 for successfully accessing the channel is very small. In addition, the
exponential backoff scheme used by the 802.11 MAC protocol always favours
the last succeeding station. This “capture” effect [130, 132] is not peculiar of
the string network topology. Gerla and al. observed the same phenomenon
even in other scenarios [127].

From the above examples, it emerges that several features of the multi-hop
ad hoc environment contribute to the poor performance of TCP. Specifically,
the hidden and the exposed station problems and the random backoff scheme
of the 802.11 MAC protocol contribute to a severe unfairness between TCP

Figure 14.2: One-hop unfairness problem.

connections and also produces poor performance even in the case of a single
TCP connection.

14.2.3 Path Asymmetry

Path asymmetry in ad hoc networks may appear in several forms as loss rate
asymmetry an route asymmetry. Loss rate asymmetry takes place when the
backward and the forward paths suffer a different level loss. This asymmetry
occurs because packet losses depend on local constraints that can vary from
place to place. This may impact the routing protocol behaviour, and conse-
quently, TCP performace (see Section 16.5). Route asymmetry takes place
when TCP data and TCP ACKs follow different paths. This asymmetry may
be an artifact of the routing protocol used. Route asymmetry increases rout-
ing overheads and packet losses in the case of a high degree of mobility. This
because when nodes move, using a different path for the forward and the re-
verse traffic, increases the probability of route failures experienced by the TCP
connectsions.

14.2.4 Node Mobility

Node mobility may severely degrades TCP performance in mobile ad hoc net-
works (MANETs) [8, 33, 45, 79, 62, 54, 116]. This is due to the inability of
the TCP protocol to manage efficiently mobility effects. Node movements may
cause route failures and route changes1 which may results in packet losses and
delayed ACKs at the sender side. TCP misinterprets these events as conges-
tion signals and activates the congestion control mechanism. This may leads
to unnecessary retransmissions and throughput degradation. In addition, the
process for discovery a new route may take significantly long time, and it de-
pends on the underlying routing protocol, mobility pattern of mobile nodes,
and traffic characteristics. If route discovery time is longer than TCP’s RTO,
multiple timeouts expiration may exacerbates the situation. The situation may
be further aggravate if the sender and the receiver of a TCP connection go into
different network partitions. This because TCP retransmits unacknowledged
segments even if there is no route available to the destination. In such a cases,

1Another factor that can lead to route failures are the link failures caused by the congestion
on the wireless channel.

96

CHAPTER 14. TCP OVER MANET 97

multiple consecutive timeouts expiration produce an increment of the RTO
value. If the RTO grows to a too high value, since the TCP sender does not
have indications on the route re-establishment event, the throughput and the
session delay will degrade because of the large idle time.

14.2.5 Routing Protocol Strategies

Routing protocols play a key role on TCP performance. This because in
MANETs the network topology may changes frequently an rapidly. When
a topology change occurs, the routing protocol is responsible for discovering
a new route connecting sender and receiver. In such a situation, the routing
protocol must perform the route discovery in a quick fashion to prevent the
ongoing TCP connection from being disrupted. Even if the topology is static,
the routing protocol strategy may impact TCP performance [91]. In the follow-
ing are reported some examples on how the routing protocol can affects TCP
performance.

In DSR [68] routing protocol, every node keeps a cache of routes it has
learned or overheard in order to minimize the transmission overhead involved
in route advertisements. The problem with this approach is that in a dynamic
environment the probability of stale routes is not negligible. So, unless the
stale routes can be detected and recovered in a fast manner, TCP can be led
to backoff state, which deteriorates its performance. The problem of stale
route in DSR was studied in [61, 62] where the authors showed that it can be
mitigated by either manipulating TCP to tolerate such a delay or making the
delay shorter so that TCP can deal with it smoothly. These studies showed that
disabling route replies from caches can improve route accuracy at the expense
of the routing performance in terms of transmission overhead, since every new
route discover implies in a new broadcast to be sent. On the other hand, such
an additional overhead is, in general, outweighed by the accuracy in the route
determination, mainly for high mobility conditions, resulting in enhanced TCP
throughput.

As discussed in Section 4.1, AODV may take two different approaches for
link failure detection. It can either exploit link failure notifications from the
underlying layer, or relay upon a periodic exchange of Hello messages. Both
this approach have their drawback. The link failure notifications mechanism
make TCP protocol sensible to loss of packets due to link layer contention [87].
As described in Section 4.1, with this mechanism enabled, after any link break-
age the AODV sender must perform route discovery process. Consequently,
even if the network is static, loss of packets due link layer contention acti-
vates the procedure of route discovery, and TCP throughput may falls to zero
for a non negligible period of time. On the other hand, if the Hello mes-
sages are used to maintain local connectivity, the unreliability of broadcast
messages may produces false link-failure detections (see Section 16.5.2). These
false link-failures degrade TCP performance. With this mechanism enabled,
an accurate estimate of the impact of AODV parameters, like Hello Interval
and Allowed Hello Loss, on TCP performance is an ongoing research activity.

Also with OLSR routing protocol there are many parameters that can im-
pact TCP performance. As for AODV, the Hello Interval and the
Neighb Hold Time parameters play an important role on TCP performance,
as noted in Section 11.2. In addition, also the Hysteresis mechanism im-
plemented in OLSR Unik [120] significantly affect TCP performance. As for
AODV protocol, an accurate study on the impact of OLSR parameters on TCP
performance is an ongoing research activity.

Routes in MANETs are short-lived due to frequent link breakages. To
reduce delay due to route re-computation, some routing protocols [38, 78, 75,
81, 134, 123] have been designed to maintain and use multiple routes between a
sender-receiver pair. With this routing protocol strategy, the probability that
there is no path from the sender to the receiver is effectively reduced. However,
when multi-path routing protocol are used, TCP encounter many problems.
For example, if multiple paths are used simultaneously one problem is that
average round trip time (RTT) estimation is not accurate under multipath
routing. Namely, the average RTT over several paths may be much shorter
than the max RTT (on the longest path). Thus, TCP sender may prematurely
timeout packets which happen to take the longest path. Moreover, packets
going through different paths may arrive at the destination out of order and
trigger duplicate ACKs, which in turn may trigger unnecessary TCP congestion
window reductions. [78] shows that using multiple path simultaneously actually
degrade TCP performance.

Summarizing, the ability of routing protocol to manage the various charac-
teristics of MANETs, and the strategies used by routing protocols to maintain
connectivity between nodes, play an important role on TCP performance.

14.2.6 Power Constraints

MANETs are a collection of mobile nodes. Consequently, batteries carried by
each node have limited power supply, and a limited battery lifetime. This is a
major issue in ad hoc networks, since each node acts as an end system and as a
router at the same time, with the implication that additional energy is required
to forward and relay packets. This constraint, imposes that each protocol for
MANETs should be designed with special attention to power consumption. As
a consequence, also TCP should use the scarce power resource in an “efficient”
manner. This means that TCP should be modified to minimize the number of
unnecessary retransmissions.

14.3 Related Work

The following section presents various proposals available in literature to im-
prove TCP performance over MANETs. To classify the main related works
I used an approach similar to that proposed in [59]. Specifically, I grouped
the main proposals to improve TCP performance over Ad hoc Networks into
four categories, as follow. The first category, hereafter called Proposals to Dis-
tinguish Between Losses Due to Route Failures and Congestion, includes TCP

98

CHAPTER 14. TCP OVER MANET 99

enhancements that aim to discriminate between packet loss due to route failures
and packet loss due to congestion. The second category, hereafter called Pro-
posals to Reduce Route Failures, includes solutions that address the problem of
frequent route failures in MANETs. The third category, hereafter called Pro-
posals to Reduce Wireless Channel Contention, includes proposals that address
the problem of contention on the wireless channel. Finally, the fourth category,
hereafter called Proposals to Improve TCP Fairness, consists of solutions that
address the problem of TCP unfairness in Ad hoc Networks. I also classified
the proposals that belong to each category into two set: cross layer proposals
and layered proposals. The cross layer proposals rely on interaction between
different layers of the Open System Interconnection (OSI) architecture. Lay-
ered proposals rely on modifications of OSI layers that do not use information
provided by other layers. The layered solution can be further classified based
on the OSI layer at wich they operate. To conclude, I have also dedicated a
separate section to that solutions that implement novel transport protocols.

14.3.1 Proposals to Distinguish Between Losses Due to
Route Failures and Congestion

Many papers [62, 12, 45, 8, 33, 54] have shown that TCP performance degrade
in the presence of node mobility. Node movements may cause route failures and
route changes which results in packet losses and delayed ACKs at the sender
side. TCP misinterprets these events as a sign of congestion and activates the
congestion control mechanism. This may leads to unnecessary retransmissions
and throughput degradation. In addition, as noted in [12], factors as MAC
failure detection (i.e., the time spent by the MAC to discover a route failure)
and route computation latencies (the time taken by the routing protocol to
recompute the route after a route failure) also contribute to the degradation
of TCP performance. In the following I report the main proposals aimed to
discriminate between packet loss due to route failures and packet loss due to
congestion.

Cross Layer Proposals

Chandran et al. [33] propose a feedback-based approach (TCP-F) to handle
problems related to node mobility. TCP-F uses the Route Failure Notifica-
tion (RFN), and the Route Re-establishment Notification (RRN) messages to
distinguish between losses due to route failure and losses due to network con-
gestion. Specifically, when the routing agent of a node detects the disruption of
a route, it explicitly sends a RFN packet to the source. On receiving the RFN,
the source goes into a snooze state. The TCP sender in snooze state will stop
sending packets and will freeze all its variables such as timers and congestion
window size. The TCP sender remains in this snooze state until it is notified of
the restoration of the route through a RRN packet. Upon receiving the RRN,
the TCP sender will leave the snooze state and will resume transmission based
on the previous sender window and timeout values. TCP-F also uses a timer to

avoid blocking scenario in the snooze state. The TCP sender, upon receiving
the RFN, triggers a route failure timer. When this timer expires the congestion
control algorithm is invoked normally. The authors report an improvement by
using TCP-F over TCP.

Holland et al. [62] propose an approach similar to that in [33]. They
use an Explicit Link Failure Notification (ELFN) message to freeze the TCP
state upon a route failure. This message is is piggybacked onto the route
failure message sent by the routing protocol to the sender, and it contains
the sender and receiver addresses and ports, as well as the TCP segment’s
sequence number. On receiving the ELFN message, the source responds by
disabling its retransmission timers and enters a “standby” mode. However,
unlike the proposal in [33], during the standby period, the TCP-ELFN sender
periodically probes the network to check if a route has been re-established. If
the acknowledgment of the probe packet is received, the TCP sender leaves the
standby mode, resumes its retransmission timers, and continues the normal
operations. The authors also study the effect of varying the time interval
between probe packets. They also evaluate the impact of the RTO and the
Congestion Window (CW) on the restoration of the route. They found that a
probe interval of 2 sec. performs the best, and they suggest making this interval
a function of the RTT instead of giving it a fixed value. For the RTO and CW
values upon route restoration, they found that using the prior values before
route failure, performs better than initializing CW to 1 packet and/or RTO to
6 sec. (the default initial value of RTO in TCP Reno and NewReno). This
technique provides significant enhancements over standard TCP, but further
evaluations are still needed. For instance, the authors only considered the DSR
routing protocol, while to a complete analysis other routing protocols should
be used (like OLSR [37]). However, Anantharaman et al. [12] report that
in the case of high network load , TCP-ELFN performs worse than standard
TCP. This because TCP-ELFN uses periodic probe messages to detect route
re-establishment. In addition, Monks et al. [83] find that even in the case of
light load ELFN performs worse than standard TCP by 5 percent in the case of
static ad hoc networks. This because, link failures due to link layer congestion,
produce undesired ELFN messages.

Liu et al. [79] propose to leave the TCP implementation unchanged, and
insert a thin layer (ATCP) between IP and standard TCP to improve the
TCP behaviour. ATCP deals with problems related to high Bit Error Rate,
node mobility, and classic network congestion. To discover the network state
and to react consequently, ATCP utilizes the network state information pro-
vided by ECN (Explicit Congestion Notification) [104] and ICMP “Destination
Unreachable” messages. On receiving a “Destination Unreachable” message,
ATCP puts the TCP sender into persist mode and itself enters the disconnected
state. During this state the TCP agent is frozen and no packets are sent until a
new route is found by probing the network. A replay to the probing messages
remove TCP from persist mode and moves ATCP back into normal state. The
ECN is used as a mechanism to explicitly notify the sender about network
congestion along the route being used. Upon reception of the ECN, ATCP

100

CHAPTER 14. TCP OVER MANET 101

moves into its congested state and does nothing. In other words, ATCP does
not interfere with TCP’s normal congestion behaviour. After TCP transmits
a new segment, ATCP returns to its normal state. To detect packet losses due
to channel errors, ATCP monitors the received ACKs. When ATCP sees that
three duplicate ACKs have been received, it puts TCP in the persist state.
After that, ATCP enters the loss state and quickly retransmits the lost packet
from TCP’s buffer. After receiving the next ACK, ATCP returns to its normal
state and moves TCP to the normal state. Note that ATCP allows interoper-
ability with TCP sources or destinations that do not implement ATCP. ATCP
was implemented in a testbed and evaluated under different scenarios, such
as congestion, lossy links, partition, and packet reordering. In all cases the
transfer time of a given file using ATCP yielded better performance than TCP.
However, the used scenarios was somewhat special, since neither wireless links
nor ad hoc routing protocols were considered. In fact, the authors used an ex-
perimental testbed consisting of five PCs equipped with Ethernet cards. With
these PCs, the authors formed a four-hop network. However, certain assump-
tions, such as an ECN-capable node as well as the sender node being always
reachable, might somehow be hard to meet in a mobile ad hoc context. Also,
ATCP suffers the same problem encountered by TCP-ELFN, and it does not
menage the problem related to link layer contention.

Kim et al. [72] propose TCP-BuS. To menage nodes mobility, TCP bus uses
two control messages, like in [33]. These messages are called Explicit Route
Disconnection Notification (ERDN) and Explicit Route Successful Notification
(ERSN). On receiving the ERDN from the node that detected the route failure,
called the Pivoting Node (PN), the source stops sending segments. Similarly,
after route re-establishment by the PN using a Localized Query (LQ), the PN
will transmit the ERSN to the source. On receiving the ERSN, the source
resumes data transmission. During the Route ReConstruction (RRC) phase,
packets along the path from the source to the PN are buffered. To avoid time-
out events during the RRC phase, the retransmission timer value for buffered
packets is doubled. As the retransmission timer value is doubled, the lost pack-
ets along the path from the source to the PN are not retransmitted until the
adjusted retransmission timer expires. To overcome this, an indication is made
to the source so that it can retransmit these lost packets selectively. When
the route is restored, the destination notifies the source about the lost packets
along the path from the PN to the destination. On receiving this notifica-
tion, the source simply retransmits these lost packets. However, the packets
buffered along the path from the source to the PN may arrive at the destina-
tion earlier than the retransmitted packets. In this case the destination will
reply by duplicate ACK. These unnecessary request packets for fast retransmis-
sion are avoided. In order to guarantee the correctness of TCP-BuS operation,
the authors propose to transmit reliably the routing control messages ERDN
and ERSN. The reliable transmission is done by overhearing the channel after
transmitting the control messages. If a node has sent a control message but did
not overhear this message relayed during a timeout, it will conclude that the
control message is lost and it will retransmit this message. TCP-Bus introduces

many new techniques for the improvement of TCP. The novel contributions of
this paper are the buffering techniques and the reliable transmission of control
messages. In their evaluation the authors found that TCP-BuS outperforms
the standard TCP and TCP-F under different conditions. The evaluation is
based only on the ABR routing protocol, and other routing protocols should be
taken into account. Also, TCP-BuS did not take into account that the pivoting
node may fail to establish a new partial route to the destination. In this case,
what will happen to the packets buffered at intermediate nodes is not handled
by the authors. In addition, like ATCP, TCP-Bus suffers the same problem
encountered by TCP-ELFN, and it does not menage the problem related to
link layer contention.

Transport Layer Proposals

Dyer et al. [45] propose a sender-based modification of the standard TCP
(fixed-RTO) to distinguish between congestion and route failures. Specifically,
they consider the number of in-sequence timeouts expiration as a sign of route
failure. After two consecutive timeout expirations, the TCP sender assumes
that a route failure has occurred and, hence, keeps the Retransmission TimeOut
(RTO) constant until the route is re-established and the retransmitted packet
is acknowledged. Dyer et al. evaluate the fixed-RTO proposal by considering
different routing protocols and different TCP extentions, as the TCP SACK
and the delayed acknowledgment. They report that significant enhancements
are achieved when using fixed-RTO with reactive routing protocols. In this
proposal, the hypothesis that two consecutive timeouts are only produced by
route failures need more analysis, especially in cases of congestion. In addition,
the authors do not evaluate the impact of channel contention on their proposal.

Wang et al. [125] propose a modification of TCP called TCP-Door. This
proposal does not require the cooperation of intermediate nodes and is based
on out-of-order (OOO) delivery events. OOO events are interpreted as an indi-
cation of route failure. The detection of OOO events is accomplished either by
means of a sender-based and a receiver-based mechanisms. The sender-based
mechanism uses the non-decreasing property of the ACKs sequence numbers to
detect the OOO ACK packets. To permit the TCP sender to discover an out-of-
order delivery, the authors propose to add to the TCP ACK header a one-byte
TCP option, called ACK duplication sequence number (ADSN). When TCP
receiver sends the first ACK for a data segment, the ADSN option is set to
zero. Whenever it sends out a duplicate ACK for the same sequence number,
it increments the ADSN number. This way, each duplicate ACK will carry
a different ADSN field and the TCP sender can compare this field to detect
an OOO delivery. The receiver-based mechanism, instead, needs an additional
two-byte TCP option, called the TCP Packet Sequence Number (TPSN), to de-
tect OOO Data packets. Starting from zero, and incremented with every data
segment sent (including retransmissions), this TPSN records the exact order of
the data segment stream. This is different from the normal TCP sequence num-
ber because the latter refers only to the data segment stream a retransmitted

102

CHAPTER 14. TCP OVER MANET 103

segment always carries the old data segment sequence number. With TPSN
option, the TCP receiver can detect OOO reliably. If the receiver detects an
OOO event, it should notify the sender by setting a specific option bit, called
the OOO bit, in the ACK packet header. Once the TCP sender knows about
an OOO event, it takes the following two response actions: it temporarily dis-
ables congestion control, and instantly recovers during congestion avoidance.
In the former action, the TCP sender disables the congestion algorithm for
a specific time period (T1). That is, for a time period T1 after detecting an
OOO, TCP sender will keep its state variables constant, such as the retrans-
mission timer (RTO) and the congestion window size. In the latter action, if
the congestion control algorithm was invoked during the past time period (T2),
the TCP sender should recover immediately to the state before the invocation
of the congestion control. The authors make the time periods T1 and T2 a
function of the RTT. Wang et al. analyse TCP-DOOR in different scenarios.
Their results show that sender-based and receiver-based mechanisms behave
similarly. Thus, they recommend the use of the sender detection mechanism
as it does not require notifications from the sender to the receiver. Regarding
the two actions mentioned above to be taken upon an OOO event detection,
they have found that both actions lead to significant improvement. In general,
TCP DOOR improves TCP performance up to 50 percent. Nevertheless, the
supposition that OOO events are the exclusive results of route failure deserves
much more analysis. Actually, multipath routing protocols such as TORA [94]
may produce OOO events that are not related to route failures. In addition,
also this work does not address the problem relate to channel contention.

Fu et al. [53] propose an extension of TCP-NewReno called ADTCP.
ADTCP uses joint statistics of different end-to-end metrics to distinguish be-
tween different network states like congestion, channel error, route change, and
disconnection. To identify congestion, the authors use the Inter-packet delay
difference (IDD) and the Short-term throughput (STT) metrics. IDD Metric
measures the delay difference between consecutive packets, and it reflects the
congestion level along the forwarding delivery path. STT metric is also intended
for network congestion identification, and it provides observation of throughput
over a predefined time interval. When ADTCP is not in the congested state,
it uses the Packet out-of-order delivery ratio (POR) and the Packet loss ratio
(PLR) metrics to distinguish between channel-error and route-change states.
ADTCP takes a burst of high POR sample values as an indication of a route
change and a high PLR value as an indication of a high rate of channel error.
ADTCP detects a disconnection event when packet delivery is interrupted for
non-congestion reasons for long enough to trigger a retransmission timeout at
the sender.

14.3.2 Proposals to Reduce Route Failures

Node mobility may produce frequent Route Failures and Route Changes. These
events impact the performance of TCP. In the following I report the main
proposals aimed to reduce the amount of Route Failure.

Cross Layer Proposals

Koparty et al. [74] propose Split TCP. Split TCP scheme splits long TCP con-
nections into shorter localized segments to reduce the number of route failure in
connections that have a large number of hops, and to improve fairness between
multiple flows. The interfacing node between two localized segments is called
a proxy. The routing agent decides if its node has the role of proxy according
to the inter-proxy distance parameter. The proxy intercepts TCP segments,
buffers them, and acknowledges their receipt to the source (or previous proxy)
by sending a local acknowledgment (LACK). A proxy is also responsible for de-
livering the segments at an appropriate rate to the next local segment. Upon
receipt of a LACK (from the next proxy or from the final destination), a proxy
will purge the segments from its buffer. To ensure source-to-destination relia-
bility, an ACK is sent by the destination to the source, similar to what occurs in
standard TCP. In fact, this scheme also splits the transport layer functionalities
into end-to-end reliability and congestion control. This is done by using two
transmission windows at the source, the congestion window and the end-to-end
window. The congestion window is a sub-window of the end-to-end window.
While the congestion window changes in accordance with the rate of arrival of
LACKs from the next proxy, the end-to-end window will change in accordance
with the rate of arrival of the end-to-end ACKs from the destination. At each
proxy there would be a congestion window that would govern the rate of send-
ing between proxies. Simulation results indicate that an inter-proxy distance
of between three and five impact favourably on both throughput and fairness.
The authors report that an improvement of up to 30 percent can be achieved
in the total throughput by using Split TCP. The drawbacks are large buffers
and network overhead. Also, this proposal makes the role of proxy nodes more
complex, as for each TCP session they have to control segment delivery to
succeeding proxies.

The proposal in [56] tries to reduce the number of route failures and the
route reconstruction latency. These targets are achieved by switching to a new
route when a link of the current route is expected to fail in the future. This
technique is coupled with the on-demand routing protocols AODV and DSR.
The mechanism to predict failure is power-based. More specifically, when an in-
termediate node along a route detects that the signal power of a packet received
from its upstream node drops below a given threshold, called the preemptive
threshold, this intermediate node will detect a routing failure. On detecting
this event, the intermediate node will send a route warning to the source node.
Upon receiving a route warning, the source initiates a route discovery in or-
der to find a higher quality path to switch to. The value of the preemptive
threshold appears to be critical. Indeed, in the case of a low threshold value,
there will not be sufficient time to discover an alternate path before the route
fails. Also, in the case of a high threshold value the warning message will be
generated too early. To overcome the fluctuations of the received signal power
due to channel fading and multipath effects, which may trigger a preemptive
route warning and cause unnecessary route request floods, the authors use a

104

CHAPTER 14. TCP OVER MANET 105

repeated short message probing to verify the correctness of the warning mes-
sage. When the signal power of the packet sent from an adjacent node drops
below the preemptive threshold, the node which received the packet with sub-
threshold signal strength starts pinging the adjacent node (which transmitted
the packet that was received with below-threshold power). Upon receiving the
ping, a node immediately responds with a pong. Upon receiving the response,
the original node (which received the packet with low power) pings the adja-
cent node again and receives a pong again. n such ping-pong responses are
monitored for signal strength. During this monitoring period if the total num-
ber of bad packets received is above a certain threshold value k, then a route
warning is sent back to the source. Also if there is no response to a ping within
a timeout-period a route warning is sent back. Using simulations the authors
show that their scheme yields a reduction of the number of route failures and
decreases latency by 30 percent. It should be noted that this scheme is “packet
receipt event-driven” and that failures cannot be detected if no packets are
transmitted.

Klemm et al. [73] propose a solution similar to that in [56]. However, in [73]
each node keeps a record of the received signal strengths of 1-hop neighboring
nodes. Using these records, the routing protocol predicts link break events.
To alleviate the effects of mobility, Klemm et al. propose two mechanism to
be integrated at the MAC layer: the Proactive and the Reactive Link Man-
agement (LM). Proactive LM tries to predict link breakage, whereas Reactive
LM temporarily keeps a broken link alive with higher transmission power to
salvage packets in transit. The authors also provide a modification of AODV
that allows the forwarding of packets in transit on a route that is going down
while simultaneously initiating a search for a new route. To predict link break
due to mobility, each node measures the signal strength (Pr) of each packet
received, and observes how Pr changes over time. Klemm et al. also propose
a mechanism to reduce link failures. Specifically, they modify the MAC layer
in order to double the number of retransmission attempts if there is a high
probability that the neighbour is still within transmission range. To determine
if a node is still within the transmission range, each node measures the signal
strength (Pr) of each packet received, and observes how Pr changes over time.
However, this mechanism works only when the level of network congestion is
not to high, and the authors said that this method will have to be comple-
mented by other techniques that can estimate the level of congestion. The
authors use simulations to show that their scheme significantly improve TCP
performance.

He et al. [60] propose a scheme to use a narrow-bandwidth, out-of-band
busy tone channel to make reservation for broadcast frame, and to perform
link error detection. With the proposed scheme, the sender sends short control
messages in the busy tone channel to protect broadcast frames. In addition, the
sender sends some short control messages in the busy tone channel to identify
a false link failure. The authors use both analytical and simulation analysis
to validate their solution. Analytical results show that the proposed scheme
can reduce the collision probability of broadcast frames and can alleviate the

problem of false link failure. Simulations results show that the proposed scheme
can improve TCP throughput by 23% to 150%, depending on user mobility, and
effectively enhance both short-term and long-term fairness among coexisting
TCP flows in multihop wireless ad hoc networks.

Network Layer Proposals

Lim et al. [78] propose to improve the path availability of TCP connections
using multipath routing protocols. The authors found that the original multi-
path routing deteriorates TCP performance due to the inaccuracy in average
RTT measurement and out-of-order packet delivery. Thus, they introduce a
new variation of multipath routing, called backup path routing. Backup path
routing uses only one path at a time but it maintains some backup paths and
can switch from current path to another alternative path rapidly if current
path fails. Using simulations, the authors observed that maintaining one pri-
mary path and one alternate path for each destination yields the best TCP
performance. The author use three criteria for the destination node to choose
the good paths: the shortest-hop path, the shortest-delay path and the max-
imally disjoint path. The shortest-hop path means the number of hops from
the source to the destination is the smallest. The shortest-delay path refers
to the path from which the destination receives the first RREQ packet. The
maximally disjoint path is for selecting the secondary path after the primary
path has been decided. That is the secondary path is the one which has the
fewest overlapped intermediate nodes with the primary path. The authors then
consider a combination of these criteria to select the primary and the secondary
paths. The first combination consists of selecting the shortest-hop path as the
primary and the shortest-delay path as the alternate. The second combination
consists of selecting the shortest-delay path as the primary and the maximally
disjoint path as the alternative. Comparing the two selection schemes, the au-
thors found that the first scheme outperforms the second scheme. As a result of
using the second scheme, routes tend to be longer in number of hops. Compar-
ing TCP performance over the DSR routing protocol with backup routing, the
authors report an improvement in TCP throughput of up to 30 percent with
a reduction in routing overheads. These results are based on various mobility
and traffic load scenarios.

Chung et al. [87] propose a simple modification to reactive routing protocols
to reduce the number of false link failure. At first, the authors redefine the
throughput instability problem as a “re-routing instability problem”, since it
is caused by the triggering of the re-routing function and is not specific to
TCP traffic alone. Then, they propose to adopt a “don’t-break-before-you-
can-make” modification to the existing ad-hoc routing protocols. With this
strategy, after a link failure the old route will continue to be used until a
new one can be established. At the same time, the source node is informed
about the link failure event and starts route discovery procedure. After a new
route is created, all nodes discard the previous route and switch to the new
one for transmission. The modified routing agent can still switch to a new

106

CHAPTER 14. TCP OVER MANET 107

route successfully in a real-break case. The proposed mechanism has been
implemented with AODV. The authors use simulations to shown that their
mechanism eliminates the instability problem.

14.3.3 Proposals to Reduce Wireless Channel Contention

Many papers [132, 131, 130, 55, 34, 92, 85] have shown that TCP performs
poorly even in static MANETs. In a static environment the maximum achiev-
able throughput is limited by the interaction (at the MAC level) between neigh-
boring nodes [76]. According to the IEEE 802.11 MAC protocol, each node
must sense the medium before starting transmissions. In addition, interfer-
ences may cause collisions at the destination node. Hence, it can be shown
that in a string (or chain) topology, like the one shown in Figure 14.1, the ex-
pected maximum bandwidth utilization is only 0.25 [76]. However, the 802.11
MAC protocol is not able to find the optimum schedule of transmissions by
itself. In particular, in a chain topology it happens that nodes early in the
chain starve later nodes (similar remarks apply to other network topologies as
well), as noted in Section 14.2.2. Thus, in practice performance is even worse
than expected.

The above limitations are inherent to the characteristics of multi-hop ad hoc
networks, and cannot be accounted to the TCP protocol. However, the interac-
tion between TCP mechanisms (mainly the congestion control algorithm) and
MAC-layer issues (hidden/exposed node problem, exponential backoff scheme,
etc) may lead to several, unexpected, serious instability and fairness problems
in some specific scenarios, as shown in Section 14.2.2. The TCP congestion
window size is also responsible for suboptimal performance in almost every
scenario which may result in throughput degradation and instability [131, 55].
In [55] it has been shown that, for a given network topology and traffic pattern,
there exist an optimal value of the TCP congestion window size at which the
TCP throughput is maximized. However, TCP does not operate around this
optimal value and typically grows its average window size much larger, lead-
ing to decreased throughput (throughput degradation is in the order of 5-30%
with respect to the optimal case) and increased packet losses. The very reason
for this suboptimal behaviour is the origin of packet losses. Unlike traditional
wired networks, in MANETs packet losses caused by buffer overflows at inter-
mediate nodes are rare events, while packet losses due to link-layer contention
are largely dominant.

In the following I report the main proposals aimed to reduce wireless channel
contention.

Transport Layer Proposals

Many papers try to reduce channel contention limiting the TCP congestion
window. Xu et al. [131], and Fu et al. [55], propose to explicitly bound
the TCP congestion window size to reduce channel contention. They show
that explicitly bounding the TCP congestion window size to a small value

significantly improves TCP performance over static multi-hop networks. Xu
et al. [131] also highlights that the delayed acknowledgment option (RFC
1122) can reduces the contention on the wireless channel and is beneficial to
TCP performance. On the other side, [55] presents a methodology, based on
considerations about spatial reuse, for calculating the optimal TCP congestion
window size for different network topologies and traffic patterns. Both [131]
and [55] use a fixed value for the TCP congestion window size. An interesting
issue is how to dynamically select the maximum congestion window size to
achieve optimal throughput in dynamic scenarios. To this end, Chen et al.
[34] bound the problem of properly setting the maximum congestion window
size to the bandwidth-delay product (BDP) of multi-hop paths. They prove
that regardless of the MAC layer being used, the value of the BDP in bytes at
multi-hop routes cannot exceed the value of the round-trip hop-count (RTHC)
times the size of data packets in bytes of these multihop routes. This is done by
assuming similar bottleneck bandwidths along the forward and reverse route.
The authors propose an algorithm to adjust the maximum congestion window
size of TCP according to the RTHC of the routes used. Using their algorithm
they report an improvement in TCP performance of up to 16 percent even in
mobile scenarios that contain multiple TCP.

Papanastasiou et al. [92] and Nahm et al. [85] propose not to limit the
congestion window size, and to modify the algorithm used by TCP to increase
the congestion window. Papanastasiou et al. [92] propose the Slow Congestion
Avoidance Scheme (SCA). SCA increases the sending rate during the conges-
tion avoidance phase more slowly than in the legacy TCP protocol, so as to
reduce the number of on-the-fly packets. Nahm et al. [85] propose the frac-
tional window increment (FeW) scheme. FeW is similar to SCA and uses a
fractional increment of the TCP congestion window to keep the network load
at a reasonable level and stabilize the sending window to a relatively small
value.

Altman et al. [11] and Oliveira et al. [42] present two mechanisms to
reduce the contention over the wireless channel based on a modified version of
the standard delayed ACK mechanism (RFC 1122). Altman et al. [11] propose
a novel delayed ACK scheme that allows to delay more than two ACKs. In the
standard delayed ACK, the TCP receiver uses a fixed coefficient d set to 2 to
delay ACKs, where d represents the number of TCP segments that the TCP
receiver should receive before it acknowledges these segments. Altman et al.
propose to dynamically vary the value of d with the sequence number of the
TCP segments. Specifically, the authors define three thresholds, l1, l2, and l3,
such that d = 1 for packets with sequence number N smaller than l1, d = 2 for
packets with l1 ≤ N ≤ l2, d = 3 for l2 ≤ N ≤ l3, and d = 4 for l3 ≤ N . The
authors use simulations to study the packet loss rate, throughput, and session
delay of TCP New Reno and TCP New Reno with their proposal, in the case
of short and persistent TCP sessions on a static multihop chain. They show
that their proposal, with l1 = 2, l2 = 5, and l3 = 9, outperforms standard
TCP as well as the delayed ACK option for a fixed coefficient d = 2, 3, 4. They
suggest that better performance could be obtained by making d a function of

108

CHAPTER 14. TCP OVER MANET 109

the sender’s congestion window instead of a function of the sequence number.
Oliveira et al. [42] propose TCP-DAA. TCP-DAA implements a dynamic

adaptive strategy for minimizing the number of ACK segments in transit in the
network, permitting TCP receiver to delaying up to four ACKs as in [11]. To
minimize the number of unnecessary retransmissions by timeout, the authors
propose to decrease the number of duplicate ACKs for triggering a retrans-
mission by the fast retransmit mechanism from 3 to 2 packets. In addition,
they propose to increase fivefold the regular retransmission timeout interval
for compensating the maximum of four delayed ACKs. Moreover, Oliveira et
al. propose a mechanism to adjust the timeout interval of the delayed ACK
based on packet inter-arrival times. Similarly to what the TCP sender does,
with this mechanism the receiver uses a low-pass filter to smooth the packet
inter-arrival intervals. Upon arrival of a given data segment, the receiver cal-
culates the smoothed packet inter-arrival intervals, and uses this value to set
the timeout interval at the receiver. The authors use simulations to study the
packet loss rate, throughput, and session delay of TCP NewReno and TCP-
DAA. They also compare their proposal with that in [11], and with that of
TCP with the standard delayed acknowledgment, and a cwnd clamped to 3
segments. The results show that TCP-DAA outperforms all the considered
protocols. Is useful to underline that the authors use a cwnd limited to 4
segments for TCP-DAA.

Network Layer Proposals

Cordeiro et al. [39] propose a novel algorithm, called COPAS (COntention-
based PAth Selection), which incorporates two mechanisms to enhance TCP
performance by avoiding capture conditions. COPAS implements two novel
routing techniques in order to contention-balance the network. First it uses
disjoint forward (for TCP data) and reverse (for TCP ACK) paths to reduce
the conflicts between TCP segments travelling in opposite directions. Second,
it employs a dynamic contention-balancing technique that continuously moni-
tors network contention and selects routes with minimum contention to avoid
capture conditions. Specifically, when network contention on a route exceeds
a certain threshold, called the backoff threshold, a new and less contended
route is selected to replace the high contended route. Also, any time a route
is broken, in addition to initiating a route re-establishment procedure, COPAS
redirects TCP segments using the second alternate route. COPAS measures
the contention on the wireless channel as a function of the number of times a
node has backed off during each time interval. Then, each intermediate nodes
continuously piggyback its contention information on packets flowing through
the forward and reverse paths. Source and destination nodes can thus monitor
the status of the reverse and forward routes respectively. Cordeiro et al. com-
pared COPAS and DSR using simulations. The authors found that COPAS
outperforms DSR in term of TCP throughput and routing overheads. However,
the use of COPAS, as reported by the authors, is limited to static networks
or networks with low mobility because as nodes move faster, using a disjoint

forward and reverse route increases the probability of route failures experienced
by TCP connections. This may induce more routing overhead and more packet
losses.

Link Layer Proposals

Fu et al. [55] propose two link layer techniques to reduce the problem related
to channel contention: a Link-RED algorithm to tune the wireless link’s drop
probability, and an adaptive link-layer pacing scheme to increase the spatial
channel reuse. The goal of these mechanism is to let TCP operate in the
contention avoidance region. Link Random Early Detection (RED) aims to
reduce contention on the wireless channel by monitoring the average number
of retransmissions at the link layer. When this number becomes greater than
a given threshold, the probability of dropping/marking is computed according
to the RED algorithm [52]. Since it marks packets, Link RED can be coupled
with ECN to notify the TCP sender about the congestion level. Adaptive pac-
ing lets a node further back-off an additional packet transmission time when
necessary, in addition to its current deferment period (i.e. the random backoff,
plus one packet transmission time). This extra backoff interval helps in reduc-
ing contention drops caused by exposed receivers, and extends the range of the
link-layer coordination from one hop to two hops, along the packet forward-
ing path. Link-RED and adaptive pacing work together as follows. Adaptive
pacing is enabled by LRED. When a node finds its average number of retries
to be less than a predefined threshold, it calculates its backoff time as usual.
When the average number of retries goes beyond this threshold, adaptive pac-
ing is enabled and the backoff period is increased by an interval equal to the
transmission time of the previous data packet. This way, a better coordina-
tion among nodes is achieved under different network load. The authors use
simulations to show that these simple techniques lead to 5% to 30% through-
put increase compared with standard TCP. These mechanism also improve the
fairness between multiple TCP sessions.

14.3.4 Proposals to Improve TCP Fairness

Many paper have shown that channel contention introduce fairness related
issue in addition to a severe throughput degradation. In [130, 117, 127] the
authors study how TCP connections share the bandwidth of the channel in
Ad hoc Networks, and they report some unfair bandwidth sharing using the
actual MAC 802.11 in a mutli-hop environment. [129], instead, shows that also
in scenarios where TCP crosses wireless ad hoc and wired networks, the TCP
unfairness problem persists. In the following I report the main proposals aimed
to improve TCP fairness.

Link Layer Proposals

Yang et al. [133] propose a mechanism to improve fairness among TCP flows
crossing wireless ad hoc and wired networks. The authors, to send data packets,

110

CHAPTER 14. TCP OVER MANET 111

adopt the “non work-conserving scheduling” policy for ad hoc networks instead
of the “work-conserving scheduling”. This is done as follows. The link layer
queue sets a timer whenever it sends a data packet to the MAC. The queue
outputs another packet to the MAC only when the timer expires. The duration
of the timer is updated according to the queue output rate value. Specifically,
the duration of the timer is a sum of three parts D1, D2, and D3. D1 represents
the queue estimation on how long the channel needs to transmit this packet
if no contention occurs. It is equal to the data packet length divided by the
bandwidth of the channel. D2 is a delay, the value of which is decided by the
recent queue output rate. The queue calculates the output rate by counting
the number of bytes (C) it outputs in every fixed interval T. Thus the value of
D2 is updated every T seconds. D3 is a random value uniformly distributed
between 0 and D2. D3 is used to randomize the delay added in the queue,
to avoid synchronization phenomenon, and to reduce collisions. The heuristic
behind their solution is to penalize greedy nodes with a high output rate by
increasing their queueing delay D2 and to favour nodes with small output rates.
For routing packets, the authors still treat them as high priority packets over
data packets. Upon arrival, they will be enqueued before all other data packets.
Once the queue knows from MAC that it can transmit a packet, the routing
packet at the head of the queue is dequeued immediately regardless of whether
there is a timer pending. Unlike data packets, the queue will not set any timer
after sending a routing packet and will not count them in calculating C. By
means of simulations, the authors report that their scheme greatly improves
fairness among TCP connections at the cost of moderate total throughput
degradation.

Xu et al. [127] show that RED does not solve TCP’s unfairness in MANETs
because the congestion does not happen in a single node, but in an entire area
involving multiple nodes. The local packet queue at any single node cannot
completely reflect the network congestion state. To solve this problem, xu et
al. propose a Neighbourhood RED (NRED) scheme, which extends the origi-
nal RED scheme to operate on the distributed neighbourhood queue. As RED
does, each node keeps estimating the size of its neighbourhood queue. Once
the queue size exceeds a certain threshold, a drop probability is computed by
using the algorithm from the original RED scheme. Since a neighbourhood
queue is the aggregate of local queues at neighboring nodes, this drop prob-
ability is then propagated to neighboring nodes for cooperative packet drops.
Each neighbour node computes its local drop probability based on its channel
bandwidth usage and drops packets accordingly. The overall drop probability
will realize the calculated drop probability on the whole neighbourhood queue.
Thus, the NRED scheme is basically a distributed RED suitable for ad hoc
wireless networks. Using simulations, the authors verify the effectiveness of
their proposal and the fairness improvement of TCP.

Other papers try to solve the fairness problem in MANETs. Jiang et al.
[67] propose and evaluate the use of a distributed max-min air-time allocation
algorithm to approximate the proportional fairness objective. Huang et al. [67]
propose a distributed algorithms that allow each node of Ad hoc networks to

determine its max-min per-link fair share in a global ad-hoc network without
knowledge of the global topology of the network.

Transport Layer Proposals

In [46] the authors address the problem of segments’ burst by introducing a
modified version of the Adaptive Pacing mechanism available for the Internet,
and called it TCP-AP. TCP-AP spreads the segments transmission according
to a transmission rate that is dynamically computed. Moreover it incorpo-
rates a mechanism to identify incipient congestion and to adjust consequently
the transmission rate. In more detail, TCP-AP calculates the segments trans-
mission rate taking into account the spatial reuse constraint of IEEE 802.11
multi-hop network. The authors of [55] showed that, in a chain topology, only
nodes 4 hops away from each other can transmit simultaneously. Based on this
result, the authors of [46] used the 4-hop propagation delay (FHD), i.e. the
time needed for a segment produced by node i to reach node i+4, to calculate
the segment transmission rate. TCP-AP sender calculates the FHD using the
RTT estimation and the number of hops of the connection. As anticipated, to
evaluate the sender transmission rate, TCP-AP uses also an estimate of the
link-layer contention. Specifically, the authors of [46] proposed the coefficient
of variation of recently measured RTT (covRTT) as a measure of contention.
With this mechanism, the transmission rate depends on the FHD index, and
on the link-layer contention. Thus, the connection rate slows down when the
contention increases. The authors used simulation to show that TCP-AP out-
perform TCP NewReno in terms of fairness and throughput.

14.3.5 Ad hoc Transport Protocols

All the above mentioned solutions rely on TCP modifications that address some
specific inefficiency of TCP itself, or rely on routing or link layer improvements
aimed at improve TCP performance. However, some authors followed a differ-
ent approach and designed new special-purpose transport protocols specifically
tailored to operate over MANETs. ATP [116] (Ad hoc Transport Protocol) and
TPA (the transport protocol proposed in this thesis) belongs to this category.

ATP is a Cross Layer Proposal, since it requires assistance from both net-
work and link layers. ATP is completely antithetic to the legacy TCP as it
relies upon rate-based transmissions, network-supported congestion detection
and control, no retransmission timeout, decoupled congestion control and reli-
ability, etc. Each node in the ATP path, piggybacks its available rate in data
segments. This information is collected and consolidated by the ATP receiver,
and is then periodically sent back to the ATP sender. The ATP sender uses
this information to derive the transmission rate, and perform congestion detec-
tion. Another ATP feature is that it doesn’t use retransmission timeouts for
reliability. Instead, it relies upon selective ACKs to report back to the sender
any new hole observed by the receiver in the data stream. This feedback is
generated on a periodic basis. A drawback of ATP is that it requires assistance

112

CHAPTER 14. TCP OVER MANET 113

from all intermediate nodes along the connection path to perform its tasks.
This may make it unsuitable for those environments where the network layer
protocol does not provide such a support.

Opposite to ATP, even if novel in many respects, TPA conserves some TCP
characteristics adapting them to the new environment. For example, it still uses
a window-based transmission scheme and it preserves the end-to-end semantic
of TCP. In addition, TPA works properly also without any assistance from
the underlying protocol (e.g., when ELFN messages are not provided by the
network layer protocol). A complete description of TPA protocol is provided
in Chapter 15, while a complete analysis of TPA is provided in Chapters 16
and 17.

Chapter 15

The TPA Protocol

15.1 Introduction

TPA is a transport protocol specifically designed to operate over MANETs,
that provides a reliable, connection-oriented type of service. The main TPA
design goals are defined by observing the TCP limitations when used over
multi-hop ad hoc networks. The main TPA design goals can be summarized
as follows:

• The data transfer policy should be more resilient to late and out-of-
order segments, and smoothly work with multi-path routing. In TCP all
these circumstances typically trigger timeout or useless re-transmissions
at the sender, both reducing the throughput, and wasting energy and
bandwidth.

• Several papers have shown that the optimal transmit window size of a
TCP connection over multi-hop ad hoc networks is limited to a few seg-
ments (e.g., [55]). The flow and congestion control algorithms should take
this into consideration, and can thus be greatly simplified with respect
to TCP. Furthermore, when congestion is over, the transport protocol
should try to exploit available bandwidth more promptly than the TCP
additive increase policy does.

• Congestion and route failures are different phenomena in ad hoc networks.
However, TCP basically has no notion of route failure, and manages this
phenomenon through congestion control. Instead, congestions and route
failures should be managed via different algorithms, to accommodate dis-
tinct and more refined policies.

• Route changes in ad hoc networks can be frequent events, and new paths
can provide significantly different performance in terms of delay, conges-
tion level, etc. The transport protocol should adapt quickly to new paths’
features, and discarding statistics about old paths. This is not the case

114

CHAPTER 15. THE TPA PROTOCOL 115

Figure 15.1: TPA header.

in TCP, where, for example, the algorithm used to estimate Round Trip
Times and set the Retransmission Timer privileges old statistics with re-
spect to new samples. While this prevents statistics’ flapping, it is not
the correct way to manage route changes.

• Previous papers have shown that Delayed ACK techniques can be helpful
to reduce the network congestion, and ultimately increase the transport-
protocol efficiency. I thus include this mechanism in the TPA design.

In the rest of this section I present the TPA aspects that are designed to meet
the above goals.

15.2 TPA Segment Structure

The TPA segment consists of an header field and a data field. The data field
contains a chunk of application data. The MSS (Maximum Segment Size)
limits the maximum size of a segment’s data field. The smallest TPA header is
composed of 16 bytes. Figure 15.1 shows the structure of the TPA segment. It
is usefull to note that TPA is full-duplex. This means that an host A may be
receiving data from host B while it sends data to host B (as part of the same
TPA connection). Consequently, TPA header contains the fields of both data
and ACK segments. The header includes the following fields:

• SourceportNumber and DestinationPortNumber fields: These
fields are used for multiplexing/demultiplexing data from/to upper layer
applications. These two values combined with the source and destination
fields in the IP header, uniquely identify each connection.

• BlockSeqNumber: TPA collects a number of bytes – corresponding to
K TPA segments – from the application, encapsulates these bytes into
TPA segments, and then with these segments builds a block of segments.
Then, TPA starts to transmit the segments belonging to this block us-
ing the mechanism described in Section 15.3. The BlockSeqNumber field
identifies the block to which the data segment belongs.

• BitmapData: This field consists of 12 bits and identifies the position
of the data segment within the block (see Section 15.3). For example, if

the ith bit of the BitmapData is set, the data segment is the ith segment
within the block.

• AckBlockSeqNumber: The AckBlockSeqNumber field identifies the
block to wich the acknowledged segment belong. This field is valid only
if the ACK flag is set.

• BitmapAck: This field consists of 12 bits and describes all the segments
belonging to the current transmission block correctly received by the
destination. A bit set in the BitmapAck indicates that the corresponding
segment within the block AckBlockSeqNumber has been correctly received
by the destination. The receiver can acknowledge more than one segment
by setting the corresponding bits in the BitmapAck. This field is valid
only if the ACK flag is set.

• Flag field: This field contains 4 bits. The ACK bit indicates that the
value carried out in the AckBlockSeqNumber, BitmapAck, and AckTxSe-
qNumber fields are valid. The RST bit resets the connection. The SYN
and FIN bits are used for connection setup and teardown (see Section
5.2).

• WinSize: This field contains the size of the receiver window, which
defines the number of segments the TPA receiver is willing to accept
from the sender (see Section 5.4).

• txStat: This field is used by the TPA sender to announce its status
(congested or not congested) to the receiver (see Section 15.7).

• Checksum field: This field is used for error detection. It is calculated
by the sender considering not only the header but also the data field. The
receiver may check the data integrity by checking this field.

• TxSeqNumber: This field is used by the sender to identify the data
segment sent. Each time TPA send a data segment, it increments the
TxSeqNumber field by one. When TPA changes the transmission block,
it reset the TxSeqNumber field.

• AckTxSeqNumber: This field is used by the sender to identify the seg-
ment that has generated the ACK. For example, if the ACK was generated
by a data segment with the TxSeqNumber field set to i (15.7), then the
receiver sets the AckTxSeqNumber field to i. This field is needed since the
BitmapAck field does not identify the segment that generates the ACK.
The AckTxSeqNumber field is valid only if the ACK flag is set.

• unused: this field is reserved for future use.

116

CHAPTER 15. THE TPA PROTOCOL 117

15.3 Data Transfer

TPA is based on a sliding-window scheme where the window size varies dynam-
ically according to the flow control and congestion control algorithms. The flow
control mechanism is similar to the corresponding TCP mechanism (see Section
5.4) while the congestion control mechanism is described in Section 15.6.

TPA tries to minimize the number of (re)transmissions in order to save
energy. To this end, data to be transmitted are managed in blocks, with
a block consisting of K segments, whose size is bounded by the Maximum
Segment Size (MSS). The source TPA grabs a number of bytes – corresponding
to K TPA segments – from the transmit buffer1, encapsulates these bytes into
TPA segments, and transmits them reliably to the destination. Only when
all segments belonging to a block have been acknowledged, TPA takes care to
manage the next block. Each segment header includes a sequence number field
that identifies the block to which the segment belongs, and a data bitmap field
consisting of K bits to identify the position of the segment within the block.
The TPA header also includes two fields for piggybacking ACKs into data
segments: acknowledgement number and ack bitmap. The acknowledgement
number identifies the block containing the segment(s) to be acknowledged,
while a bit set in the ack bitmap indicates that the corresponding segment
within the block has been correctly received by the destination. Of course, it is
possible to acknowledge more than one segment by setting the corresponding
bits in the bitmap (a single ACK contains information for all the segments
within the block).

Segment transmissions are handled as follows. Whenever sending a segment,
the source TPA sets a timer and waits for the related ACK from the destination.
Upon receiving an ACK for an outstanding segment the source TPA performs
the following steps: i) derives the new window size according to the congestion
and flow control algorithms (see below); ii) computes how many segments can
be sent according to the new window size; and iii) sends next segments in the
block (see Figure 15.2a). On the other hand, whenever a timeout related to a
segment in the current window expires, the source TPA marks the segment as
“timed out” and executes steps i)-iii) as above, just as in the case the segment
was acknowledged (see Figure 15.2b).

In other words, for each block TPA first performs a transmission round
during which it sends all segments within the block, without retransmitting
timed-out segments. Then, the sender performs a second round for retransmit-
ting timed-out segments, which are said to form a “retransmission stream” (see
Figure 15.3). In the second round the sender performs steps i)-iii) described
above with reference to the retransmission stream instead of the original block.
This procedure is repeated until all segments within the original block have
been acknowledged by the destination. If an ACK is received for a segment
belonging to the retransmission stream, that segment is immediately dropped
from the stream.

1A block may include less than K segments if the buffer does not contain a sufficient
number of bytes.

Figure 15.2: ACK reception (a), and timeout expirations (b).

The proposed scheme has several advantages with respect to the retrans-
mission scheme used in TCP. First, the probability of useless transmissions is
reduced since segments for which the ACK is not received before the timeout
expiration are not retransmitted immediately (as in the TCP protocol) but in
the next transmission round. Second, TPA is resilient against ACK losses be-
cause a single ACK is sufficient to notify the sender about all missed segments
in the current block. Third, the sender does not suffer from out-of-order arrivals
of segments. This implies that TPA can operate efficiently also in multi-hop
ad hoc networks using multi-path forwarding [95].

Figure 15.3: Retransmission Stream.

15.4 Route Failure Management

Like many other solutions [33, 62, 79, 114], TPA can exploit, if available, the
Explicit Link Failure Notification (ELFN) service provided by the network-layer
for detecting route failures.

118

CHAPTER 15. THE TPA PROTOCOL 119

Upon receiving an ELFN, the source TPA enters a freeze state where the
transmission window size is limited to one segment. In general, I assume that
the network layer does not provide route re-establishment notifications. Thus,
at the expiration of each retransmission timeout (see Section 15.5), TPA sends
segments in the main or retransmission streams (as dictated by the Data Trans-
fer algorithm), probing the network for a new route. To limit the number
of segments sent when there is no available route, while in the freeze state,
the value of the retransmission timer doubles after each timer expiration [13].
Therefore, TPA realizes that the route has been re-established as soon as it
receives an ACK for the latest segment sent. Upon reception of such an ACK,
TPA i) leaves the freeze state; ii) sets the congestion window to the maxi-
mum value cwndmax; and iii) starts sending new segments [13]. On the other
hand, if route re-establishment messages are available, the TPA behaviour can
be further optimized. Specifically, in the freeze state TPA can refrain from
transmitting any segment, waiting for a route re-establishment message.

Even if the underlying layer does not provide the ELFN service, the sender
TPA is still able to detect route failures as it experiences a number of consec-
utive timeouts. Specifically, the sender TPA assumes that a route failure has
occurred whenever it detects thROUTE consecutive timeouts. In this case it
enters the freeze state, and behaves as described above.

15.5 Route Change Management

A transport protocol designed to operate in multi-hop ad hoc networks should
react more quickly to route changes than TCP does. To understand why, let
us briefly explain how TCP and TPA evaluate the Retransmission Timeout
(RTO).

Similarly to TCP, TPA estimates the connection RTT, and uses this esti-
mate to set the Retransmission Timeout (RTO). Both parameters are derived
in the same way as in the TCP protocol, i.e.:

ERTTrtt(n) = g ×RTT (n) + (1− g)× ERTTrtt(n− 1)

DEVrtt(n) = h× |RTT (n)− ERTTrtt(n)|+ (1− h)×DEVrtt(n− 1)

RTO(n) = ERTTrtt(n) + 4×DEVrtt(n)

where: i) ERTTrtt(n) and DEVrtt(n) are the average value and standard
deviation of the RTT estimated at the nth step, respectively; ii) RTT(n) denotes
the nth RTT sample; iii) RTO(n) is the retransmission timeout computed at
the nth step; and iv) g and h (0 < g, h < 1) are real parameters [111].

Multi-hop ad hoc networks are far more dynamic that wired networks, and
route changes can be fairly frequent even in static configurations. Whenever
a route changes, the new path may differ from the previous one in number of

hops. Or, new links in the path may have different properties e.g. in terms
of interference. This means that, after a route change, segments may experi-
ence a significant variation in the RTT and the re-transmission timeout might
be no longer appropriate for the new path. However, the standard TCP es-
sentially uses a low-pass filter to estimate RTT, and thus RTO converges to
a value appropriate to the new path after long time. To avoid useless re-
transmissions, the TPA protocol must detect route changes as soon as they
occur, and modify the RTT estimation method to achieve quickly a reliable
estimate for the new RTT. In practice, TPA detects that a route change has
occurred either i) when a new route becomes available after a route failure;
or ii) when thRC consecutive samples of the RTT are found to be external to
the interval [ERTTrtt − DEVrtt, ERTTrtt + DEVrtt] (thRC consecutive late
segments or thRC consecutive early segments). Upon detecting a route change,
TPA replaces the g and h values in the ERTT and DEV estimators with greater
values (g1 and h1), so that the new RTT estimates are heavily influenced by
the new RTT samples. This allows to achieve a reliable estimate of the new
RTT immediately after the route change has been detected. Finally, after nRC

updates of the estimated RTT, the parameter values are restored to the normal
g and h values.

15.6 Congestion Control Mechanism

Also congestion phenomena are quite different in multi-hop ad hoc networks
with respect to wired networks. The work in [55] shows that congestions in
multi-hop ad hoc networks mainly occur because of link-layer contention and
not because of buffer overflow at intermediate nodes, as in the case of wired
networks. Congestions due to link-layer contentions manifest themselves at the
transport layer in two different ways. An intermediate node may fail in relaying
data segments to its neighboring nodes and, thus, it sends an ELFN back to
the sender node (provided that this service is supported by the network layer).
This case, throughout referred to as data inhibition, cannot be distinguished by
the sender TPA from a real route failure. On the other hand, an intermediate
node may fail in relaying ACK segments. In this case, throughout referred
to as ACK inhibition, the ELFN (if available) is received by the destination
node (i.e., the node that sent the ACK), while the source node (i.e., the node
sending data segments) only experiences one or more (consecutive) timeouts.
Whenever the sender TPA detects thCONG (with thCONG >= 1) consecutive
timeout expirations, it assumes that an ACK inhibition has occurred, and
enters the congested state. The source TPA leaves the congested state as soon
as it receives thACK consecutive ACKs from the destination.

If the network layer does not support the ELFN service, the only way to
detect both data and ACK inhibitions is by monitoring timeouts at the sender.
Congestions and route failures are no longer distinguishable. Hence, thCONG

and thROUTE collapse in the same parameter, and the freeze and the congested
states collapse in the same state.

120

CHAPTER 15. THE TPA PROTOCOL 121

Many papers have shown that for TCP connections spanning a number of
hops not to large, 2 and 3 are the optimal values for the maximum congestion
window size (cwnd). Specifically, [55] shows that in a h-hop chain topology
network, the TCP’s optimal throughput is achieved when TCP uses a cwnd
bounded to h/4 segments. Consequently, only for connections spanning a num-
ber of hops greather than 13 the optimal cwnd is higher than 3. [34] instead,
shows that for TCP connections spanning a number of hops up to 12, a cwnd
of 2 is the optimum, while 3 is the optimal cwnd value for connections up to
20 hops. Consequently, I decided to implement in TPA a congestion control
mechanism that is window-based as in TCP, but with a maximum congestion
window size (cwndmax) in the order of 2-3 TPA segments. As a consequence,
in TPA the maximum and minimum values of the cwnd size are very close,
and the TPA congestion control algorithm is very simple. In normal operating
conditions, i.e., when TPA is not in the congested state, the congestion window
is set to the maximum value, cwndmax. When TPA enters the congested state,
the congestion window is reduced to 1 to allow congestion to disappear.

15.7 ACK Management

Many papers [11, 42, 131], have shown that the Delayed ACK mechanism can
significantly improve the TCP performance. Based on these results I imple-
mented the Delayed ACK mechanism in TPA, as well. The concept of delayed
acknowledgments recommended in RFC 1122 is that the TCP receiver should
send ACK segments for every other DATA segments received. I implemented
in TPA a delayed ACK mechanism similar to that proposed in RFC 1122.
When the TPA sender is not in congested state, the TPA receiver sends back
one acknowledgement every other segment received, or upon timer expiration.
Otherwise, if TPA sender is in congested state, the TPA receiver sends back
one ACK for each segment received. This latter feature permits TPA receiver
to does not introduce any additional delay when the sender uses a cwnd size
set to one segment. The TPA sender uses the txStatus flag of the TPA segment
header to announce its status (congested or not congested) to the receiver.

I also implemented a modified version of Delayed ACKs presented above.
Specifically, to minimize the number of ACKs in transit in the network, I modi-
fied the receiver to delay up to cwndmax segments. Specifically, when the TPA
sender is not in congested state, the TPA receiver sends back one acknowl-
edgement every cwndmax DATA segments received (i.e. every three segments
received if cwndmax is set to three), or upon timer expiration. Otherwise, if
the TPA sender is in congested state, the TPA receiver sends back one ACK
for each segment received. Delaying the ACK more than this makes no sense,
as the sender would not be able to transmit anything more until a timeout
expires at the receiver (and an ACK is thus forcibly sent). Throughout this
thesis I will refer to TPA with modified version of the Delayed ACK technique
as TPA*.

In both TPA variants, the interval that triggers the ACK transmission is

set to a constant value (typically, 100 ms).

15.8 TPA/TCP interoperability

Despite differing from TCP in a number of features, TPA could be adapted to
work in a TCP environment, as well. It was not the main point of my Ph.D.
activity to investigate this issue, since I focus on the performance improve-
ments granted by the new TPA mechanisms. However, I want here to briefly
provide an idea on how TPA could be extended with small modifications to be
interoperable with TCP.

The main feature I consider here is how to allow a TPA sender to ex-
change data with a TCP receiver. As far as the information exchanged be-
tween the endpoints, it should be noted that the main difference between TCP
and TPA is the way sequence numbers are encoded. Specifically, TPA uses a
2-dimensional scheme (i.e., block number, data/ack bitmap), while TCP uses
a 1-dimensional scheme (i.e., sequence number). To make these schemes in-
teroperable, it would be sufficient to add an optional mapping function at the
sender side, which provides bidirectional mappings between 2-dimensional and
1-dimensional schemes. Once such a mapping is in place, a TPA sender could
work unmodified also with TCP receivers, because all TPA functions described
in Section 15.3 through 15.6 are implemented at the sender side, and, as far
as interactions with the receiving endpoint are concerned, are based on the
ACKs received from the receiver, and on the RTT estimates. Therefore once
the TPA sender is able to interpret the ACKs sent by the TCP receiver (which
is guaranteed by the mapping function), it is also able to implement all the pro-
posed features. Clearly, the performance of a TPA/TCP connection would be
suboptimal, because the TCP receiver will just send cumulative ACKs instead
of ACK bitmaps describing the status of the whole block under transmission.
However, the data transfer will be possible also in this case. Probably, the
SACK option of TCP can be beneficial in TPA/TCP connections.

A straightforward alternative exploits the fact that all major operating
systems come with a complete TCP implementation. Therefore the choice
between TCP and TPA could be done while opening a connection. Specifically,
the tpa_connect() function can generate a TCP SYN segment announcing
TPA availability (e.g., by using a reserved bit in the TCP header). If the other
endpoint does not implement TPA, the sender will revert to a standard TCP
connection.

15.9 TPA Protocol Implementation

As anticipated, to test TPA behaviour, during my phd I compared TPA and
TCP performance in a real as well as in a simulation environment. To this
end, I implemented a TPA prototype in a GNU/linux environment and then
I ported this code to the ns2 simulation environment. In the following I will
introduce the real word implementation of TPA.

122

CHAPTER 15. THE TPA PROTOCOL 123

Network protocols are usually implemented in the kernel space and can
be accessed by network application through an interface consisting of a set of
system calls (e.g., the socket-based interface). Security and performance are
the main motivations behind this approach. I refer to such an organization
as monolithic [118] because all protocols stacks supported by the system are
implemented within a single address space. However, there are several factors
that motivate a non monolithic organization, i.e., implementing network pro-
tocols out of the kernel space. The most obvious of these factors are ease of
prototyping, debugging and maintenance. Another factor may be an improved
system stability. When developing protocols in a user-level environment, an
unstable stack affects only the application using it and does not cause a system
crash. Therefore, I decided to prototype TPA using a user-level implementa-
tion. Figure 15.4 shows the TPA location in the network protocol stack. Since
TPA only requires a datagram service it is implemented on top of the UDP/IP
protocols that are accessed through the socket-based system calls.

When using a traditional transport protocol implemented in the kernel
space, a user application can access protocol services through the socket in-
terface. Therefore, messages generated by the application are passed down
from the user space to the kernel space. The segmentation process of applica-
tion messages and the processing of each single segment are performed by the
kernel. On the other hand, when using the TPA protocol, messages generated
by the application are accumulated by TPA to form data blocks. Blocks are
then segmented and each single segment is sent through the network. In my
TPA prototype, the segmentation process and the processing of each single seg-
ment according to TPA protocol specifications, are obviously performed by the
user-level library implementing TPA. Therefore, in my implementation, each
single segment (not the entire message generated by the application) is passed
down from the user space to the kernel space. This approach may introduce an
additional overhead in processing data. However, I think that in multi-hop ad
hoc networks this increment in overhead should have a little impact on TPA
performance. This because the rate at which nodes communicate is lower than
that of traditional wired network. It is also useful to highlight that the aim
of my prototype was the performance evaluation of TPA and the performance
comparison between TPA and TCP. To this end I used in my experimental
analysis laptops running only the essential services. In other words, laptops
only ran the routing protocol and the application generating network traffic.
This to reduces the overhead encountered by TPA.

Even if my prototype was implemented only to evaluate the performance of
TPA, in the design of its software architecture I spent time to allow a transpar-
ent and easy integration of legacy TCP applications with TPA. To this end I
equipped the TPA implementation with an Application Programming Interface
(API) similar to that provided by GNU/Linux operating system for TCP. This
API can be used by software developers for implementing network applications
based on TPA. The TPA protocol and the relative API has been implemented
by using the C programming language. This allows the following benefits:

1. it permits to manage bits very quickly and efficiently

2. it is fully compatible with all Unix/Linux systems

Figure 15.4: Protocol stack.

It is usefull to underline that the current TPA implementation doesn’t con-
tain in the segment header neither the source or destination port fields, since
we demanded UDP to multiplex communications. In addiction, it doesn’t im-
plement the checksum mechanism. Consequently, the size of TPA header is 12
byte, and TCP and TPA segments can carry the same amount of applycation
data.

In the following subsections I describe the API and the software organization
of TPA.

15.9.1 Application Programming Interface

As anticipated, the main design target of the TPA API was a transparent and
easy integration of legacy TCP applications with the TPA protocol. To hit this
target I followed the following design principles:

• Transparent integration with applications. The original semantics of ap-
plications must be preserved without changing their source code.

• Socket API exportation. The socket application programming interface
(API) provided by TCP protocol must be preserved. This allows the re-
use of a legacy application on top of TPA with only minor changes. This
requirement is a consequence of the previous one.

124

CHAPTER 15. THE TPA PROTOCOL 125

Based on this principles I implemented for TPA an API similar to that
provided in a GNU/Linux system for TCP. Specifically, it consists of a set of
functions, each one of which has a correspondent TCP socket system call. Table
15.1 shows the list of functions provided by the TPA API, whereas Table 15.2
reports the meaning of each function. Using this API, a legacy TCP application
can be re-used on top of TPA by simply introducing very minor modifications.
Specifically, it’s enough to introduce the tpa prefix at each TCP socket system
call to adapt a TCP application to operate with TPA. To better clarify this is-
sue, Table 15.3 shows the changes that must be introduced in a client program
when passing from TCP to TPA. It is usefully to observe that, for the sake of
simplicity, not all the functionality provided by the TCP socket functions are
supported by the TPA API. For example, the GNU/Linux accept() function ex-
tracts the first connection request on the queue of pending connections, creates
a new connected socket, and returns a file descriptor referring to that socket.
Then, the listening socket (i.e. the socket passed to accept() as argument) can
be used again to accept further connections requests. The tpa accept() function
instead, doesn’t make difference between the listening socket and the connected
socket. Therefore, with the current version of TPA prototype is not possible
to implement a concurrent server. Another difference resides in the tpa send()
function. Specifically, it accepts only messages of size multiple of a block size.
I will introduce all the missing capability in a future release of TPA prototype.
However, as anticipated, the main target of my prototype was the performance
evaluation of TPA protocol and my prototype was not implemented to support
all TCP applications.

Table 15.1: Functions provided by the TPA library.

int tpa socket();
int tpa connect(int sockfd, struct sockaddr in *serv addr, socklen t addrlen);
int tpa bind(int sockfd, struct sockaddr in *my addr, socklen t addrlen);
int tpa listen(int sockfd, int backlog);
int tpa accept(int sockfd, struct sockaddr *addr, socklen t *addrlen);
int tpa send(int sockfd, const void* packetbuf, int packetlen, int flags);
int tpa recv(int sockfd, void *buff, int len, int flags);
void tpa close(int sockfd);

15.9.2 Software organization

This section provides a description of the TPA prototype implementation in
a GNU/Linux system, i.e., which are the entities that implement the TPA
prototype and how this entities can communicate with each other. It is proper
to underline that my prototype implements only a subset of TPA capabilities.
Specifically, it doesn’t support the capability of piggybacking ACKs into data
segments. In other words, data belonging to a TPA connection can travel only

Table 15.2: Meaning of functions provided by the TPA library.
Function name Meaning
tpa socket() Creates a TPA socket
tpa connect() Connects the socket to the specified address
tpa bind() Gives to the socket the local address
tpa listen() Specifies a willingness to accept incom-

ing connections and a queue limit for
incoming connections

tpa accept() Listen for TPA connections requests
tpa close() Closes the TPA connection
tpa send() Sends data over a TPA connection
tpa recv() Receives data over TPA connection

Table 15.3: A simple example showing changes to be introduced in a legacy
application to use the TPA protocol.

Standard Library TPA Library
/* */ /* */
s = socket(...); s = tpa socket(...);
connect(s, ...); tpa connect(s, ...);
send(s, ...); tpa send(s, ...);
recv(s, ...); tpa recv(s, ...);
/* */ /* */
close(s); tpa close(s);

126

CHAPTER 15. THE TPA PROTOCOL 127

in one direction. In the following I will refer to sender side as the side of TPA
connection where data segments are generated and to receiver side as the side
of TPA connection where ACKs are generated.

Process communication

TPA was implemented with distinct execution flows that interact according to
the client/server and producer/consumer models. Specifically, I structured the
TPA software module by means of three processes: a data-processing process,
a sender process, and a receiver process (see Figure 15.5). The data-processing
process collects data passed by the application process in a buffer to form
blocks. Data blocks are then passed to the sender process that manages it
according to the TPA specification. Finally the receiver process is in charge
of processing data coming from the network and sending ACKs back to the
sender. In this model, processes resident on the same machine communicate
each other by using the FIFOs [112] and the signal [113] mechanisms, while the
sender and the receiver process use a UDP socket to transmit data and ACK
segments. In the following I will describe how the TPA processes communicate
with each other.

Figure 15.5: Inter-Process Communications.

As previously mentioned, the data-processing and the sender processes im-
plement the sender side of a TPA connection. They are created by the
tpa connect() function upon successful completion of the free-way handshake
used to set-up a TPA connection. The tpa connect() function also creates the
communication FIFOs used by the sender side processes to communicate. The

application working on top of TPA must uses the tpa send() function (see Fig-
ure 15.5) to pass data to the data-processing process. This function first reads
the data to app FIFO to checks if the data processing process is ready to ac-
cept data. Then, if it is, tpa send() passes the application data to the process
data-processing using the app to data FIFO. As soon as tpa send() terminates
the application data to send, it closes the app to data FIFO and pauses until
the reception of the SIGUSR1 user-defined signal. This signal is used by the
data-processing process to inform the application process that all application
data has been successfully transmitted to the destination. On reception of this
signal, the tpa send() function returns with the number of bytes successfully
sent.

The data processing process collects the application data in a buffer to
form TPA blocks. It receives the application data through the app to data
FIFO. As soon as a block is full, data processing checks the state of the sender
process. If it has declared its availability to accept newer block, data processing
passes the block to the sender process using the data to send FIFO and returns
to gather application data. Otherwise, it pauses until the reception of the
SIGUSR1 signal. This signal informs data processing about the willingness of
the sender process to accept another block of data. On reception of this signal,
data processing passes the block to the sender process and restarts to read
the app to data FIFO for further application data. If data processing finds
the app to data FIFO closed, it pauses until the reception of the SIGUSR1
signal. On reception of it, data processing sends the SIGUSR1 signal to the
application, informing it that all blocks have been successfully transmitted to
the destination. The data to app FIFO is used by data processing to inform
the application about its willingness to accept data.

The sender process implements the core functionality of TPA protocol.
Specifically, it receives a TPA blocks through the data to send FIFO and man-
ages it according to the TPA protocol specification. As mentioned early, the
sender process uses a UDP socket to send and receive TPA segments. This be-
cause it only requires a datagram service. As soon as the sender process termi-
nates to send all packets belonging to the current block, it sends the SIGUSR1
signal to the data-processing process. This signal informs the data-processing
process that the sender process can receive another block of segments. The
sender process also monitors the app to send FIFO. This FIFO is used by
the tpa close() function to inform the sender process that the application want
to close the TPA connection. On reception of a special message through the
app to send FIFO, the sender process starts the procedure to close the TPA
connection. I can observe that the sender process must monitor three file de-
scriptors (the UDP socket and the app to send and data to send FIFOs). To
perform this task, the it uses the poll() function. This function allows a pro-
gram to monitor multiple file descriptors, waiting until one or more of this
become ready3 (e.g., input possible).

The receiver process implements the receiver side of a TPA connection.
More specifically, it receives TPA data segments and generates ACKs accord-
ing to the TPA specification. It also passes the in order segments received to

128

CHAPTER 15. THE TPA PROTOCOL 129

the application using the recv to app FIFO. The receiver process is created by
the tpa accept() function upon successful completion of the free-way handshake.
tpa accept() also creates the recv to app FIFO. The application working on top
of TPA must use the tpa recv() function to receive TPA segments. More specif-
ically, tpa recv() reads the recv to app FIFO for TPA segments and returns as
soon as it collects the number of bytes specified in its parameters. Upon re-
ception of the FIN segments, the receiver process closes the recv to app FIFO
to inform the application that the sender side have closed the connection. As
soon as tpa recv() finds the recv to app FIFO closed, it returns with a 0 value.
At this point the application can close the receiver side of the connection using
the tpa close() function.

At the end of the tear down phases all TPA processes terminate.

15.9.3 Timer implementation

The TPA protocol requires distinct timers for each packet sent. However, in a
GNU/Linux process is not possible to use more than one software timer at the
same time. To overcome this problem, in my TPA prototype I implemented a
list of data structures, each of which representing a timer, managed by a timer
scheduler [77]. With this technique, I can implement multiple timers using only
one software timer.

Each data structure representing a timer has a field (expire time) repre-
senting the value to be assigned to the software timer. The software timer is
started for the timer represented by item (active timer) at the head of the list
of timers. On timer expiration, the timer scheduler removes the item at the
head of the list and sets the seconds item in the list as the active timer. The
software timer is then restarted with the expire time of the new active timer.
The timer scheduler, whenever a new timer is started or a timer belonging to
the list is removed, must update the expire time of each item in the list and
must eventually reorder the list of timers. Specifically, the timer scheduler must
preserve the ordering between items in function of their expire time (i.e., the
first item of the list must represent the smallest timer in the list).

Figure 15.6 reports a simple example showing the insertion of new timers
in the list of timers. I first start a timer that will expire in 4 seconds (Figure
15.6a). To schedule this timer, the timer scheduler inserts an item with value
4 in the list of timers. This item becomes the active timer. After one second, a
new timer that will expire in 9 seconds is started. To schedule this new timer,
the timer scheduler inserts in the list of timers a new item with value 6 (Figure
15.6b). This value is given by the difference between the timer value (9) and
the remaining value for the active timer (4-1). After other 2 seconds, a new
timer that will expire in 3 seconds is started. To schedule this new timer, the
timer scheduler inserts in the list of timers a new item with value 2 (Figure
15.6c). This value is given by the difference between the timer value (3) and the
remaining value for the active timer (4-3). Since this timer has been inserted
in the second position of the list (to maintain the ordering between items), the
timer scheduler must also update the value for the last item. Specifically, it

Figure 15.6: Implementation of software timers.

sets the value for last item to 4 seconds, where 4 is the difference between the
new inserted timer (2) and the timer value (6). When the timer expires, the
timer scheduler chooses the second item of the list as the active timer and sets
the software timer to its value (2) (Figure 15.6c).

To achieve a finer time granularity, in the timer scheduler implementation
I used the system call setitimer() to set the software timer. This allows to
achieve an accuracy in the order of milliseconds. This is very important since
in multi-hop ad hoc networks the round trip time of connections is in the order
of milliseconds.

130

Chapter 16

Experimental Analysis of
TPA

16.1 Introduction

Previous experimental studies have shown that certain aspects of real MANETs
are often not effectively captured in simulation tools [14]. Furthermore, avail-
able software and hardware products often use parameters settings different
from those commonly assumed in simulation tools. Finally, real operating
conditions are often different from those modeled in simulation experiments.
For example, interferences caused by WiFi hotspots or other devices in the
proximity are inevitable in practice. For all the above reasons, I used my
TPA prototype to compare TCP and TPA performance in a real environment.
Specifically, I compared TCP and TPA performance over two static network
topology (i.e., chain and cross topologies) and over one dynamic network topol-
ogy (i.e., roaming node topology).

In the past year almost all TCP studies relied on simulation. To the best
of my knowledge, very few experimental analysis have been carried out so
far [55, 57, 71]. In addition, these studies lucks of important details. Fu
et. all [55] didn’t use any routing protocol in their analysis. Also in [71] the
authors didn’t use any routing protocol in their analysis. In addition, they
limited the cwnd of TCP to 3/2 h, where h is the number of hops between
the sender and the destination node, while previous studies suggested different
values [76, 131, 55, 34]. Gupta et. all [57] instead, didn’t clump the TCP
congestion window size. For these reasons, I started my TPA analysis with
a detailed study of TCP behaviour in a real environment. This study permit
me to find the optimal setting for TCP over a chain network topology. I then
used this optimal setting to perform a fair comparison between TCP and TPA
performance. To make my analysis more accurate, I used in the experiments
two very popular routing protocols, i.e., AODV [100, 1], and OLSR [37, 120]
which take a different approach on building and maintaining routes (reactive

131

vs. proactive).
This Chapter is organized as follow. Section 16.2 describes the testbed used

in the experimental analysis. Section 16.4 describes the methodology used to
perform my experimental analysis. Section 16.3 describes the performance
metrics used to compare TCP and TPA performance. Section 16.5 reports
the main results of TCP analysis over a chain topology network. Section 16.6
discusses the results obtained from the experimental comparison between TPA
and TCP. Section 16.7 concludes the Chapter.

16.2 Testbed Description

My testbed consisted of IBM R-50 laptops equipped with integrated Intel Pro-
Wireless 2200 wireless cards. All laptops were running the Linux Kernel 2.6.12
with the latest available version of the ipw2200 driver (1.1.2). Wireless cards
followed the IEEE 802.11b specifications with maximum bit rate set to 2 Mbps
(which is the setting used in the vast majority of related works). The RTS/CTS
mechanism was enabled and RTS/CTS threshold was set to 100 bytes so that
RTS/CTS handshake was active for data segments and disabled for ACKs. This
setting protected long data segments from collisions, while avoiding RTS/CTS
overhead for short ACK segments, which are less likely to collide. To make
possible to reproduce the desired network topology in an indoor environment
I reduced the transmission power of the wireless cards.

In all experiments I used ftp-like traffic, i.e., the sender node had always data
ready to send. Indeed, file-sharing applications are expected to generate similar
type of traffic. To this end, I developed a simple client/server application using
Linux sockets operating with TCP protocol and I adapted this application to
operate with TPA sockets as well (see Subsection 15.9.1). Several papers have
shown the advantage of limiting the maximum TCP congestion window size
(cwnd) in multi-hop ad hoc networks. To be fair, I compared TPA and TCP
with limited cwnd size. As far as TCP, I used the TCP WINDOW CLAMP
socket parameter that permits to bound the size of the TCP advertised window.
The segment payload size in all the experiments was equal to 1460 bytes. To
capture the TCP traffic I used tcpdump, while to analyse the experiments results
I used tcpstat and tcptrace (enhanced by my shell scripts). Since TPA was
implemented in the user-space, to capture the TPA traffic I used my TPA
code.

As anticipated, I compared TPA and TCP performance by considering two
different routing protocols, i.e., AODV and OLSR. AODV (Ad hoc On-demand
Distance Vector) is a well-known reactive protocol [100]. It can use two dif-
ferent mechanisms for neighbour discovery and local connectivity maintenance
(see Section 4.1), i.e., link layer information provided by the underlying MAC
protocol, or Hello messages periodically broadcast by each node to announce
its presence in the one-hop neighbourhood. In my testbed I used the AODV
implementation for Linux by the Uppsala University [1], version 0.9.1. To main-
tain local connectivity I set AODV to use Hello messages since my ipw2200

132

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 133

Table 16.1: TPA Operational Parameters.
Parameter Value

thRC (TPA) 3 segments
nRC (TPA) 3

g 0.125
h 0.25
g1 0.25
h1 0.5

thROUTE (TPA) 1 segment
thACK (TPA) 1 segment

Block Size (TPA) 12 segments

driver didn’t provide link-layer failure notifications. All the AODV parameters
were set to their default values.

OLSR (Optimized Link State Routing, [37]) is an optimization for mobile
ad hoc networks of the classical link state algorithm (it is thus a proactive
protocol). OLSR periodically floods the network with route information so that
each node can build locally a routing table containing the complete information
of routes to all possible destinations within the ad hoc network (see Section 4.2).
Similarly to AODV, OLSR employs a neighbour discovery procedure based on
Hello messages. In my testbed I used the OLSR UniK implementation for
Linux, version 0.4.10 [120]. I set all the parameters to their default values, and
disabled the OLSR hysteresis mechanism, because it was shown to degrade
TCP throughput in an unacceptable way (see Section 11.2).

Table 16.1 shows the operational parameters for the TPA protocol. As far
as TCP, I configured it to obtain a NewReno behaviour, with Delayed-ACKs
in addition.

16.3 Performance measures

In my analysis I considered the following two performance measures:

• Throughput, i.e., the average number of bytes successfully received by the
final destination per unit time.

• Retransmission index, i.e., the percentage of segments re-transmitted by
the TPA/TCP sender.

The throughput was measured at the application layer as the number of
bytes successfully received by the destination process in a given time interval,
divided by the duration of the time interval. The re-transmission index (rtx)
measures the average number of times a packet has to be retransmitted to be
successfully received by the destination. Thus, it was obtained as:

rtx =
pktRtxSrc

pktRcvDest

where pktRtxSrc is the number of packets retransmitted by the source, and
pktRcvDest is the number of nonduplicated packets successfully received by the
destination.

The re-transmission index allows us to evaluate the ability of TPA/TCP
to handle transmission in an efficient way. It is worthwhile to emphasize that
re-transmitted segments consume energy and generate congestion both at the
sender and intermediate nodes. As nodes in a multi-hop ad hoc network may
have limited power budget, and wireless bandwidth is a scarce resource, it is
important to manage (re)transmission efficiently. Therefore, a small value for
the re-transmission index is highly desirable.

16.4 Experimental Methodology

When dealing with real testbeds one of the main difficulties is that experiments
cannot be repeated exactly in the same way since external conditions may vary
from time to time – sometimes during the same experiment – and there is
definitely no control on them. Therefore, successive experiments carried out
under the same operating conditions may provide outcomes that differ signifi-
cantly from each other. This makes comparison of performance measurements
obtained in different scenarios or operating conditions hard or even impossible.

To achieve more statistical accuracy, I replicated each experiment multiple
times, so to obtain the 90% confidence intervals of the measured performance
metrics below the 10%. I then averaged the performance measures over the
entire set of replicas. I organized each replica of the experiments as follow. In
the experiments of section 16.5 I first evaluated the performance of TCP using
a cwnd size bounded to 2 segments. Then I evaluated the performance of TCP
using a cwnd size bounded to 3 segments. Finally, I evaluated the performance
of TCP using a cwnd size bounded to 4 segments and an unclamped cwnd
size. In the experiments described in Section 16.6 I added TPA protocol to the
experiments schedule of each single replica. Specifically, I first evaluated the
performance of TCP and TPA using a cwnd size bounded to 2 segments for
both protocols. Then I evaluated the performance of TCP and TPA using a
cwnd size bounded to 3 segments for both protocols. Finally, I evaluated the
performance of TCP using an unclamped cwnd size and the performance of
TPA* using a cwnd size bounded to 3 segments.

Each replica consisted of a file transfer. To perform multiple replicas the
whole process of experimentation (data generation, logging and archiving) was
automated using my shell scripts.

134

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 135

16.5 TCP Analysis

As noted in 14.3, an easy way to improve TCP performance over MANET is
to clump its transmission window. However, in literature only simulative and
theoretical studies are used to evaluate the optimal size for the TCP cwnd. Fur-
thermore, previous studies do not study the behaviour of TCP over OLSR for
varying cwnd size, nor the performance of TCP over AODV when Hello Mes-
sages are used to discover neighbour nodes. In these experiments I investigated
the influence of the maximum congestion window size on TCP performance in
a real environment using AODV and OLSR as routing protocols.

To evaluate the optimal setting for TCP I used a chain topology network
with hops count ranging from 1 to 4 (Figure 16.10). It is worth pointing out
that this testbed was deployed in a real working environment with possibly
interfering electrical appliances, people roaming around, etc. The experiments
consisted in a file transfer of about 120s. To generate network traffic I used
my ftp-like program. In all the experiments node N1 was the sender, while
the receiver (and the number of active nodes) depended on the specific chain
length. For example, in the 3-hop scenario, node N4 was the receiver (node
N5 was not active). I chose the transmission power of wireless cards and the
distance between nodes in such a way that only adjacent nodes were within
the transmission range of each other. However, since the transmission range of
nodes is not a perfect circle and may vary from time to time [15], I used the
iptables firewall to filter MAC packets and guarantee the desired topology.
For example, I set up the firewall of node N3 in such a way to accept only
packets from node N4 and node N2. I will comment on this choice later on in
the performance evaluation section.

16.5.1 Influence of the maximum congestion window size

To evaluate the influence of the maximum congestion window (cwnd) size on
TCP performance I clamped the congestion window size to some specific values.
Specifically, I considered maximum cwnd sizes of 2, 3, and 4, and performed
also experiments where the window size was unclamped (uc). In the following
I will refer to TCP with maximum cwnd size of W as TCP-W and I will refer
to TCP with an unclamped cwnd as TCP-uc.

Previous simulation studies [34, 55] have shown that in the considered sce-
nario (i.e., chain topology network), the optimal value for TCP cwnd is 2. How-
ever, as anticipated, previous studies do not highlight the behaviour of TCP
over OLSR for varying cwnd size, nor the performance of TCP over AODV
when Hello Messages are used to discover neighbour nodes. Therefore I evalu-
ated through ns-2 [3] the optimal value of TCP cwnd in these configurations,
using the same operational parameters used in experimental analysis. Figure
16.1 shows that also my simulative analysis indicates that 2 is the optimal value
for TCP cwnd.

The results obtained in my experimental analysis, both in terms of through-
put and percentage of retransmissions, are shown in Figure 16.2 through Figure

Figure 16.1: Throughput over AODV (left) and OLSR (right) vs. number of
hops vs. cwnd size. NS-2 results.

Figure 16.2: Throughput (left) and percentage of retransmitted segments
(right) vs. maximum congestion window size in the 1-hop scenario. The routing
protocol is AODV.

136

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 137

16.5. These results highlight in the considered environment a maximum cwnd
of size 2 never provides optimal performance. Specifically, in the 1-hop scenario
an unclamped congestion window seems to be the best choice. This is because
in the 1-hop scenario there is no competition between neighboring nodes as in
multi-hop scenarios. In the other scenarios, a cwnd limitation appears to be
beneficial but the optimal cwnd size appears to be 3 (in the 2-hop scenario
the throughput with maximum cwnd equal to 4 is slightly better, but the re-
transmission is significantly higher). This discrepancy with previous simulation
results is due to a different behaviour between the TCP version implemented in
the Linux distribution used in my testbed and the one implemented in common
simulation tools (e.g ns-2 [3]) when the maximum cwnd of size is set to 2. By a
detailed analysis of traces I found that the simulated TCP receiver sends back
one acknowledgement every other segment, while the real (i.e., Linux) TCP
receiver sends back one acknowledgement every segment. When the maximum
cwnd size is 3 (or larger) both the real and simulated TCP send back one
acknowledgement every other segment. The increased number of acknowledg-
ments managed in the real testbed when the maximum cwnd size is equal to
2, makes the throughput suboptimal.

Figure 16.3: Throughput (left) and percentage of retransmitted segments
(right) vs. maximum congestion window size in the 2-hop scenario. The routing
protocol is AODV.

To confirm my conclusion I used the ns-2 simulation tool [3], and ran sim-
ulation experiments where I modeled the above conditions (note that I used
the same AODV-UU code both in the real and in the simulated experiments).
Specifically, I set the delayed ACK option at the TCP receiver when the maxi-
mum cwnd size was equal to 3, 4 and, 32, respectively. Instead, I disabled this
option in case of maximum cwnd size was equal to 2. Therefore, in the latter
case the TCP receiver sends back one TCP ACK every segment received , while
in all other cases it sends one TCP ACK every other segment. I observed that
the optimal window was 3 as in the real experiments. From the above results
it also appears that TCP throughput with optimal cwnd size is not so differ-
ent from that with unclamped congestion window. This is in contrast with
previous simulation studies which observe a significant throughput improve-
ment with optimal cwnd size. This discrepancy can be explained in terms of

Figure 16.4: Throughput (left) and percentage of retransmitted segments
(right) vs. maximum congestion window size in the 3-hop scenario. The routing
protocol is AODV.

Figure 16.5: Throughput (left) and percentage of retransmitted segments
(right) vs. maximum congestion window size in the 4-hop scenario. The routing
protocol is AODV.

138

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 139

the mechanism used by the AODV routing protocol for detecting link failures.
More precisely, the link failure detection mechanism based on Hello messages
generates frequent route failures with associated throughput oscillations and
performance degradation. This issue is described in detail in the next section.

16.5.2 Influence of Hello messages

AODV may take two different approaches for link failure detection. It can ei-
ther exploit link failure notifications from the underlying layer (provided that
this service is available), or rely upon a periodic exchange of Hello messages.
In the former case AODV learns that a link failure has occurred as soon as it
receives an explicit notification from the underlying layer (hereafter, this ap-
proach will be referred to as AODV-LL). In the latter case each node listens
for Hello messages that are periodically broadcast by each other node in the
network. A node assumes that a link failure has occurred if it has previously
received a Hello message from a neighbour and, then, for that neighbour
does not receive any packets (Hello messages or anything else) for more than
a predefined threshold (hereafter, this approach will be referred to as AODV-
Hello). In the AODV-UU implementation only Hello messages and AODV
control messages (e.g., Rreq and Rrep) are considered for neighbour connec-
tivity assessment (i.e., data messages are not taken into consideration).

The AODV protocol in my testbed uses Hello messages since the ipw2200
driver (version 1.1.2) does not provide link failure notifications. Assuming
default parameter values (Hello INTERV AL = 1s, and
ALLOWED Hello LOSS = 2), Hello messages are sent every 1s, and the
timeout associated with link failure detection is 2s. In other words , a link
failure is assumed in my testbed if a node fails to receive two consecutive Hello
messages from its neighbour. To compare the TCP behaviour with AODV-
LL and AODV-Hello I thus used the ns-2 simulation tool [3]. Specifically, I
assumed that the interference range (IF Range) is equal to the carrier sensing
range (CS Range) and both are twice as large as the transmission range, and
set all the other parameters as in the experimental testbed.

Figure 16.6 and Figure 16.7 show the throughput (left-side plot) and conges-
tion window size (right-side plot) vs. time with AODV-LL and AODV-Hello,
respectively. These results are related to the 3-hop scenario with maximum
cwnd of size 2. However, I found similar results for the other scenarios and
maximum cwnd sizes as well. I can observe that with AODV-Hello, the short
link-failure detection timeout (2s) causes false link-failure detections that forces
AODV to trigger a new route discovery process. During route discovery pro-
cess no segment is transmitted towards the final destination and the instant
throughput decreases to zero, as shown in Figure 16.7 (left). In addition, the
TCP sender experiences delayed ACKs and/or timeouts which trigger the con-
gestion control mechanism. This is because the cwnd size decreases to one
when the throughput is null as shown in Figure 16.7 (right).

When using AODV-LL there is no link-failure notification from the data
link layer below and, hence, the TCP cwnd size and throughput remain con-

Figure 16.6: Throughput (left) and congestion window size (right) vs. time
when using AODV-LL in the 3-hop scenario with maximum cwnd of size 2.
The interference range (IF Range) is assumed equal to the Carrier Sensing
Range (CS Range).

Figure 16.7: Throughput (left) and congestion window size (right) vs. time
when using AODV-Hello in the 3-hop scenario with maximum cwnd of size
2. The interference range (IF Range) is assumed equal to the Carrier Sensing
Range (CS Range).

Figure 16.8: Throughput (left) and congestion window size (right) vs. time
when using AODV-Hello in the 3-hop scenario with maximum cwnd of size
2. The interference range (IF Range) is less than the Carrier Sensing Range
(CS Range).

140

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 141

stant, as shown in Figure 16.6. The difference in detections between the two
methods can be explained as follows. In the AODV-Hello case it’s sufficient
to loose two broadcast packets to detect a link failure. In the AODV-LL case
a link failure is detected when a unicast packet is lost. Since unicast packets
are re-transmitted up to 7 times, while broadcast packets are transmitted just
once, the AODV-Hello mechanism proves to detect link failures quite more
frequently than AODV-LL. In conclusion, the TCP throughput whit AODV-
Hello is significantly lower than that with AODV-LL. In addition, frequent
false link-failure detections make the TCP throughput with clamped cwnd size
not so different from the throughput with unclamped congestion window. Actu-
ally, the TCP throughput is limited by false link-failures rather than the cwnd
size. I also did some simulations runs by assuming IF Range < CS Range,
which is more realistic. As expected, I observed no difference when using
AODV-LL, and a reduced number of false link-failure detections when using
AODV-Hello (see Figure 16.8).

16.5.3 Influence of the background traffic

I also investigated the influence of interfering traffic on TCP performance. To
this end, I considered the 3-hop scenario described above and added a CBR
(Continuous Bit Rate) session to it. This CBR session has N3 as its source node
and N2 as it recipient node, and uses UDP as the transport protocol. It inject
in the network a periodic traffic pattern with a bit rate equal to 192 Kbps,
which correspond to the bit rate of an MP3 stream. The results obtained
in this scenario (throughout referred to as 3-hop-UDP) are shown in Figure
16.9. There is no qualitative difference with the results in, except that TCP
throughputs are lower and the retransmission indices greater. As in the 3-hop
scenario without background traffic, the optimal cwnd size is 3. But, as above,
there are not significant differences associated with the various maximum cwnd
sizes.

Figure 16.9: Throughput (left) and percentage of retransmitted segments
(right) vs. maximum cwnd size in the 3- hop scenario with background pe-
riodic UDP traffic . The routing protocol is AODV.

Table 16.2: Throughput (in Kbps) vs. maximum cwnd size with OLSR.
1hop 2hop 3hop 4hop 3hop-UPD

TCP-2 1369,13 627,3 213,4 175,1 238,9
TCP-3 1456 676,3 282,1 172,8 259,3
TCP-4 1473,6 698,4 229,9 151,8 218,7
TCP-uc 1523,9 696,5 275,5 162,55 233,3

Table 16.3: Percentage of re-transmissions vs. maximum cwnd size with OLSR.
1hop 2hop 3hop 4hop 3hop-UPD

TCP-2 0 0 1,09 3,55 1,5
TCP-3 0 0,07 1,12 3,2 1,36
TCP-4 0 0 1,45 3,85 1,35
TCP-uc 0 0 1,87 4,8 1,8

16.5.4 Analysis with OLSR routing protocol

To conclude my analysis I also performed some experiments with OLSR as
routing protocol. The results obtained, in terms of throughput and percentage
of re-transmissions, are summarized in Table 16.2 and Table 16.3, respectively.

I can observe that the results with OLSR are not very different from those
with AODV under the same conditions. An important issue is that the retrans-
mission index with OLSR is always significantly lower than that with AODV.
I observed that the latter results is confirmed by simulations. One possible
reason for this behaviour is the different parameter values used by AODV and
OLSR to manage Hello messages. OLSR sends Hello messages periodically
every Hello Interval and considers the information provided by a Hello
message valid for Neighb Hold Time seconds. Assuming default parameter
values, Hello Interval is set to 2s and Neighb Hold Time to 6s. There-
fore, when using OLSR a node considers a link as broken if it fails to receive
three consecutive Hello messages from its neighbour. Instead, as described
above, with AODV a node assumes a link failure when it fails to receive two
consecutive Hello messages. Hence, OLSR is more robust to false link failures.
In addition, since routing protocols flush out the queue of pending transmis-
sions when they detect a link failure, if AODV detects a larger number of link
failures the fraction of segments discarded is larger as well.

16.5.5 Conclusions

TCP performance over multi-hop ad hoc networks (MANETs) have been ex-
tensively analysed in many previous studies. However, most of them are based
on simulation results, and some of them takes simplistic assumptions, e.g., they
do not consider the effect of the routing protocol. On the other hand, several

142

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 143

previous studies have shown the importance of an experimental analysis when
dealing with MANETs. In these first set of experiments I have used an experi-
mental testbed based on WiFi technology, and measured the TCP performance
in an indoor environment by considering two different routing protocols (i.e,
AODV and OLSR).

For the sake of simplicity and, also, for better comparison of experimental
and simulation results, I have limited my analysis to static networks with a
chain topology and a limited number of hops. I have found some interesting
results contrasting with simulations. In particular, I have found that in my
testbed with a chain topology of four hops or less, the optimal performance is
achieved with a maximum cwnd size equal to 3 (instead of 2, as suggested by
simulation). In addition, the TCP performance with limited congestion win-
dow size is not so different from that achievable with an unclamped congestion
window. I have shown that these discrepancies are due to the different proto-
cols – or different protocol implementations – used in practice with respect to
simulation tools.

16.6 TPA VS. TCP

This section reports the results of the comparison between TCP and TPA
performance over different network topologies. Specifically, I first compared
the performance of TCP and TPA in a chain topology with varying number of
hops (see Section 16.6.1). For TCP I only reported the results obtained with
a cwnd set to 2 (optimal value in simulative analysis) and 3 (optimal value
in experimental analysis, see Section 16.5). In addition, I also reported the
results obtained with an unclamped cwnd. Using the results obtained from
this set of experiments I evaluated the optimal settings for TPA. Using the
optimal setting for both TPA and TCP, I then evaluated the performance of
both protocols in a more complex network topology, i.e., a cross topology (see
Section 16.6.2). Finally, I evaluated the impact of nodes mobility over TCP
and TPA (see Section 16.6.3). To have a complete analysis of the behaviour of
TCP and TPA, I used in all the experiments both AODV and OLSR routing
protocol.

16.6.1 Chain Topology

I considered a chain topology with hop count ranging from 1 to 4. In addition, I
also ran experiments over a 3-hop chain topology in the presence of interfering
traffic. Through these experiments I evaluated the impact of the link-layer
contention on the TCP/TPA performance in a reasonably neat setup.

In all the experiments i compared the performance of TCP and TPA using
different values for the maximum cwnd size. Previous simulation studies [34,
55] suggest that in some of my scenarios (i.e., chain topology with hop count
equal to 3 or 4) the optimal value for the maximum cwnd size is 2, while
experimental measurements from a real testbed (see Section 16.5 show that
this optimal value is actually 3. Therefore, in the experiments I considered

Figure 16.10: Chain Topology network.

a maximum cwnd equal to 2 and 3, for both TCP and TPA. As a reference,
I also considered an unclamped (uc) value for the TCP maximum cwnd size.
Moreover, I evaluated the performance of TPA with the modified version of
the delayed ACK mechanism (see Section 15.7). In the following I will refer to
TCP with maximum cwnd size of W as TCP-W, and I will refer to TPA with
maximum cwnd set to W as TPA-W (or TPA*-W for the modified Delayed-
ACK case).

Figure 16.10 shows the indoor environment where the experiments were
carried out. It also shows how the nodes were positioned to form the chain
topology. It is worth pointing out that this testbed was deployed in a real work-
ing environment with possibly interfering electrical appliances, people roaming
around, etc. We chose such a deployment to compare TPA and TCP in a
scenario that is representative of the expected environments where ad hoc net-
works will operate in. The experiments consisted in a file transfer of about
180s. To generate network traffic I used my ftp-like program. In all the ex-
periments node N1 was the sender, while the receiver (and the number of
active nodes) depended on the specific chain length. For example, in the 3-hop
scenario, node N4 was the receiver (node N5 was not active). We chose the
transmission power of wireless cards and the distance between nodes in such a
way that only adjacent nodes were within the transmission range of each other.
However, since the transmission range of nodes is not a perfect circle and may
vary from time to time [15], I used the iptables firewall to filter MAC packets
and guarantee the desired topology. For example, I set up the firewall of node

144

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 145

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 1hop

Figure 16.11: Throughput vs. window size in the 1-hop scenario.

N3 in such a way to accept only packets from node N4 and node N2. We will
comment on this choice later on in the performance evaluation section.

Analysis with the AODV routing protocol

In the next I report the experimental results obtained with the AODV routing
protocol. Figure 16.11 through Figure 16.15 show the throughput and retrans-
mission index of both TCP and TPA in all the scenarios I considered.

Figure 16.11 shows that in the 1-hop scenario there are not significant dif-
ferences between TCP and TPA performance. This was expected since in this
simple scenario problems related to link-layer contention are managed efficiently
by the IEEE 802.11 MAC protocol. Specifically, in this scenario all nodes are
within the transmission range of each other and can thus coordinate efficiently
their transmissions. This produces a retransmission index equal to zero for
all values of the maximum cwnd size parameter. Figure 16.11 also shows that
TCP-3 and TCP-uc slightly outperform TPA. For example, TCP-uc through-
put is about 2% higher than TPA-3 throughput. However, we can observe that
TPA*-3 achieves about the same throughput of TCP-uc. It may be worthwhile
to recall here that TPA is implemented in the user space and, so, experiences
a greater overhead with respect to TCP-uc running in the kernel space. This
is basically due to a greater number of interactions between the user and the
kernel spaces.

Figure 16.12 shows that in the 2-hop scenario TPA outperforms TCP both
in terms of throughput and retransmission index. Specifically, TPA-2 provides
an increment in throughput of about 18% respect to TCP-2 but retransmits
about 83% less segments. TPA-3 provides a throughput about 2% higher than
that of TCP-3, and reduces the number of retransmitted segments of about
76%. TPA*-3 instead, provides a higher throughput than TCP-3 (about 9.5%)
and retransmits about 72% less segments. TPA*-3 is able to provide an higher
throughput than TPA-3, since it reduces the number of ACKs and, hence, the
contention on the wireless channel.

Figure 16.12 also shows that, as in the 2-hop scenario, TCP achieves the op-
timal throughput when it uses an unclamped transmission window. Specifically,

 580

 600

 620

 640

 660

 680

 700

 720

 740

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 2hop

 0

 0.5

 1

 1.5

 2

 2.5

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 2hop

Figure 16.12: Throughput (up) and percentage of retransmitted segments
(down) vs. window size in the 2-hop scenario.

TCP-uc throughput is about 2% higher than TCP-3 throughput. This happens
because in a scenario where all nodes are within the same carrier sensing range,
the IEEE 802.11 MAC protocol works well. However, TPA*-3, that is the best
TPA configuration in terms of throughput, provides a higher throughput than
TCP-uc (about 7.5%) and retransmits about 89% less segments.

The main reason for the difference between TCP and TPA performance
in this scenario where there is no interference (all nodes are in the carrier
sensing of each other) resides in the mechanism of HELLO messages used by
AODV to maintain local connectivity [19]. When using HELLO messages (with
the default parameters value), it’s sufficient to loose two consecutive HELLO
packets to detect a link failure. Since HELLO packets are broadcast, and
broadcast packets are neither acknowledged nor retransmitted by the MAC
layer, they are vulnerable to collisions and channel errors. This results in a
loss of local connectivity even in networks where all nodes are within the same
carrier sensing range. This loss of local connectivity results in frequent route
failures, which turn out in timeouts and retransmissions at the sender side.
However, as expected, TPA is much more efficient than TCP in managing
these events, as highlighted by the above results (Figure 16.12 down).

The 3-hop scenario is the first scenario where problems related to link layer
contentions become evident [128]. Figure 16.13 shows that the optimal value
for the TCP maximum cwnd size is 3 segments. This result is apparently in

146

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 147

 360

 380

 400

 420

 440

 460

 480

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 3hop

 0

 1

 2

 3

 4

 5

 6

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 3hop

Figure 16.13: Throughput (up) and percentage of retransmitted segments
(down) vs. window size in the 3-hop scenario.

contrast with previous simulation results showing that in the 3-hop scenario
the TCP optimal window size is 2 segments [34]. This discrepancy has been
found to reside in different behaviour between the TCP implementation in the
Linux kernel, and the TCP implementation available in the ns-2 simulator [3].
In [19], by a detailed analysis of traces, I found that when the maximum cwnd
size is set to 2 segments, the simulated TCP receiver sends back one ACK every
other segment, while the real (i.e. Linux) TCP receiver sends back one ACK
every segment, as if the delayed ACK mechanism were disabled in this case.

Figure 16.13 shows that TPA outperforms TCP with optimal window size
both in terms of throughput and retransmission index (with all congestion
window size). Specifically, TPA-2 increases the throughput of about 17% with
respect to TCP-2, retransmitting about 83% less segments. TPA-3 provides
a throughput 2% higher than TCP-3, while retransmitting about 71% less
segments. Figure 16.13 also shows that TPA*-3 is the best configuration for
TPA, providing a throughput increase of about 6.5% with respect to TCP-3
and retransmitting about 71% less segments.

In the 4-hop scenario, the link layer contention increases and then the dif-
ference in performance between the two protocols is expected to become more
evident. Figure 16.14 shows that, in this scenario there is no significant dif-
ference between TCP-2 and TCP-3. Also the difference between TCP-uc and
TCP with a clamped window are not significant in terms of throughput. How-

 280

 300

 320

 340

 360

 380

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 4hop

 0

 1

 2

 3

 4

 5

 6

 7

TPA*-3TPA-3TPA-2TCP-0TCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 4hop

Figure 16.14: Throughput (up) and percentage of retransmitted segments
(down) vs. window size in the 4-hop scenario.

ever, TCP-2 and TCP-3 obtain a retransmission index of about 70% lower than
TCP-uc. Figure 16.14 also shows that TPA outperforms TCP for all the con-
sidered protocol parameters. TPA-2 increases the throughput of about is 10%
with respect to TCP-2, while retransmits about 78% less segments. TPA-3
increases the throughput of about 7% with respect to TCP-3, and retransmits
80% less segments. Also in this scenario TPA*-3 is the best configuration for
TPA, providing an increase of about 12% in terms of throughput with respect
to TCP-2 and a decrease of about 60% in terms of retransmitted segments.

Finally, I also evaluated the performance of TCP and TPA in the presence
of interfering traffic. To this end I considered the 3-hop network topology
described above and added a CBR (Continuous Bit Rate) session to it. This
CBR session has N3 as its source node, and N2 as its recipient node, and
uses UDP as the transport protocol. It injects a periodic traffic pattern in the
network with a bit rate equal to 192 kbps, which corresponds to the bit rate of
an MP3 stream. The segment size of the UDP traffic was set to 1460 bytes. The
results obtained, summarized in Figure 16.15, show that in this scenario there
is no qualitative difference with the results obtained in the 3-hop scenario.
One important observation is that the performance improvement of TPA is
much more evident because the probability of link layer contentions is now
greater. With respect to TCP-2, TPA-2 exhibits an increment in throughput of
about 28% and a decrement of the retransmission index of about 93%. TPA-3

148

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 149

 200

 220

 240

 260

 280

 300

 320

 340

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 3hop-UDP

 0

 1

 2

 3

 4

 5

 6

TPA*-3TPA-3TPA-2TCP-0TCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 3hop-UDP

Figure 16.15: Throughput (up) and percentage of retransmitted segments
(down) vs. window size in the 3-hop-UDP scenario.

provides a throughput of about 9.6% higher than TCP while retransmitting
about 81% less segments respect to TCP-3. We can observe that also in this
scenario TPA*-3 is the best configuration for TPA, providing an increment in
throughput of about 19% with respect to TCP-3 and retransmitting about 88%
less segments.

Analysis with the OLSR routing protocol

In the next I show the experimental results obtained in the same above sce-
narios using OLSR, instead of AODV, as the routing protocol. Table 16.4 and
Table 16.5 summarize the throughput and the retransmission index, respec-
tively. We can see that the results obtained with OLSR are similar to those
obtained with AODV. As soon as problems related to link-layer contention
become evident, TPA outperforms TCP both in terms of throughput and re-
transmission index. For example, in the 3-hop scenario TPA-2 increases the
throughput of about 16% with respect to TCP-2 while retransmitting about
98% less segments. Throughput with TPA-3 is 11% higher than with TCP-3,
and retransmission are 92% less. Finally, TPA*-3 provides a throughput about
11% higher that TCP-uc (that is the optimal configuration for TCP) and re-
transmits about 83% less segments.

Table 16.4 and Table 16.5 furthermore show that TCP with a clamped
congestion window is the best configuration for TCP in terms of throughput,

Table 16.4: Throughput (in kbps) vs. maximum cwnd size with OLSR.

1hop 2hop 3hop 4hop
3hop
UDP

TCP-2
1369
±25

619
±14

354
±19

231
±18

300
±13

TPA-2
1464
±5

711
±23

412
±15

259
±17

340
±14

TCP-3
1456
±16

672
±14

357
±18

235
±15

320
±13

TPA-3
1461
±19

680
±14

396
±14

263
±11

322
±13

TCP-uc
1524
±5

691
±13

371
±26

253
±15

315
±16

TPA*-3
1495
±3

730
±24

411
±11

267
±13

347
±13

Table 16.5: Retransmission index vs. maximum cwnd size with OLSR.

1hop 2hop 3hop 4hop 3hop
UDP

TCP-2
0
±0

0.02
±0.01

0.4
±0.15

1.3
±0.2

0.67
±0.24

TPA-2
0
±0

0
±0

0.01
±0.006

0.09
±0.04

0.02
±0.02

TCP-3
0
±0

0.02
±0.01

0.54
±0.18

1.38
±0.24

0.5
±0.19

TPA-3
0
±0

0
±0

0.04
±0.016

0.15
±0.05

0.07
±0.01

TCP-uc
0
±0

0
±0

0.77
±0.24

2
±0.3

0.96
±0.4

TPA*-3
0
±0

0
±0

0.08
±0.04

0.16
±0.05

0.03
±0.001

150

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 151

only in the presence of background traffic. In all the other scenarios, TCP-uc
achieves an higher throughput than TCP-2 and TCP-3. This phenomenon
can be explained considering the low percentage of retransmission achieved by
TCP-uc when OLSR is used. For example, in the 4hop scenario, TCP-uc over
OLSR retransmits about 65% less segments that over AODV. One possible
reason for this difference in retransmission index is the different parameter
values used by AODV and OLSR to manage HELLO messages. Specifically,
by considering the default parameter values for both AODV and OLSR, OLSR
assumes that a link is broken if it fails to receive three consecutive HELLO
messages form its neighbour, while AODV assumes a link failure when if fails
to receive two consecutive HELLO messages. This make OLSR more robust to
false link failures [19], and results in a retransmission index closer to zero in
the 2-hop scenario when using OLSR.

Finally, Table 16.4 and Table 16.5 also show that TPA*-3 always provides
the best throughput for TPA. The only exception is in the 3-hop scenario,
where TPA-2 and TPA*-3 achieve the same throughput.

Analysis With Different Transmission Rate

I evaluated the impact of the transmission rate on both TCP and TPA per-
formance. Specifically, I considered the 4-hop network topology with OLSR
as routing protocol, and I ran experiments using 5.5 Mbps and 11 Mbps as
transmission rate. The obtained results show that also with transmission rates
different that 2 Mbps, TPA is able to outperform TCP in terms of both through-
put and retransmision index.

Figures 16.16 and 16.17 shows the results obtained with a transmission rate
equal to 5.5 Mbps and 11 Mbps respectively. When a transmission rate equal
to 5.5 Mbps is used, TPA outperforms TCP with optimal window size both
in terms of throughput and retransmission index with all congestion window
size. Specifically, TPA-2 increases the throughput of about 24% with respect
to TCP-2, retransmitting about 91% less segments. TPA-3 provides a through-
put about 11% higher than TCP-3, while retransmits about 82% less segments.
Finally, TPA*-3 (the best TPA configuration), provides a throughput of about
9.4% higher than TCP-uc (optimal TCP configuration), retransmitting about
94% less segments. When a transmission rate equal to 11 Mbps is used, the
difference in throughput between TCP and TPA is less evident. Specifically,
TPA-2 and TPA-3 prodive about the same throughput that TCP-3 (the opti-
mal TCP configuration), while retransmit about 80% less segments. However
TPA in its optimal configuration still to outperform TCP in its optimal con-
figuration. Specifically, TPA*-3 (the optimal TPA configuration) obtains an
increment in throughput of about 4% respect to TCP-3, retransmitting about
80% less segments.

Trace Analysis

The aim of this section is to show the different behaviour of TPA and TCP in
the presence of an ACK inhibition, i.e., when the route between receiver and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

OLSR, 4hop-5.5M

Figure 16.16: Throughput (up) and percentage of retransmitted segments
(down) vs. window size in the 4-hop with 5.5Mbps transmission rate

 700

 750

 800

 850

 900

 950

 1000

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

OLSR, 4hop-11Mbps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

OLSR, 4hop-11Mbps

Figure 16.17: Throughput (up) and percentage of retransmitted segments
(down) vs. window size in the 4-hop with 11Mbps transmission rate

152

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 153

Figure 16.18: Impact of an ACK inhibition.

sender is broken, while the route between sender and receiver is still available.
This can help us to understand why TPA outperforms TCP. To this end I refer
to a portion of the TPA trace file obtained in one replica of the 3-hop OLSR
experiment.

Figure 16.18-left shows the behaviour of TPA after about 39.557s from the
start of the experiment. Numbers on the left-hand side should be read as
< position in the block : block number >. At this time the TPA sender is
transmitting segments belonging to the block 131. The route between node N4
(TPA receiver) and node N1 (TPA sender) is broken while the route between
node N1 and N4 is active. This implies that TPA data segments can reach node
N4 while ACKs are dropped by the routing protocol and never reach node N1.
Upon timers expiration for segment 0, TPA enters the congested state and starts
sending segments with a cwndmax parameter set to one (segments 3 to 9 are
sent at each timer expiration). Those segments are successfully received by the
destination that continues to send ACKs to the sender node. However, ACKs
are discarded by the routing protocol. At time 50.92s, the routing protocol
recovers the route to node N1. At this point the TPA receiver, on reception
of segments 9, sends back an ACK that reaches the TPA sender and notifies it
that all segments belonging to block 131 have been successfully received by the
destination. Upon reception of the above ACK, TPA leaves the congested state
and sends segments 10 and 11. Then, upon reception of the ACK for segment
11, TPA transmits segments belonging to a new block.

Figure 16.18-right shows the behaviour that TCP would have had in the
same conditions. In this case, numbers on the left-hand side should be read as

< segment sequence number >. For the sake of simplicity I will refer to TCP
sequence number in terms of packets instead of bytes. As I can see from the
sequence shown in Figure 16.18-right, upon timer expiration for segment 200
the TCP sender retransmits the same segment and continues to do so upon
recursive timeouts.

In such cases, in which data segment reach the destination, but ACK seg-
ments do not reach the sender, TPA is not stuck at retransmitting the same
segment, as legacy TCP is. Therefore, the destination continues to receive new
data segments. In other words, during ACK inhibitions, TPA is able to ex-
ploit the unidirectional route available between the sender and the destination,
while legacy TCP is not. This results in a performance improvement of TPA,
compared with TCP behaviour.

Summary of the main results

Before proceeding with the analysis in more complex scenarios, it is worth
summarizing the main results obtained so far in a chain topology. Specifically
we have shown that:

• the throughput of TPA (in its best configuration) is always higher than
the throughput of TCP (in its best configuration), unless in the 1-hop
case. Specifically, the TPA throughput is between 5% and 19% higher
than the TCP throughput. It is worth recalling that TPA is currently
implemented in the user space, and this causes a non-negligible reduction
of the TPA throughput. We can reasonably expect the difference be-
tween TPA and TCP in the one-hop case to disappear if also TPA were
implemented in the kernel.

• TPA (in its best configuration) retransmits between 64% and 94% less
segments than TCP (in its best configuration) does. This results in lower
energy consumption and lower congestion in the network.

• TPA*-3 is generally the best configuration for TPA, since it reduces the
number of ACK in transit in the network, while TPA-3 always performs
bad than TPA-2 and TPA*-3.

• The best configuration for TCP varies with network topology and routing
protocols. However, in the presence of background traffics, TCP-3 seem
to be the best configuration for TCP. In the remaining set of experiments,
we only considered TCP-3 and TPA*-3.

• In my experiments, the use of a clamped cwnd for TCP doesn’t provide
significant advantages in terms of throughput. This is because, as ob-
served in [19], when the HELLO messages are used to maintain the local
connectivity, the TCP throughput is limited by false link-failure rather
than the cwnd size.

154

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 155

Figure 16.19: Cross Topology network.

16.6.2 Cross Topology

Experiments presented so far allowed us to understand the TPA performance in
a fairly simple scenario. This is essential to clearly understand its behaviour,
and tuning its parameters. In the next sections, I consider more complex
scenarios, starting from the well-known cross topology [46, 55]. Recall that the
protocols configurations I compare hereafter are TCP-3 and TPA*-3.

Figure 16.19 shows the nodes position in the indoor environment I used to
carry out my experiments. In this scenario there are two TCP/TPA connec-
tions, the first one (referred to as connection 1) from node N1 (sender) to node
N4 (receiver) and the second one (referred to as connection 2) from node N8
(sender) to node N5 (receiver). Each connection is three hops long. As in the
single-chain case, I positioned nodes of each chain so that only adjacent nodes
of a chain were in the transmission range of each other.

In a real environment is hard or even impossible to build a cross topology
like that used in simulative analysis. For example, in the cross topology used
in Section 17.4, nodes belonging to different connections cannot communicate
with each other, with the exception of the middle node. In my testbed, in-
stead, nodes belonging to different connections can communicate with each
other. For example, node N3 is within the transmission range of node N5, and
node N6 is within the transmission range of node N2. Consequently, to avoid
temporary spurious paths, I re-enforced the paths along the intended chains
through iptables. However, I make attention to put the source nodes and the

 0

 50

 100

 150

 200

 250

 300

 350

TPA*-3TCP-3

T
hr

ou
gh

pu
t (

K
bp

s)

OLSR, crossTopology

ftp 1
ftp 2

mean throughput

 0

 0.5

 1

 1.5

 2

 2.5

TPA*-3TCP-3

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

OLSR, crossTopology

ftp 1
ftp 2

mean rtx

Figure 16.20: Throughput (up) and percentage of retransmitted segments
(down) in the cross topology with OLSR.

destination nodes outside of their transmission range. Specifically, node N8 is
outside of the transmission range of node N1, while node N4 is outside of the
transmission range of node N5.

To generate network traffic I used two ftp-like connections as above. I
started both connections at the same time and I made them last for 240 seconds.
As performance metrics I present both the throughput and the retransmission
index of the two connections. In addition, I also show the mean throughput,
i.e., the mean between the throughput of the two connections, and the mean
retransmission index, i.e., the mean between the retransmission indices of the
two connections.

Figure 16.20 shows the performance indices achieved over OLSR. Also in
this scenario TPA significantly outperforms TCP both in terms of throughput
and retransmission index. Specifically, TPA*-3 increases the mean throughput
of about 18% with respect to TCP-3 and reduces the mean retransmission
index of about 73%. When AODV is used, the TPA performance improvement
is less evident. However, Figure 16.21 shows that TPA*-3 still increases the
mean throughput of about 5% with respect to TCP-3, and reduces the mean
retransmission index of about 60%.

I can observe that both TCP and TPA suffer a severe unfairness between the
two connections. Specifically, connection 1 obtains always a higher throughput
than connection 2. In my setup, nodes placement plays a role in the result-

156

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 157

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

TPA*-3TCP-3

T
hr

ou
gh

pu
t (

K
bp

s)

AODV, crossTopology

ftp 1
ftp 2

mean throughput

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

TPA*-3TCP-3

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

AODV, crossTopology

ftp 1
ftp 2

mean rtx

Figure 16.21: Throughput (up) and percentage of retransmitted segments
(down) in the cross topology with AODV.

ing unfairness. However, unfairness of transport protocols for ad hoc networks
is a well-known problem [46, 127]. Addressing such issues in TPA is still an
ongoing work. I present some preliminary design choices and results in Sec-
tion 17. However, it is worth pointing out that both connections achieve higher
throughput and lower retransmission indices when TPA is used, even though
connection 1 benefits more than connection 2. This means that TPA is able to
better exploit the available bandwidth in case of cross topologies.

16.6.3 Roaming Node

To complete my experimental evaluation of TPA I consider the impact of nodes
mobility on the performance of both TPA and TCP. To this end, I replicated
the Roaming Node scenario defined in [80].

The Roaming Node scenario (Figure 16.22) consists of four nodes. Three
of them are stationary (N1, N2, and N3) and one is mobile (N4). Nodes N1,
N2 and N3 form a static two hop chain network, i.e., nodes N1 and N3 are
out of the transmission range of each other. The mobility pattern followed by
node N4 is as follows. At time 0 node N4 is in position P1. After 40 seconds
it starts to move toward positions P2, where it pauses for 40 seconds. Then it
moves towards position P3, where it pauses for 40 seconds. Finally, it goes back
to positions P2 and P1, pausing for 40 seconds in each one. The time needed

Figure 16.22: Roaming Node Scenario.

to move from a position to the next position is about 20 seconds. Thus, the
experiments lasted for about 280 seconds. A single ftp-like connection spanned
between nodes N1 and N4 for the whole experiments duration. The length of
the path between nodes N1 and N4 varied during the experiment. Specifically,
in positions P1, P2 and P3, node N4 could reach node N1 in 1 hop, 2 hops
and 3 hops, respectively. It should be noted that in this set of experiments, to
allow routes to be dynamically recomputed I did not enforced paths through
iptables. I replicated the experiments 5 times, and computed the average
values over the replicas.

Figure 16.23 shows the throughput and retransmission index of TCP and
TPA over both OLSR and AODV. As I can see, also in this scenario TPA
significantly outperforms TCP both in terms of throughput and retransmission
index. Specifically, in the OLSR case, TPA*-3 increases the throughput of
about 12% with respect to TCP-3 and reduces the retransmission index of
about 73%. When AODV is used TPA*-3 increases the throughput of about
12% with respect to TCP-3 and reduces the retransmission index of about 26%.

Figure 16.23 also shows that both TCP and TPA work better over OLSR
than over AODV. Specifically, the throughput in the AODV case decreases of
about 25% with respect to the OLSR case. This may appear strange, since
OLSR suffers from a non negligible re-route time, due the rules OLSR uses to
generate and disseminate the information about network topology (Topology
Control messages, see [37] for more details).

The authors of [91] have analysed the impact of this delay on the perfor-

158

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 159

 400

 500

 600

 700

 800

 900

TPA*-3TCP-3

T
hr

ou
gh

pu
t (

K
bp

s)

roamingNode

olsr
aodv

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

TPA*-3TCP-3

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

roamingNode

olsr
aodv

Figure 16.23: Throughput (left) and percentage of retransmitted segments
(right) in the roaming node scenario.

mance of TCP. Despite this drawback, OLSR is able to provide a more stable
networking environment in my experiments. This can be explained as follows.
To positioning nodes I used the ping utility. For example, to position node N3
I used the ping utility to guarantee that node N3 can reach node N2 but not
node N1. To find the position P3, instead, I used the ping utility to guarantee
that in position P4 node N4 can only ping node N3. In this way, I enforced
that unicast traffic were routed through the intended hops in the chain. How-
ever, as noted in [80], even if two nodes cannot ping each other, the HELLO or
RREQ messages (i.e., broadcast messages) can be sporadically received. The
difference in size between HELLO and data packets plays an important role
in this phenomenon (HELLO packets are smaller that data packets, and hence
they are less prone to bit error). In addiction every node in my network may
experiences different external condition (like signal to noise level). This may
produce some unidirectional links.

The presence of spurious HELLO packets affects the behaviour of AODV
and OLSR in a different way. As soon as AODV receives a HELLO or RREQ
message, it assumes the message sender is reachable, and starts sending unicast
traffic to it. However, as noted above, receiving a HELLO or a RREQ message
does not necessarily means that it is possible to send unicast traffic towards the
message sender (in [80] this is called the communication gray zone problem).
On the other hand, in OLSR a link is deemed valid only if both endpoints

Figure 16.24: Ideal path length during my experiments.

announce each other in their respective neighbour list [37]. It is easy to show
that this is a stronger check on the links’ validity, which grants more stable
routes. In other words, AODV tries to use links as soon as it receives a single
broadcast message. Due to wireless links variability, this can make routes too
unstable, eventually resulting in low throughput at the transport level.

Based on these remarks, I further investigate the behaviourr of TCP and
TPA just in the OLSR case. Figure 16.24 shows the ideal path length between
the sender (N4) and the receiver (N1) that the routing protocol is expected
to compute during my experiments. Figure 16.25 shows the real path length
(upper plot) and the throughput (lower plot) achieved by TCP (over OLSR)
during a particular replica of my experiment (other replicas show a similar
behaviour). A number of hops equal to zero means that node N4 has no entries
for node N1 in its routing table, and is thus not able to communicate with it.
Figure 16.26 shows the same performance figures in the case of TPA. First of
all, note that the path calculated by OLSR is comparable in both cases, and
is slightly better in the TCP case, as shown by the additional drop after 150s
in Figure 16.26 (upper plot). As far as the throughput, TCP performs close to
TPA only when the sender and the receiver are 1-hop away, i.e., before 50s and
after 250s. When they are 2-hops away, TCP is able to carry on some transfer,
as shown by the plateaux around 100s and between 200s and 250s. However,
in these time frames TPA is able to achieve a quite more stable throughput.
Finally, when the sender and the receiver are 3-hops away, TCP is completely
unable to carry on any transfer, while TPA still achieves a stable behaviour in
terms of throughput. Therefore, TPA is able to reconfigure after route changes,
and carry on data transfer more efficiently than TCP.

16.7 Conclusions

In this chapter I presented an evaluation of TPA protocol in a real ad hoc
testbed. I have investigated the impact of different protocol parameters on the
throughput and the number of segments used to sustain the throughput. I have
run experiments on different topologies, different routing protocols, and also in
mobile scenarios. Finally, I have also run experiments with higher transmission
rate (5.5 Mbps and 11 Mbps). In all the cases I have investigated TPA is able to
improve the performance of TCP. Specifically, TPA delivers greater throughput

160

CHAPTER 16. EXPERIMENTAL ANALYSIS OF TPA 161

Figure 16.25: Path length and instantaneous throughput of TCP over OLSR
in the Roaming Node Scenario.

Figure 16.26: Path length and instantaneous throughput of TPA over OLSR
in the Roaming Node Scenario.

with respect to TCP (up to 19%), while reducing at the same time the number
of retransmissions (up to 94%).

The experiments presented in this chapter are tailored to multi-hop ad hoc
networks in which groups of users set up a stand-alone network and exchange
data in a p2p fashion. The results I have obtained motivate us to further
investigate the TPA performance also in different setups. For example, it would
be intresting to compare TPA performance with that of different TCP variants,
like TCP Sack and TCP Vegas. In addiction, it would be extremely interesting
to understand how TPA works in mixed wireless/wired scenarios. In these
cases two options could be compared, namely rely on slight TPA modifications
to make it work with unmodified TCP endpoints, or using an Indirect-TCP
approach, and thus envisioning a first TPA trunk between the wireless node
and the gateway to the wired network, and a standard TCP trunk in the wired
network. This naturally leads to investigate the viability of TPA in mesh
network environments. Another area still to be deeply investigated is how TPA
can address fairness issues different and more complex scenarios with respect
to those considered in this chapter.

162

Chapter 17

Simulative Analysis of TPA

17.1 Introduction

The previous Chapter reports the experimental results of TPA analysis over
simple network topologies. To complete the study of TPA protocol, I also
analysed TPA performance over more complex network topologies, like the
cross topology, the parallel topology, and the grid topology. In addiction, I
also studied TPA performance over a random generated network topology, and
over a mobile scenario. Since it is difficult to build this kind of networks in a
real environment, I used the ns-2 simulator [3] to perform my analysis. This
also permitted us to take into consideration the unfairness problem. In a real
tested, is hard or even impossible to set up connections with exactly the same
peculiarity, since different nodes may experience different level of external noise.
The difference between connections may make the experimental study of the
fairness problem harder. In a simulative environment, instead, is possible to
set up connections with exactly the same characteristic. This assists the study
of the fairness problem.

Several previous works have analysed the TCP unfairness problem over
MANETs (see, for example, [46, 127]). Channel capture, hidden and exposed
terminal conditions, and the binary exponential backoff of the IEEE 802.11
MAC are the main causes of TCP unfairness. Moreover, TCP’s congestion
control mechanism exacerbates the problem. Specifically, as noted in [46],
TCP’s window-based congestion control mechanism leads to segments’ burst
on ACK reception. This produces an increased channel contention and reduces
the chance of neighbour nodes to access the channel. In [46], ElRakabawy et
al. proposed a modified version of the Adaptive Pacing mechanism available
for the Internet, and called it TCP-AP. They show that TCP-AP can signif-
icantly mitigate the unfairness problem encountered by TCP. Even if TPA is
able to provide a higher fairness than TCP (as shown in the next sections), it
still suffers of a severe unfairness. Consequently, I decided to implement the
Adaptive Pacing algorithm proposed in [46] in TPA, and I called this version
of TPA TPA-AP. This section reports the results of a comparison between

163

TCP-AP and TPA-AP. As far as TCP-AP, I used the code implemented by
the authors of [46].

To compare TCP and TPA performance, I used the same configuration
settings used in the experimental analysis. Specifically, I considered for both
TCP and TPA a maximum cwnd of 2 and 3. In addiction, I also considered
an unclamped value the TCP maximum cwnd size, and I evaluated the perfor-
mance of TPA with the modified version of the delayed ACK mechanism. For
TCP-AP instead, I used an unclamped value for the maximum cwnd size, as
suggested in [46], while for TPA-AP I used the same configuration parameters
used for TPA. As routing protocol, I used the AODV-UU implementation [1] of
the AODV routing protocol. To maintain local connectivity I used the HELLO
messages mechanism. I set the segment payload size of both protocols to 1460
bytes.

This Chapter is organized as follow. Section 17.2 describes the performance
metrics used to compare TCP and TPA performance. Section 17.3 reports the
description of the TCP-AP proposal. Section 17.4 to 17.7 reports the results of
the analysis of TPA and TCP over the analysed scenarios. Finally, Section 17.8
concludes the Chapter.

17.2 Performance Measures

In my analysis I considered the following two performance measures:

• Aggregate Throughput index, i.e., the sum of the throughput achieved by
each connection.

• Mean Re-transmission index, i.e., the percentage of segments re-transmitted
by all the TCP/TPA senders.

The throughput was measured as reported in 16.3. The Mean re-transmission
index (Rtx) was obtained as:

rtx =
∑n

i=1 pktRtxSrci∑n
i=1 pktRcvDesti

where pktRtxSrci is the number of segments retransmitted by the source i,
pktRcvDesti is the number of nonduplicated segments successfully received by
the destination i, and n is the number of connections active in the network.

Several previous works have shown a severe unfairness between TCP con-
nections over MANETs (see, for example, [46, 127]). As a consequence, the
aggregate throughput is non sufficient to analyse TCP/TPA performance in
complex scenarios with multiple connections. To solve this problem, I also
used the Jain’s fairness index [65] to study the performance of TPA and TCP.
This index is defined as:

F (x) =
[
∑n

i=1 xi]
2

n×
∑n

i=1 x2
i

,

164

CHAPTER 17. SIMULATIVE ANALYSIS OF TPA 165

where xi is the throughput (as defined in 16.3) achieved by connection i, and
n is the number of considered connections. In addiction, I also considered the
instantaneous fairness index, i.e., the value of the Jan’s fairness sampled every
two seconds, and then averaged over the whole experiment.

17.3 TCP with Adaptive Pacing

In [46] the authors show that the TCP’s congestion control mechanism exacer-
bates the unfairness problem. Specifically, they show that TCP’s window-based
congestion control mechanism leads to segments’ burst on ACK reception. This
produces an increased channel contention and reduces the chance of neighbour
nodes to access the channel. They address this problem by introducing a mod-
ified version of the Adaptive Pacing mechanism available for the Internet, and
called it TCP-AP. TCP-AP spreads the segments transmission according to
a transmission rate that is dynamically computed. Moreover it incorporates
a mechanism to identify incipient congestion and to adjust consequently the
transmission rate. In more detail, TCP-AP calculates the segments trans-
mission rate taking into account the spatial reuse constraint of IEEE 802.11
multi-hop network. The authors of [55] showed that, in a chain topology, only
nodes 4 hops away from each other can transmit simultaneously. Based on this
result, the authors of [46] used the 4-hop propagation delay (FHD), i.e. the
time needed for a segment produced by node i to reach node i+4, to calculate
the segment transmission rate. TCP-AP sender calculates the FHD using the
RTT estimation and the number of hops of the connection (see [46] for the
details). As anticipated, to evaluate the sender transmission rate, TCP-AP
uses also an estimate of the link-layer contention. Specifically, the authors of
[46] proposed the coefficient of variation of recently measured RTT (covRTT)
as a measure of contention, i.e.:

covRTT =

√
1

N−1 ×
∑N

i=1

(
RTTi −RTT

)2

RTT
, (17.1)

where N is the number of RTT samples, RTT is the mean of the samples, and
RTTi is the value of the i-th sample of RTT.

TCP-AP evaluates the transmission rate R as follows:

R =
1

FHD × (1 + 2covRTT)
, (17.2)

where FHD is the exponentially weighted moving average of FHD and (1 + 2covRTT)
is the factor that takes into account the contention degree of the network. The
transmission rate depends on the FHD index, and on the link-layer contention.
Thus, the connection slows down when the contention increases.

Figure 17.1: Cross and Parallel topology.

Table 17.1: Cross Topology
Agg.
Thr

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean
Rtx
(%)

TCP-2
292
±1.4

94.6
±3

63.6
±1.7

5.13
±0.49

TPA-2
301.7
±1.3

98.9
±0.7

69.6
±1.3

5.23
±0.24

TCP-3
282.5
±2

95
±4

69.9
±1.9

8.3
±0.6

TPA-3
297
±1.6

99.7
±0.2

72.4
±1.25

7.35
±0.26

TCP-uc
280.7
±1.7

99.3
±0.4

70.8
±1.13

11.4
±0.43

TPA*-3
309.5
±1.3

99.3
±0.36

73.3
±1.24

7.22
±0.3

17.4 Cross and Parallel Topology

I analysed TPA and TCP performance over the cross topology (Figure 17.1a)
and the parallel topology (Figure 17.1b). These are two of the reference topolo-
gies considered in [46]. In both scenarios, the distance between adjacent nodes
was set to 200 meters, so as to make each connection 4-hops long. In the par-
allel topology I set the distance between the two chains to 400 meters. This
way, nodes of connection 1 (connection 2) were out of the transmission range
of nodes of connection 2 (connection 1), but inside the carrier sensing range
of connection 2 (connection 1). In both topologies I considered two ftp flows,
each starting at time 20 and lasting for 500 seconds. I replicated the cross and
parallel topology experiments for 10 times, and I evaluated the 90% confidence
intervals for the measured performance metrics.

Table 17.1 shows the results of the experiments in the Cross Topology sce-

166

CHAPTER 17. SIMULATIVE ANALYSIS OF TPA 167

Table 17.2: Cross Topology with Adaptive Pacing enabled
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair
(%)

Mean
Rtx
(%)

TCP-AP
153
±2.5

99.7
±0.14

92.3
±0.1

6.34
±0.36

TPA-AP-2
254.7
±2.3

99.3
±0.7

87.3
±2.2

2.46
±0.14

TPA-AP-3
250.6
±2.7

99.1
±0.8

86.8
±1.9

3.3
±0.16

TPA*-AP-3
250
±1.4

98.2
±0.98

88.4
±1.5

5.8
±0.28

nario. Also in this scenario, TPA outperforms TCP in terms of throughput,
percentage of retransmission and fairness. For example, TPA*-3 (the best con-
figuration for TPA in terms of aggregate throughput), achieves an increment in
throughput of about 6% respect to TCP-2 (the best configuration for TCP in
terms of aggregate throughput). In addiction, TPA*-3 achieves an increment in
fairness of about 5%, and an increment in instantaneous fairness of about 16%.
However, this increment in fairness and throughput is paid with an increment
of the retransmission index of about 40%.

Table 17.2 shows the results of the experiments in the Cross Topology sce-
nario when the Adaptive Pacing mechanism is used. As I can see, the Adaptive
Pacing mechanism is able to improve the instantaneous fairness of both pro-
tocols. For example, TCP-AP obtains an increment of instantaneous fairness
of about 46% with respect to TCP-2. Such greater fairness is paid with a 47%
reduction of the Aggregate throughput. TPA-AP-2, instead, obtains an incre-
ment in instantaneous fairness of about 25% with respect to TPA-AP. Also
TPA pays the increment in fairness with a reduction of the mean throughput
of about 15%.

Table 17.2 also shows that TPA-AP outperforms TCP-AP in terms of aggre-
gate throughput and percentage of retransmission. Specifically, TPA-AP-2 (the
best configuration for TPA-AP in terms of aggregate throughput) achieves an
increment in throughput of about 66%, respect to TCP-AP, while retransmits
about 61% less segments. However, this big improvement in terms of through-
put is paid by TPA with a reduction of the instantaneous fairness index. For
example, while the fairness index is about the same, TPA-AP-2 obtains an
instantaneous fairness index of about 5% lower than TCP-AP.

I analysed the obtained results to understand why TPA-AP obtains a lower
instantaneous fairness index than TCP-AP. The reason for this is the greater
accuracy TPA achieves in estimating the RTT of a connection when the Delayed
ACK mechanism is used. Specifically, TPA evaluates the RTT with reference
to the segment generating the ACK segment at the receiver, achieving a careful
estimate of the real RTT of the connection. For example, in the case depicted

Table 17.3: Cross Topology. Impact of the K parameter on TPA protocol
K = 1 K = 2 K = 3

Agg. Thr.
(kbps)

254.7
±2.3

208.7
±3.8

171.2
±1.1

Mean Rtx
(%)

2.46
±0.14

1.83
±0.14

1.05
±0.11

Fair.
(%)

99.3
±0.7

99.7
±0.18

99.8
±0.08

Ist. Fair.
(%)

87.3
±2.2

93.7
±1.09

96.2
±0.3

in Figure 16.18, on reception of the ACK for segment 11, TPA uses the send
time of segment 11 to evaluate the RTT. On the other hand, TCP calculates
the RTT with reference to the first unacknowledged segment sent in the current
transmission window. For example, in the case depicted in Figure 16.18, on
reception of the ACK for segment 203, TCP uses the send time of segment 202
to evaluate the RTT. Consequently, when the delayed ACK mechanism is used,
the RTT calculated by TCP includes also the additional time due to delayed
ACK. Thus, TCP-AP overestimates the FHD and tends to work with a too
low transmission rate, eventually resulting in lower throughput with respect to
TPA-AP.

I tried to add an additional parameter to formula 17.1, in order to slowing
down the pacing timer of TPA-AP. Specifically, I added the K parameter, as
reported in formula 17.3, and I evaluated its impact on TPA-AP performance.

covRTT =

√
1

N−1 ×
∑N

i=1

(
K×RTTi −RTT

)2

RTT
, (17.3)

Table 17.3 shows the performance of TPA when a K parameter equal to
1, 2 and 3 is used. For simplicity, only the results obtained with a cwnd
equal to 2 are reported. The other TPA-AP configurations obtains similar
results. Table 17.3 shows that raising the value of K improves the instantaneous
fairness of TPA-AP. This improvemet in fairness is paid with a reduction of
the aggregate throughput. For a value of K equal to 2, TPA-AP improves the
instantaneous fairness of TCP-AP of about 1.5%, maintaining a throughput of
about 36% higher and retransmitting about 71% less segments. Summarizing,
when a K parameter equal to 2 is used, TPA-AP significant improves TCP-AP
performance in terms of throughput, retransmission index and instantaneous
fairness. In the following, I will used a K parameter equal to 2 to compare
TCP-AP and TPA-AP performance.

Table 17.4 shows the results obtained over the parallel topology when the
Adaptive Pacing mechanism is not used. Also in this scenario TPA outper-
forms TCP in terms of throughput, percentage of retransmission and fairness.
Specifically, TPA*-3 (the best configuration for TPA in terms of throughput),

168

CHAPTER 17. SIMULATIVE ANALYSIS OF TPA 169

Table 17.4: Parallel Topology
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair
(%)

Mean
Rtx
(%)

TCP-2
292.2
±1.5

83.1
±11

54.9
±1.5

2.9
±0.5

TPA-2
298.9
±2.1

97
±2

58.1
±1.03

2.4
±0.15

TCP-3
283.3
±1.6

95.7
±3

57.9
±1.44

4.5
±0.5

TPA-3
294.7
±2.1

98.1
±1.6

60
±1

3.4
±0.19

TCP-uc
279.5
±2.5

82.3
±13

56
±2.4

6.4
±0.7

TPA*-3
308.2
±1.9

97.7
±1

58.8
±0.62

3.14
±0.16

achieves an increment in aggregate throughput of about 5%, respect to TCP-2
(the best configuration for TCP in terms of throughput). In addiction, TPA*-3
achieves an increment in fairness of about 17%, and an increment in instanta-
neous fairness of about 7%. However, also in this case, the increment in fairness
and throughput is paid by TPA with an increment of the retransmission index
of about 8%.

Table 17.5 shows the results of the experiments in the Cross Topology sce-
nario when the Adaptive Pacing mechanism is used. As I can see, also in this
scenario the Adaptive Pacing mechanism is able to improve the instantaneous
fairness of both protocols. In this scenario, TPA-AP outperforms TCP-AP in
terms of throughput, and percentage of retransmission, while achieves a lower
instantaneous fairness index. Specifically, TPA-2 (the best configuration for
TPA in terms of throughput) achieves an increment in throughput of about
39%, respect to TCP-AP while retransmits 77% less segments. However, while
the fairness index is about the same, TPA obtains a instantaneous fairness
index of about 3% lower respect to TCP-AP. This because TPA-AP, even if
a K parameter equal to 2 is used, still to be more aggressive than TCP-AP.
However, the reduction of instantaneous fairness is small respect to the big
increment of aggregate throughput.

17.5 Grid Topology

This section reports the results of the simulative analysis of TPA over the grid
topology (Figure 17.2). This topology consists on a 5 x 5 grid, where the
distance between horizontal and vertical adjacent nodes was set to 200 meters.
Over this topology, I set up 6 ftp flows, each of wich is 4-hops long. In this

Table 17.5: Parallel Topology with Adaptive Pacing enabled
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair
(%)

Mean
Rtx
(%)

TCP-AP
155.5
±4.2

99.8
±0.1

90.8
±0.6

7.3
±0.4

TPA-AP-2
215.3
±0.9

99.5
±0.35

87.8
±1.2

1.7
±0.16

TPA-AP-3
208.3
±2.5

99.6
±0.5

87.7
±1.6

2
±0.2

TPA*-AP-3
193.2
±3.7

97.5
±1.5

88.4
±2.2

2.5
±0.12

Figure 17.2: Grid topology.

scenario, each ftp flow starts at time 20 and lasts for 500 seconds. I replicated
the grid topology experiments for 10 times, and I evaluated the 90% confidence
intervals of the measured performance metrics.

Tables 17.6 and 17.7 show the performance of TCP and TPA with and with-
out the Adaptive pacing mechanism over the grid topology. When the adaptive
pacing mechanism is not enabled, TPA outperforms TCP in terms of aggregate
throughput, fairness and instantaneous fairness. For examples, TPA-2 achieves
an increment in aggregate throughput of about 3.7%, with respect to TCP-2.
In addiction, TPA-2 obtains an increment in fairness of about 43%, and an
increment in instantaneous fairness of about 34%. However, as in the case of
the cross and parallel topologies, this improvement in throughput is paid with
an increment of the retransmission index. For example, TPA-2 retransmits
about 22% more segments than TCP-2.

Table 17.7 shows that the adaptive pacing mechanism can significantly im-

170

CHAPTER 17. SIMULATIVE ANALYSIS OF TPA 171

Table 17.6: Grid Topology
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-2
270.1
±3

62.6
±5

35.4
±2

12.3
±1

TPA-2
280
±2.9

89.2
±1.8

47.5
±0.4

15
±0.34

TCP-3
263.9
±4.2

66.5
±8.6

35.9
±2

13.7
±0.8

TPA-3
278
±2

89.8
±1.73

48.1
±0.6

18.9
±0.2

TCP-uc
268
±2.7

65.3
±8

34.4
±2.6

15.9
±1.3

TPA*-3
283
±2

88.2
±2

47.5
±0.6

16.4
±0.4

prove the instantaneous fairness of both TCP and TPA also in the grid topol-
ogy. This increment is paid by TCP and TPA with a reduction of throughput.
However, also in this case TPA-AP outperforms TCP-AP. Specifically, TPA-2
(the best configuration in terms of instantaneous fairness) achieves an incre-
ment in throughput of about 18%, while retransmits 74% less segments. The
instantaneous fairness is about the same while TPA achieves a fairness index
about 2% lower that TCP.

Table 17.7: Grid Topology with Adaptive Pacing enabled
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-AP
202.8
±2.6

98.6
±0.9

86.1
±1.5

28.6
±1

TPA-AP-2
239
±2.3

96.1
±0.9

85.8
±1

7.5
±0.4

TPA-AP-3
241
±1.1

96.5
±1.7

84.9
±1.3

8.4
±0.26

TPA*-AP-3
233.7
±1.8

95.3
±1.4

85.5
±1.6

7.2
±0.4

17.6 Static Random Topology

In order to test TPA performance in a more generic scenario, I considered a
random topology of 50 nodes randomly distributed in a area A=1000m×1000m.
After a warm-up time of 20 seconds, one or more TCP/TPA connections were
established over each of which an ftp file transfer was conducted for 500 seconds.
Specifically, I considered an number of connection simultaneously active in the
network equal to 3, 5, and 10. I generate randomly 10 scenarios and I calculated
my performance metrics as the mean over the considered scenarios. To achieve a
more accurate measure of my performance metrics, I replicated the experiments
carried out using a specific scenario 10 times, and I evaluated the mean values
for the measured performance metrics. I select the source destination pairs
randomly, and I used the same source destination pairs for all the considered
scenarios.

Table 17.8 shows the results obtained over the static random scenario, when
the Adaptive Pacing mechanism is not used. This table only reports the aggre-
gate throughput and the instantaneous fairness metrics. This because the Mean
Retransmission index of both protocols is about the same, while the trend of
the Fairness and the Instantaneous Fairness indexes is comparable. Table 17.8
reports the results for the optimal configuration of both TCP and TPA. The
optimal configuration of both TCP and TPA depends on the metric used as
reference metric. If the aggregate throughput is chosen as the reference metric,
the optimal configuration for TCP is TCP-uc, while the optimal configuration
for TPA is TPA*-3. If I used the instantaneous fairness as the reference metric,
the optimal configuration for TCP and TPA is TCP-2 and TPA-2 respectively.
Table 17.8 shows both these optimal configurations. TCP † and TPA† are the
optimal setting for TCP and TPA when the aggregate throughput is chosen as
the reference metric, while TCP ‡ and TPA‡ are the optimal setting for TCP
and TPA when the Instantaneous Fairness is chosen as the reference metric.

Table 17.8 shows that TCP is always able to provide an higher aggregate
throughput respect to TPA, while TPA always provides an higher Instantaneous
Fairness. For example, when 5 connections are simultaneously active in the
network, TPA† obtains an increment of the instantaneous fairness index of
about 15% respect to TCP †. This increment in fairness is paid by TPA with
a reduction of the aggregate throughput index of about 1.5%. TPA‡, instead,
obtains an increment of the instantaneous fairness index of about 10% respect
to TCP ‡. This increment in fairness is paid with a reduction of the aggregate
throughput index of about 3.6%.

When the Adaptive Pacing is used, the optimal configuration of TPA-AP is
always TPA-AP-2, considering both the aggregate throughput and the Instan-
taneous fairness as reference metric. Consequently, table 17.9 only reports the
results of TPA-AP-2. Table 17.9 shows that when the Adaptive Pacing is used,
TPA-AP always outperforms TCP-AP in terms of throughput and percentage
of retransmission. In addiction TPA also achieves an higher instantaneous fair-
ness index. For example, when 3 connections are simultaneously active in the
network, TPA achieves an increment in throughput of about 14% respect to

172

CHAPTER 17. SIMULATIVE ANALYSIS OF TPA 173

Table 17.8: Static Random Topology
Number of connections
3 5 10

TCP †-uc
A. Thr.
I. Fair.

885.1
46.8

1126
40.3

1303
28.9

TPA†*-3
A. Thr.
I. Fair.

827.2
56.7

1108
46.5

1195
34

TCP ‡-2
A. Thr.
I. Fair.

831.3
52.98

1121
42.6

1226
31.3

TPA‡-2
A. Thr.
I. Fair.

801
58.3

1080
46.9

1173
34.6

Table 17.9: Static Random Topology with the Adaptive Pacing enabled
Number of connections
3 5 10

TCP-AP
A. Thr.
I. Fair.
M. Rtx

415.9
71.4
7.4

546.7
66.7
9.5

558.8
59

13.4

TPA-AP-2
A. Thr.
I. Fair.
M. Rtx

476.6
75.3
1.7

621.8
68.9
2.2

641.4
57.9
3.5

TCP, while retransmits about 76% less segments. In addiction, TPA obtains
an instantaneous fairness index of about 5.6% higher respect to TCP.

17.7 Mobile Scenario

The network I simulated consisted of 50 nodes moving over a 1000m x 1000m
field. To perform my analysis, I utilized 50 different mobility patterns based on
the random waypoint model, each of wich have been generated using the code
[107] available for the ns2 simulator presented in [90]. This code produces a
perfect sample of the node mobility state, and so permits to start a simulation
in steady state. To mimic high node mobility, I used a mean node speed
of 5 m/s, and a delta node speed of 4 m/s. This means that nodes sample
numeric speed from a uniform distribution on the interval from 1 to 9 m/s. I
also used a pause time of 10 seconds. After a warm-up time of 20 seconds, 5
TCP/TPA connections were established over each of which an ftp file transfer
was conducted for 500 seconds. I calculated my performance metrics as the
mean over the considered patterns. To avoid a to high grow of the RTO due
to long route recomputation delay, I fixed the Maximum RTO parameter for
both TCP and TPA to 2 seconds.

In the mobile scenario, TPA obtains optimal performance in the TPA*-3

Table 17.10: Mobile Scenario
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-uc 864.8 75 38.2 5.8
TCP-2 837.4 77 43.9 4.8
TPA*-3 871.7 78.5 45.3 3.6

Table 17.11: Mobile Scenario with the Adaptive Pacing enabled
Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-AP 433.2 94 69.8 16
TPA-AP*-3 536.2 91.2 67.1 3.9
TPA-AP-2 523.7 92.8 68.4 3.4

configuration. This in terms of both aggregate throughput and instantaneous
fairness. The optimal TCP configuration, instead, depends on the performance
metric chosen as reference metric. When the aggregate throughput is chosen
as the reference metric, TCP-uc is the optimal TCP configuration, while if
the Instantaneous Fairness is chosen as the reference metric, TCP-2 is the
optimal TCP configuration. Table 17.10 reports the simulative results relative
to the optimal configuration of both TCP an TPA in the mobile scenario. It
shows that TPA*-3 obtains an increment in throughput of about 1% respect
to TCP-uc. In addiction, TPA*-3 also increments the instantaneous fairness
index of about 18.6%, and reduces the retransmission index of about 38%
respect to TCP-uc. TPA*-3 also outperforms TCP-2, achieving an increment in
throughput of about 4% and retransmitting about 25% less segments. TPA*-3
also improve the instantaneous fairness index of about 3.2%.

I evaluated the impact of the adaptive pacing mechanism also in this sce-
nario. Table 17.11 reports the results relative to TCP-AP, TPA-AP*-3 (the
optimal TPA configuration in terms of throughput), and TPA-AP-2 (the opti-
mal TPA configuration in terms of instantaneous fairness). TPA-AP*-3 incre-
ments TCP-AP throughput of about 23.8%, restransmitting about 75.6% less
segments. However, this increment in throughput is paid by TPA with a lower
instantaneous fairness index. Specifically TPA-AP*-3 achieves a instantaneous
fairness index of about 3.9% lower than TCP-AP. TPA-AP-2, instead, incre-
ments the aggregate throughput of about 20.9%, retransmitting about 78.7%
less segments respect to TCP-AP. However, in this case, TPA-AP-2 is less
aggressive than TPA-AP*-3, and provides a instantaneous fairness index only
2% lower than TCP-AP.

174

CHAPTER 17. SIMULATIVE ANALYSIS OF TPA 175

17.8 Conclusions

In this Chapter I presented a simulative evaluation of the TPA protocol. Using
the ns2 simulator I have investigated TPA performance over simple network
topologies, like the cross and the parallel topology, and over more complex
network topologies, like the grid topology, a random generated topology, and
a dinamic topology (50 nodes moving in a 1000 x 1000 area). In this scenarios
TPA outperforms TCP both in terms of aggregate throughput and fairness.
Specifically, TPA delivers greater throughput with respect to TCP (up to 6%),
while increments at the same time the fairness index (up to 35%).

This Chapter also presented some results about unfairness mitigation in
TPA. Specifically, I implemented in TPA the Adaptive Pacing mechanism, a
popular proposal for improving TCP fairness, and I compared the performance
of TCP with Adaptive Pacing and TPA with Adaptive Pacing. To perform my
analysis I used the same scenarios used in the previous simulative analysis. In
all the scenarios I have investigated TPA is able to improve the performance of
TCP. Specifically, with the Adaptive Pacing enabled, TPA is able to increase
the TCP throughput up to 39%, granting at the same time an increment in
fairness up to 5.6%. In addiction, TPA is able to reduce the number of retrans-
mitted segment up to 78.7%.

Chapter 18

Conclusion

This thesis Part described the main specificity of MANETs that condition TCP
behaviour and reported the major proposals aimed to improve TCP’s perfor-
mance in such environment. In addiction it also proposed a novel transport
protocol for Ad hoc Networks, named TPA, that is specifically tailored to the
characteristics of the MANET environment. The TPA protocol provides a
reliable, connection-oriented type of service, and includes several innovations
with respect to the legacy TCP protocol. Unlike TCP, TPA is able to manage
efficiently route failures and route changes that may arise due to nodes’ mobil-
ity. In addition, the TPA congestion control mechanism is designed by taking
into account the real nature of congestion phenomena in MANETs. Finally,
TPA implements a novel retransmission policy to reduce the number of useless
retransmissions and, hence, energy consumption.

This thesis Part presented an evaluation of TPA protocol in a real ad hoc
testbed. Specifically, I have investigated the impact of different protocol pa-
rameters on the throughput and the number of segments used to sustain the
throughput. I have run experiments on different topologies, different routing
protocols, and also in mobile scenarios. I have found that TPA throughput
is between 5% and 19% greater than the TCP throughput, and, furthermore,
TPA retransmits between 64% and 94% less data segments.

This thesis Part also presented a simulative analysis of TPA. Specifically,
using the ns-2 simulator, I have analysed TPA performance over simple network
topologies, like the cross and the paralles topologies, and over more complex
network topologies, like the grid topology and the random topology. Finally,
I also analysed TPA performance over a highly dinamic environment, where
50 nodes move over a 1000 x 1000 area. In these scenarious, TPA is able to
achieve an increment in throughput up to 6%, and an increment in fairness up
to 34% respect to TCP. To conlcude TPA study, this thesis Part also reported
some results about unfairness mitigation in TPA. Specifically, I integrated in
TPA the Adaptive Pacing mechanism, a popular proposal for improving TCP
fairness [46], and I compared the performance of TPA with Adaptive Pacing
and TCP with Adaptive Pacing over the previous scenarios. With the adaptive

176

CHAPTER 18. CONCLUSION 177

pacing mechanism enabled, TPA is able to increase the TCP throughput up to
39% granting an increment in fairness up to 5.6% respect to TCP. In addiction,
TPA is able to reduce the number of retransmitted segment up to 78.7%. Also
in this case I used the ns-2 simulator to peform my analysis.

The experiments presented in this thesis Part are tailored to multi-hop
ad hoc networks in which groups of users set up a stand-alone network and
exchange data in a p2p fashion. The results I have obtained motivate us to
further investigate the TPA performance also in different setups. For example,
it would be intresting to compare TPA performance with that of different TCP
variants, like TCP Sack and TCP Vegas, or with the performance of the various
proposal available in literature to improve TCP peformance over MANETs. In
addiction, it would be extremely interesting to understand how TPA works in
mixed wireless/wired scenarios. In these cases two options could be compared,
namely rely on slight TPA modifications to make it work with unmodified TCP
endpoints, or using an Indirect-TCP approach, and thus envisioning a first TPA
trunk between the wireless node and the gateway to the wired network, and a
standard TCP trunk in the wired network. This naturally leads to investigate
the viability of TPA in mesh network environments. Another area still to be
deeply investigated is how TPA can address fairness issues different and more
complex scenarios with respect to those considered in this chapter.

Part IV

Summary and Conclusion

178

179

In this thesis I have presented a practical architecture to logically extend
traditional wired LANs using multi-hop ad hoc networking technologies. Specif-
ically, using proxy ARP servers and basic properties of the longest-matching
rules used by standard IP routing, I implemented a set of mechanisms to in-
terconnect Ad hoc Networks to Internet. The proposed architecture provides
ad hoc node self-configuration and both Intranet and Internet connectivity in
a way that is transparent to the wired nodes, i.e., without requiring changes
in the pre-existing wired LAN. The protocol changes are quite limited and
restricted to the gateway nodes.

I have prototyped the proposed architecture to test its functionalities. The
shown experimental results indicate that: i) the network performance of In-
ternet access in static configurations can be significantly enhanced (in some
cases I have more than doubled the measured throughputs) by properly setting
the OLSR protocol parameters such as to improve route stability; and ii) the
continuity of TCP sessions during node mobility is achieved without requiring
additional overheads.

I believe that there are several related aspects that are worth being further
investigated in future work.

• The gateway selection procedure implicitly relies on the ad hoc routing
protocol. In the case of OLSR, it is accomplished using shortest-path
criteria. However, in a multi-homing scenario, several gateways can exist,
which may be implemented using different technologies and may have
different capabilities. Thus, there could be many benefits in designing
cooperative heuristics to select gateways such as to obtain load balancing
within the ad hoc network, or more efficient handovers.

• In this work I have considered basic IP services, i.e., unicast routing and
dynamic address allocation. However, more sophisticated functionalities,
such as multicast and QoS management, have been developed for the
Internet. Therefore, my proposed architecture should be extended to
facilitate the integration of these additional capabilities.

• The address allocation scheme described in this thesis allows the exploita-
tion of DHCP servers to assign IP addresses that are topologically correct
in the entire extended LAN. However, it is needed a detailed evaluation
of the efficiency of my proposal and a comparative study with other auto-
configuration schemes. In addition, I intend to explore how to extend my
solution to deal with the typical problems that may arise due to node
mobility, such as message losses, and network partitions and merging.

In this thesis I have also proposed a novel transport protocol for Ad hoc
Networks, named TPA, that is specifically tailored to the characteristics of
the MANET environment. This proposal is motivated by the evidence that
the TCP protocol exhibits poor performance in a MANET environment. The
ultimate reason for this is that MANETs behave in a significantly different way
with respect to traditional wired networks, like the Internet, for which the TCP
protocol was originally conceived.

The TPA protocol provides a reliable, connection-oriented type of service,
and includes several innovations with respect to the legacy TCP protocol. Un-
like TCP, TPA is able to manage efficiently route failures and route changes
that may arise due to nodes’ mobility. In addition, the TPA congestion control
mechanism is designed by taking into account the real nature of congestion phe-
nomena in MANETs. Finally, TPA implements a novel retransmission policy to
reduce the number of useless retransmissions and, hence, energy consumption.

This thesis presented an evaluation of TPA protocol in a real ad hoc testbed.
Specifically, I have investigated the impact of different protocol parameters on
the throughput and the number of segments used to sustain the throughput. I
have run experiments on different topologies, different routing protocols, and
also in mobile scenarios. I have found that TPA throughput is between 5% and
19% greater than the TCP throughput, and, furthermore, TPA retransmits
between 64% and 94% less data segments.

This thesis also presented a simulative analysis of TPA. Specifically, using
the ns-2 simulator, I have analysed TPA performance over simple network
topologies, like the cross and the paralles topologies, and over more complex
network topologies, like the grid topology and the random topology. Finally,
I also analysed TPA performance over a highly dinamic environment, where
50 nodes move over a 1000 x 1000 area. In these scenarious, TPA is able to
achieve an increment in throughput up to 6%, and an increment in fairness
up to 34% respect to TCP. To conlcude TPA study, this thesis also reported
some results about unfairness mitigation in TPA. Specifically, I integrated in
TPA the Adaptive Pacing mechanism, a popular proposal for improving TCP
fairness [46], and I compared the performance of TPA with Adaptive Pacing
and TCP with Adaptive Pacing over the previous scenarios. With the adaptive
pacing mechanism enabled, TPA is able to increase the TCP throughput up to
39% granting an increment in fairness up to 5.6% respect to TCP. In addiction,
TPA is able to reduce the number of retransmitted segment up to 78.7%. Also
in this case I used the ns-2 simulator to peform my analysis.

During my Ph.D. I investigated TPA performance over multi-hop ad hoc
networks in which groups of users set up a stand-alone network and exchange
data in a p2p fashion. The results I have obtained motivate me to further
investigate the TPA performance also in different setups. For example, it would
be intresting to compare TPA performance with that of different TCP variants,
like TCP Sack and TCP Vegas, or with the performance of the various proposal
available in literature to improve TCP peformance over MANETs. In addiction,
it would be extremely interesting to understand how TPA works in mixed
wireless/wired scenarios, like that I have presented in the first part of this
thesis. In this case two options could be compared, namely rely on slight TPA
modifications to make it works with unmodified TCP endpoints, or using an
Indirect-TCP approach, and thus envisioning a first TPA trunk between the
wireless node and the gateway to the wired network, and a standard TCP trunk
in the wired network. This naturally leads to investigate the viability of TPA
in mesh network environments. Another area still to be deeply investigated is
how TPA can address fairness issues in different and more complex scenarios

180

181

with respect to those considered in this thesis.

Bibliography

[1] AODV-UU, AODV Linux Implementation, University of Uppsala.

[2] Ieee. standard 802.11-1999, part 11: Wireless lan medium access control
(mac) and physical layer (phy) specications. In The Institute of Electrical
and Electronics Engineers. 1999.

[3] The Network Simulator - ns-2 (version 2.30).

[4] Local and Metropolitan Area Network – Specific Requirements – Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. The Institute of Electrical and Electronics Engi-
neer, (802.11), aug 1999. Piscataway, NJ.

[5] Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY)
Specification/Amendment 2: Higher-speed Physical Layer (PHY) in the
2.4 GHz band. The Institute of Electrical and Electronics Engineer,
(802.11b), November 2001. Piscataway, NJ.

[6] A. Acharya, A. Misra, and S. Bansal. A Label-switching Packet For-
warding Architecture for Multi-hop Wireless LANs. In Proc. of ACM
WoWMoM 2002, pages 33–40, Atlanta, Georgia, USA, September, 28
2002.

[7] C. Ahlund and A. Zaslavsky. Integration of Ad Hoc Network and IP
Network Capabilities for Mobile Hosts. In Proc. of ICT 2003, volume 3,
pages 482–489. IEEE Computer Society Press., Tahiti, February 23 –
March 1 2003.

[8] A. Ahuja, S. Agarwal, J. Sing, and R. Shorey. Performance of TCP over
Different Routing Protocols in Mobile Ad Hoc Networks. In Proceedings
of the IEEE Vehicular Technology Conference (VTC 2000), pages 2315–
2319. IEEE Computer Society Press, May 2000.

[9] M. Allman, H. Balakrishman, and S. Floyd. Enhancing tcps loss recov-
ery using limited transmit. RFC 3042, IETF Network Working Group,
January 2001.

[10] M. Allman, V. Paxson, and W. Stevens. Tcp congestion control. RFC
2581, April 1999.

182

BIBLIOGRAPHY 183

[11] E. Altman and T. Jimenez. Novel Delayed ACK Techniques for improving
TCP Performance in Multi-hop Wireless Networks. In Proceedings of
the IFIP International Conference on Personal Wireless Communications
(PWC 2003), number 2775, pages 237–250, Venice, Italy, September 23–
25 2003. LNCS.

[12] V. Anantharaman, S.-J. Park, K. Sundaresan, and R. Sivakumar. TCP
Performance over Mobile Ad-hoc Networks: A Quantitative Study.
Wireless Communications and Mobile Computing Journal (WCMC),
4(2):203–222, 2004. Special Issue on Performance Evaluation of Wire-
less Networks.

[13] G. Anastasi, E. Ancillotti, and A. Passarella. Tpa: A transport pro-
tocol for ad hoc networks. In ISCC ’05: Proceedings of the 10th IEEE
Symposium on Computers and Communications (ISCC’05), pages 51–56,
Washington, DC, USA, 2005. IEEE Computer Society.

[14] G. Anastasi, E. Borgia, M. Conti, and E. Gregori. Wi-Fi in Ad Hoc
Mode: A Measurement Study. In Proc. of IEEE PerCom 2004, pages
145–154, Orlando, FL, March, 14–17 2004.

[15] G. Anastasi, E. Borgia, M. Conti, E. Gregori, and A. Passarella. Un-
derstanding the Real Behavior of Mote and 802.11 Ad hoc Networks: an
Experimental Approach. Pervasive and Mobile Computing, 1:237–256,
July 2005. Special Issue on Performance Evaluation of Wireless Net-
works.

[16] Giuseppe Anastasi, Emilio Ancillotti, Marco Conti, and Andrea Pas-
sarella. Experimental analysis of a transport protocol for ad hoc net-
works (tpa). In PE-WASUN ’06: Proceedings of the 3rd ACM inter-
national workshop on Performance evaluation of wireless ad hoc, sensor
and ubiquitous networks, pages 9–16, New York, NY, USA, 2006. ACM
Press.

[17] E. Ancillotti, G. Anastasi, M. Conti, and A. Passarella. A comprehensive
study of tpa: a transport protocol for ad hoc networks. submitted to The
Computer Journal. Special Issue on Performance Evaluation of Wireless
Networks.

[18] E. Ancillotti, G. Anastasi, M. Conti, and A. Passarella. Design, Imple-
mentation and Measurements of a Transport Protocol for Ad Hoc Net-
works. chapter in MobileMAN (M. Conti, Editor), Sprinter. to appear.

[19] E. Ancillotti, G. Anastasi, M. Conti, and A. Passarella. Experimen-
tal Analysis of TCP Performance in Static Multi-hop Ad Hoc Networks.
chapter 6 in Mobile Ad Hoc Networks: from Theory to Reality, Nova
Science Publisher. (M. Conti, J. Crowcroft, and A. Passarella, Editors).

[20] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto. A
MobileMAN Approach for the Interconnection of Heterogeneous Ad Hoc
Networks to the Internet. chapter in MobileMAN (M. Conti, Editor),
Springer. to appear.

[21] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto. Imple-
mentation and Experimentation of a Layer-2 Architecture for Intercon-
necting Heterogeneous Ad Hoc Network to the Internet. chapter in Mobile
Ad Hoc Networks: from Theory to Reality, (M. Conti, J. Crowcroft, A.
Passarella, Editors), Nova Science Publisher. to appear.

[22] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto. Ex-
perimenting a Layer 2-based Approach to Internet Connectivity for Ad
Hoc Networks. In IEEE ICPS Workshop on Multi-hop Ad hoc Networks
(REALMAN 2005), Santorini (Greece), July 14 2005.

[23] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto. A Layer-
2 Architecture for Interconnecting Multi-hop Hybrid Ad Hoc Networks
to the Internet. In in Proceedings of WONS 2006, pages 87–96, Les
Menuires, France, January, 18–20 2006.

[24] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto. A
layer-2 framework for interconnecting ad hoc networks to fixed internet:
Test-bed implementation and experimental evaluation. submitted to The
Computer Journal, 2007.

[25] E.M. Belding-Royer and C.-K. Toh. A review of current routing protocols
for ad-hoc mobile wireless networks. IEEE Personal Communication
Magazine, pages 46–55, April 1999.

[26] M. Benzaid, P. Minet, K. Al Agha, C. Adjih, and G. Allard. Integration
of Mobile-IP and OLSR for a Universal Mobility. Wireless Networks,
10(4):377–388, July 2004.

[27] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, S. Floyd D. Es-
trin, V. Jacobson, G. Minshall, G. Minshal, C. Partridge, K. Ramakrish-
nan L. Peterson, S. Shenker, J. Wroclawski, and L. Z. Recommendations
on queue management and congestion avoidance in the internet. RFC
2309, IETF Network Working Group, April 1998.

[28] R. Braden. equirements for internet hosts – communication layers. RFC
1122, October 1989.

[29] L. Brakmo and L. Peterson. Tcp vegas: End to end congestion avoidance
on a global internet. IEEE Journal on Selected Areas in Communication,
13(8):1465–1480, October 1995.

[30] R. Brannstrom, C. Ahlund, and A Zaslavsky. Maintaining Gateway Con-
nectivity in Multi-hop Ad hoc Networks. In Proc. of IEEE LCN 2005,
pages 682–689, Sydney, Australia, November 15–17 2005.

184

BIBLIOGRAPHY 185

[31] J. Broch, D.A. Maltz, and D.B. Johnson. Supporting hierarchy and het-
erogenous interfaces in multi-hop wireless ad hoc networks. In Proc. of
I-SPAN’99, pages 370–375, Perth, Australia, June, 23–25 1999.

[32] S. Carl-Mitchell and J.S. Quarterman. Using ARP to Implement Trans-
parent Subnet Gateways. RFC 1027, October 1987.

[33] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A Feed-
back Based Scheme for Improving TCP Performance in Ad Hoc Wireless
Networks. IEEE Personal Communication Magazine, 8(1):34–39, Febru-
ary 2001. Special Issue on Ad Hoc Networks.

[34] K. Chen, Y. Xue, S. Shah, and K. Nahrstedt. Understanding Bandwidth-
Delay Product in Mobile Ad Hoc Networks. Computer Communications,
27:923–934, July 2004. Special Issue on Performance Evaluation of Wire-
less Networks.

[35] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks. Computer Networks and
ISDN Systems, 17:114, June 1989.

[36] J. P. Clark. Window and acknowledgment strategy in tcp. RFC 813,
IETF Network Working Group, July 1982.

[37] T. Clausen and P. Jaquet. Optimized Link State Routing Protocol
(OLSR). RFC 3626, October 2003.

[38] M. Conti, E. Gregori, and G. Maselli. Improving the performability of
data transfer in mobile ad hoc networks. In IEEE Sensor and Ad Hoc
Communications and Networks (SECON 2005), pages 153–163, Sept. 26–
29 2005.

[39] C. D. A. Cordeiro, S. R. Das, and D. P. Agrawal. Copas: dynamic
contention-balancing to enhance the performance of tcp over multi-hop
wireless networks. Computer Communications and Networks, 2002. In
proceedings of IC3N’02, pages 382–387, 2002.

[40] M. Crovella and A. Bestavros. Self Similarity in World Wide Web Trafc:
Evidence and Possible Causes. IEEE/ACM Transactions on Networking,
5:835–846, 1997.

[41] Darpa. Transmission control protocol. ietf network working group,. RFC
793, April 1981.

[42] R. de Oliveira and T. Braun. A Dynamic Adaptive Acknowledgment
Strategy for TCP over Multi-hop Wireless Networks. In Proceedings of
IEEE Infocom 2005, volume 3, pages 1863–1874, Miami, USA, March
2005. IEEE Computer Society Press.

[43] R. Draves, J. Padhye, and B. Zill. The architecture of the Link Quality
Source Routing Protocol. Technical Report MSR-TR-2004-57, Microsoft
Research, 2004.

[44] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, March
1997.

[45] T.D. Dyer and R.V. Boppana. A Comparison of TCP Performance over
Three Routing Protocols for Mobile Ad Hoc Networks. In Proceedings
of the ACM Symposium on Mobile Ad Hoc Networking & Computing
(MobiHoc). ACM Press, October 2001.

[46] S. M. ElRakabawy, A.Klemm, and C. Lindemann. TCP with Adaptive
Pacing for Multihop Wireless Networks. In Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and computing,
pages 288–299, Urbana-Champaign, IL, USA, May 2005. ACM Press.

[47] P.E. Engelstad and G. Egeland. NAT-based Internet Connectivity for On
Demand MANETs. In Proc. of WONS 2004, pages 4050–4056, Madonna
di Campiglio, Italy, January, 18–23 2004.

[48] P.E. Engelstad, A. Tønnesen, A. Hafslund, and G. Egeland. Internet
Connectivity for Multi-Homed Proactive Ad Hoc Networks. In Proc. of
IEEE ICC’2004, volume 7, pages 4050–4056, Paris, France, June, 20–24
2004.

[49] Z. Fan. IPv6 stateless address autoconguration in ad hoc networks. In
Proc. of PWC03, pages 665–678, Venice, Italy, September, 23–25 2003.
Springer-Verlag. Lecture Notes in Computer Science.

[50] S. Floyd and T. Henderson. The newreno modication to tcps fast recovery
algorithm. RFC 2582, IETF Network Working Group, April 1999.

[51] S. Floyd, T. Henderson, and A. Gurtov. The newreno modication to tcps
fast recovery algorithm. RFC 3782, IETF Network Working Group, April
2004.

[52] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, August
1993.

[53] Z. Fu, B. Greenstein, X. Meng, and S. Lu. Design and implementation
of a TCP-friendly transport protocol for ad hoc wireless networks. In
Proceedings of the IEEE International Conference on Network Protocols
(ICNP 2000), Paris, France, November 2002. IEEE Computer Society
Press.

[54] Z. Fu, X. Meng, and S. Lu. How Bad TCP Can Perform in Mobile Ad
Hoc Networks. In Proceedings of the IEEE Symposium on Computers and
Communications (ISCC 2002), pages 298–303, Taormina-Giardini Naxos
(Italy), July 2002. IEEE Computer Society Press.

186

BIBLIOGRAPHY 187

[55] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The Impact
of Multi-hop Wireless Channel on TCP Throughput and Loss. In Pro-
ceedings of IEEE INFOCOM 2003, San Francisco (California), March
30–April 3 2003. IEEE Computer Society Press.

[56] T. Goff, N. B. Abu-Ghazaleh, D. S. Phatak, and R. Kahvecioglu. Pre-
emptive routing in ad hoc networks. In Proc. ACM MOBICOM, pages
43–52, Rome, Italy, 2001.

[57] A. Gupta, I. Wormsbecker, and C. Williamson. Experimental evaluation
of tcp performance in multi-hop wireless ad hoc networks. In Proceedings
of IEEE/ACM MASCOTS, pages 3–11, Volendam, Netherlands, October
2004.

[58] Z. J. Haas, M. R. Pearlman, and P. Samar. The zone routing protocol
(zrp) for ad hoc networks. Internet-draft, IETF MANET Working Group,
July 2002. Draft-ietf-manet-zone-zrp-04.txt.

[59] Ahmad A. Hanbali, E. Altman, and P. Nain. A survey of tcp over ad
hoc networks. Communications Surveys & Tutorials, IEEE, 7(3):22–36,
2005.

[60] Qi He, L. Cai, X. Shen, and P. Ho. Improving TCP Performance over
Wireless Ad Hoc Networks with Busy Tone Assisted Scheme. EURASIP
Journal on Wireless Communications and Networking, 2006. Article ID
51610, 11 pages.

[61] G. Holland and N. Vaidya. Impact of routing and link layers on tcp perfor-
mance in mobile ad hoc networks. In In Proceedings of ACM/IEEE Wire-
less Communication Networks Conference (IEEE WCNC 1999), New Or-
leans, USA, September 1999.

[62] G. Holland and N. Vaidya. Analysis of TCP Performance over Mobile
Ad Hoc Networks. Wireless Networks, 8:275–288, 2002.

[63] V. Jacobson. Congestion avoidance and control. In In Proceedings of
ACM SIGCOMM, pages 314–329, Stanford, CA, August 1988.

[64] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high per-
formance. RFC 1323, IETF Network Working Group, May 1992.

[65] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Systems. DEC
Technical Report DEC-TR-301, 1984.

[66] C. Jelger, T. Noel, and A. Frey. Gateway and Address Autoconguration
for IPv6 Ad Hoc Networks. Internet Draft, 2004.

[67] L. B. Jiang and S. C. Liew. Proportional fairness in wireless LANs and ad
hoc networks. In Wireless Communications and Networking Conference,
2005 IEEE, volume 3, pages 1551–1556, Long Beach, CA, USA, 13-17
March 2005. IEEE Computer Society Press.

[68] D.B. Johnson, D.A. Maltz, and Y.-C. Hu. The Dynamic Source Routing
Protocol for Mobile Ad Hoc Networks (DSR). Internet Draft, July 19
2004.

[69] U. Jönsson, F. Alriksson, T. Larsson, P. Johansson, and G.Q. Maguire Jr.
MIPMANET - Mobile IP for Mobile Ad Hoc Networks. In Proc. of
MobiHoc 2000, pages 75–85, Boston, MA, USA, August, 11 2000.

[70] P. Karn and C. Partridge. Improving round-trip time estimates in reliable
transport protocols. In Computer Communication Review, volume 17,
pages 2–7, August 1987.

[71] V. Kawadia and P. Kumar. Experimental investigation into tcp perfor-
mance over wireless multihop networks. In Proc. of ACM SigCom 2005
Workshops, Philadelphia (PA), August 22–25 2005.

[72] D. Kim, C. Toh, and Y. Choi. Tcp-bus: Improving tcp performance in
wireless ad hoc networks. J. Commun. and Net., 3(2):17586, June 2001.

[73] Fabius Klemm, Zhenqiang Ye, Srikanth V. Krishnamurthy, and Satish K.
Tripathi. Improving tcp performance in ad hoc networks using signal
strength based link management. Ad Hoc Networks, 3(2):175–191, 2005.

[74] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi. Split
tcp for mobile ad hoc networks. In Proc. IEEE GLOBECOM, Taipei,
Taiwan, Nov. 2002.

[75] S. J. Lee and M. Gerla. Split multipath routing with maximally disjoint
paths in ad hoc networks. In Proceedings of IEEE ICC01, June 2001.

[76] J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris. Capacity of Ad Hoc
Wireless Networks. In Proc. ACM/IEEE International Conference in
Mobile Computing and Networking (MobiCom 2001), Rome, Italy, July
2001. IEEE Computer Society Press.

[77] D. Libes. Implementing software timers. C Users Journal, November
1990.

[78] H. Lim, K. Xu, and M. Gerla. Tcp performance over multipath routing
in mobile ad hoc networks. In in Proceedings of the IEEE International
Conference on Communications (ICC), May 2003.

[79] J. Liu and S. Singh. ATCP: TCP for Mobile Ad Hoc Networks. IEEE
Journal on Selected Areas in Communications, 19(7):1300–1315, July
2001.

[80] H. Lundgren, E. Nordstrom, and C. Tschudin. Coping with Communica-
tion Gray Zones in IEEE 802.11b based Ad hoc Networks. In Proceedings
of the 5th ACM international workshop on Wireless mobile multimedia,
pages 49–55, Atlanta, Georgia, 2002. ACM Press.

188

BIBLIOGRAPHY 189

[81] M. Marina and S. Das. On-demand multipath distance vector routing in
ad hoc networks. In Proceedings of IEEE International Conference on
Network Protocols (ICNP)01, Nov. 2001.

[82] M. Mathi, J. Mahdavi, and S. F. A. Romanow. Tcp selective acknowl-
edgement options. RFC 2018, IETF Network Working Group, October
1996.

[83] J. Monks, P. Sinha, and V. Bharghavan. Limitations of tcp-elfn for ad
hoc networks. In Proc. Mobile and Multimedia Commun., Tokyo, Japan,
October 2000.

[84] G. Montenegro. Reverse Tunneling for Mobile IP. RFC 2344, May 1998.

[85] K. Nahm, A. Helmy, and C.-C.Jay Kuo. TCP over Multi-hop 802.11
Networks: issues and Performance Enhancement. In Proceedings of ACM
MobiHoc, pages 277–287, Urbana-Champaign, IL, USA, June 2005. ACM
Press.

[86] S. Nesargi and R. Prakash. MANETconf: Conguration of Hosts in a
Mobile Ad Hoc NEtwork. In Proc. of INFOCOM 2002, pages 1059–1068,
New York, NY, June, 23–27 2002. IEEE Computer Society Press.

[87] Ping Chung Ng and Soung Chang Liew. Re-routing instability in ieee
802.11 multi-hop ad-hoc networks. Ad Hoc and Sensor Wireless Net-
works, 1:01–25. 2005.

[88] Ni, S. and Tseng, Y. and Chen, Y. and Sheu, J. The Broadcast Storm
Problem in a Mobile Ad Hoc Network, 2002.

[89] R. Ogier, F. Templin, and M. Lewis. Topology Dissemination Based on
Reverse-Path Forwarding (TBRPF). RFC 3684, February 2004.

[90] Santashil PalChaudhuri, Jean-Yves Le Boudec, and Milan Vojnovic. Per-
fect simulations for random trip mobility models. In ANSS ’05: Proceed-
ings of the 38th annual Symposium on Simulation, pages 72–79, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[91] S. Papanastasiou, L. M. Mackenzie, M. Ould-Khaoua, and V. Charis-
sis. On the interaction of tcp and routing protocols in manets. In in
proceedings of the Advanced International Conference on Telecommuni-
cations and International Conference on Internet and Web Applications
and Services (AICT/ICIW 2006), pages 62–69, February 19–22 2006.

[92] S. Papanastasiou and M. Ould-Khaoua. TCP Congestion Window Evolu-
tion and Spatial Reuse in MANETs. Journal of Wireless Communications
and Mobile Computing, 4(6):669–682, Sept. 2004.

[93] S. Papanastasiou, M. Ould-Khaoua, and L. MacKenzie. Handbook of Al-
gorithms and Wireless Networking and Mobile Computing, chapter TCP
Developments in Mobile Ad Hoc Networks.

[94] V. Park and S. Corson. Temporally-ordered routing algorithm (tora).
Internet Draft, draft-ietf-manet-tora-spec- 03.txt, June 2001. work in
progress.

[95] V.D. Park and M.S. Corson. A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks. In Proceedings of IEEE INFO-
COM ’97, Kobe (Japan), 1997. IEEE Computer Society Press.

[96] V. Paxson and M. Allman. Computing tcp’s retransmission timer. RFC
2988, November 2000.

[97] C. Perkins. IP Encapsulation within IP. RFC 2003, October 1996.

[98] C. Perkins. Minimal Encapsulation within IP. RFC 2004, October 1996.

[99] C. Perkins. IP Mobility Support for IPv4. RFC 3344, August 2002.

[100] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561, July 2003.

[101] C. Perkins and P. Bhagwat. A highly adaptive distributed routing al-
gorithm for mobile wireless networks. In In Proceedings of ACM SIG-
COMM Conference on Communications Architectures, Protocols and Ap-
plications, pages 234–244, August 1994.

[102] C.E. Perkins. Mobile IP Design Principles and Practice. January 1998.

[103] D.C. Plummer. An Ethernet Address Resolution Protocol. RFC 826,
November 1982.

[104] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168, September 2001.

[105] P. Ratanchandani and R. Kravets. A Hybrid Approach to Internet Con-
nectivity for Mobile Ad hoc Networks. In Proc. of IEEE WCNC 2003,
volume 3, pages 1522–1527. IEEE Computer Society Press., New Orleans,
USA, March, 16–20 2003.

[106] Ros F. Ruiz, P. and A. Gomez-Skarmeta. Internet connectivity for mo-
bile ad hoc networks: Solutions and challenges. IEEE Communication
Magazine, 43.

[107] Rice University. S. PalChaudhuri. ns-2 Code for Random Trip Mobility
Model.

[108] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Congestion Notifi-
cation (ECN) Signaling with Nonces. RFC 3540, June 2003.

[109] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT)
Terminology and Considerations. RFC 2663, August 1999.

190

BIBLIOGRAPHY 191

[110] W. Stevens. Tcp slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms. RFC 2001, IETF Network Working Group,
January 1997.

[111] W.R. Stevens. TCP/IP Illustrated. volume 1. Addison Wesley, 1994.

[112] W.R. Stevens. UNIX Network Programming Volume 2, Interprocess
Communications. Prentice Hall PTR, 2nd edition edition, 1999.

[113] W.R. Stevens. Advanced Programming in the UNIX Environment. Pear-
son Education, 2nd edition edition, 2005.

[114] D. Sun and H. Man. ENIC - An Improved Reliable Transport Scheme
for Mobile Ad Hoc Networks. In IEEE Globecom Conference, volume 5,
pages 2852–2856, (San Antonio, TX), November 2001. IEEE Computer
Society Press.

[115] Y. Sun, E.M. Belding-Royer, and C.E. Perkins. Internet Connectivity
for Ad hoc Mobile Networks. International Journal of Wireless Informa-
tion Networks, 9(2):75–88, April 2002. Special issue on “Mobile Ad hoc
Networks: Standards, Research, Application”.

[116] K. Sundaresan, V. Anantharaman. H. Hsieh, and R. Sivakumar. Atp: A
reliable transport protocol for ad hoc networks. IEEE transactions on
mobile computing, 4(6):588–603, November-December 2005.

[117] K. Tang and M. Gerla. Fair sharing of mac under tcp in wireless ad hoc
networks. In Proceedings of IEEE MMT’99, Venice, Italy, Oct. 1999.

[118] C.A. Thekkath, T.D. Nguyen, E. Moy, and E.D. Lazowska. Implementing
network protocols at user level. IEEE/ACM Transactions on Networking,
1(5):554–565, October 1993.

[119] S. Thomson and T. Narten. IPv6 stateless address autoconguration. RFC
2462, 1998.

[120] A. Tønnesen. Implementation of the OLSR specification (OLSR UniK).
Version 0.4.8, December 2004.

[121] C. Tschuding, R. Gold, O. Rensfelt, and O. Wibling. LUNAR: a
Lightweight Underlay Network Ad-hoc Routing Protocol and Implemen-
tation. In Proc. of NEW2AN’04, St. Petersburg, Russia, February, 2–6
2004.

[122] N. Vaidya. Weak Duplicate Address Detection in Mobile Ad Hoc Net-
works. In Proc. of ACM MobiHoc 2002, pages 206–216, Lausanne,
Switzerland, June, 9–11 2002. ACM Press.

[123] S. Vutukury and J. J. Garcia-Luna-Aceves. Mdva: A distance-vector
multipath routing protocol. In Proceedings of IEEE INFOCOM01, Apr.

[124] R. Wakikawa, J. Malinen, C. Perkins, A. Nilsson, and A. Tuominen.
Global Connectvity for IPv6 Mobile Ad Hoc Networks. Internet Draft,
2006.

[125] F. Wang and Y. Zhang. Improving tcp performance over mobile ad hoc
networks with out-of-order detection and response. In Proc. ACM MO-
BIHOC, pages 217–25, Lausanne, Switzerland, June 2002.

[126] K. Weniger and M. Zitterbart. Address Autoconfiguration on Mobile
Ad Hoc Networks: Current Approaches and Future Directions. IEEE
Network, 18(4):6–11, July/August 2004.

[127] K. Xu and M. Gerla. Tcp unfairness in ad hoc wireless networks and a
neighborhood red solution. Wireless Networks, 11(4):383–399, 2005.

[128] K. Xu, M. Gerla, and S. Bae. Effectiveness of rts/cts handshake in ieee
802.11 based ad hoc networks. Ad Hoc Networks Journal, 1(1):107–123,
July 2003.

[129] Kaixin Xu, Sang Bae, Sungwook Lee, and Mario Gerla. Tcp behavior
across multihop wireless networks and the wired internet. In WOWMOM
’02: Proceedings of the 5th ACM international workshop on Wireless
mobile multimedia, pages 41–48, New York, NY, USA, 2002. ACM Press.

[130] S. Xu and T. Saadawi. Does the ieee 802.11 mac protocol work well in
multihop wireless ad hoc networks? IEEE Communications Magazine,
June 2001.

[131] S. Xu and T. Saadawi. Performance evaluation of tcp algorithms in
multi-hop wireless packet networks. Wireless Communications and Mo-
bile Computing, 2(1):85–100, 2001.

[132] S. Xu and T. Saadawi. Revealing the problems with 802.11 medium
access control protocol in multi-hop wireless ad hoc networks. Computer
Networks, 38:531–548, March 2002.

[133] Luqing Yang, Winston K.G. Seah, and Qinghe Yin. Improving fairness
among tcp flows crossing wireless ad hoc and wired networks. In MobiHoc
’03: Proceedings of the 4th ACM international symposium on Mobile ad
hoc networking & computing, pages 57–63, New York, NY, USA, 2003.
ACM Press.

[134] L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. W. Yang. Load balancing
of multipath source routing in ad hoc networks. In Proceedings of IEEE
ICC02, Apr. 2002.

192

List of Figures

1.1 Multi Hop path between two communicating nodes. 3
1.2 Envisaged an heterogeneous network environment. 5

3.1 Basic Access Method. 12
3.2 ACK generation. 13
3.3 Hidden Station. 14
3.4 Virtual Carrier Sensing Mechanism. 15
3.5 Exposed Station. 15
3.6 Hidden and Exposed Station in the presence of the RTS/CTS

mechanism. 16

5.1 TCP header. 23
5.2 TCP three-way handshake. 25
5.3 TCP connections teardown. 26

6.1 NAT example. 40
6.2 Subnetting with Proxy ARP. 41

8.1 Reference network architecture. 47

9.1 Illustration of the MIPMANET solution. 51
9.2 Illustration of the tunnelling operations in NAT-based solutions [48,

47]. 55

10.1 Message exchanges during the address autoconfiguration. . . . 60
10.2 Illustrative Network Configuration. 66

11.1 Illustration of the hysteresis process. 71
11.2 Network layout used to conduct tests in static conditions. . . . 73
11.3 Per-node OLSR protocol overheads (TCP case). 75
11.4 Loss probability of OLSR control traffic (TCP case). 75
11.5 Path life of the route between node MN3 and node GW (TCP

case). 76
11.6 Loss probability of OLSR control traffic (UDP case). 77

193

11.7 Path life of the route between node MN3 and node GW (UDP
case). 78

11.8 Comparison of TCP and UDP throughputs for a 3-hop chain. . 79
11.9 Comparison of TCP throughputs versus the number of hops. . 79
11.10Comparison of UDP throughputs versus the number of hops. . 80
11.11Comparison of TCP throughputs versus the IP packet size. . . 81
11.12Comparison of UDP throughputs versus the IP packet size. . . 81
11.13Network layout used to conduct tests with node mobility. . . . 83
11.14Comparison of TCP throughputs when node MN4 moves. . . . 84
11.15Comparison of UDP throughputs when node MN4 moves. . . . 85

14.1 Instability Problem. 94
14.2 One-hop unfairness problem. 96

15.1 TPA header. 115
15.2 ACK reception (a), and timeout expirations (b). 118
15.3 Retransmission Stream. 118
15.4 Protocol stack. 124
15.5 Inter-Process Communications. 127
15.6 Implementation of software timers. 130

16.1 Throughput over AODV (left) and OLSR (right) vs. number of
hops vs. cwnd size. NS-2 results. 136

16.2 Throughput (left) and percentage of retransmitted segments (right)
vs. maximum congestion window size in the 1-hop scenario. The
routing protocol is AODV. 136

16.3 Throughput (left) and percentage of retransmitted segments (right)
vs. maximum congestion window size in the 2-hop scenario. The
routing protocol is AODV. 137

16.4 Throughput (left) and percentage of retransmitted segments (right)
vs. maximum congestion window size in the 3-hop scenario. The
routing protocol is AODV. 138

16.5 Throughput (left) and percentage of retransmitted segments (right)
vs. maximum congestion window size in the 4-hop scenario. The
routing protocol is AODV. 138

16.6 Throughput (left) and congestion window size (right) vs. time
when using AODV-LL in the 3-hop scenario with maximum
cwnd of size 2. The interference range (IF Range) is assumed
equal to the Carrier Sensing Range (CS Range). 140

16.7 Throughput (left) and congestion window size (right) vs. time
when using AODV-Hello in the 3-hop scenario with maximum
cwnd of size 2. The interference range (IF Range) is assumed
equal to the Carrier Sensing Range (CS Range). 140

194

LIST OF FIGURES 195

16.8 Throughput (left) and congestion window size (right) vs. time
when using AODV-Hello in the 3-hop scenario with maximum
cwnd of size 2. The interference range (IF Range) is less than
the Carrier Sensing Range (CS Range). 140

16.9 Throughput (left) and percentage of retransmitted segments (right)
vs. maximum cwnd size in the 3- hop scenario with background
periodic UDP traffic . The routing protocol is AODV. 141

16.10Chain Topology network. 144
16.11Throughput vs. window size in the 1-hop scenario. 145
16.12Throughput (up) and percentage of retransmitted segments (down)

vs. window size in the 2-hop scenario. 146
16.13Throughput (up) and percentage of retransmitted segments (down)

vs. window size in the 3-hop scenario. 147
16.14Throughput (up) and percentage of retransmitted segments (down)

vs. window size in the 4-hop scenario. 148
16.15Throughput (up) and percentage of retransmitted segments (down)

vs. window size in the 3-hop-UDP scenario. 149
16.16Throughput (up) and percentage of retransmitted segments (down)

vs. window size in the 4-hop with 5.5Mbps transmission rate . 152
16.17Throughput (up) and percentage of retransmitted segments (down)

vs. window size in the 4-hop with 11Mbps transmission rate . . 152
16.18Impact of an ACK inhibition. 153
16.19Cross Topology network. 155
16.20Throughput (up) and percentage of retransmitted segments (down)

in the cross topology with OLSR. 156
16.21Throughput (up) and percentage of retransmitted segments (down)

in the cross topology with AODV. 157
16.22Roaming Node Scenario. 158
16.23Throughput (left) and percentage of retransmitted segments (right)

in the roaming node scenario. 159
16.24Ideal path length during my experiments. 160
16.25Path length and instantaneous throughput of TCP over OLSR

in the Roaming Node Scenario. 161
16.26Path length and instantaneous throughput of TPA over OLSR

in the Roaming Node Scenario. 161

17.1 Cross and Parallel topology. 166
17.2 Grid topology. 170

List of Tables

10.1 Node N’s Routing Table. 68
10.2 GW1’s Routing Table. 68

11.1 OLSR parameter configurations. 73

15.1 Functions provided by the TPA library. 125
15.2 Meaning of functions provided by the TPA library. 126
15.3 A simple example showing changes to be introduced in a legacy

application to use the TPA protocol. 126

16.1 TPA Operational Parameters. 133
16.2 Throughput (in Kbps) vs. maximum cwnd size with OLSR. . . 142
16.3 Percentage of re-transmissions vs. maximum cwnd size with

OLSR. 142
16.4 Throughput (in kbps) vs. maximum cwnd size with OLSR. . . 150
16.5 Retransmission index vs. maximum cwnd size with OLSR. . . . 150

17.1 Cross Topology . 166
17.2 Cross Topology with Adaptive Pacing enabled 167
17.3 Cross Topology. Impact of the K parameter on TPA protocol . 168
17.4 Parallel Topology . 169
17.5 Parallel Topology with Adaptive Pacing enabled 170
17.6 Grid Topology . 171
17.7 Grid Topology with Adaptive Pacing enabled 171
17.8 Static Random Topology . 173
17.9 Static Random Topology with the Adaptive Pacing enabled . . 173
17.10Mobile Scenario . 174
17.11Mobile Scenario with the Adaptive Pacing enabled 174

196

