589 research outputs found

    Name Disambiguation from link data in a collaboration graph using temporal and topological features

    Get PDF
    In a social community, multiple persons may share the same name, phone number or some other identifying attributes. This, along with other phenomena, such as name abbreviation, name misspelling, and human error leads to erroneous aggregation of records of multiple persons under a single reference. Such mistakes affect the performance of document retrieval, web search, database integration, and more importantly, improper attribution of credit (or blame). The task of entity disambiguation partitions the records belonging to multiple persons with the objective that each decomposed partition is composed of records of a unique person. Existing solutions to this task use either biographical attributes, or auxiliary features that are collected from external sources, such as Wikipedia. However, for many scenarios, such auxiliary features are not available, or they are costly to obtain. Besides, the attempt of collecting biographical or external data sustains the risk of privacy violation. In this work, we propose a method for solving entity disambiguation task from link information obtained from a collaboration network. Our method is non-intrusive of privacy as it uses only the time-stamped graph topology of an anonymized network. Experimental results on two real-life academic collaboration networks show that the proposed method has satisfactory performance.Comment: The short version of this paper has been accepted to ASONAM 201

    Bayesian Non-Exhaustive Classification A Case Study: Online Name Disambiguation using Temporal Record Streams

    Get PDF
    The name entity disambiguation task aims to partition the records of multiple real-life persons so that each partition contains records pertaining to a unique person. Most of the existing solutions for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task be performed in an online fashion, in addition to, being able to identify records of new ambiguous entities having no preexisting records. In this work, we propose a Bayesian non-exhaustive classification framework for solving online name disambiguation task. Our proposed method uses a Dirichlet process prior with a Normal * Normal * Inverse Wishart data model which enables identification of new ambiguous entities who have no records in the training data. For online classification, we use one sweep Gibbs sampler which is very efficient and effective. As a case study we consider bibliographic data in a temporal stream format and disambiguate authors by partitioning their papers into homogeneous groups. Our experimental results demonstrate that the proposed method is better than existing methods for performing online name disambiguation task.Comment: to appear in CIKM 201

    Towards Name Disambiguation: Relational, Streaming, and Privacy-Preserving Text Data

    Get PDF
    In the real world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesakes of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is designed to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing algorithms for this task mainly suffer from the following drawbacks. First, the majority of existing solutions substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable in privacy sensitive domains. Instead we solve the name disambiguation task in restricted setting by leveraging only the relational data in the form of anonymized graphs. Second, most of the existing works for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task should be performed in an online streaming fashion in order to identify records of new ambiguous entities having no preexisting records. Finally, we investigate the potential disclosure risk of textual features used in name disambiguation and propose several algorithms to tackle the task in a privacy-aware scenario. In summary, in this dissertation, we present a number of novel approaches to address name disambiguation tasks from the above three aspects independently, namely relational, streaming, and privacy preserving textual data

    Name Disambiguation in Anonymized Graphs using Network Embedding

    Get PDF
    In real-world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesake of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensic. To resolve this issue, the name disambiguation task is designed which aims to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing solutions to this task substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable due to the risk of privacy violation. In this work, we propose a novel name disambiguation method. Our proposed method is non-intrusive of privacy because instead of using attributes pertaining to a real-life person, our method leverages only relational data in the form of anonymized graphs. In the methodological aspect, the proposed method uses a novel representation learning model to embed each document in a low dimensional vector space where name disambiguation can be solved by a hierarchical agglomerative clustering algorithm. Our experimental results demonstrate that the proposed method is significantly better than the existing name disambiguation methods working in a similar setting

    Principled Multilayer Network Embedding

    Full text link
    Multilayer network analysis has become a vital tool for understanding different relationships and their interactions in a complex system, where each layer in a multilayer network depicts the topological structure of a group of nodes corresponding to a particular relationship. The interactions among different layers imply how the interplay of different relations on the topology of each layer. For a single-layer network, network embedding methods have been proposed to project the nodes in a network into a continuous vector space with a relatively small number of dimensions, where the space embeds the social representations among nodes. These algorithms have been proved to have a better performance on a variety of regular graph analysis tasks, such as link prediction, or multi-label classification. In this paper, by extending a standard graph mining into multilayer network, we have proposed three methods ("network aggregation," "results aggregation" and "layer co-analysis") to project a multilayer network into a continuous vector space. From the evaluation, we have proved that comparing with regular link prediction methods, "layer co-analysis" achieved the best performance on most of the datasets, while "network aggregation" and "results aggregation" also have better performance than regular link prediction methods

    Complex Network Analysis for Scientific Collaboration Prediction and Biological Hypothesis Generation

    Get PDF
    With the rapid development of digitalized literature, more and more knowledge has been discovered by computational approaches. This thesis addresses the problem of link prediction in co-authorship networks and protein--protein interaction networks derived from the literature. These networks (and most other types of networks) are growing over time and we assume that a machine can learn from past link creations by examining the network status at the time of their creation. Our goal is to create a computationally efficient approach to recommend new links for a node in a network (e.g., new collaborations in co-authorship networks and new interactions in protein--protein interaction networks). We consider edges in a network that satisfies certain criteria as training instances for the machine learning algorithms. We analyze the neighborhood structure of each node and derive the topological features. Furthermore, each node has rich semantic information when linked to the literature and can be used to derive semantic features. Using both types of features, we train machine learning models to predict the probability of connection for the new node pairs. We apply our idea of link prediction to two distinct networks: a co-authorship network and a protein--protein interaction network. We demonstrate that the novel features we derive from both the network topology and literature content help improve link prediction accuracy. We also analyze the factors involved in establishing a new link and recurrent connections

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Network Analysis of Scientific Collaboration and Co-authorship of the Trifecta of Malaria, Tuberculosis and Hiv/aids in Benin.

    Get PDF
    Despite the international mobilization and increase in research funding, Malaria, Tuberculosis and HIV/AIDS are three infectious diseases that have claimed more lives in sub Saharan Africa than any other place in the World. Consortia, research network and research centers both in Africa and around the world team up in a multidisciplinary and transdisciplinary approach to boost efforts to curb these diseases. Despite the progress in research, very little is known about the dynamics of research collaboration in the fight of these Infectious Diseases in Africa resulting in a lack of information on the relationship between African research collaborators. This dissertation addresses the problem by documenting, describing and analyzing the scientific collaboration and co-authorship network of Malaria, Tuberculosis and HIV/AIDS in the Republic of Benin. We collected published scientific records from the Web Of Science over the last 20 years (From January 1996 to December 2016). We parsed the records and constructed the coauthorship networks for each disease. Authors in the networks were represented by vertices and an edge was created between any two authors whenever they coauthor a document together. We conducted a descriptive social network analysis of the networks, then used mathematical models to characterize them. We further modeled the complexity of the structure of each network, the interactions between researchers, and built predictive models for the establishment of future collaboration ties. Furthermore, we implemented the models in a shiny-based application for co-authorship network visualization and scientific collaboration link prediction tool which we named AuthorVis. Our findings suggest that each one of the collaborative research networks of Malaria, HIV/AIDS and TB has a complex structure and the mechanism underlying their formation is not random. All collaboration networks proved vulnerable to structural weaknesses. In the Malaria coauthorship network, we found an overwhelming dominance of regional and international contributors who tend to collaborate among themselves. We also observed a tendency of transnational collaboration to occur via long tenure authors. We also find that TB research in Benin is a low research productivity area. We modeled the structure of each network with an overall performance accuracy of 79.9%, 89.9%, and 93.7% for respectively the malaria, HIV/AIDS, and TB coauthorship network. Our research is relevant for the funding agencies operating and the national control programs of those three diseases in Benin (the National Malaria Control Program, the National AIDS Control Program and the National Tuberculosis Control Program)
    • …
    corecore