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ABSTRACT 
COMPLEX NETWORK ANALYSIS FOR SCIENTIFIC COLLABORATION 

PREDICTION AND BIOLOGICAL HYPOTHESIS GENERATION 
 

by 
 

Qing Zhang 
 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of Professors Susan McRoy, Hong Yu 

 
 
 
With the rapid development of digitalized literature, more and more knowledge has been 

discovered by computational approaches. This thesis addresses the problem of link 

prediction in co-authorship networks and protein--protein interaction networks derived 

from the literature. These networks (and most other types of networks) are growing over 

time and we assume that a machine can learn from past link creations by examining the 

network status at the time of their creation. Our goal is to create a computationally 

efficient approach to recommend new links for a node in a network (e.g., new 

collaborations in co-authorship networks and new interactions in protein—protein 

interaction networks). 

We consider edges in a network that satisfies certain criteria as training instances for the 

machine learning algorithms. We analyze the neighborhood structure of each node and 

derive the topological features. Furthermore, each node has rich semantic information 

when linked to the literature and can be used to derive semantic features. Using both 

types of features, we train machine learning models to predict the probability of 

connection for the new node pairs. 

 

ii



We apply our idea of link prediction to two distinct networks: a co-authorship network 

and a protein--protein interaction network. We demonstrate that the novel features we 

derive from both the network topology and literature content help improve link prediction 

accuracy. We also analyze the factors involved in establishing a new link and recurrent 

connections. 
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Chapter 1

Introduction

1.1 Digitalized Research Resources

Large-scale, multi-disciplinary literature repositories have become increasingly avail-

able, with publishers, government agencies, and industry service providers making

considerable efforts to facilitate literature search and content mining. Notable exam-

ples include Thomas Reuters Web of Science [1] and Google Scholar. Google Scholar

is Google’s literature search engine, with data from individual authors, university

repositories, and journal publishers. It “includes journal and conference papers, the-

ses and dissertations, academic books, pre-prints, abstracts, technical reports and

other scholarly literature from all broad areas of research” [2]. In addition, publishers

have made efforts to improve content accessibility. Elsevier Scopus [3] provides a

powerful literature search service.

Literature index services also exist for various disciplines. CiteSeerX [4] indexes

citations in computer and information science and arXiv.org provides a publication

posting and downloading service for multiple fields, including physics and mathemat-

ics.

PubMed [5], hosted by the National Institutes of Health in the United States, is

1



CHAPTER 1. INTRODUCTION 2

the leading effort to incorporate biomedical research literature into a publicly acces-

sible resource. It provides not only literature citation downloading (MEDLINE), but

also a rich knowledge base for biomedical research. PubMed article IDs are widely ref-

erenced by other biomedical knowledge bases, such as Online Mendelian Inheritance

in Man (OMIM) [6] and DrugBank [7], and thus made the mining of rich biomedical

knowledge possible.

Biological knowledge bases are another important resource. Starting in the 1990s,

biological research began actively adopting state-of-the-art computing technologies.

Rich resources such as genome and sequence databases, as well as interacting pro-

tein databases, were created and have been constantly updated since. For example,

the Biomolecular Interaction Network Database (BIND) is a database that stores

biomolecular interactions, complexes, and pathway information [8]. The Protein In-

formation Resource (PIR) provides a protein sequence database [9]. The Munich

Information Center for Protein Sequences (MIPS) in Germany hosts repositories for

genome and sequence data [10, 11, 12, 13, 14] in collaboration with PIR. UniProt [15]

integrates sequence and gene function information, which integrates information from

both literature curation and automatic classification from Swiss-Prot [16, 17], PIR,

and other resources. Gene Ontology [18] provides a structured, controlled vocabulary

that describes the roles of genes and gene products.

1.2 Linking Knowledge

1.2.1 Citation Networks

Citation relations between articles are one of the most important semantic relations

and have been extensively studied. Citing one’s work is usually considered an endorse-

ment; therefore, citation counts are the primary quantified measure of a publication’s

impact. For example, the widely referenced Journal Impact Factor [19, 20, 21, 22] is
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based on the citation count a journal’s publications receive during a certain period.

The H-index [23], which is based on the citation count distribution over an author’s

publications, is also frequently used, for example, by Google Scholar, as a measure for

quantifying an author’s impact. These measures, due to the importance of judging

research work, have also rise to their fair share of debate [24, 25, 26, 27, 28, 29].

Citations also provide a new source for the text mining community. Citations are

an important resource for text mining tasks such as summarizations of target pa-

pers, named entity disambiguation, named entity extraction, and relation extraction

[30, 31, 32].

Linked publications not only provide citation counts with respect to one another

but also draw a comprehensive picture of one or more disciplines if we look beyond

a network’s immediate neighbors. For example, clustering methods have been used

to identify sub-domains within a field, such as sustainability [33] and organic LED

technology [34]. Community structure is also studied by applying modularity max-

imization to well-cited articles [35]. Work has also been done to identify research

evolution, such as in the discovery of DNA theory [36], and research streams and di-

versity [37]. In the legal domain, case documents often cite previous cases to support

a particular judgment and thus citation network analysis helps to identify related

cases for a given issue [38]. Pattern citation networks have also been used to detect

innovation [39]. Degree distributions in citation networks have also been studied and

scale-free phenomenon have been frequently observed [40][41].

1.2.2 Co-authorship Networks

Researchers are linked together by co-publishing papers, thus creating co-authorship

networks. An author’s authority is widely analyzed based on the co-authorship net-

work. De Castro et al. [42] defined the Erdos number, the distance between two

authors as the number of nodes in the shortest path between them, and studied the
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co-authorship network that included the famous mathematician Paul Erdos. The

smaller the number, the greater the impact of the author’s reputation. Instead of

measuring the distance to Paul Erdos, Nascimento et al. [43] extended this work to

calculate the "centrality" score for each author, which is the average of the distance

between a given author and any other author in the co-authorship network. Liu et

al. [44] employed a PageRank algorithm to rank authors.

Co-authorship networks, similar to citation networks, are an important source to

study any given research discipline. In particular, it represents the collaboration.

Research collaboration has been analyzed through co-authorship networks, such as

individual-level collaboration, organization-level collaboration [45, 46], international

collaboration [47, 48, 49], and academia–industry collaboration [50]. Trends in re-

search collaboration (inter-/intra-disciplinary, inter-/intra-institutional, and interna-

tional/national) are important evidence for understanding the outcome of policy and

inspiring new initiatives.

Co-authorship networks have been an important resource for social network study,

since they are cleanly formatted and the establishment of connections (the co-authors

of a paper) is primarily under the author’s control instead of random. Physicists

use such networks to understand nature’s complex systems. Co-authorship networks

have been found that are scale-free, small-world, clustering, and assortative networks

[51, 52, 53, 54]. Studies on social group evaluation also use co-authorship networks

[55].

1.2.3 Protein–Protein Interaction Networks

Protein–protein interaction networks are an important resource in the discovery of

new interactions and understanding disease mechanisms. Since the late 1990s, high-

throughput computational approaches have also been heavily used to create protein

interaction networks. A yeast protein network was built with over 2,000 interactions
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between more than 1,000 proteins curated from the literature [56]. STRING is a

database of functional associations between proteins [57]. BioGRID is a database

that incorporates physical and genetic protein interactions that were manually cu-

rated from primary literature [58]: As of 2013, it has archived over 500,000 manually

annotated interactions from more than 30 model organisms [59].

Protein networks help to understand cellular mechanisms. For example, the es-

sentiality of a (high-degree) protein can be examined by removing it from the network

and observing changes in cell function [60].

1.3 Network Analysis

From the late 1990s to the early 2000s, researchers paid increasing attention to pat-

terns of network growth and link establishment. Scale-free networks [61]and small-

world networks [62, 63] are arguably the two most important findings. In a scale-free

network, also known as preferential attachment, network growth is modeled as a "the

rich get richer" pattern (power-law). In other words, the chance of a node receiving

a new link is proportional to the number of its existing links. A small-world network,

on the other hand, models navigation behavior in the network and shows that one

can navigate from one node to the other with a few (counter-intuitively small number

of) steps. Furthermore, there are clustering effects (the neighbors of a node tend to

connect among themselves) in real-world networks, such as social networks.

Link analysis is one of the most important research areas in network analysis.

PageRank [64] and HITS [65] are two pioneer works for ranking nodes in a network.

PageRank models a user surfing the Web. A page’s importance is simply the proba-

bility of a Web surfer landing on it. On the other hand, HITS calculates an authority

score and a hub score for each node in the network. A high-authority node means

it is pointing to many high-authority hubs and vice versa. The two algorithms are
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extensively studied and extended.

Link prediction has been attracting more and more attention. The success of

friendship-based social network applications, such as Facebook, has motivated the

extensive academic study of co-authorship networks, which have long been a standard

data source for social network analysis due to their availability and clear semantic

context [66].

1.4 Tasks

1.4.1 Citation and Co-authorship Network System

Citation and co-authorship networks are very important for information retrieval and

author collaboration studies. However, few resources with full text, citation, and

co-authorship networks are available in the biomedical field. First, we use Elsevier’s

full text collection to build a citation network and identify biomedical related arti-

cles. Second, we determine network and co-authorship network characteristics, such

as power-law distributions, the size of connected components, and temporal charac-

teristics.

We create a citation and co-authorship network database from Elsevier’s full text

collection and MEDLINE records. We link the Elsevier articles by citation informa-

tion with the assistance of information retrieval, which helps to eliminate unlikely

candidates. Similarly, we map the Elsevier articles to the MEDLINE records, thus

identifying medically related literature. The author names are disambiguated by the

authority database.

Furthermore, we use the MEDLINE resource to automatically annotate PubMed

citations and train conditional random field models to parse the full citations into

fields, such as title and author.
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1.4.2 Scientific Research Collaboration Prediction

Biomedical research demands a high degree of collaboration. Collaboration recom-

mendations are therefore important to facilitate the increasing need to find potential

collaborators. Collaboration recommendation is often cast as a link prediction task

and existing works are primarily based on topological predictors such as the number

of mutual collaborators. However, our hypothesis is that other semantic features can

be informative for collaboration prediction.

We first study first-time collaboration to predict the collaboration between two

researchers who have never collaborated together. We use co-authorship to repre-

sent collaboration and use existing co-authorships as training instances to create

supervised machine learning models, namely, naive Bayes, logistic regression, support

vector machine, and random forest models. Given a new pair of authors, the models

predict the probability of the two collaborating together in the future. We develop

novel features of author research profiles, as well as network structures.

We subsequently explore the recurrent collaboration problem, since research col-

laborations, unlike making connections in social media, are discrete events and two

researchers may collaborate only once or multiple times. We hypothesize that re-

current collaborations have patterns and therefore machine learning models can be

applied to predict them.

1.4.3 Protein–Protein Interaction Prediction for Hypothesis

Generation

Protein–protein interactions are important in understanding disease mechanisms.

Traditionally, biologists come up with new interaction hypotheses by searching the

literature or studying the results of previous experiments, both of which are time-

consuming when validating a hypothesis. We propose using a link prediction tech-
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nique to automatically predict the most likely interactions that have not yet been

discovered (i.e., not reported by the literature). Specifically, we formulate the task

as a link prediction problem in a protein–protein interaction network. Existing inter-

action pairs are considered positive examples and we assume that proteins that have

never interacted are negative instances. The learning features are derived from both

the literature and network structures. We used supervised machine learning, naive

Bayes, naive Bayes multinomial, logistic regression, and support vector machine mod-

els.

1.5 Contribution

This study’s contribution is threefold. First, we create a resource for a biomedical

citation network together with full text articles. This provides a resource for both text

mining and biomedical research communities for tasks such as information retrieval,

literature searches, and research evolution. Second, our in-depth study of scientific

collaboration identifies features used in predicting research collaboration. Third, the

proposed protein–protein interaction prediction approach is highly scalable and can

be used to generate hypotheses for biologists and to build large-scale protein–protein

interaction networks.

1.6 Thesis Outline

• Chapter 2 describes how full text biomedical citation and co-author networks

are constructed.

• Chapter 3 describes the work of citation parsing using a conditional random

field model.

• Chapter 4 presents the work of predicting first-time research collaboration be-
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tween two researchers.

• Chapter 5 describes the prediction of recurrent research collaborations.

• Chapter 6 describes how to use a machine learning approach to generate a new

hypothesis on protein–protein interactions.

• Chapter 7 summarizes the thesis.



Chapter 2

CiteGraph

2.1 Introduction

With the increasing volume of full-text biomedical articles are available online, cita-

tion recognition and analysis has become more and more crucial for many text-mining

applications. Citations play an important role for both the rhetorical structure [67]

and the semantic content of articles [30] and have proven beneficial to many text

mining tasks, including information retrieval, extraction, summarization, and ques-

tion answering. Citation analysis can provide us with insights into the underlying

landscape of scientific publication, and useful resources for retrieving, categorizing

and evaluating articles, authors and institutions [19]. By knowing which articles ref-

erence and are referenced by a particular paper, we can better understand how that

paper fits into the larger network of research. This can help us to understand the

connections between research topics, and allow us to find related work and judge

the authority of an individual paper. Much in the same way hyperlinks transformed

the World Wide Web from a set of static documents into a vibrant and interesting

network, properly utilizing citation information can produce a scientific knowledge

resource with utility far beyond the sum of its parts.

10
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Figure 2.1: The overview of the Elsevier, EMedline and MEDLINE datasets.

In this chapter, we developed and evaluated CiteGraph, a fully implemented

pipeline system that builds a large-scale citation network from a large collection of

biomedical full-text articles. Currently, the CiteGraph network encompasses 4.23

million articles taken from the Elsevier collection spanning disciplines ranging from

physics to economics. In particular 1.65 million MEDLINE indexed articles are iden-

tified from them. The CiteGraph network aligns co-authorship, bibliographical, in-

stitutional and citation information into a single cohesive network resource. It also

assigns PMIDs, the unique identifier in the MEDLINE collection, to the corresponding

articles. The data of the Elsevier and the MEDLINE collections are shown in Figure

2.1. Since the articles in the Elsevier collection contain full citation information, the

overlap between Elsevier and MEDLINE, named as EMedline here represents a sub-

set of 1.65 million biomedical articles from which we built the EMedline CiteGraph

network. We evaluated the CiteGraph on linking articles by citation and identifying

MEDLINE articles. The system achieved F-1 scores of 0.99 and 0.98 respectively.

We also present further analysis of properties of the network and its citation-related

characteristics. This chapter is based on the publication [68].

The overview of the network is shown in Figure 2.2. For the purpose of this work,

we define an incite of A as an article that cites A and an outcite of A as an article A
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Figure 2.2: An illustration of the CiteGraph network. Each square represents a
unique article. A directed link represents a citation relation. The CiteGraph network
encapsulates citation relations extracted from the Elsevier data set (outer circle).
The set of articles contained in the MEDLINE dataset and the links between them is
EMedline network (the inner circle).

cites. For example, in Figure 2.2, the incites of B are A, C and J, the outcite of B is D.

CiteGraph maps citations and PMIDs to documents within the network, and merges

citations to out-of-network documents in order to form a coherent picture of the links

between articles. In this chapter, we calculate precision and recall scores for the

citation mapping, PMID mapping and citation merging tasks separately, achieving

F1 scores of 0.99, 0.98 and 0.86 respectively.

CiteGraph is fully automated, which makes the future development of larger-

scale networks possible. While some manually created networks do contain citation

information, this work is the first to report on the development and evaluation of a

fully automated system for building large-scale citation networks. These networks

will also be made available to researchers, allowing this work to have a substantial

impact on both the text-mining and biomedical fields.
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2.2 Background

2.2.1 Citation Networks

Citation networks have been built in many domains. In physics, Bilke and Carsten

[40] investigated a citation network built using data from publications of high-energy

physics ranging from 1975 to 1989, observing, among other features, that the number

of citations followed a power-law distribution. Redner[41] studied the citations from

110 years of Physics Review publications, creating a network consisting of 353,268

articles. Chen and Rener[35] used the same network to study the community struc-

ture of physics subfields by applying modularity maximization on well-cited articles

to discover sub-groups. Small[69] used data from the Information Science Institute

to create a map of scientific articles covering 23 disciplines by using co-citation clus-

tering. Discipline sub-topics and interdisciplinary pathways were also identified. Ka-

jikawa and Takeda[34] analyzed citation network of research papers in the field of

organic light-emitting diodes (OLEDs). Topological clustering methods are used to

cluster articles based on citation relations and identified research disciplines. Emerg-

ing research topics can also be identified through the use of recursive clustering. In

a study of citations related the scientific development of absorptive capacity field,

Calero-Medina and Noyons[37] identified main paths in a citation network to study

research stream and diversity. Greenberg[70] observed citation bias, amplification and

invention in a network of PubMed articles that shared a particular belief. The work

showed that citation distortion might occur with literature that has been accumu-

lated over long periods. Link analysis methods such as HITS[65] and PageRank[71]

have been applied to citation networks to identify and distinguish high quality articles

[72][73][74].

Citation networks have been used for broad types of documents. In the legal

domain, case documents often cite previous cases to support a particular judgment.
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These citations are categorized by legal issues and defined by guidelines. Zhang

and Koppaka[38] described a semantic-based legal citation network tool capable of

creating legal citations networks for a given issue. Csardi et al[39] used a patent

citation network to detect innovations.

2.2.2 Literature Repositories

Large-scaled literature repositories have been built. CiteSeerX [4] is a digital library

of scientific literature, and search engine, primarily focusing on computer and in-

formation science domain. It autonomously creates a citation index, and provides

citation statistics including the number of citations for a given paper, and a list of

top cited articles and authors. CiteSeerX also allows searching of articles that cite

a given paper. Google Scholar[75] is another popular literature search engine that

collects papers from multiple disciplines. The number of incites is used as part of its

ranking algorithm.

2.3 Methods

In this study, we describe the system CiteGraph that builds the citation and co-

authorship network. It consists of a matching algorithm that maps each citation

to its article and the corresponding PMID. The implementation of the matching

algorithm resulted in four distinct components: citation mapping matches a reference

to its corresponding article and subsequently establishes the citation links between

two articles in the CiteGraph network and PMID mapping assigns a unique PMID to

each article node. Citation merging component merges citations that are pointing to

the same article that is outside of the collection. In addition to the two components,

author name disambiguation component disambiguates authors.
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2.3.1 Data and Preprocessing

The data that CiteGraph used comprises of 4.23 million full-text articles from the

Elsevier data and 20.63 million MEDLINE records. Each MEDLINE record comes

with an XML file with fields including Title, Journal, Author, and Year, as well as

the MeSH terms assigned to the record. Every Elsevier article also comes with an

XML file. Unlike the MEDLINE, the Elsevier article does not include MeSH terms,

but has citations -with fields similar to the MEDLINE record - that the article cites.

Accordingly, CiteGraph parsed both the MEDLINE and the Elsevier XML files by

field, assigning the parsed citations to their files and indexed them with the open

source information retrieval tool Apache Lucene [76].

2.3.2 Matching Algorithm

The CiteGraph network contains three entity types: article, citation and PMID. Each

entity type has common fields (e.g., title, journal, year). All three of the following

tasks are based on a matching algorithm that uses these fields to resolve co-reference

entities. The matching algorithm operates on three main fields: title, author list and

journal, applying different equivalence tests for each field. Two entities are matched

if two or more of their fields are equivalent.

Title: We found title varies in its expression. For example, named entities in-

cluding chemical and gene names were often represented differently in a citation when

comparing it to the title in the original published article. We therefore developed an

approximation approach for matching two titles. Specifically, two title fields are con-

sidered equal if one of following conditions is met: 1) the set of tokens contained

in one title field is a subset of the tokens in the other, or 2) the number of tokens

common to both fields is more than 80% (we veried the range from 30% to 100% and

found 80% show best performance ) of the size of the larger of the two fields. This

ad-hoc approximation approach works quite well, as demonstrated in our preliminary
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evaluation.

Author List: To identify whether the two author lists are identical, we first

compared the surnames of the authors; we discarded first names as we found them

to introduce significant noise. The author list fields are considered equal only if the

set of surnames are equivalent, or if the set of surnames in one list is fully contained

in the surname set of the second.

Journal: Due to the fact that many journal citations are given using the journal

initials, or abbreviated names (e.g., “Mech. Dev”, “J. Neurosci.” and “JAMA”), journal

name initials, rather than full titles, were compared. Stop words, such as of and the

were removed. If the number of common initials in the journal titles was greater

than 80% of the tokens in the longer journal name, they were considered equivalent.

The figure of 80% was determined through empirical evaluation ranging from 30% to

100%.

2.3.3 Citation Mapping

The citation-article mapping task attempts to link citations to their corresponding

article nodes. For each citation, the title, author list and journal name are extracted

and used to create a query. A list of 20 candidate documents is retrieved, and each

returned document is checked using the matching algorithm. 20 candidates are re-

quired as citation information is usually less complete than the meta-data stored in

the Elsevier index (30% of the citations in the network do not provide an article title,

and 12.2% of the citations do not have journal information). An alternative approach

would be to use article information to query the citation index and attempt to find

all citations that refer to a particular article. However, in practice it was found that

due to the high percentage of missing fields, this required a much larger candidate

list in order to maintain recall levels, and was therefore less efficient.
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2.3.4 PMID Mapping

We identify PubMed articles in our network so they can be analyzed separately as the

EMedline network. For each article node, the appropriate data fields are retrieved

from the Lucene index and used to construct a query to retrieve candidate articles

from the MEDLINE index. The matching algorithm is then used to check the ten

most relevant candidates. If a match is found, its PMID is mapped to the article

node.

2.3.5 Citation Merging

Unlike citation mapping, the citation merging task does not have a complete article

upon which to map each citation. Instead, citations that reference articles outside of

the network are merged into a single citation object. Due to the less complete and

consistent nature of the citation information, this is the most difficult task among the

four. However, it is important, as it allows us to determine when, for example, two

articles share a citation, even if the cited article does not exist in our network.

In this task, both entities submitted to the mapping algorithm are likely to have

fields with missing data, so it is important to retrieve a large number of candidates.

For each citation C, a query is constructed with all available field information, and the

top 3000 candidates are retrieved. We choose 3000 based on our preliminary study,

which showed a maximum of 3000 citations to a single article. Each candidate is

compared pairwise with C using the matching algorithm. Matched nodes are merged

into a new citation C ′, which may have more complete information than C, and can

be used for subsequent steps.
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Table 2.1: EMedline Network Statistics
Measures EMedline Incites EMedline Outcites Total incite Total outcite
Average 3.85 3.85 26.66 32.34
Max 4977 829 37065 3730
Min 0 0 0 0
Std 10.94 5.87 78.64 32.03

2.3.6 Author Name Disambiguation

Author names are frequently ambiguous; the same name may refer to different au-

thors. We therefore developed the author name disambiguation component. For

implementation, we used the Author-ity database[77], which has disambiguated all

authors in the MEDLINE database. With the Author-ity database, we identified a

total of 1.37 million unique authors in our EMedline network.

2.4 The Network and Evaluation

The aforementioned four CiteGraph components allow us to create citation networks

by linking articles and co-authors. Two networks were created by CiteGraph: the

Elsevier network, consisting of all article nodes and citations extracted from the El-

sevier dataset; and the EMedline network, a subset of the Elsevier network consisting

of only the articles which were assigned PMIDs and the citations between them, as

illustrated in Figure 2.1.

Using both our Elsevier and the MEDLINE datasets, the Elsevier network contains

4.22 million articles, and 106.25 million citations, while the EMedline network has

1.65 million articles, and 6.35 million citations. The average EMedline network node

cites to 3.85 EMedline and 32.34 Elsevier nodes. EMedline article nodes are also on

average cited by 3.85 EMedline nodes and by 26.66 Elsevier nodes. Table 2.1 shows

the characteristics of the EMedline network.

The ratio of internal citations (links between EMedline nodes) to total citations
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(links to EMedline nodes from all Elsevier nodes) in the EMedline network is 0.14,

which is similar to work [41] which uses the 110 years of Physics Review (PR) article

collections, where the internal-citation ratio is as small as 0.2 for well-cited elementary

particle physics publications.

There is no gold standard for citation resolution, and citations are written with the

intention of being human readable. Therefore evaluation of the three tasks detailed

in Section 2.3 (author name disambiguation was excluded for our evaluation as it

was completely based on Authori-ty database, whose evaluation was reported ( 98%

recall) by the referenced article [77]) is carried out by human judges. In each of

the following evaluations, seven Human evaluators are provided with entity (article,

citation or MEDLINE record) pairs, and are asked to determine whether the two

entities refer to the same article. Each evaluator provides judgments on 20 instances

of each task. 25% of the instances are double annotated in order to evaluate inter-

annotator agreement.

Citation Mapping: For each citation in the network, a list of potential article

mappings is created by selecting Elsevier articles that have either their title or au-

thorList field equal to the corresponding field of the citation, as determined by the

matching algorithm described in section 3.2. Each evaluator is presented with a list

of 20 citations randomly selected from the set of citations with at last one potential

mapped article. For each citation, the list of potential mapped articles is presented,

and the evaluator must select which article, if any, corresponds to the citation in

question. This establishes a set of 110 user-curated citation mappings. Precision

is measured as the number of citations correctly mapped divided by the number of

citations presented that receive a mapping. Recall is calculated as the number of

citations correctly mapped divided by the total number of correct mappings found

by evaluators. Precision and recall for this task were calculated as 1.00 and 0.96

respectively, resulting in an F1 score of 0.98.
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Table 2.2: Evaluation result.
Task Precision Recall F1 Inter-annotator agreement(Kappa)
Citation mapping 1 0.96 0.98 1
PMID mapping 0.99 0.99 0.99 1
Citation merging 0.82 0.91 0.86 0.89

PMID Mapping: The evaluation for PMID mapping is performed using the

same tool as the citation mapping. Evaluators are presented with information for 20

articles that have at least one candidate PMID mapping, and the list of potential

PMID mappings. The evaluators are then asked to choose which PMID, if any,

corresponds to the given article. For this task, both precision and recall were found

to be 0.99, for a resulting F1 score of 0.99.

Citation Merging: As the citation merging task does not have a set article upon

which to map, it is necessary for the evaluators to evaluate all possible merges for

a given citation and select all of the candidates which should be merged. In order

to reduce the number of pairs evaluators will need to compare, citation nodes that

have all of their fields equal are first merged, and the evaluation is only completed

on candidate pairs with at least one missing or non-equivalent field. The evaluators

are then presented with a citation node, and a list of potential candidate nodes for

merging. They select all candidate nodes that refer to the same article as the original

citation node. Precision is measured as the number of candidate pairs correctly

merged divided by the total number of pairs merged. Recall is measured as the

number of candidate pairs correctly merged divided by the total number of merges

identified by the evaluators. Precision and recall for this task were calculated as 0.82

and 0.96 respectively, for an F1 score of 0.86.

Autuhor Name Disambiguation: We also disambiguated the author names

using Authori-ty database. 1.39 million authors from 1.19 million articles were dis-

ambiguated.
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2.5 Network Analysis

2.5.1 Citation Network

The number of articles over the number of incites is often observed to follow a power-

law distribution [78][79]. Figure 2.3 shows the plot of EMedline network, with α =

0.85, and β = −2.40 for logy = α+βlogx, where x is the number of inciting citations

in an article, and y is the frequency of the articles that have inciting citations x.
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Figure 2.3: EMedline citation frequency distribution. The line is the linear regression
of the plot, let it be logy = α + βlogx, the linear regression produces α = 0.85, and
β = −2.40. The citation frequency is therefore follows power-law distribution
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2.5.2 Co-authorship Network

2.5.2.1 Basic Analysis

Density. As described in [69] , density measures the general connectedness of a

network. It is defined as the number of links in the network divided by the number

of links in a complete graph with the same number of nodes. Given a graph G with

N nodes and L(G) links, the density D is defined as:

D =
2 ∗ (|L(G)|)
N(N − 1)

In this co-authorship network, which has 7,206,814 links and 1,376,779 nodes,

D=7.6e-06. As expected, the network is extremely sparse.

Clustering coefficient describes how well the neighbors of a vertex are connected

among themselves. As described in [69] the clustering coefficient of vertex v in a

graph G is defined as

|E ′|
k(k − 1)/2

V ′ is the set of vertices of the direct neighbors of v, k = |V ′|. E ′ is the set of edges

among vertices in V ′. The overall clustering coefficient of G is the average of each

node. The nodes with zero indegree and outdegree are assigned 0 as the coefficient.

The average clustering coefficient of the network is 0.6798. The co-authorship net-

work in [44] also has 0.67. Similarly ACL SIGMOD co-authorship [80] has clustering

coefficient 0.69. It is highly likely a small world graph according to other study [69],

but a random graph is needed to verify it. It is not included in this study.

Connected component is analyzed and 25,510 components are found. Top 10

components with largest size are shown in Table 2.3. The largest component has size

1.27 million, and the second largest one has 36 nodes. The co-authorship network has
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1.37 million unique authors, and therefore 92.7% authors in the network are connected

in the largest component. The study of [69] showed in their co-authorship network

of 1567 authors, the largest component had 599 (38.2%) nodes. Figure 2.4 shows the

number of component sizes, excluding the largest component.

Table 2.3: Top 10 largest connected components
Component No. Size

1 1269989
1755 36
529 30
2473 26
1307 25
1263 24
1146 23
5061 23
2886 23
5132 22

Figure 2.4: Connected component. The largest componnet is excluded from the
plotting as its size (1.2 million authors) will skew the figure.
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Table 2.4: Statistics of Network Measures
Measure Mean Median Std Max Min

Component size (No.1 excluded) 3.1756 3 1.8280 35 2
Clustering coef. 0.6798 0.8095 0.3542 1 0

Number of co-authors 11 6 14 671 0
Co-authorship year span 1.5211 1 1.5762 35 1

2.5.2.2 Temporal Analysis

The time span of co-authorships is an indicator of the strength of the collaborations.

As shown in Figure 2.5, co-authorship spans from 1 to 35 years, while 83.7% of author

pairs just appear once. There are 766,834 and 113,640 co-authorships with five and

ten years span respectively.

Figure 2.5: Co-authorship Span

We were also interested in analyzing the relations of author, publications over the

year offset such as average number of co-authors for an author in the ith year of his/her

publication history. Therefore we calculated the percentage of outside institute co-

authors, citations received from EMedline/Elsevier, number of publications as well
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as number of co-authors per publication. We subtracted the earliest year when an

author published in this collection from current year of interest to get the year offset.

There are only 0.24% authors who have a publication history longer than 16 years in

this collection, so the data is not as representative as the rest. Hence we used year

offset from 0 to 16 for the analysis.

As shown in Figure 2.6, Average number of co-authors per publication is generally

increasing, which suggests an author tends to have more co-authors as he/her gets

senior (a). Similarly the percentage of co-authors outside of institution is increasing,

suggesting in general authors have broader collaborations when becoming senior (b).

Number of publications every year is also increasing, and peaks at 14. It shows an

author gets more and more productive along his/her career (c). Number of citations

per publication decreases, and the reason could be that earlier works have more time

to receive citations than the newer ones (d). The funding level, policy and culture

changes along the time are also possible reasons for the trend in (a) and (b).

2.6 Conclusion

In this chapter, we described our efforts on building large citation networks using

both the Elsevier and the MEDLINE datasets. We developed a citation matching al-

gorithm and implemented four components that match a citation to its corresponding

article, identifies the MEDLINE indexed articles and disambiguates author names.

Our system - named CiteGraph - incorporates over 4 million Elsevier articles, and

1.6 million related articles in it have been identified. The evaluation demonstrated

a F1 score ranging from 98% - 99% for different components. With the CiteGraph

networks, we subsequently conducted preliminary graph analysis, including citation

frequency over publications and co-authorship network topological statistics. Our

analysis demonstrates that the CiteGraph networks reflect the general characteristics
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Figure 2.6: Author temporal analysis. (a)Average number of co-authors per publica-
tion is generally increasing, which suggests an author tends to have more co-authors
as he/her gets senior. (b) Similarly the percentage of co-authors outside of institution
is increasing, which shows authors have broader collaboration along his/her career.
(c) Number of publications every year is also increasing, and peaks at 14. It shows
an author gets more and more productive. (d)Number of citation per publication de-
creases, and the reason could be that earlier works have more time to receive citations
than the later ones.

of existing networks in other domains. In addition, the temporal analysis shows the

researcher tends to have more co-authors per publication and more outside institution

collaboration along the career. The limitation of this work is due to the incomplete

dataset, as CiteGraph is built on a subset of MEDLINE.

The CiteGraph network provides the medical informatics community a new re-

source on text mining. The system can be used to combine the citation network and

co-authorship network together to analyze links between them. Such combination

and analyses may lead to important discovery, including document ranking, author

ranking, and author collaboration pattern detection.



Chapter 3

Parsing Citations Using Conditional

Random Fields

3.1 Introduction

As more and more full-text biomedical articles become open-access, there is a great

need to move beyond merely examining abstracts and to develop text mining ap-

proaches that apply to full-text articles. Citations are used ubiquitously in biomedi-

cal articles; for instance, we found an average of 34 citations for the 160,000 full-text

biomedical articles in the TREC Genomics Track text collection [81]. Citations play

important roles for both the rhetorical structure and the semantic content of the ar-

ticles, and as such, citation information has shown to benefit many text mining tasks

including information retrieval, information extraction, summarization, and question

answering.

For example, citation indexing has been used to associate citing articles with

cited ones, and the associations have been used to score Science Citation Index to

measure the impact factors of scientific journals and articles [82]. Two articles can

be considered as “related” if they share a significant set of co-citations and a study

27
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that incorporated this model has shown to improve information retrieval [83]. The

number of times a citation is cited in a paper may indicate its relevance to the

citing paper [84, 85]. Citances (or the citation sentences) sometimes represent the

condensed semantic content of the documents they identify [86, 87] and have been

used to extract scientific fact[30] and for summarization [87]. In addition, citation

indexing has been used to model the evolution of author and paper networks [88]and

research collaboration[89].

In order for text mining systems to benefit from citation information, one must

automatically identify citations from full-text articles and extract their fields, includ-

ing Author, Title, Journal and Year. Citation parsing automatically parses a full

citation into its fields. Co-authorship is common in the biomedical domain, and it is

important for a citation parser to identify the information of each author, including

given name and surname. Separating an author’s surname from the given name will

enable a text mining system to separate two different authors (e.g., “John Smith” and

“Smith John”) who share the same names.

Citation parsing is challenging because citations come with different formats that

are rooted in either different requirements by different publishers or non-standardized

formats introduced by authors. The following examples illustrate some variations in

citation format:

[Example 1] Yu, H and Lee M. 2006. Accessing Bioscience Images from Abstract

Sentences. Bioinformatics. Vol 22 No. 14, pages e547-e556.

[Example 2] Hong Yu and Minsuk Lee. Accessing Bioscience Images from Abstract

Sentences. Bioinformatics. Vol 22 No. 14, pages e547-e556. 2006.

[Example 3] Yu H, Lee H. 2006. Accessing Bioscience Images from Abstract

Sentences. Bioinformatics: 22 (14), e547-e556.

First, the order of fields may vary. As shown in Examples 1 and 2, the publication

year (2006) may appear before or after the title. There are also different ways to
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present publication volume and issues, for example, “Vol 22 No. 14” and “22 (14)” in

Example 2 and 3. Author names also come with different format (e.g., “Yu H”, “Hong

Yu”, “Yu, H” or “H. Yu”); Journal names vary as well. For example, an article that

is published in “American Medical Informatics Association Fall Symposium” can be

referenced as “AMIA”, “Proceedings of AMIA”, “Proceedings of the American Medi-

cal Informatics Association Fall Symposium”, “Proceedings of the American Medical

Informatics Association (AMIA) Fall Symposium”, or “Proc AMIA” These variations

pose a significant challenge for developing a natural language processing system that

automatically parses citations into fields, since we can see from the example each field

may have different formats.

In this chapter we report the development of a natural language processing system

that automatically parses a citation into its fields (i.e., Author Given Name, Author

Surname, Title, Source, Year, Volume, First Page, and Last Page). Although citation

parsing is not new, and tools for doing it have been widely used in CiteSeerX , few

tools are publicly available and little work has been evaluated for citation parsing in

the biomedical literature. This chapter is based on the publication [90].

3.2 Background

The Institute for Scientific Information (ISI) constructs citations and indexes scientific

articles to produce multidisciplinary citation indices including the Science Citation

Index (SCI). However, the database is mostly built manually. Similarly, HighWire

Press[91] and other open journal projects link citations across journal sites. It is

unclear whether they provide tools to automatically recognize citations. An Au-

tonomous Citation Indexing (ACI) system automatically locates articles, extracts

citations, identifies identical citations that occur in different formats, and identifies

the fields of citations and has been developed and implemented by CiteSeer (now
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CiteSeerX) [92, 93]. Citation parsing is a subtask of ACI.

Earlier work in citation parsing uses manually crafted rules and external databases.

CiteSeer is such an application that is built upon a set of heuristic rules (e.g., the

format of any citation is uniform within one article) and external databases of author

names and journal names. They reported a performance of 80.2% for Title, 82.1% for

Authors, and 44.2% for Page Number. Wei (2007) [94] reported a similar approach.

Besagni and Belaid (2004) [95]also developed a rule-based system. Their system as-

signed each field a tag (e.g., alphanumeric string and common word, capital initial)

that resembles a part-of-speech tag. Rules (e.g., ”when author names are given, it

is always at the beginning of the reference”) were used to detect each field. They

evaluated their system on a dataset of 2,575 citations that came from 64 articles ran-

domly selected from 140 journals, and reported that 75.9% references were completely

parsed.

Powley and Dale (2007) [96] observed that the pattern of a citation mentioned in

the body of a full-text article (e.g., ”Yu and Lee, 2006”) is consistent with the citation

pattern in the reference section, and accordingly they developed rules to capture the

author name. They reported 92% precision and 100% recall, although the system

works well only when the citation is presented by author name and year, not by

other common patterns (e.g., the digit format (e.g., ”[1]”)). Other related work link

citations to the same reference that differ in format[97].

Statistical and machine-learning approaches have been reported for citation pars-

ing. Takasu (2003) [98] developed a Hidden Markov Model (HMM) for citation parsing

and reported over 90% accuracy on an evaluation data of 1,575 citations. BibPro [99]

is a citation parser that is based on sequence alignment techniques. Specifically, they

used sequence alignment tool BLAST to find the most similar citation fields for a

citation, and subsequently parsed the citation and reported an accuracy of 97.68%.

Kramer et al (2007) [100] developed Probabilistic Finite State Transducers (PFSTs)
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for citation parsing. Based on the observation that the content of a citation field

is independent of other fields, they built an FST model for each citation field. An

evaluation on the Cora dataset that serves as a common benchmark for accuracy mea-

surements yields a field accuracy of 82.6%. Peng and McCallum (2006) [101] parsed

citations with Conditional Random Fields (CRFs), and reported an F1-score ranging

from 76.1% (for Publisher) to 99.4% (for Author), although their system is not made

available to the public. ParsCit [102] is an open-source CRF-based citation parser

that has been used by CiteSeerX [4]. The model was reported to be trained on 200

reference strings sampled from computer science publications. Their performance is

95% for F1-score on Cora dataset. Most systems (except for ParsCit and the system

developed by Kramer et al [100]) described above were not available publicly. None

of the systems developed was evaluated in the biomedical domain. Furthermore, none

of the systems described above extracted author’s surname and given name as we do

in this study.

3.3 Methods

We developed the citation parsing system based on conditional random fields model

[103], which are probabilistic models that relate to the HMM. The CRF model has

an advantage over the HMM in that it relaxes strong independece assumptions [104],

and as a result, has shown to work well with biomedical sequence data that frequently

comes with variations. For example, research has found that CRFs performed the best

in biomedical named-entity recognition tasks[105]. In the following, we first define

the problem then describe our experiments on applying CRFs for citation parsing.
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3.3.1 Problem Definition

We define a full citation as a citation that incorporates four or more of the follow-

ing fields: Author (further separated by Surname and GivenName), Title, Source

(i.e., journal, conference, or other source of publication), Volume, Pages (we further

separated the page information by FirstPage, and LastPage), and Year.

3.3.2 Data

Creating training and testing data set that can be used for applying supervised ma-

chine learning is one of the key components of our work. We automatically extracted

the training and testing data from articles in the PubMed Central (PMC). PMC is

a free digital archive of biomedical and life sciences journals. As of February 2009,

the PMC Open Access article collection has incorporated a total of 794 journals and

12,537 full-text articles. We found that the average number of articles per journal was

154, with standard deviation 1,302, the maximum number of articles per journal was

32,881, and the minimum was 1. We found that for certain articles, PMC provides

two formats of a full-text article: the parsed XML format from which we can extract

the citation fields, and the HTML format from which we can extract the original full

citation. Figure 3.1 and Example 4 show the two formats of a citation. The articles

with both the XML and HTML representations were selected to extract citations to

use as the data for this study.

[Example 4] Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial

interactions at the blood-brain barrier. Nat Rev Neurosci 7:41-53

In order to ensure that our data was representative, we randomly selected 2% of

the articles with the XML format from every journal. If a journal incorporated 49

articles or fewer, we randomly selected one article from that journal. Our selection

resulted in a total of 2,988 articles, from which we were able to identify 672 articles

that have the corresponding HTML citation format. Those 672 articles were used



CHAPTER 3. PARSING CITATIONS 33

Figure 3.1: Gold Standard XML.

to extract full citations and their labeled fields, and they incorporated an average

of 41 citations (Min 1, Max 333, and Standard Deviation 33). The total number

of citations is 27,606, which were used as the tagged citation data for training and

evaluation.

We chose Mallet [106]as our CRF package for implementation. The overview of

the citation parsing system is shown in Figure 3.2.

Figure 3.2: The Overview of the Citation Parsing System.
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3.3.3 Learning Feature

We use Abner’s [105] default features to train the CRF model. Abner’s features

capture the morphological characters of each token, for example, whether the token

incorporates a capital letter, all capital letters, a digit, all digits, and other symbols

(e.g., Roman and Greek characters and “-”), as well as the length of the token. We

found that the features can be effective in discriminating different fields. For example,

a combination of upper- and lower-case letters will lead to the detection of Author

(”Hong”).

3.3.4 System and Evaluation

We used the 27,606 citations extracted from PMC for a 10-fold cross-validation to

take the advantage of it: All observations are used for both training and validation,

and each observation is used for validation exactly once. We split each citation into

a series of tokens (each token contains a word or punctuation) and tagged them

following the tag definition style used by the CoNLL shared task [107]. We defined

the beginning of each field, inside the field, and OTHERS by ”B-<fieldname>”, ”I-

<field name>” and ”O”, respectively. For example, B-TITLE refers to the word at the

beginning of a title. The tags of FirstPage and LastPage are FPAGE and LPAGE.

Tages SN and GN denote Surname and GivenName. We evaluated the test result for

each field by recall, precision and F1 score, defined as F1 = (2 *Precision * Recall) /

(Precision + Recall). Recall is the number of correctly predicted fields divided by the

total number of annotated fields, and precision is the number of correctly predicted

fields divided by the total number of predicted fields. These measures are per-entity.
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Table 3.1: Recall, Precision, and F1 score for automatic citation field recognition.
Field Precision Recall F1
TITLE 0.9546 0.9524 0.9535

SOURCE 0.8722 0.8703 0.8713
YEAR 0.9964 0.9977 0.9971

SurName 0.9951 0.9977 0.9964
GivenName 0.9794 0.9797 0.9796

VOL 0.9915 0.9932 0.9924
FirstPage 0.9966 0.9944 0.9955
LastPage 0.9991 0.9940 0.9965
OVERALL 0.9794 0.9796 0.9795

Figure 3.3: The F1-score of each field.

3.4 Results

Table 3.1 shows the recall, precision, and F1-score of the 10-fold cross-validation. The

overall F1 score is 0.9795, and the YEAR, SurName, VOL, FirstPage and LastPage

all have F1 above 0.99. On the other hand SOURCE has lowest F1 score 0.8713.

Figure 3.3 is the corresponding F1 score of each field and the overall score.

3.5 Error Analysis and Discussion

In order to understand the source of errors, we examined those fields that were pre-

dicted to be wrong and summarized the patterns in them. For example, one pattern

that our system wrongly predicted is that a word from the SOURCE field is a word

from the TITLE field. We identified a total of 101 such patterns. We found that
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Figure 3.4: The number of wrongly predicted fields by pattern.

84.6% of the total number of errors fell into a total of 23 patterns. Figure 3.4 shows

the number of instances of those patterns.

We further manually examined the source of errors for frequently-occurring pat-

terns. We found that one source of error was introduced by the ambiguity of the

period symbol ”.”. For example, in SOURCE, the period not only represents the

boundary of a source (e.g., “Nature Neuroscience.”), but also appears in the abbre-

viated version of journal titles (e.g., “Nat. Neurosci.”). The ambiguity resulted in

some inconsistent tagging in the training data as well. Similarly, the ambiguity of

the period applies to other fields, for example, the period that appears in the AU-

THOR field (e.g., “Haynes, J. D.). Our system sometimes confuses SOURCE with

TITLE. We speculate that this error was in part introduced by the fact that some full

citations have a missing title, and some full citations do not separate the title from

the source. For example, for ” ’Colquhoun,D.; Sigworth, F.J. Fitting and statistics

of single-channel records analysis Single-Channel Recording 1983.pp.191-263.”, the

“Single-Channel Recording” is the source and directly follows the title.

We reported in the related work that has shown different approaches for related

tasks. We found that our approaches achieved the highest performance among all.

We did not implement other approaches because it would be expensive for us to re-

implement the systems. Our system was trained in the bioscience domain and certain
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word features are domain-specific. As a result, we speculate that our system may not

work well in other specialized domains such as mathematics and physics. However,

the methods are generalizable and one can apply the same methods we developed to

data in another domain.

3.6 Conclusion

In this study, we developed an open-source package that automatically parses a ci-

tation into its fields in full-text biomedical articles. We applied and implemented a

supervised machine-learning system based on Conditional Random Fields (CRFs) for

citation parsing and report 97.95% F1 score to parse a citation into a total of eight

fields. Our results show that CRFs are efficient machine learning model for citation

parsing.



Chapter 4

Link Prediction for Research

Collaboration Recommendation

4.1 Introduction

Millions of researchers contribute to biomedical research, collectively publishing tens

of millions of research papers. These researchers are interlinked through a network of

publications. Since biomedical research is a growing interdisciplinary field, it requires

successful collaborations, which usually generate high impact work [108, 109, 110,

111]. Such collaborations span the physical and quantitative sciences, as well as basic,

translational, and clinical research. It has been found that the average number of

collaborators in the biomedical field is twice that in physics and more than four times

that in mathematics [51]. Remarkably, the ground-breaking work of the complete

sequencing of Yeast (Saccharomyces cerevisiae) genes involved over 600 scientists

from North America, Europe and Japan [112].

The importance of scientific collaboration has accelerated the development of re-

searcher profile platforms, most of which focus on facilitating institutional collab-

orations. Such platforms, including Harvard Catalyst Profile [113], SciVal Experts

38
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[114], and ProQuest Pivot [115], integrate research and collaboration information -

including publication history, co-authorship connections, research topics, and funding

information - making it easier to find potential collaborators. In addition, semantic

Web resources, such as VIVO [116], have been developed to provide a general scheme

to describe researcher profiles so that these can be embedded in particular applica-

tions. Similarly, online communities, such as BiomedExperts [117], allow users to

upload their personal profiles and help them make new connections.

Few systems, such as Harvard Catalyst, however, have the functionality of rec-

ommending collaborators automatically. Such services are, however, important for

researchers, especially junior researchers, whose work depends upon successful collab-

orations. Traditional ways of finding a collaborator, such as socializing at a scientific

conference or being introduced by a mutual colleague, are found to be increasingly

insufficient. Today, emails and social networking allow researchers to establish varied

collaborations, many of which do not require a face-to-face meeting. For example, one

of the author’s (Yu) group has collaborated with hundreds of biomedical researchers

who were approached by email [118]. However, such approaches are ad hoc and may

not lead to long-term collaborations.

We formulate research collaboration prediction as a link prediction problem in the

co-authorship network. Since joint publication is one of the most effective representa-

tions of collaboration, co-authorship indicates a collaborative relation. This problem

is illustrated in Figure 4.1, where author s has collaborated with authors a, c, and e

and we would like to know the probability that s will collaborate with b, f, and d.

Link prediction has been studied in social networks. Liben-Nowell and Kleinberg

[66] reviewed various topology predictors for link prediction. They ranked author

pairs by a particular predictor and considered top-ranked potential collaborations in

the future. Al Hasan, et al. [119] explored supervised machine learning approaches to

classify author pairs using models trained by previous collaborations. They explored



CHAPTER 4. RESEARCH COLLABORATION PREDICTION 40

Figure 4.1: An illustration of automatic research collaboration recommendation. The
graph shows a co-authorship network in which the nodes are authors and the links
represent co-authorship. The solid lines represent existing co-authorships. Our study
is to build a computational model to predict whether author s will collaborate with
authors b, f, and d based on their existing research and collaborations.

features such as keyword overlap between two authors’ publication histories and the

shortest path between two authors. Backstrom and Leskovec [120] proposed an ap-

proach that uses supervised machine learning to predict the weight of a connection

that later guides a random walker starting from a particular node in the network.

The stationary probability that the walker lands on an author is the chance of estab-

lishing the connection. All the aforementioned approaches have limitations, however.

The topological prediction approaches [66] are made by a single network feature,

ignoring the combined effect of different network factors. The hybrid models [120],

although theoretically sound, are computationally expensive, limiting their real world

applications. Although the supervised machine learning approach [119] is robust, the

features thus far explored by others have been limited.

In this chapter, we built an Automatic Research Collaboration Recommendation

(ARCR) system to predict potential first-time collaborations. ARCR was built on

supervised machine learning models. Our contributions are: Firstly, we explored

novel learning features derived from the semantic content of an author’s research

profile. Our computational approaches and learning features are computationally

inexpensive, making them applicable to the big data challenge of scientific collabo-

ration recommendation. Secondly, we evaluated our approaches on various datasets
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reflecting data sparseness, which is a common problem in the real world. Finally, we

analyzed important factors including research interest and mutual collaborators that

contribute to biomedical collaborations.

This chapter is based on the publication [121].

4.2 Background

Three types of link prediction approaches have been reported. Topology-based predic-

tion utilizes network structure, including the connectivity and similarity of neighbor

nodes. Liben-Nowell and Kleinberg [66] built co-authorship networks in physics and

explored topological predictors, including the Jaccard and Adamic/Adar coefficients,

preferential attachment, and random walk for co-authorship prediction.

Supervised machine learning approaches for link prediction have also been devel-

oped. Al Hasan et al. [119] explored supervised machine learning models, including

naive Bayes and support vector machines (SVMs). They explored topological fea-

tures (e.g., the number of common co-authors) and simple semantic features (e.g.,

the overlap of the keywords of two authors publication profiles). Sun et al[122] ex-

tensively studied topological features in the heterogeneous networks consisting both

co-authorship and citation relations to predict co-authorship in DBLP databases. A

Markov random field model[123] and a Markov logic model[124] can also be used

for link prediction, as they both have the ability to model relations[125]. Huang, et

al.[126] modeled collaborations as a Poisson process and developed a stochastic model

to predict them.

Hybrid systems integrate supervised machine learning and topology-based predic-

tion. For example, Backstrom and Leskovec[120] applied supervised machine learning

approaches to predict the strength of a connection (or a collaboration in a research

network). The predicted weight is subsequently used to guide the random walk. The
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stationary probability of landing on a particular node is considered the chance of

a connection from the starting node. Wang et al[127] modeled the local topologi-

cal structure by Markov Random Field to infer the co-occurrence probability of two

nodes, and subsequently use it together with other topological and semantic features

for link prediction.

A significant amount of work has analyzed network structures and their evolution.

For example, Adamic and Huberman[128] concluded that the growth of the Web fol-

lows a power law distribution. The probability of a new node connecting with a given

node is proportional to the degree of the node. This phenomenon, also frequently

called preferential attachment, has also been observed in co-authorship networks, as

well as other types of social networks [51, 54]. Small world is another pattern in

various networks [62, 129]. A social network, such as co-authorship network, consists

of both structured (close neighbors) and random contacts and one can navigate from

one node to another with very few steps. Newman[54] found that only five to six steps

are needed to navigate from one randomly chosen scientist to another in a community.

In addition, social networks appear assortative, meaning that nodes tend to connect

to other nodes of similar characteristics, such as the degree[130].

In addition to the above general structure and dynamics of networks, domain-

specific co-authorship networks have been studied. For example, Newman [54] com-

pared the co-authorship network in biomedicine with that in physics and found differ-

ences. In the biomedical domain, they found it is less common that two researchers

collaborate when they have a mutual collaborator than in physics. In addition, the

study found that in the biomedical domain the network structure is dominated by

many little people with few collaborators, instead of a few people with many col-

laborators, as in other domains, such as computer science. Newman[52] found that

two researchers are more likely to collaborate if they have had more collaborations

in the past. Newman [51] showed that biomedical research has the highest degree
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of collaboration, compared with physics and mathematics. Huang, et al.[126] found

that the collaboration pattern and its evolution in the computer science domain is

more similar to the mathematics domain than to biology. Ding[131] found that, in

the information retrieval field, productive authors tend to collaborate with and cite

researchers who have the same research interests.

Factors that lead to successful collaborations have also been studied, including

various social and environmental factors such as leadership, geographical proximity,

and the personalities of the team members. For example, one study concluded that

a leader in a research field typically plays an important broker role to bridge people

from different disciplines [111]. Physical proximity between first and last author

was found to be positively related to the impact of collaboration which was measure

by the citation received based on the data collected from Harvard Medical School

publications and office locations [132]. They argued that close geographical distance is

important for the outcome of the collaboration. International collaborations, however,

are also a positive factor for the impact. As found in [133], the average number of

citations increases with the number of affiliated countries. Certain characteristics of

team members, such as openness and flexibility, also contribute to the success of the

collaboration [111, 134]. Our work is most closely related to the work of Al Hasan, et

al. [119]. However, unlike their approach which mainly explored topological features,

we explore a wealth of semantic features derived from the author profile, including

publication history similarity, citation similarity, and common co-authors, and we

show that these semantic features significantly improve the research collaboration

predictions.
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4.3 Method

4.3.1 Features

We derived a novel, comprehensive feature set to model aspects of multiple collabora-

tions. We explored five categories of features, as described below in detail: Research

Interest Profile, Publication Productivity, Author Seniority, Network Connectivity.

The formal definitions of each feature are given in Table 4.1.

4.3.1.1 Research Interest Profile

The Research Interest Profile similarity of two researchers may be indicative of the

likelihood of a research collaboration: if two researchers have similar research pro-

files, they may be more likely to collaborate. In contrast, inter-disciplinary research

requires collaborations between two researchers with distinct research profiles. This

category of features will capture both types of research collaboration.

We build the Research Interest Profile of a researcher by aggregating all infor-

mation about his/her publications, including abstracts, the assigned Medical Subject

Headings (MeSH) terms, and the citations to that work and by that work. Taken

together, these three characteristics comprehensively cover the author’s research in-

terests: the abstract is a summary of the article; MeSH terms represent the main

topics of the article; and out-citing citations (other articles cited by the article) show

the relevant background information of the article while the in-citing citations (other

articles that cite the article in question) represent the recognition of the work by their

peers. We assume the abstract is sufficient for representing the main content of the

article and therefore did not include full-text as a data source for the research interest

profile; it is also more generalizable to use the abstract instead of the full-text as the

abstracts are more freely available in knowledge bases.

We use a term frequency-inverse document frequency (TF-IDF) term vector to
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represent the abstract, in-citing citation, and out-citing citation profiles. Assume

the abstracts of all the publications of an author by a certain year are D. Thus, the

aggregated TF-IDF for term t in D is

tfidf(t,D) = idf(t,D) ∗
∑
d∈D

tf(t, d)

, where idf(t,D) is the inverse document frequency of term t in the abstract collection

D and tf(t, d) is the term frequency of term t in abstract d. An author’s in-citing

and out-citing citation profiles are computed similarly by considering the document

set D above as the set of in-citing citations and out-citing citations, respectively.

We treat MeSH terms as keywords, and the MeSH profile is created by collecting

all the MeSH terms as a set from the author’s publications. We used this simplified

representation for the MeSH profile instead of computing the MeSH TF-IDF vector

as our preliminary analysis found the TF-IDF representation did not improve the

performance significantly.

We then define the features simText, simOutcite, and simIncite as the cosine

similarity of two researchers’ abstract profiles, out-citing citation profiles, and in-

citing citation profiles, respectively. Specifically,

simText(x, y) =
abstract(x) • abstract(y)

|abstract(x)||abstract(y)|

where abstract(.) is the TF-IDF term vector of the author’s publication history.

Similarly,

simOutcite(x, y) =
outcite(x) • outcite(y)

|outcite(x)||outcite(y)|

and

simIncite(x, y) =
incite(x) • incite(y)

|incite(x)||incite(y)|

where outcite(.) is the TF-IDF term vector of the author’s out-citing citations from
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the publication history, while incite(.) is the TF-IDF term vector of the authorâĂŹs

in-citing citations of the publication history. We also define simMeSH as the Jaccard

coefficient of the two researchers’ MeSH profiles. Concretely,

simMeSH =
|MeSH(x) ∩MeSH(y)|
|MeSH(x) ∪MeSH(y)|

where MeSH(.) is the set of MeSH terms from the author’s publication history.

simMeSH serves as a baseline feature as it has been found to be a well-performing

feature for collaboration prediction in[119]; please see the Baseline Model Comparison

section below for more details about the baselines.

4.3.1.2 Publication Productivity

Our initial data exploration of the MEDLINE database showed that the number

of publications and the number of co-authors increases yearly as shown in Figure

4.2, suggesting a positive relation between co-authorship and research publication

productivity. We therefore hypothesize that a researcher’s productivity is related

to the likelihood of their research collaborations. We used the average number of

publications per year to measure productivity and introduce the feature sumPub as

the sum of two researchers’ average publications. Formally, it is defined as

sumPub(x, y) = avgPub(x) + avgPub(y)

where avgPub(.) is average publication per year for an author.

In addition, we attempted to model how active a researcher has been in the near

past and defined an author’s recency as the sum of the inversed publication time

distances to the present, which favors more recent activity because we hypothesize

that recent activity is more related to future activity. The recency of author x is
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Figure 4.2: Articles and authors over years in four biomedical research fields. As
shown in the figure, number of new articles (solid line) and average number of authors
per article are generally increasing.

defined as

recency(x) =
∑

i∈papers(x)

1

ti

where papers(x) is the publications of the author x, and ti is the difference between the

publication year of paper i and the present year; we add 1 to account for a difference

of 0. We use the inverse of the time difference to favor the more recent publishing

activities as they are likely more related to future collaborations. The sumRecency is

thus the sum of two researchers’ recency scores.
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4.3.1.3 Author Seniority

The possible hierarchical relationships between two researchers include persistent

junior-senior relations (e.g., a student and advisor who always publish in the same

order) and more reciprocative collegial relations, which may be important for pre-

dicting future research collaborations. We define an author’s seniority as the average

number of times that author has been a senior author, which is defined as being the

corresponding author on the paper. The Seniority of author x is defined as

seniority(x) =
1

|papers(x)|
∑

I

where I(.) is the indicator function and equals to 1 if x is the corresponding author of

the particular publication i, and is 0 otherwise. We normalize this sum by the number

of papers published by x. For example, assume an author had 5 publications and was

the corresponding author on 2 of them, then the author’s seniority is 2/5. The feature

diffSeniority is thus defined as the seniority difference between two researchers.

4.3.1.4 Network Connectivity

We hypothesize that two researchers are more likely to collaborate with each other

if their network connectivity is high. We identified multiple features from this net-

work topology: we create the novel sumCoauthor feature, which is the sum of each

researcher’s average number of unique co-authors per year and represents how active

a researcher is in collaborating with others. It is defined as

sumCoauthor(x, y) = avgCoauthor(x) + avgCoauthor(y)

where avgCoauthor(.) is the average number of unique co-authors per year for an au-

thor. The feature numCommonCoauthor is the number of co-authors two researchers
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have in common; it has been found [51] that two scientists with a common collabora-

tor are approximately 45 times more likely to co-author a paper than two scientists

who have no common collaborator. Therefore, we also use numCommonCoauthor as

a baseline feature along with simMeSH. numCommonCoauthor of authors x and y is

defined as

numCommonCoauthor(x, y) = |Γ(x) ∩ Γ(y)|

where Γ(.) is the set of co-authors. The feature sumClusteringCoef is the sum of

each researcher’s clustering coefficient [52], which is a measure of the probability that

a researcher’s collaborators have collaborations among themselves; coauthorJaccard

[135] is the number of co-authors two researchers have in common normalized by the

total number of their unique co-authors; and Adamic [136, 66] measures the similarity

of two nodes by their common neighbors. For authors x and y,

Adamic(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|

where z is the common neighbor of x and y and Γ(z) is the set of co-authors of z.

For example, assuming researcher z is the only common neighbor of x and y, z has

no connections other than x and y, the Adamic value of z is 1/log(2). On the other

hand if z has 3 connections in addition to x and y, the value becomes 1/log(5). These

features are also formally summarized in Table 4.1.

4.3.2 Models

We formulate research collaboration prediction as a classification task. We explore

five supervised machine learning models: naive Bayes, naive Bayes multinomial, Sup-

port Vector Machines (SVMs), logistic regression and K-nearest neighbors (KNN),

all commonly used for classification tasks. A naive Bayes classifier is a probabilistic

classifier based on Bayes theorem with the independence (naive) assumption that the
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Table 4.1: Feature Definition.
Category Feature Definition

Research Profile
Similarity

simText absract(x)�abstract(y)
|abstract(x)||abstract(y)|

simMeSH |MeSH(x)∩MeSH(y)|
|MeSH(x)∪MeSH(y)|

simIncite incite(x)�incite(y)
|incite(x)||incite(y)|

simOutcite outcite(x)�outcite(y)
|outcite(x)||outcite(y)|

Publication
Productivity

sumPub avgPub(x) + avgPub(y)
sumRecency recency(x) + recency(y)

Seniority diffSeniority |seniority(x)− seniority(y)|

Connectivity

sumCoauthor avgCoauthor(x) + avgCoauthor(y)
numCommonCoauthor |Γ(x) ∩ Γ(y)|
sumClusteringCoef clusteringCoef(x) + clusteringCoef(y)

coauthorJaccard |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

Adamic
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|

features are generated independently from each other, given the instance label[137].

The naive Bayes multinomial model assumes the conditional probability of the fea-

ture, given a class, follows a multinomial distribution [138][139]. SVMs are based

on the concept of maximum margin decision planes that define generalizable decision

boundaries for classification and regression. An SVM constructs a hyperplane to max-

imize the margin between the data points and the hyperplane, often after mapping

the data points to a higher-dimensional space in which they are linearly separable

or close to it[140]. We explore an SVM model with the widely-used linear kernel for

its efficiency. Logistic regression estimates discrete or continuous value parameters

to predict discrete category values. The probabilities that describe the possible class

of a single instance are trained as a function of explanatory variables, using a lo-

gistic function[137]. These four classifiers are not only the well-studied models in a

variety of classification tasks[141], but also widely available in open source software

communities. In addition we used K-nearest neighbor model as it particularly learns

non-linear decision boundaries and is easy to interpret[141][142]. We use data mining

software Weka[143] to build and evaluate naive bayes, naive bayes multinomial and
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logistic regression models, LIBSVM[144] for SVM, and the Python machine learning

package Scikit [145] for KNN.

4.3.3 Baselines

We compared our approaches with three competitive baseline systems. The first base-

line model, RandomBaseline, predicts positive instances based on the distributional

probability in the training dataset. Specifically we predict an instance as positive with

the probability that equals to the percentage of positive instances in the training set.

It evaluates how random guess based on prior knowledge perform on the prediction.

The second baseline model, called PreferentialAttachment, is based on network

topology. As described in the background section, preferential attachment is a well-

studied network growth pattern. The more existing links a node has, the higher the

chance a new node will link to it. We implemented this baseline based on Liben-

Nowell and Kleinberg’s description [66]. Specifically score(x, y) = |Γ(x)||Γ(y)|, where

Γ(.) represents the neighboring nodes as defined in 4.3.1. For each pair of nodes in

a testing set, we computed the corresponding score(x, y). The higher the score, the

larger the chance that the two nodes and will connect (or collaborate).

We also used JaccardBaseline, which describes the importance of the common co-

author in the author pair, as the third baseline model as it has demonstrated strong

performance in previous research [66]. Its definition is the same as for the feature

coauthorJaccard.

4.3.4 The CiteGraph Dataset

We used the citation/co-authorship network database CiteGraph[68] as our data

source. The CiteGraph database is comprised of 1.6 million full-text articles, a joint

set of the Elsevier database (1899-2011) and the MEDLINE database. We created

the CiteGraph Dataset by only selecting those articles that were at the intersection
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Figure 4.3: Collaboration frequency distribution for the CiteGraph Dataset. The
distribution is highly skewed and most of the author pairs (80.5%) collaborated only
once in our dataset. The larger, outer plot shows the log-log scale while the smaller,
inset plot shows the skewed log-linear scale.

of both the Elsevier and the MEDLINE databases as each database had distinct at-

tributes and we needed the overlap of all the attributes for feature extraction. Using

this combined dataset, we were able to gather the title, author(s), abstract, full text,

year of publication, and MeSH terms, the in-cites, and the out-cites for each article.

In addition, we disambiguated the author names and created a co-authorship network

for all the authors. Figure 4.3 shows the collaboration frequency distribution in our

CiteGraph Dataset. As shown, a majority of researcher pairs (80.5%) collaborate

only once, while less than 20% collaborate two or more times. The highest number

of collaborations for the same researcher pair is 159, spanning 12 years.

4.3.5 Training Dataset

We used CiteGraph for both the training and testing data. We selected equal numbers

of positive and negative instances for training and testing. The positive training

instances are author pairs whose first collaborations took place in 2007 or 2008. The

negative training instances are author pairs who did not collaborate before 2009. We
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Figure 4.4: Feature extraction. We define positive training examples are the author
pairs who collaborated in 2007 and 2008 (Label period), and the features are extracted
based on the network status of 2007 (feature extraction period). The label period for
testing data is 2009 and 2010.

randomly selected 10,000 positive and 10,000 negative author pairs and extracted each

pair’s features, and the sampling method is similar with the static graph sampling

algorithm proposed in[146]. For some author pairs the article information, including

the abstract, was not available. Therefore, we filtered out these pairs as well as

tailored them to equal size for a final total of 5361 positive instances and 5361 negative

instances. The combined group of 10,722 author pairs was used as the training set.

The illustration of feature extraction is shown in Figure 4.4.

4.3.6 Testing Dataset

We created two testing datasets. The first testing dataset, RandomPairCategory, was

created from a random selection of publications from 2009 and 2010. The positive

instances were those in which the author pair first collaborated in 2009 or 2010 (Figure

4.4), while the negative instances were author pairs who never collaborated before

2011. We randomly identified a total of 10,000 positive and 10,000 negative author

pairs. Of these, we found that 4726 positive and 4726 negative author pairs had
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Table 4.2: IndividualAuthorCategory testing sets
Author Number of

Publications
Sub-graphSize Positves Negatives

Sampled
Jeroen Bax 28 69,487 31 200

Mathew Farrer 10 66,876 13 200
Filippo Marte 59 418 11 200

Christodoulos Stefanadis 30 33,869 16 200

complete features. These 9452 author pairs were used as the testing set. Note that

the selection method of RandomPairCategory also used the sampling method [146]

that was utilized for the training data; therefore, the two datasets represent the same

distribution.

The second testing dataset, IndividualAuthorCategory, was selected based on the

collaboration network topology. We randomly selected four authors (target authors)

with numerous publications (we set a minimum of 10) in 2009 and 2010. For each

author, we built a sub-graph comprising three hops of a breadth-first traversal of

the collaboration network established prior to 2011. We thus not only built a sub-

graph, but also created the testing set with authors who are close topologically. The

positive instances are collaborations established by authors (in the sub-graph) who

collaborated with the target author during 2009 and 2010 and the negative instances

are those (in the sub-graph) who did not collaborate with the target author before

the end of 2010. The statistics of each sub-graph are shown in Table 4.2. When

constructing the testing set for each author, we used all the positive instances and

randomly sampled 200 negative instances for authors Jeroen Bax, Mathew Farrer and

Christodoulos Stefanadis and 200 for author Filippo Marte. The IndividualAuthor-

Category evaluation dataset complements the RandomPairCategory dataset because

the former consists of author pairs who are more similar in research while the latter

represents a broader selection of potential collaborators.

We calculate precision (TP/(TP + FP)), recall (TP/(TP + FN)), the receiver

operating characteristic or ROC, the area under the curve of the true positive rate
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(TPR) over the false positive rate (FPR), sensitivity (the same as recall), specificity

(TN/(FP+TN)), and accuracy ((TP+TN)/ALL), where TP, FP, TN, FN and ALL

stand for number of true positives, false positives, true negatives, false negatives, and

number of total instances respectively. F1 score is defined as the harmonic mean of

recall and precision, specifically 2*recall*precision/(recall+precision). In addition we

use log loss [147] to measure the prediction cost of logistic regression model. It is

defined as

J =
m∑
i=1

ytlogyp + (1− yt)log(1− yp)

, where yt ∈ {0, 1} is class label, and yp = P (yt = 1) is the predicted probability of

being positive.

4.4 Results

4.4.1 10 Fold Cross Validation on Training Set

Table 4.3 shows the 10-fold cross-validation results on the training dataset. The

logistic regression and SVM demonstrate the best performance, with a 0.878 ROC

and 0.797 F1 for logistic regression and 0.878 ROC and 0.780 F1 for SVM. The

naive Bayes model performs the second best, with an ROC of 0.838. The naive

Bayes multinomial performed the worst among the models. Logistic regression as

well as SVM outperformed the naive Bayes and naive Bayes multinomial models with

statistical significance (p < 0.05, t-test). Table 10-fold cross-validation on the training

set.

4.4.2 Testing Set 1

Table 4.4 shows the results of models that were trained on the entire training dataset

and then tested on the RandomPairCategory testing set, which was created by ran-
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Table 4.3: 10-Fold cross-validation on the training set.
Model ROC Precision Recall F1 Accuracy

NaÃŕve Bayes 0.838 0.798 0.708 0.684 0.708
NaÃŕve Bayes Multinomial 0.659 0.795 0.655 0.609 0.655

Logistic Regression 0.878 0.803 0.797 0.796 0.797
SVM 0.878 0.855 0.718 0.780 0.798

KNN (N =51) 0.858 0.868 0.636 0.734 0.769

Table 4.4: RandomPairCategory evaluation results.
Model ROC Precision Recall F1 Accuracy

Naive Bayes 0.819 0.786 0.694 0.667 0.694
NaÃŕve Bayes Multinomial 0.626 0.790 0.644 0.592 0.644

Logistic Regression 0.871 0.794 0.789 0.788 0.789
SVM 0.871 0.842 0.708 0.769 0.787

KNN (n=51) 0.850 0.854 0.632 0.726 0.762
RandomBaseline -* 0.504 0.500 0.502 0.504

PreferentialAttachment 0.584 0.574 0.567 0.556 0.567
JaccardBaseline 0.639 0.789 0.639 0.585 0.639

*The value is unavailable due to the nature of the evaluation metric.

domly selecting author pairs published during 2009 and 2010. Consistent with the

cross-validation results, the logistic regression and SVM outperformed the other mod-

els, yielding an ROC of 0.871 and an F1 of 0.789 for logistic regression and 0.871 ROC

and 0.769 F1 for SVM. The RandomBaseline model had an F1 of 0.502 and 0.504

accuracy, while the topology baseline models PreferentialAttachment and Jaccard-

Baseline yielded ROC values of 0.4583 and 0.278, respectively. All the supervised

machine learning models outperformed the baseline systems. Since RandomBaseline

was based on a prior distribution of classes, it has a single value and therefore no

ROC is reported. Logistic regression outperformed the naive Bayes and naive Bayes

multinomial models with statistical significance (p < 0.05, t-test).

4.4.3 Testing Set 2

We evaluated the best supervised machine learning model, logistic regression, on the

IndividualAuthorCategory testing set, and the results are shown in Table 4.5. Our
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Table 4.5: IndividualAuthorCategory evaluation results.
Author ARCR ROC Pref.Attach.* ROC JaccardBaseline ROC

Jeroen Bax 0.917 0.634 0.620
Mathew Farrer 0.980 0.537 0.917
Filippo Marte 0.800 0.302 0.455

Christodoulos Stefanadis 0.766 0.548 0.313
Macro Average 0.866 0.505 0.576

*Pref.Attach stands for PreferentialAttachment.

Table 4.6: True positive predictions for author Filippo Marte.
Author Name Collaborated Publication(PMID)

Carmelo Anfuso 18006092
Scipione Carerj 18199503
Fabio Minutoli 18006092
Concetta Zito 19324436

Sebastiano Coglitore 18006092
Ignazio Salamone 19395074
Roberto Gaeta 18178269
Marco Cerrito 18280595

Giuseppe Turiano 18579228

model has a ROC ranging from 0.766 to 0.980, while the best ROC for the baseline

models was 0.634 for the prediction for author Jeroen Bax for the PreferentialAttach-

ment model; the JaccardBaseline model performed best for predicting collaborators of

Mathew Farrer, with an ROC of 0.917. The performance differences between ARCR

and the baseline systems are both statistically significant (p < 0.05, t-test). A list of

true positive predictions for author Filippo Marte is listed in Table 4.6.

4.4.4 Inter- vs. Intra-diciplinary Collaboration

We further broke down our datasets to examine the inter- and intra-disciplinary col-

laboration predictions separately. We split the training data using different values of

simText as our threshold in order to approximate inter-discipline and intra-discipline

collaboration. simMeSH can also be chosen as the discipline measure but we assume

the abstract has more detailed information than keywords. The training set and
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the RandomPairCategory testing set were divided into inter-/intra-disciplinary train-

ing/testing sets using the threshold. We varied the threshold from simText values of

0.01 to 0.30 with 15 evenly distributed data points. For example, when the simText

threshold was set to 0.01, author-pair instances with simText values less than 0.01

were categorized as inter-disciplinary whereas the author-pair instances with simText

values greater than 0.01 were categorized as intra-disciplinary. For each threshold

value, we trained inter- and intra-disciplinary learning models using their respec-

tive training sets and then tested them on the corresponding inter-/intra-disciplinary

testing sets. There is very little data when simText is larger than 0.3 so we did not

explore larger thresholds. A small threshold indicates restricting inter-disciplinary

samples and relaxing intra-disciplinary samples, while a large threshold indicates the

opposite. As shown in Figure 4.5, when simText < 0.19, the intra-disciplinary model

has better performance according to F1. When simText > 0.19, the inter-disciplinary

model outperformed the intra-disciplinary model.

4.4.5 Feature Ranking

To identify the features’ contributions, we ranked them using information gain[148].

As shown in Table 4.7, the research interest features simOutcite and simText are the

top-ranked features, both with information gain greater than 0.2. The features coau-

thorJaccard, Adamic, and numCommonCoauthor are the next top ranked, based on

the common co-author count. The next features are simMeSH and simIncite, which

also represent research interest. In contrast, the contributions of sumClusteringCoef

and sumPub are considerably smaller and diffSeniority shows no contribution.

Table Training set feature ranking, by information gain.

In addition we calculated sensitivity and specificity for the logistic regression

model evaluation on all the testing sets to help us understand error patterns in differ-

ent datasets. As shown in Table 4.8, the RandomPairCategory testing set has lower
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Figure 4.5: Intra- and inter-disciplinary collaboration prediction performance by ROC
and F1 measurement. Training set and RandomPairCateory test set were divided
by the threshold into inter- (<threshold) and intra-disciplinary (>threshold) train-
ing/test sets. For each threshold, we trained inter- and intra-disciplinary models and
tested them on the corresponding inter-/intra-disciplinary testing sets. The histogram
on the top is the number of instances (training+testing) of inter- and intra-disciplinary
subset according to the threshold cutoff.

Table 4.7: Training set feature ranking, by information gain.
Rank Feature Infomation Gain
1 simOutcite 0.265
2 simText 0.202
3 coauthorJaccard 0.173
4 Adamic 0.173
5 numCommonCoauthor 0.173
6 simMeSH 0.145
7 simIncite 0.101
8 sumCoauthor 0.055
9 sumRecency 0.024
10 sumPub 0.022
11 sumClusteringCoef 0.002
12 diffSeniority 0
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Table 4.8: Sensitivity and specificity for all testing sets by logistic regression model.
Testing Set Sensitivity Specificity

RandomPairCategory 0.718 0.859

IndividualAuthor Category

Jeroen Bax 0.968 0.345
Mathew Farrer 1.000 0.125
Filippo Marte 0.818 0.460

Christodoulos Stefanadis 0.813 0.352
Macro Average 0.900 0.321

sensitivity than the IndividualAuthorCategory testing set, while the former has higher

specificity than the latter.

In our study we found research interest features to be an important feature cate-

gory (Table 4.7 ) while they have not been well studied in other work. We therefore

further analyzed their characteristics, such as their relation with author seniority. As

shown in Figure 4.6, the research profile similarity features simText, simIncite, and

simOutcite all increase as author seniority increases. This might indicate that, in the

early stages of a researcher’ÂŹs career, collaborators with less research similarity are

found but collaboration between two experienced researchers shows greater research

interest similarity. In addition, the number of author pairs decrease as the authors get

more senior, indicating fewer collaborations as the researchers become more senior.

We ploted the careers within 15 years as the data becomes very sparse beyond 15

years.

4.5 Discussion

4.5.1 Models

The evaluation results for both the 10-fold cross-validation and the testing data (on

the RandomPairCategory testing set) show that the logistic regression and SVM

models perform best (logistic regression yielded an F1 score of 0.796 for 10-fold cross-

validation and a score of 0.788 for testing while SVM produced 0.780 and 0.769
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Figure 4.6: Research interest similarities over collaborator career length. In the early
stages of a researcher’s career, collaborators with less research similarity are found
and collaboration between two experienced researchers shows greater research interest
similarity.
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respectively, as shown in Tables 4.3 and 4.4). IndividualAuthorCategory is a more

challenging evaluation data set as we tried to predict collaborators for individual re-

searchers from the candidates that were collected from their close neighbors in the

network. ARCR outperformed all the baseline system with statistical significance

(Table 5), which further shows that our model has the ability to recommend collab-

orators for the researcher. KNN model, which learns a non-linear decision boundary,

did not perform as well as SVM and Logistic Regression as it only had an F1 score

of 0.734 for the cross-validation on the training dataset and 0.726 on the Random-

PairCategory testing set. This suggests that a linear decision boundary might be

preferred.

Neither the naive Bayes nor the naive Bayes multinomial model perform well (an

F1 score of 0.684 for 10-fold cross-validation and a score of 0.667 for the Random-

PairCategory test set with the naive Bayes model and an F1 score of 0.609 for 10-fold

cross validation and 0.592 for the RandomPairCategory test set with the naive Bayes

multinomial model). The performance differences between logistic regression and the

naive Bayes and naive Bayes multinomial models are both statistically significant (p

< 0.05, t-test). A possible reason for this under-performance is that both models

assume conditional independence, which might not hold in our study. For example,

coauthorJaccard and numCommonCoauthor are related, since they both depend on

the number of common co-authors.

4.5.2 Error Analysis

In order to determine if our data size or features are sufficient, we analyzed the

learning curve for the logistic regression model. The training set was split into two

sets: training (66% of total instances) and validation set, and log loss is used for the

error metric for the curve. As shown in Figure 4.7 the training error and validation

error converges by the time the dataset reaches the size of 1000 author pairs. Therefore
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Figure 4.7: Learning curve for logistic regression with log loss metric. The training
error and validation error converges by the time the dataset reaches the size of 1000
author pairs. Therefore the training set size (5361 positive instances and 5361 negative
instances) is sufficient for the task

the training set size (5361 positive instances and 5361 negative instances) is sufficient

for the task.

Figure Learning curve for logistic regression with log loss metric.

We also manually analyzed the prediction errors. The data sparseness is the one

of the most important reasons for false negatives. Specifically, if the author has few

publications and few co-authors in the past, there is little information we can derive for

features such as research interest, network topology, and activity level. The network

that we used in this study is a sub-graph of MEDLINE publications only and therefore

provides an incomplete picture of the publication history of certain authors. For

example, Flaumenhaft R (author of PMID 12837380) has only one publication prior

to 2009 with only one co-author. His/her pairing with Laurence RG (author of PMID

18715793) has a simText value of 0.010 and a simOutcite value of 0.143 (the average

value for each feature in the positive training data was 0.134 and 0.325, respectively),

although Laurence RG is more prolific in our network with 12 publications and 35
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co-authors. In fact, by searching PubMed we found that Flaumenhaft R has been

publishing almost every year from 2003 to present and has many common co-authors

with Laurence RG; this information was missing entirely in our network, which was

built using the MEDLINE data only. As a result, our models predicted Flaumenhaft

R was unlikely to collaborate with Laurence RG, which is therefore a false negative.

On the other hand, false positive errors can arise due to the fact that these author

pairs have features very much like those in the positive training data. These authors,

however, might never have had a chance to actually know each other, leading to a

false positive.

Furthermore, author name disambiguation contributes errors for both false posi-

tives and false negatives. Data sparseness arises when one author is mapped to two

unique IDs by the author name disambiguation database we used. For example Guida

M (author of PMID 17113552) has two IDs. There are only five publications assigned

to the ID that we happened to use in our network, while there are 94 publications un-

der the other ID. We are also aware that it is possible for an author to share the same

ID with another, unrelated author; this can also cause a disambiguation error and

the information from the unrelated author will be wrongly attributed to the original

author. However, we did not actually find any such cases in our test sets.

Recall we have built two different testing data sets, and our analyses of the true

positive, false positive, true negative and false negative of the three testing data sets

show interesting results (Table 4.8). In the RandomPairCategory dataset (i.e, posi-

tive and negative author pair data were randomly selected) our classification has low

sensitivity (0.718) and high specificity (0.859) while the IndividualAuthorCategory

yielded the opposite (0.900 sensitivity and 0.321 specificity). The high specificity of

RandomPairCategory evaluation is due to the fact that the negative instances are

very negative as they were constructed by the random combination of two authors;

therefore, they tend to share few research interests and even fewer common friends.
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In contrast, the negative instances of IndividualAuthorCategory testing set were from

the sub-graph of the author, so they do have similar research interests and have a

higher chance of sharing a common collaborator. The sensitivity advantage of Indi-

vidualAuthorCategory can be understood in a similar way, as the positive instances,

which were sampled from the sub-graph of the author, are ÂĲvery positiveÂİ and

share research interests and common collaborators, which increases the likelihood of

the classifiers to classify them as positive.

4.5.3 Feature Analysis

Table 4.7 shows that the most important feature for collaboration prediction, as mea-

sured by information gain, is the similarity of out-citing citations, which represents

an author’s knowledge background. True positive instances tend to have a larger

simOutcite value than negative instances (mean simOutcite is 0.305 for RandomPair-

Category and 0.462 IndividualAuthorCategory positive instances while it is 0.159 and

0.264 for negative instances in the two categories respectively), suggesting that com-

mon background knowledge increases the chance for collaboration. As for the feature

simOutcite, collaborating pairs have a higher simText score than non-collaborating

pairs do. An author’ÂŹs publication history represents the author’s research area and

simText shows the similarity of two researchers’ fields. As for the feature simOutcite,

collaborating pairs have a higher simText score than non-collaborating pairs do. Our

results also show that research field overlap is positively related to potential collabo-

rations.

MeSH terms can be considered the topics of a biomedical article, with the feature

simMeSH a measure of research interest similarity. Therefore it is not surprising

that simMeSH contributes to the classification. Keyword overlap was explored in a

previous study[119] and was a top-ranking feature. In contrast to that study and

others [119][120] that did not explore text as features, we found that the feature
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simMeSH ranks below simText in information gain. We speculate that although

MeSH terms represent an article’ÂŹs semantic content, they are not as robust as the

bag of words formulation of simText for the task of author collaboration classification,

because MeSH terms may not be considered as fine grained as word features in the

abstract.

Our results also show that neighborhood structure plays an important role in

predicting collaboration. The features numCommonCoauthor, coauthorJaccard, and

Adamic all have large information gain. Positive instances tend to have larger number

of common co-authors than the negative instances, as for the IndividualAuthorCate-

gory testing dataset, where researchers are topologically close (mean numCommon-

Coauthor is 1.0) but negative pairs still tend not to have common collaborators (the

mean is closed to 0). Our results suggest that the strength of social ties is important

for establishing collaboration. This conclusion is consistent with our hypothesis and

previous findings, which show that common neighbors are a very effective predictor

in social networks [66].

Features that are related to researcher productivity, such as sumCoauthor, sum-

Recency, and sumPub, are ranked lower than simOutcite, simText, coauthorJaccard,

Adamic, numCommonCoauthor, simMeSH, and simIncite, as measured by informa-

tion gain, suggesting that two researchers’ specific activities do not have to be closely

related to establish a new collaboration. In contrast, the sum of co-authors was found

to be the most important feature in work[119], but it is not clear if this was influenced

by the normalization by year, as carried out in our study. Consistent with previous

findings, the clustering coefficient, which describes the transitivity of a collaboration,

is not an effective feature [119]. It is also interesting to note that difference in senior-

ity between collaborators, described by diffSeniority, has no impact on establishing

a new collaboration in our approach.

Furthermore, we trained classifiers using every single feature individually and an-
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alyzed the performance as shown in Figure 4.5.3. Research interest features simText,

simMesh and simOutcite (Figure 4.5.3 panels a, b and d) have large ROC areas, show-

ing that they are informative for the classification. simIncite (Figure 4.5.3c) however

is not as large as other features in this category with 0.56 ROC only. 2) Common

co-author based features (Figure 4.5.3 panels f, k and l) exhibit distinct patterns and

are essentially equivalent features as they have large correlation coefficients among

each other. For example Adamic and numCommonCoauthor have a correlation coef-

ficient of 0.96. This suggests that we can use numCommonCoauthor as a feature and

remove Adamic. The ROC curve for them is a straight line due to the fact that most

of the author pairs (especially negative instances) don’t have any common coauthors,

and only 1/3 of the positive instances have non-zero common co-authors. 3) Other

features such as sumCoauthor (Figure 4.5.3f) is also effective for classification with

0.67 ROC. Activity feature sumRecency (Figure 4.5.3i) has 0.60 ROC, and so does

sumPub (Figure 4.5.3e). sumClusteringCoef and diffSeniority (Figure 4.5.3 panels h,

j) show only 0.53 and 0.54 ROC respectively The individual ROC is consistent with

information gain analysis, which also shows that the research interest features are

most informative, followed by common neighbor based features.

In summary, previous work in author collaboration prediction mainly explored

topological features. Our results, in contrast, show that research interest is im-

portant for establishing a new collaboration. Specifically, research profile similarity

features such as simOutcite and simText, as shown in Table 4.7, are the most im-

portant features for the classification. Tables 4.4 and 4.5 show that the supervised

machine learning models that incorporate research similarity features significantly

outperformed the baseline systems, which were built upon widely used topological

features (PreferentialAttachment, JaccardBaseline). We speculate that knowing the

other’s work is a form of shared experience and the foundation of trust between two re-

searchers. Their common knowledge, represented by the research similarity features,
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plays an important role for building collaboration.

As discussed earlier, although seniority plays a limited role in a collaboration,

Figure shows that when researchers are in their early career stages, they are more

likely to collaborate with those whose research interests differ from theirs, suggesting

that junior faculty are more open to interdisciplinary collaborations. In contrast, col-

laborations between two senior researchers exhibit a higher degree of research interest

similarity, suggesting that established researchers are more comfortable in their own

fields and are less likely to initiate an interdisciplinary collaboration.

4.5.4 Limitations

There are several limitations to this study. First, we did not explore learning features

of broad social factors, including institutional policies like the status of an IRB appli-

cation or institution-specific restrictions, because it is difficult to generate these data

computationally. Second, our data were incomplete and contained missing informa-

tion. We used a sub-graph of the MEDLINE co-author network and therefore the

author publication histories may not be complete, as we described in the error analy-

sis. The missing publications could represent different research interests. It also takes

time for an article to accumulate citations, so simIncite may be biased to have more

citations for older works than for recent ones. Third, our training and testing period

time cutoff is arbitrary, and we define a negative instance pair as authors who did not

collaborate by the time of the training or testing period. However it is possible that

they collaborated later. Finally, We are aware that in the real world, the network

density is as very low (7.6e-06 in CiteGraph as computed in Section 2.5.2.1). Yet in

our study we used equal number of positive and negative examples for training and

testing as our major purpose is to demonstrate the performance of our rich feature

set. The evaluation on real world environment requires additional experiment design

such as including heuristics to prune negative instances.
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4.5.5 Real World Application

There are several steps to integrate our application to real world application. The

idea is similar to IndividualAuthorCategory evaluation, which samples candidate col-

laborators from the author’s sub-network instead of whole author space. The intu-

ition to eliminate the extremely unlikely collaborators who are very distant in the

co-authorship network. The details are shown as following.

1 For author s, obtain the subnetwork G′ by breadth–first traversal

of k layers in the co-authorship network G starting from s.

2 For those researchers in the G′ never collaborated with the author

s, predict the probability of future collaboration with s.

3 Rank those authors by their probability and the ones that are above

certain threshold are considered likely future collaborators.

Our system fully supports the above procedure as we used it for IndividualAu-

thorCategory candidate collaborator sampling. The feature extraction can be easily

scaled-up by using parallel computing framework Hadoop [76] as each author pair’s

features extraction are completely independent from other author pairs.

In social network applications users are often interested to know the shortest dis-

tance between them and their potential collaborators in the co-authorship network as

it suggests the way to reach (or get introduced) this researcher through one’s network.

The centrality of a particular researcher, which is often viewed as an indication of

authority in the community, is also valuable information. Our co-authorship network

database supports the calculation of these metrics as the database has stored the

co-authorship relations in CiteGraph articles, and the shortest path and centrality

algorithms are well studied and easy to implement.
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4.6 Conclusion

In this study we developed supervised machine learning approaches for automatic

research collaboration prediction. We derived novel features to model research inter-

est while incorporating various co-authorship network topology characteristics. We

demonstrated the efficacy of our models for research collaboration prediction. More-

over, we found logistic regression to be the best model for this approach, with the

highest ROC to be 0.980. We also identified the key factors for establishing col-

laboration: first, individuals tend to collaborate with those who share certain de-

grees of research interest; second, common collaborators (common friends) are also

important; and third, researcher activities, such as the average number of collab-

orations and the average number of publications, are also influential but less so

than degree of research interest overlap and the number of common collaborators.

Our approach takes advantage of the big-data literature resources but is efficient to

implement. It has thus demonstrated its effectiveness as a research collaboration

recommendation application. The datasets of this study can be downloaded from

https://github.com/qingzhanggithub/medline-collaboration-datasets.
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Figure 4.8: ROC for classifiers trained by single feature. 1) Research interest features
simText, simMesh and simOutcite (panels a, b and d) have large ROC areas, showing
that they are informative for the classification. simIncite (panel c) however is not as
large as other features in this category with 0.56 ROC only. 2) The ROC curves for
common co-author based features (panels f, k and l) are a straight lines due to the fact
that most of the author pairs (especially negative instances) don’t have any common
coauthors, and only 1/3 of the positive instances have non-zero common co-authors.
3) Other features such as sumCoauthor (panel f) is also effective for classification
with 0.67 ROC. Activity feature sumRecency (panel i) has 0.60 ROC, and so does
sumPub (panel e). sumClusteringCoef and diffSeniority (panels h, j) show only 0.53
and 0.54 ROC respectively The individual ROC is consistent with information gain
analysis, which also shows that the research interest features are most informative,
followed by common neighbor based features.



Chapter 5

Recurrent Collaboration Prediction

5.1 Introduction

Research collaboration is distinct from many of other social networks. When repre-

sented as a time series, a particular co-author collaboration is seen as a transient,

discrete event at a given point in time; as such, two researchers may choose to collab-

orate multiple times and each of these collaborations would be represented separately

in time. This characteristic of a time series is distinctive from link establishment in

many other social networks, where the users establish a connection once and it per-

sists in time unless this connection is no longer desirable. Efforts have been made to

model such connections as a time series[149, 150, 151]; however, the predictors used

in these previous works are mainly derived from network topology and did not utilize

other useful information, such as the publication history and the number of citations,

which could be helpful features. To our knowledge, existing collaboration prediction

methods have also not explored geographical information as a predictor even though

the location of the researcher is often an important factor in collaborations[132]. In

addition, no previous work has looked at recurring collaboration prediction, defined

as the probability of two researchers who have collaborated once to collaborate again.

72
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We are therefore motivated to study recurrent collaboration prediction. Since

joint publication is one of the most effective representations of collaboration, we

formulate recurrent research collaboration prediction as a link prediction problem

in the co-authorship network where co-authorship indicates a collaborative relation.

Our goal is to predict whether a node pair (two researchers) with an existing link

(collaboration) will connect again. As illustrated in Figure 5.1, the collaborations

between researchers A, B, ... , F are shown with solid links. The number on the

edge indicates the collaboration frequency. Our goal is to use supervised machine

learning models to predict, given the history of the collaboration network, whether

two researchers (e.g., A and B) will collaborate again. In this study, we collected

112,733 author pairs from MEDLINE publications. We derived novel features from

five different categories (Research Interest Profile, Publication Productivity, Author

Seniority, Network Connectivity, and Geographical Location) and built supervised

models using this data. We analyzed the factors for recurring collaborations and

found characteristics that were very different from one-time only collaborations.

Our main contributions are: deriving novel, comprehensive features to model as-

pects of recurrent collaborations; shedding light on understanding long-term collab-

orations with multiple collaborations; and developing features and models that are

computationally efficient and hold the promise of being applied to real-world research

collaboration recommendation applications.

5.2 Background

Here’s a revisit of the background of co-authorship network and research collabora-

tion analysis. Factors that lead to successful collaborations have also been studied,

including various social and environmental factors such as leadership, geographical

proximity, and the personalities of the team members. For example, one study con-
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Figure 5.1: An illusion of re-collaboration prediction. A solid line shows existing
collaborations and a dashed line represents the link that we would like to predict.
The number on the edge shows the collaboration frequency.

cluded that a leader in a research field typically plays an important “broker” role

to bridge people from different disciplines[111]. Physical proximity between the first

and last author was found to be positively related to the impact of collaboration as

measured by the number of citations the paper received; this study was based on

the data collected from Harvard Medical School publications and the office locations

of the researchers[132]. They argued that close geographical distance between the

first and last author is important for the outcome of the collaboration. International

collaborations, however, are also a positive factor in determining the impact of the

publication. As found in [133], the average number of citations for a paper increases

with the number of countries affiliated with the authors of that paper. Certain char-

acteristics of the team members, such as openness and flexibility, also contribute to

the success of the collaboration[111, 134].

Research collaboration recommendation is often cast as a link prediction problem

in social networks. Liben-Nowell and Kleinberg [66] comprehensively evaluated a col-

lection of topological predictors for co-authorship prediction in Physics; this work has

largely served as one of the foundations for many later studies. In addition, link pre-

diction can be formulated as a probabilistic distribution problem (e.g., random walk



CHAPTER 5. RECURRENT COLLABORATION PREDICTION 75

on the co-authorship network [66]) or a binary classification problem (e.g., classifying

an author pair as collaborating or non-collaborating) [119, 122] or the blending of

both [120], where the features (or predictors) are extracted based on the node at-

tributes (e.g., overlap of keywords) as well as distance-based measures (e.g., shortest

distance between two nodes) [119, 122, 120].

5.3 Methods

5.3.1 Features

In this chapter we extend the feature set that we have developed in Chapter 4.

5.3.1.1 Geographical Location

Furthermore, we extracted features based on an author’s location, defined by their

affiliation, history. For each publication in the feature extraction period, we calculated

the number of co-authors that were at a different institution from author x. We then

calculated the percentage of outside institution collaborators in the author’s entire

publication history during that period, which we defined as an author’s openness,

openness(x) =
|inter − institution collaborators|

|collaborators|

Subsequently, we defined the feature sumOpenness by summing the openness score

of two authors. We also define a binary feature sameLocation, which is computed by

comparing the affiliation addresses of the two authors from their initial collaboration.

Specifically,

sameLocation = I(location(x) = location(y))

where location(.) is the initial collaboration location. Given the variability of affilia-

tion formats, the most consistent granularity was at the level of state/province; thus,
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Table 5.1: Recurrent collaboration feature definition. It is an extension of the feature
set in Chapter 4.

Category Feature Definition

Research Profile
Similarity

simText absract(x)�abstract(y)
|abstract(x)||abstract(y)|

simMeSH* |MeSH(x)∩MeSH(y)|
|MeSH(x)∪MeSH(y)|

simIncite incite(x)�incite(y)
|incite(x)||incite(y)|

simOutcite outcite(x)�outcite(y)
|outcite(x)||outcite(y)|

Publication
Productivity

sumPub avgPub(x) + avgPub(y)
sumRecency recency(x) + recency(y)

Seniority diffSeniority |seniority(x)− seniority(y)|

Connectivity

sumCoauthor avgCoauthor(x) + avgCoauthor(y)
numCommonCoauthor* |Γ(x) ∩ Γ(y)|

sumClusteringCoef clusteringCoef(x) + clusteringCoef(y)

coauthorJaccard |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

Adamic
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|
PreferencialAttachment* |Γ(x)||Γ(y)|

sumOpenness avgOpenness(x) + avgOpenness(y)
sameLocation I(location(x) = location(y))

*Baseline feature (please see Section 5.3.3 Baseline Model Comparison for more in-
formation).

if two authors are from the same state/province, the sameLocation feature value is

set to 1; otherwise, it is set to be 0. In order to get the organization and location

information we parsed the address of the author using the named entity recognition

models (rganization model and location model) provided by Apache OpenNLP[152].

5.3.2 Supervised Machine Learning Models

We formulate the recurrent collaboration prediction problem as a machine classi-

fication task. We explore four supervised machine-learning models: Naive Bayes

(NB), Support Vector Machines (SVMs), Logistic Regression (LR) and Random For-

est (RF), all of which are commonly used for classification tasks [141]. A naive Bayes

classifier is a probabilistic classifier based on Bayes theorem with the independence

(naive) assumption that the features are generated independently from each other,
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given the instance label[137]. SVMs are based on the concept of maximum margin

decision planes that define generalizable decision boundaries for classification and

regression. An SVM constructs a hyperplane to maximize the margin between the

data points and the hyperplane, often after mapping the data points to a higher-

dimensional space in which they are linearly separable or close to it [140]. In partic-

ular, we use an RBF kernel for its ability to model a nonlinear decision boundary for

the data. Logistic Regression estimates discrete or continuous value parameters in

order to predict discrete category values. The probabilities that describe the possible

class of a single instance are trained as a function of explanatory variables within a

logistic function [137]. The Random Forest [147] algorithm is a bagging approach

applied on a collection of independent decision trees and has been widely used for

classification [153, 154, 155]. These four classifiers are not only well-studied models

in a variety of classification tasks[141] but are also widely available in open source

software communities.

We use the python machine learning package, Scikit-learn[145], for model training

and testing. It has emerged as one of the most widely used machine learning libraries

in Python and includes commonly used algorithms for supervised and unsupervised

machine learning as well as regression. Note that it uses the popular SVM package

LIBSVM [144] as its underlying SVM implementation. Scikit-learn is under rapid

development and is extensively documented.

5.3.3 Baseline Model Comparison

We use simMeSH, numCommonCoauthor and PreferencialAttachment as baseline

features as previous studies have shown they are effective for link predictions. Key-

word overlap has been found as top features for collaboration prediction[119] and

simMeSH as mentioned before is serving a similar purpose. Number of common

coauthor is strong predictor for link establishment in co-authorship networks[51, 66].
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As described in Chapter 4, preferential attachment is a well-studied network growth

pattern. Concretely, the more existing links a node has, the higher the chance a

new node will link to it. We used the same supervised machine learning models

(LR, NB, SVM, and RF) on the individual and combined baseline features simMeSH,

numCommonCoauthor and PreferentialAttachment.

5.3.4 Data

In this study we also use CiteGraph as our data source. The details of the CiteGraph

database can be found in Section 4.3.4. The description of how we created CiteGraph

is in Chapter 2.

5.3.5 Training Dataset

We used the CiteGraph Dataset for both the training and testing data. The positive

training instances are author pairs who have collaborated more than one time. In

particular, their first time collaboration has to occur between the years 2000 and

2004. This time-window based sampling method follows the standard approach for

link prediction problems such as [66, 119, 150]. We further filter the authors who

have at least 3 publications in our database to overcome the feature sparseness. In

total we get 432,855 valid positive instances (30.9% of multiple-time collaboration

author pairs in our dataset) and we randomly sampled 20,000 author pairs from

these for the positive instances in our training set. From a total of 740,588 valid

negative candidates (12.8% of one-time collaboration author pairs in our database)

we randomly selected 20,000 author pairs for the negative instances in our training

set. The negative training instances are author pairs who collaborated only once

and that collaboration occurred between years 2000 and 2004. We created a separate

testing set also by sampling from the 432,855 valid positive and 740,588 valid negative

instances. In total, we collected 72,773 testing instances with 35,931 (49.4%) of them
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being positive instances above. The illustration of sampling positive and negative

examples are shown in Figure 5.2.

We decomposed our training and testing set to understand the details of dataset.

As shown in Figure 5.3A, the Collaboration Frequency pie chart (left panel) shows

the percentage of author pairs that have certain collaboration frequencies. Two-time

collaboration pairs occupy 41.44% of the dataset, and the percentage decreases as the

number of collaborations increase, which means high frequency collaborations (i.e.,

> 5 collaborative publications for that co-author pair between 2000 - 2009) are rare.

The right panel shows the percentage of author pairs that have a specific collaboration

year span. 21.02% of the collaborations have a two-year span, and the percentage

of instances with a certain year span decreases as the year span itself gets larger.

The Pearson correlation coefficient for both collaboration frequency distribution and

collaboration year span comparing with overall data are over 0.99, ensuring that our

sampled 20,000 positive instances are representative. In the testing set data overview

in Figure 5.3B, the collaboration frequency also has a skewed distribution with 40.98%

two-time collaborations and 27.19% three-time collaborations. On the other hand,

the percentage of collaborations with a certain year span monotonically decreases as

the time span itself increases.

5.3.6 Evaluation Metrics

We calculate precision (TP/(TP + FP)), recall (TP/(TP + FN)), and ROC AUC,

the area under the curve of the true positive rate (TPR) over the false positive rate

(FPR) - and accuracy ((TP+TN)/ALL), where TP, FP, TN, FN and ALL stand for

number of true positives, false positives, true negatives, false negatives, and number

of total instances respectively. The F1 score is defined as the harmonic mean of recall

and precision, specifically 2*recall*precision/(recall+precision).
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Figure 5.2: Sampling positive / negative examples. Every row represents an author
pair, and every dot denotes a collaboration event. Positive examples are defined as
whose who initally collaborated between 2000 and 2004 and later recollaborated. On
the other hand the negative examples are defined as the author pairs who collaborated
only once and it happened between 2000 and 2004.

5.4 Results

We first performed five-fold cross validation on the training set with both the full

feature set and only the baseline features from the Baseline Model Comparison (Sec-

tion 5.3.3). As shown in Table 5.2, the random forest model on all features (RF:

All features) yielded the best AUC (0.720) and F1 (0.648) among all the models.

The best baseline AUC was seen for the SVM model (with RBF kernel) trained on

all three baseline features (SVM: All baseline features), yielding 0.613 AUC, while

the best baseline F1 resulted from the logistic regression model trained by the Pref-

erentialAttachment feature only (LR:Pref.Attach.). Subsequently, we evaluated our

systems on the testing set. As shown in Table 5.3, the results are consistent with the

cross validation. The random forest model trained by all features (RF: All features)

outperformed the others with 0.732 AUC and 0.653 F1. Amongst the baseline mod-

els, the SVM trained by all the baseline features (SVM: All baseline features) showed

the best AUC (0.617) and logistic regression with the single PreferentialAttachment

feature had the best baseline F1 (0.633). A list of top ten true positive predictions

(according to the probability) is shown in Table 5.4.
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Figure 5.3: Overview of the training (A) and testing (B) sets. A) The Collaboration
Frequency pie chart shows the percentage of author pairs that have specific collab-
oration frequencies. 2-time collaboration pairs (author pairs that have published
together twice only) occupy 41.44% of the training set and the percentage decreases
along with increasing number of collaborations, which means high frequency collab-
orations are rare. The right panel shows the percentage of author pairs that have a
specific collaboration year span. 21.02% of the collaborations have a two year span
(i.e., all their collaborations occur over two years), and the number of collaborations
that occurred over a certain time span decreases as the time span gets larger. B)
The testing set distribution is consistent with the training set distribution: 40.98% of
the author pairs are 2-time collaborations and the percentage continues to decrease
when the collaboration frequency gets larger. 20.60% of collaborations have a two
year span, and the proportion shrinks as the collaborations occur over a longer time
span.
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Table 5.2: Recurrent collaboration prediction results for the five-fold cross validation
on the training set. The bold-faced values are the highest values in the column.

Task Models ROC AUC Precision Recall F1

Our
system

LR:All features 0.710 0.656 0.639 0.618
SVM: All
features

0.713 0.684 0.604 0.642

RF: All features 0.720 0.677 0.622 0.648
NB: All features 0.671 0.657 0.503 0.570

Individual
Baseline
Features

LR: Pref.
Attach.

0.596 0.533 0.794 0.638

LR: MeSH 0.611 0.619 0.394 0.481
LR: Common
Coauthor

0.529 0.510 0.673 0.580

Combined
Baseline
Featrures

LR: All baseline
features

0.612 0.610 0.443 0.513

SVM: All
baseline features

0.613 0.600 0.509 0.550

RF: All baseline
features

0.565 0.549 0.536 0.541

NB: All baseline
features

0.588 0.577 0.523 0.537

We performed a grid search using Scikit-learn in order to tune all hyper-parameters

such as the number of estimators of the random forest model and the penalty of

misclassification for SVMs (the coefficient C, kernels). Therefore, the results reported

here are all for the models with the best performing hyper-parameters.

To further study the performance of our model, we broke down the testing set by

collaboration frequency (i.e., the number of collaborations between two authors). We

divided the testing set based on the collaboration frequencies, ranging from 2 joint

publications from 2000 - 2009 (called 2-time collaborations) to 10 joint publications

from 2000 - 2009 (called 10-time collaborations). For each of these collaboration

frequencies, we tested each subset with the logistic regression model trained above

as it yielded the best F1 score and is computationally efficient. As shown in Figure

5.4, the 2-time collaboration testing subset (i.e., two authors publishing together twice

between 2000 and 2009) had 0.627 AUC and 0.556 F1, and the performance increased
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Table 5.3: Recurrent collaboration prediction results on the testing set. The bold-
faced values are the highest values in the column.

Task Models ROC AUC Precision Recall F1

Our
System

LR: All features 0.712 0.654 0.644 0.649
SVM: All features 0.714 0.678 0.609 0.642
RF: All features 0.732 0.678 0.629 0.653
NB: All features 0.673 0.653 0.505 0.570

Individual
Baseline

LR: Pref. Attach. 0.600 0.527 0.791 0.633
LR: MeSH 0.612 0.616 0.396 0.482

LR: Common Coauthor 0.529 0.503 0.670 0.575

Combined
Baseline
Features

LR: All baseline features 0.614 0.607 0.445 0.513
SVM: All baseline features 0.617 0.597 0.511 0.551
RF: All baseline features 0.583 0.554 0.541 0.547
NB: All baseline features 0.587 0.559 0.533 0.545

Table 5.4: List of true positive predictions. First Collab. lists the publication
(PubMed ID) of the first time collaboration, and Second Collab. is the publication
of the second time collaboration.

Author A Author B First Collab. Second Collab. Probability
Elliott Antman Robert Califf 15063425 16084152 0.994
Zhong-Wen, Lin Han Dong sun 10925014 11077166 0.990
Anne Marie Api Charlene Letizia 12804650 12804651 0.990
Linda Boyken Ronald Jones 14972378 14972378 0.988
Seong Ho Choi Kwang Woong Lee 15561200 15561210 0.986
Robert Califf Matthew Roe 11153779 11230834 0.982
David Apple Luis Vargas 11821220 12106732 0.979
Robert Califf Monica Shah 11275915 11376303 0.978
Kyoichi Saito Kazuyuki Sugita 10949471 11519816 0.978
Hwan Hyo Lee J-H Park 15561216 15561222 0.973
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to 0.752 and 0.693 for the 3-time collaboration subset. Both AUC and F1 generally

increase as the collaboration frequency gets larger, yielding 0.824 and 0.755 for 9-time

collaboration as the best-performing subset.

5.4.1 Feature Analysis

To better understand the contribution of each of the features, we divided the training

set by the collaboration frequency, as well. We calculated the 10-fold cross validation

AUC (Figure 5.5A) and information gain (Figure 5.5B) for each feature in each collab-

oration frequency training data subset. In addition, as we see in Figures 5.4 and 5.5,

the 2-time collaboration is a distinct outlier from rest of the collaboration frequency

subsets. Therefore, we separate the collaboration frequency into three sections: 2-

time collaborations, 3-5 time collaborations (low-frequency collaboration), and 6-10

time collaborations (high-frequency collaboration). In Figure 5.6, we calculated the

average AUC for low-frequency collaborations, high-frequency collaborations, and

the combined 3-10-time collaborations for each feature (from Figure 5.5A) in order to

summarize the contribution of each of feature and highlight the salient characteristics

of more frequent recurrent collaborations.

Research Interest Profile features (simText and simOutcite) showed a strong con-

tribution across different collaboration frequencies as seen in both Figure 5.5A and

5.5B. The two demonstrated an average AUC of 0.662 and 0.642, respectively, on the

Overall 3-10 time collaboration subset as seen in Figure 5.6. Geographical Location

features are also at the top as shown in Figure 5.5A (they were excluded from Figure

5.5B as the high information gain skewed the data and made the heat map almost

white for the rest of the features. The information gain of sameLocation ranges from

0.015 to 0.115 and for sumOpenness it is from 0.000 to 0.646). The Network Connec-

tivity feature sumCluteringCoef also showed an advantage over all the collaboration

frequencies. In addition, sumCoauthor (average AUC for low-/high-frequency was
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Figure 5.4: Recurrent collaboration prediction testing result on subsets with a par-
ticular collaboration frequency. Collaboration frequency is defined as the number of
collaborations between two authors between 2000 and 2009. 2-time collaborations
had 0.627 AUC and 0.556 F1, and the performance increased to 0.752 and 0.693 for
the 3-time collaboration subset. Both AUC and F1 generally increase as the collabo-
ration frequency gets larger, yielding 0.824 and 0.755 for 9-time collaborations as the
best-performing subset.

0.523/0.576) and Adamic (average AUC for low-/high-frequency was 0.522/0.582)

also show a relative advantage on high-frequency collaboration. PreferentialAttach-

ment, on the other hand, has a better performance on low frequency collaborations

(average AUC 0.599) than on high frequency ones (average AUC 0.506). Productiv-

ity feature sumPub has better performance on high-frequency collaborations (average

AUC 0.592) than low-frequency ones (average AUC 0.649).

Average co-authors per year (sumCoauthor), the author pair seniority difference

(diffSeniority) and their recency (sumRecency) in general did not show strong per-

formance, with average AUC for 3-10 time collaboration 0.543, 0.556 and 0.547 re-

spectively.
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Figure 5.5: Recurrent collaboration prediction feature analysis with AUC and infor-
mation gain. A) AUC of each feature across different collaboration frequencies (darker
colors are better). B) Information gain for each feature across different collaboration
frequencies (darker colors are better). The Geographical Location features, sameLo-
cation and sumOpenness, are excluded from the heat map as their high values skewed
the color map and overshadowed the color distribution of the other features (The in-
formation gain of sameLocation ranges from 0.015 to 0.115 and for sumOpenness it
is from 0.000 to 0.646). As can be seen from the 2-time collaboration frequency row,
all features have very low information gain for the 2-time collaboration frequency.
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Figure 5.6: Average AUC for Low Frequency (3-5-time collaborations), High Fre-
quency (over 5-time collaborations), and Overall (3-10-time collaborations) data.
2-time collaborations were excluded because of the large number of 2-time collab-
orations, as seen in Figure 4, and the performance difference between the 2-time and
3-10-time collaborations, as seen in Figure 5, would skew the results; here, we want
to highlight the salient characteristics of more frequent recurrent collaborations only.



CHAPTER 5. RECURRENT COLLABORATION PREDICTION 88

5.5 Discussion

5.5.1 Features

The rich feature set we introduced in this paper provides useful information for recur-

rent collaboration prediction. As shown in Table 5.2 and 5.3, the models trained by

our full feature set show a significant performance advantage over the models trained

by just the baseline features: the best baseline supervised machine learning model is

the SVM trained by all three baseline features with an AUC of 0.617 while the ran-

dom forest model trained by our full feature set yielded 0.732 AUC. The performance

advantage of our full feature set over all the baseline permutations suggests that our

feature set is informative for predicting recurrent collaboration.

In particular, Research Interest Profile features were seen to be strong predictors

of recurrent collaboration. Specifically, simText and simOutcite, which indicate pub-

lication history similarity and knowledge background similarity respectively, are top

features, as also observed in the first-time collaboration prediction task in Chapter

4 (Section 4.4.5). Positive instances (co-author pairs who have published together

more than twice) in the training set tend to have larger research interest similarity,

as shown by their average simText and simOutcite AUC values of 0.508 and 0.647;

negative instances (co-author pairs who have not published together at least twice),

on the other hand, have average AUC values of only 0.398 and 0.568. This suggests

that knowing each other’s work is important for long-term collaborations. However,

the similarity of in-citing citations (simIncite) is not as informative as the rest of the

Research Interest Profile features for three possible reasons: 1) in-citing citations to

a paper indicate how much impact a paper has on the research community but is

not directly related to the ability of the authors to continue to collaborate with each

other specifically; and 2) it takes time to accumulate citations so there is a temporal

bias towards older papers (i.e., older work is more likely to be cited more extensively
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thus having more in-citing documents and allowing for a richer profile calculation).

Our study found that Geographical Location is an important predictor for recur-

rent collaboration, as well. The average value of the sameLocation feature for positive

instances in the training data is 0.784 (SD 0.412), while it is 0.585 (SD 0.493) for the

negative instances. This suggests that co-location is positively related to recurring

collaborations. On the other hand, the positive instances on average have smaller

sumOpenness scores than the negative instances (0.364 and 0.440 respectively), which

suggests that people who collaborate extensively with others in the same institution

tend to re-collaborate and is consistent with the trend suggested by the sameLoca-

tion feature. As confirmed by other studies [156], geographical proximity helps to

reduce communication costs and allows collaborators to have face-to-face meetings

more easily. The colocation-collaboration research by Harvard Medical School [132]

also showed that physical proximity of the first and last author was positively related

to the impact of the paper.

Interestingly, among the Network Connectivity features, we found the number of

common co-authors did not contribute as much as the other features, as shown in Fig-

ures 5.5 and 5.6, which is different from what we found for first-time collaborators in

Chapter 4. This could be due to the fact that two authors who do not know each other

might rely on a mutual collaborator to introduce them and facilitate their collabo-

ration; however, after two researchers have already collaborated once, the number of

mutual collaborators they had in the past is no longer a strong influence on how well

they conduct future collaborations as have already established their initial connec-

tion. Instead, the high performance of the sumCluteringCoef feature shows that the

sub-networks of each author in a co-author pair does have an influence. This might

be due to each co-author’s sub-network (i.e., the collaborators of each co-author who

are not mutual collaborators with the other co-author) representing complementary

skill-sets with the co-authors then serving as intermediaries who bridge the differing
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expertise of the collaborators in the two sub-networks.

PreferentialAttachment is a modest feature that is more informative than com-

mon co-author based features for collaborations more than two times as it yielded

compelling F1 score in both cross validation (0.638) and testing (0.633). It preforms

better with low-frequency subsets, with average ROC AUC of 0.599 for low-frequency

and 0.506 for high-frequency collaborations. It is noticeable that the LR:Pref.Attach.

baseline showed a strong performance in both validation and testing. In particular,

it has the best recall among all models. In order to validate this performance, we fur-

ther analyzed the prediction results and found that the recall of LR:Pref.Attach. was

actually an artifact of the decision threshold. Concretely, when we fixed the recall at

0.791, the precision of the LR: All Baseline model is 0.536 and the F1 is 0.639, which

is better than the LR:Pref.Attach. precision of 0.527 and F1 of 0.633. In addition,

the information gain analysis provides further evidence that PreferentialAttachment

is not as informative as the other top-ranked features such as the Research Interest

Similarity features (simText, simMeSH, simOutcite) and the Geographical Location

features (sameLocation and sumOpenness).

5.5.2 Error Analysis

We further analyzed the incorrect predictions. First, as shown in the feature analy-

sis section above, the research interest features and geographical features are major

players. Therefore, many of the error cases are also due to their mis-classification.

In order to explore the source of error, we used the probability from the LR clas-

sification to rank the false positives and false negatives. Using these ranked error

cases, we found that 90% of the top 100 author pairs with false positive predictions

were co-located (i.e., the sameLocation value of that co-author pair was 1), while

100% of the top 100 false negative author pairs were in different locations (i.e., the

sameLocation value of that co-author pair was 0); Second, we found that the 2-time
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collaboration frequency was not as informative for prediction (all the features proved

non-informative for that frequency) and 55.7% of all the false negatives were 2-time

collaborators, whose feature values are statistically similar to the feature values exhib-

ited by the negative instances (i.e., one-time collaborations). For example, the mean

of simText for 2-time collaborations was 0.459 while the mean for 3-time or higher

frequency collaborations was 0.543 ±0.007, showing a distinct change in going from

2-time collaborations to 3-time or higher collaborations. The 2-time collaborations,

in fact, were very close to the negative cases (i.e., 1-time collaborations), which had

a mean of 0.399 for simText.

A subtle error source is the incomplete publication data. First, it makes the

collaboration history incomplete. For example for the author pair of Cichon S and

Kelsoe JR, their initial collaboration is article PMID 12802785 in year 2003. However

by searching PubMed we found the two actually collaborated in 1997 with the publi-

cation PMID 9433543, which is missing in our database. Such types of instances have

been found from both training and testing set and thus some noise has been intro-

duced. Second, the incomplete publication history brought distortion to the author

research interest profile. For instance Keijzer R has no publication prior to 2000 in

our database but the author actually has publications in the 1990s (PMIDs 1360499,

7678025, 8630280 etc). The missing publications included studies on DNA, Lung,

Rats, which are also the area of Post M. The author pair was predicted negative by

our models due to the low research interest profile similarity (e.g. simText was only

0.044) but they did re-collaborate.

5.6 Conclusion

In this study, we modeled recurrent collaboration as a link prediction problem and

used supervised machine learning models to predict whether two authors will col-
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laborate again or not based on the features that are extracted by the time of their

initial collaboration. We developed novel features to model an author’s research in-

terest profile, publication productivity, geographical location, author seniority, and

the co-authorship network connectivity. Machine learning models, including logistic

regression, support vector machines, naive Bayes, and random forest, were trained by

40,000 author pairs from the co-authorship network that were created using MED-

LINE publications. The best performing model, random forest yielded a 0.720 ROC,

which outperformed the best baselines by 11%. Our analysis shows that authors

with high frequency collaboration have more distinctive characteristics compared with

one-time-only collaborations. The model has the best performance on predicting the

subset with 9-time collaboration instances as positive instances, for which it achieved

a 0.824 ROC, while the prediction on 2-time collaboration instances yielded a 0.627

ROC. Our feature analysis further shows that research interest profile similarity is

the most informative feature category and an author’s location proximity is also a

top predictor. In addition, local clustering of the author’s neighbors contributes to

the prediction, as well. An author’s publication productivity, the average number

of publications per year, is more related to high frequency collaboration. Our study

sheds light on the characteristics of recurrent collaborations from a comprehensive

yet simple analysis. Our prediction approach is highly salable and has a promising

potential to be applied to research collaboration recommendation applications.



Chapter 6

Protein–Protein Interaction

Prediction for Hypothesis Generation

6.1 Introduction

More and more biological knowledge databases have been made publicly available.

Genome and sequence databases, as well as interacting protein databases, have been

created and constantly updated since the early 1990s. Notable databases include the

database of the complete sequencing of the yeast genome [112], the Biomolecular In-

teraction Network Database (BIND) [8], the Protein Information Resource (PIR) [9],

the Munich Information Center for Protein Sequences (MIPS) [10], and the Database

of Interacting Proteins (DIP) [157]. There is also a growing trend for single knowledge

sources integrating with, or cross-referencing, other databases to make its data more

comprehensive. For example, DIP cross-references three major sequence databases:

Swiss-Prot, GeneBank, and PIR. In addition, results from high-throughput compu-

tational efforts increasingly contribute to these knowledge bases.

Protein–protein interaction (PPI) networks are important for understanding dis-

ease mechanisms [158] and determining drug targets. Interaction networks derived

93
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known interactions have unveiled PPI network structures within cells. Strikingly, PPI

networks exhibit properties that have also been discovered in other networks, such

as social networks and even the Internet; in particular, they demonstrate properties

that dictate network growth and connectivity [159], such as being scale free (with

some highly connected hubs of activity) and small world (where the nodes are highly

clustered but the minimum distance between any two random nodes is short).

While not typically hubs, disease genes and proteins cluster in the same network

neighborhoods, as shown by Goh and colleagues, who reported a 10-fold increase in

the number of physical interactions observed between gene products associated with

the same disease than would be expected by chance [160]. Chen et al. applied link

analysis approaches to PPI networks to identify disease candidate genes [161]. In

addition, genes linked to diseases with similar pathophenotypes have a higher likeli-

hood of interacting with each other than those not linked to these pathophenotypes

[162][163]. Taken together, these observations support the notion that the disease-

related components of a network are likely to comprise a sub-network, or disease

module.

Advances in supervised machine learning, an important subset of artificial intel-

ligence, have made network interaction predictions increasingly reliable. Supervised

machine learning models, such as logistic regressions and support vector machines

(SVMs), as well as unsupervised approaches such as K-means clustering, are widely

used for prediction tasks. Such analyses are supported by computational advances in

conducting resource-intensive “big data” experiments.

In this chapter, we utilize supervised machine learning approaches to generate new

hypothesis for PPIs. We define the task as a link prediction problem. Specifically, we

formalize the problem as a classification task. Given two proteins whose interaction

is unknown, we would like to determine if they can interact or not. We utilize exist-

ing knowledge bases to extract the proteins’ features to train the supervised machine
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learning models. We extract network features about the proteins, such as common

neighbors, the number of neighbors, and clustering coefficients, by looking at protein

connections within a network of existing PPIs obtained from the BioGRID database,

a curated biological database of PPIs and genetic interactions. Using MEDLINE, we

also extract text features from research articles about each of these proteins, includ-

ing literature features, such as the similarity of MeSH (Medical Subject Headings)

terms, article co-occurrence, and the number of publications. We use the network and

literature features to train four supervised machine learning models: the naive Bayes

(NB), naive Bayes multinomial (NBM), SVM, and logistic regression (LR) models.

The best-performing model was the LR model, which achieved 0.95 AUC. Our ap-

proach is independent of the details of protein functions, and analyzes the protein

network from a novel perspective. It is also efficient and highly generalizable.

6.2 Background

6.2.1 Biological Knowledge Bases

Rich resources such as genome and sequence databases, as well as interacting pro-

tein databases, have been created and constantly updated. For example, BIND is a

database that stores biomolecular interactions, complexes, and pathway information

[8]. The PIR provides a protein sequence database [9]. The MIPS in Germany hosts

repositories for genome and sequence data [10, 11, 12, 13, 14] in collaboration with

PIR. UniProt [15] integrates sequence and gene function information with information

from both literature curation and automatic classification from Swiss-Prot [16, 17],

PIR, and other resources. GeneOntology [18] provides a structured and controlled

vocabulary that describes the roles of genes and gene products. DIP is a repository

of experimentally determined interacting proteins [157][164].
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6.2.2 PPI Networks

Since the late 1990s, high-throughput computational approaches have been heavily

used to create protein interaction networks. A yeast protein network was built with

over 2,000 interactions between more than 1,000 proteins curated from the literature

[56]. STRING is a database of functional associations between proteins [57]. Bi-

oGRID is a database that incorporates physical and genetic protein interactions that

have been manually curated from primary literature [58]: As of 2013, it has archived

500,000 manually annotated interactions from more than 30 model organisms [59].

There is, in fact, a trade-off between coverage (the number of protein–protein pairs

classified as interacting) and accuracy (whether the protein–protein pair in fact in-

teracts) due to high-throughput, large-scale experiments [165]. Rual et al. [166]

used a high-throughput yeast two-hybrid (Y2H) system to create a human PPI map.

Rhodes et al. [167] employed trained probabilistic models (decision tree, naive Bayes)

on existing databases, including interaction networks, expression, and gene ontology,

to predict new interactions for human genes. Yu et al. [168] performed a quality as-

sessment of a current Y2H network system and conducted analysis that reveals new

characteristics of the Y2H network. Lim et al. [158] used Y2H screening to construct

a human PPI network for a particular disease (human inherited ataxias). Jones et al.

[169] used residue patches on the surface of protein structures to predict the location

of PPI sites. Zhong et al. [170] integrated interactive data, gene expression data,

phenotype data, and functional annotation data to model the interactions of three

organisms. Utilizing multiple data sources and a naive Bayes model, the yeast func-

tional gene network was used to construct a functional gene network [171, 172]. In

our approach, we use naive Bayes as well as more complex machine learning models

and features to predict PPI.
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6.2.3 PPI Prediction

Probabilistic predictions have been applied to proteome data to discover new rela-

tions between proteins or their functions. Jansen et al. [173] used a Bayesian network

model to predict PPIs in yeast using both experimental and genomic data. Albert

et al. [174] used topological patterns in PPI networks to train supervised machine

learning models. Specifically, they identified the number of occurrences of a particular

connection pattern for a pair and used it as their feature. Tong et al. [175] used both

computational and experimental approaches to derive two separate networks and used

their intersection for high-confidence prediction. Enright et al. [176] predicted PPI

by gene fusion events identified by gene sequence comparisons. Bader et al. [177]

explored graph-based predictors in a Y2H model and co-immunoprecipitated (Co-IP)

protein complex data with logistic regression to show that the protein complexes to

which the two proteins belong are the most important predictor. Tsuda et al. [178]

used kernel methods to predict the weight for protein–protein associations in the con-

text of five different networks, such as physical interactions and genetic interactions.

The authors subsequently combined the weights of a particular pair across the net-

works for classification. Homologous is also used for inferring interactions [179]. Bock

et al. [180] used SVMs with features extracted from protein structures. Samanta et

al. [181] used common interactors between two proteins as predictors of functional as-

sociation. If two proteins shared a significantly large number of interactors compared

to the value in the random graph, they were deemed more likely to have functional

associations.

Qi et al. [182] evaluated classification methods such as SVM, naive Bayes, and

logistic regression on different data sources for PPI prediction. They separated the

prediction task into physical interactions, co-complex relationships, and pathway co-

memberships and extracted features from multiple data sources, including DIP and

Gene Ontology. Their results show that gene expression data are the most important
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feature. Using a similar data source, Qi et al. [183] explored a random forest based

approach to compute the similarities between two proteins and applied K-nearest

neighbors for prediction. We use the physical interaction prediction approach of

these authors as our main state-of-the-art comparison and find that our approach

achieves significantly higher prediction, as detailed in the results section.

Microarray data are also used for training machine learning models to predict the

function class of a gene [184]. Work on PPI networks varies by scale and species and

by whether it is an original network or a refinement. In addition, considerable work

has been conducted in comparing and assessing different knowledge bases. The Y2H

system is an example of such an intensively studied dataset [185, 186].

Network-based approaches have been widely used for functional predictions [187].

The second-degree neighbor (the neighbor of a neighbor) feature has been found to

be an important predictor of protein functions in PPI networks [188]. In addition,

PPI networks created by predictions can be used to detect functional modules [189].

Clustering algorithms have been proposed to discover protein complexes from the

analysis of PPI networks [190]. In addition, PPI networks are used to predict the

cellular functions of proteins, utilizing, for example, distance-based predictors [191].

6.3 Methods

6.3.1 Problem Formulation

We propose using supervised machine learning methods to predict potentially inter-

acting pairs of proteins. Given a cutoff year t0, we sample interacting pairs that were

discovered before t0. Assume an interacting pair of proteins, u and v, in the training

set that is described by the tuple (u, v, ti), where ti is the time of the interaction and

ti < t0. The features of this interaction are extracted from the state of the network

prior to ti. In other words, we learn from the history of the two interacting proteins.



CHAPTER 6. HYPOTHESIS GENERATION 99

Figure 6.1: An illustration of a PPI network. The solid lines represent existing
interactions between two proteins, marked by the year the interaction was discovered.
The dashed lines are negative interactions, which indicate no interactions discovered
between those two proteins up to that point in time.

Negative instances are always random protein pairs that never interacted before t0.

An illustration of a network model is shown in Figure 6.1. Therefore, given a new

pair of proteins that have never interacted before t0, we use the model to predict the

probability of interaction after t0.

6.3.2 Supervised Machine Learning Models

We predict potential protein pair interactions by ranking protein pairs according to

the probability of their interaction as determined by a classifier. In the link prediction

task, there is no absolute negative instance, since each pair for which we have not seen

an interaction so far may interact in the future. Our work is based on the assumption

that the network is sparse and most of the pairs are not going to interact at all; those

pairs with no recorded interaction up to the cutoff time are what the model will use

to learn negative instances. Given a new, possibly interacting pair of proteins, we use

the model to predict the probability of the interaction. If a pair of likely interacting

proteins in the database has a high probability (rank) of doing so, that pair is then

considered a possible interaction prediction.

We explore four widely used supervised machine learning models for this PPI pre-

diction: NB, NBM, SVM, and LR. A naive Bayes classifier is a simple probabilistic
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classifier based on applying Bayes’ theorem with the strong (naive) independence as-

sumption that the features are generated independently from each other, given the

instance label [137]. The naive Bayes multinomial model assumes the conditional

probability of the feature, given that a class (the likelihood) follows a multinomial

distribution [138, 139]. SVMs are based on the concept of maximum margin decision

planes that define generalizable decision boundaries for classification and regression.

An SVM constructs a hyperplane to maximize the margin between the data points

and the hyperplane, often after mapping the data points to a higher-dimensional space

in which they are linearly separable or close to it [140]. In particular, we explore the

linear kernel for its efficiency. Logistic regression estimates the parameters from dis-

crete or continuous values to predict discrete category values. The probabilities that

describe the possible class of a single instance are trained as a function of explanatory

variables, using a logistic function [137]. The four aforementioned classifiers are not

only the best-performing models demonstrated in a variety of classification tasks, but

also robust, fast, and easy to implement. We use the data mining software Weka [143]

for model training and testing.

6.3.3 Features

6.3.4 Literature Features

We hypothesize that there is the evidence in the literature for the interaction be-

tween two proteins. The measure simMeSH is the similarity of the MeSH terms in

the publication history of the two proteins. Our intuition is that if the two proteins

have a certain degree of similarity according to MeSH, they are likely to be function-

allly related. The measure JaccardArticleCoOccurence is based on the assumption

that the mention of both proteins in the same article suggests the two proteins are

related. The measure sumPub is an indicator of the research effort focused on the two
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proteins. This category of features can be directly extracted from our indexed MED-

LINE records. With a protein’s name and its synonyms, we can construct queries

to obtain all the abstracts that mention it. We subsequently use the MeSH terms of

these articles to calculate simMeSH and use the articles to calculate JaccardArticle-

CoOccurence and sumPub. In other words,

simMeSH(x, y) =
|M(x) ∩M(y)|
|M(x) ∪M(y)|

where M(.) is the set of MeSH terms of all articles that mention the protein and

sumPub(x, y) = |Pub(x)|+ |Pub(y)|

where Pub(.) is the set of publications that mention the protein. In addition,

jaccardArticleCoOccurence(x, y) =
|Pub(x) ∩ Pub(y)|
|Pub(x) ∪ Pub(y)|

6.3.5 Network Features

The hypothesis of this category of features is that the connectivity of a protein node

in a PPI network implies its likelihood of connecting to a new protein. We define

numCommonNeighbor as the number of common neighbors of two proteins,

numCommonNeighbor(x, y) = |Γ(x) ∩ Γ(y)|

where Γ(.) is the neighbors of the node and sumNeighbor is simply the total number

of neighbors of the two proteins,

sumNeighbor(x, y) = |Γ(x)|+ |Γ(y)|
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As described by Small (1999) [69] and Watts(1998) [62], the clustering coefficient

of the vertex v in a graph is the proportion of v’s neighbors that connect among

themselves. For example, assume v has four neighbors (i.e., six possible connections

among them, since the number of “4 choose 2” combinations) and there are three

pre-existing links. Therefore, the clustering coefficient is 0.5 (3/6). This coefficient

has been found to be an useful predictor of PPI [174]. The feature sumClusteringCoef

is the sum of the two nodes’ clustering coefficients to obtain information about the

edge between the two nodes,

sumClusteringCoef(x, y) = cluterCoef(x) + cluterCoef(y)

where the clustering coefficient clusterCoef(x) = |E′|
n(n−1)/2

and E ′ is the edges among

the neighbors of x. The Adamic, introduced by Adamic and Adar (2003) [136], is a

measurement of the similarity between two Web pages. The rationale is that two Web

pages are more similar if they share more unique items (links, text). Liben-Nowell and

Kleinberg [66] later applied the Adamic to measure node similarity in social networks

and showed it to be an effective predictor for establishing new links. In this chapter,

we apply it to measure the topological similarity of two proteins,

Adamic(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|

The Jaccard measure is the number of common neighbors divided by the number of

total unique neighbors of the two proteins,

Jaccard(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

Both the Adamic and the Jaccard coefficient are topological measures that are effec-

tive for link prediction tasks and we therefore incorporate them here as well. The
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Table 6.1: Feature definitions.
Category Feature Name Definition Source

Literature
Features

simMeSH |M(x)∩M(y)|
|M(x)∪M(y)| MEDLINE

sumPub |Pub(x)|+ |Pub(y)| MEDLINE
jaccardArticleCoOccurrence |Pub(x)∩Pub(y)|

|Pub(x)∪Pub(y)| MEDLINE

Network
Features

Adamic
∑

z∈Γ(x)∩Γ(y)
1

log|Γ(z)| BioGRID
numCommonNeighbor |Γ(x) ∩ Γ(y)| BioGRID

Jaccard |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| BioGRID

sumNeighbor |Γ(x)|+ Γ(y) BioGRID
sumClusteringCoef clustCoef(x) + clustCoef(y) BioGRID

network features described here are constructed solely from the interaction network,

which is built from the BioGRID database. Formal definitions of all our features are

shown in Table 6.1.

6.4 Data

6.4.1 BioGRID

We constructed the PPI network using the BioGRID database, a comprehensive in-

teraction repository with over 648,000 interactions from over 38,000 PubMed articles.

Our network contains 48,438 unique interactors from 45 different organisms and 26.2%

of them have only one interaction. The mean degree is 21 and the median is four,

where a node’s degree is the number of edges at that vertex; the minimum and max-

imum degrees are one and 10,095, respectively. In addition, the standard deviation

of the number of degrees of the vertices is 75. The distribution of the degree of the

nodes can be fit by either a power-law or a lognormal distribution. The β in the

logy = α− βlogx of the power-law fit is 3.76 for the range in which the node degree

(horizontal axis) is larger than 530. The node degree distribution of BioGRID pro-

teins is shown in Figure 6.2. x is the protein node degree and y is the frequency of

the proteins who have degree x.
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Figure 6.2: Node degree distribution of BioGRID proteins (double logarithmic scale).
The results for the dashed line are obtained by the linear regression.

6.4.2 MEDLINE

As described in Chapters 1 and 2, Medline is a database of biomedical literature with

over 20 million article records provided by PubMed. Each article record contains

the title, author(s), journal, year, and MeSH terms. Every article is also assigned a

unique PubMed ID.

6.4.3 Training and Testing Sets

We construct a training set named BIG by randomly selecting 16,278 (48.9%) positive

pairs and 17,011 negative pairs before the year 2011. The testing set is constructed

from the 2013 data and consists of 3,153 positive protein pairs showing interactions

before 2013 and 3,153 negative protein pairs with no known interaction before 2013.

The negative instances were randomly chosen to match the number of positive protein

pairs; 3,153 positive protein pairs were chosen because that was the number of positive

protein pairs in the dataset.
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Furthermore, we evaluate our approach with longitudinal datasets. Specifically,

we construct a training set by using data before year y and use it to predict the new

pairs in year y. We apply this approach from year 1995 to year 2012. For each year,

we randomly select 1,000 positive and 1,000 negative training instances from the data

before the year y and train the models. We then sample up to 1,000 new pairs that

were reported for the first time in y as positive test instances and select random pairs

as negatives. In total, there are 18 training sets and 18 testing sets.

Note that it is difficult to find a real negative instance from knowledge bases, since

findings about a non-interacting protein pair are much less common. However, the

density of the protein interaction network is as small as 0.00056. Therefore, given

two randomly selected proteins, the chance that they interact is small and we can use

the pair as a negative instance.

6.4.4 Evaluation Metrics

We calculate precision (TP/(TP + FP)), recall (TP/(TP + FN)), the receiver oper-

ating characteristic (ROC) curve—or ROC AUC, the area under the curve of the true

positive rate (TPR) over the false positive rate (FPR)—and accuracy ((TP+TN)/ALL),

where TP, FP, TN, FN, and ALL stand for the numbers of true positives, false

positives, true negatives, false negatives, and total instances, respectively. The F1

score is defined as the harmonic mean of recall and precision, specifically, 2*re-

call*precision/(recall+precision).

6.5 Results

6.5.1 10-Fold Cross-Validation

For the BIG training set evaluation, we use 10-fold cross-validation and the results

are shown in Table 6.2. Logistic regression achieves the best performance, with 0.856
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Table 6.2: 10-fold cross-validation on the training set.
Model ROC AUC Precision Recall F1

All features

NB 0.832 0.787 0.697 0.668
NBM 0.738 0.639 0.618 0.607
SVM 0.765 0.771 0.766 0.765
LR 0.856 0.781 0.772 0.769

Topological
Features Only

NB 0.763 0.788 0.691 0.659
NBM 0.690 0.811 0.727 0.705
SVM 0.740 0.799 0.745 0.731
LR 0.766 0.815 0.757 0.744

Literature
Features Only

NB 0.770 0.690 0.667 0.654
NBM 0.763 0.711 0.710 0.710
SVM 0.708 0.708 0.708 0.708
LR 0.783 0.712 0.712 0.712

Common
Neighbor
Baseline

LR 0.754 0.824 0.760 0.746

Co-occurrence
Baseline

LR 0.555 0.605 0.538 0.432

AUC and 0.769 F1. The naive Bayes model is the second best, with 0.832 AUC and

0.668 F1. The naive Bayes multinomial and SVM models are less effective than the

previous two, with 0.738 AUC and 0.765 AUC, respectively.

Furthermore, we experiment on topological and literature feature subsets sepa-

rately. The best AUC for the topological subset is 0.766 and the best for the literature

subset is 0.783, both achieved with the logistic regression model. It is noticeable that

the naive Bayes multinomial has better performance for the literature subset than for

the overall feature set.

We calculate information gain to better understand the contribution of the fea-

tures. As shown in Table 6.3, the network features’ Adamic has the highest infor-

mation gain, 0.306, followed by numCommonNeighbor (0.291), Jaccard(0.287), and

sumNeighbor (0.176), which are all in this category. The simMeSH measure, with

information gain 0.122, is ranked the highest among the literature features. Next

highest is sumClusteringCoef (0.105) and at the bottom is the article co-occurrence
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Table 6.3: Information gain of the training set BIG. Neighbor-based measures Adamic,
numCommonNeighbor, Jaccard, and sumNeighbor are the four top-ranked features,
with information gain ranging from 0.178 to 0.306, which shows they are the most
informative features.

Rank Feature Information Gain
1 Adamic 0.306
2 numCommonNeighbor 0.291
3 Jaccard 0.287
4 sumNeighbor 0.176
5 sumPub 0.135
6 simMeSH 0.122
7 sumClusteringCoef 0.105
8 jaccardArticleCoOccur 0.038

feature jaccardArticleCoOccur (0.038).

6.5.2 Evaluation Using the DIP Database

Since yeast is a widely studied species, we particularly evaluate our approach to

protein interactions within this species. We use protein pairs from the data of Qi

et al. and compare our results with theirs. As described in the background, one of

the tasks is to use machine learning to predict physical interaction and the authors

developed comprehensive biological features.

We downloaded their data from the project website: They include 2,865 positives

and 237,384 negatives. During preprocessing, we mapped protein symbols to our

network, resulting in 2,704 valid positives and 122,161 negatives. We also double-

checked the protein pairs against our training set and there was no overlap between

the training and testing sets.

As shown in Tables 6.4 and 6.5, the models trained by our features outperform

the data of Qi et al. In 10-fold cross-validation, the LR model trained by all features

yields 0.887 F1, while that trained by Qi et al. results in 0.560. Similar results are

shown in the test (the LR for our feature yields 0.892 F1 and 0.547 F1 for the feature

of Qi et al.).
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Table 6.4: 10-fold cross-validation using proteins from the dataset of Qi et al.
Model ROC AUC Precision Recall F1

All Features 0.990 0.996 0.887 0.887
Literature Features 0.856 0.899 0.303 0.453
Network Feature 0.990 0.959 0.816 0.882

Qi et al. Detailed Feature 0.922 0.689 0.471 0.560

Table 6.5: Testing on protein pairs from the dataset of Qi et al.
Model ROC AUC Precision Recall F1

All Features 0.982 0.922 0.865 0.892
Literature Features 0.868 0.934 0.364 0.524
Network Features 0.989 0.959 0.821 0.885
Qi Detailed Feature 0.919 0.720 0.441 0.547

6.5.3 Predicting the Next Year

We also test our approach by predicting the next year, using the model trained by

existing interactions. As shown in Figure 6.4, the performance of the overall data is

generally consistently above 0.7 ROC, except for a drop in the year 2003 and 2004.

The predictions for the human species are also generally above 0.7 ROC, except for

a drop in 2012. In contrast, all the models trained and tested on yeast subsets have

remained below 0.7 ROC since 2002.

We further analyze the predictions for the two feature categories literature fea-

tures and network features. Specifically, we train LR models by using these two

subcategories and evaluate them by predicting the next year. As shown in Figure

6.4, network features outperform literature feature for each year’s predictions. Both

the literature and network models consistently show a significant performance drop

in the year 2003.

Furthermore, we predict the feature subsets for the human and yeast systems in

the next year. As shown in Figure 6.5, network features also consistently outperform

literature features for all years except 2012, which is similar to the results for the

overall data (Figure 6.4). However, for yeast, there is no clear winner between the
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Figure 6.3: Evaluation of all the data.
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Figure 6.4: Predicting next year by subsets of features (literature features and network
features). Network features outperform literature features for each year’s predictions.
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Figure 6.5: Evaluation on the human system.

two feature categories. Network features have better performance in 1995–2000, but

the literature features show advantages in all the years after 2000, except for 2002,

2004, and 2007.

Our approach demonstrates a performance advantage in predicting PPIs. Using

the protein pairs sampled from the DIP database, the model trained by the features

we propose outperforms the model trained by biological features. As shown in Table

6.5, our model has 0.982 ROC AUC and 0.892 F1, while the state-of-the-art results

(Qi et al.) are 0.922 ROC AUC and 0.560 F1, respectively. By further exploring the

feature set of Qi et al., we found that 37.9% of the feature values are unavailable,

suggesting that biological features are very sparse. On the other hand, our feature

set produces less sparse features. The upper bound of missing values in our feature

set for the DIP evaluation data is 31.8% (31.8% of feature values are zero).

Overall, the network features are more informative in predicting new interactions

than the literature features. As shown in the information gain analysis (Table 6.3),

the network features are all ranked higher than the literature features.
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Figure 6.6: Evaluation on the yeast system.

6.6 IBioNet.org

We implemented our system and it is available from ibionet.org. We generated 2

million new hypothesis for 415 proteins researched by the University of Massachusetts

Medical School so that we provide the researchers one more resource for identifying

potential interactors.

The system has four components: a BFS candidate collector, a feature extractor,

an interaction classifier, and a result generator.

The BFS candidate collector generates candidate interactors from the PPI net-

work. For instance, assume we want to predict new interactors for the protein retinitis

pigmentosa 2 (RP2), then we use the collector to obtain the subgraph of RP2, where

each protein is within six hops of another. We consider those proteins that have never

interacted with RP2 as candidates.

The feature extractor extracts the features of potential interacting pairs. With

the RP2 example, the extractor extracts features for each pair (for RP2 and one of

the candidates). The component is based on Hadoop framework [76].

The pairs with extracted features are then fed into the interaction classifier for
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Figure 6.7: IBioNet page providing predictions for genes researched by the University
of Massachusetts Medical School.

prediction. The probability of interaction is calculated for each input pair. This

component is also implemented as a Hadoop application.

Post-processing is carried out by the result generator. It imports the results into

a MySQL database and associates it with other protein-related information, such as

official names, synonyms, species, and related publications.

6.7 Conclusion

In this study, we propose using a machine learning approach to generate a new PPI

hypothesis. We model PPI prediction as a link prediction problem. Existing in-

teractions are considered positive training data and the features are extracted from

the protein pairs by the time of the discovery of their interaction. We use the PPI

database BioGRID, as well as MEDLINE, as our data source for creating training

data. We conduct comprehensive evaluations on BioGRID data, as well as the DIP

database, on overall species, as well as on human and yeast species only. In addi-

tion, we conduct a longitudinal evaluation by creating 18 training sets and 18 test
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sets across 18 years to evaluate our approach on each year’s new discoveries. Logis-

tic regression shows the best performance, with ROC AUC 0.856 on 10-fold cross-

validation. Our approach is generalizable, since the model trained by protein pairs

from the DIP database achieves 0.982 ROC AUC in predicting physical interactions,

which significantly outperformed the state-of-the-art system of Qi et al. We find that

network features, such as the Adamic and the number of common friends, are the

most important predictors for PPIs. We also build the hypothesis generation system

ibionet.org, which provides University of Massachusetts Medical School researchers a

new tool for identifying possible PPIs.



Chapter 7

Conclusions

In this thesis we have shown that network topological structure as well as semantic

information of the node can be leveraged to predict new links in a network when we

put network evolution into perspective. The network status, both network structure

and semantic information, by the time of the link creation can be used to learn the

patterns. Concretely we model link prediction as a classification problem, and we use

network status by the time of establishment of existing links as features and the link

as label. Therefore the classification models can be trained, and used for predicting

the probability of being connected given a new pair of nodes and their related network

status.

In research collaboration network, we derived features such as number of com-

mon collaborators, research interest similarity, research productivity. We found that,

research interest similarity, such as publication history similarity, citation similarity,

as well as number of common researchers, are most informative predictors for first

time collaboration. Future more, geographical location as well as research interest

similarity are top-ranked features for predicting recurrent research collaboration.

On the other hand, network structure features show advantages in protein-protein

interaction prediction. We also introduced literature features such as the protein

114
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pair’s number of co-occurrence in the articles. Yet, the prediction performance varies

dramatically across different settings, such as species. Literature features tend to

perform stable compared to the network features.

We also created the citation and co-authorship network for biomedical literature.

Our analysis showed that the networks pertained the characteristics, such as scale-free

and small world, that have observed in other complex networks. Our network system

provides an unique resource for studying the citation and co-authorship in biomedical

field.

7.1 Future Directions

There are several future directions. First, the group-group collaboration recommen-

dation will be very useful. In real world collaborations often initiated between two

labs in stead of two individuals, and the collaboration is often based on the purpose

of integrating the expertise from different disciplines. The collaboration prediction

task is more challenging yet extremely useful. Second, protein interactions tend to

have restrictions, for example they have to be in the same type of cell (e.g. T-cell) or

same tissue (brain). The future prediction should take these factors into account.
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