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ABSTRACT

NETWORK ANALYSIS OF SCIENTIFIC COLLABORATION AND
CO-AUTHORSHIP OF THE TRIFECTA OF MALARIA, TUBERCULOSIS AND

HIV/AIDS IN BENIN.

by

Gbedegnon Roseric Azondekon

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Susan McRoy

Despite the international mobilization and increase in research funding, Malaria, Tuber-

culosis and HIV/AIDS are three infectious diseases that have claimed more lives in sub

Saharan Africa than any other place in the World. Consortia, research network and re-

search centers both in Africa and around the world team up in a multidisciplinary and

transdisciplinary approach to boost e�orts to curb these diseases. Despite the progress in

research, very little is known about the dynamics of research collaboration in the �ght of

these Infectious Diseases in Africa resulting in a lack of information on the relationship

between African research collaborators. This dissertation addresses the problem by docu-

menting, describing and analyzing the scienti�c collaboration and co-authorship network

of Malaria, Tuberculosis and HIV/AIDS in the Republic of Benin.

We collected published scienti�c records from the Web Of Science over the last 20 years

(From January 1996 to December 2016). We parsed the records and constructed the coau-

thorship networks for each disease. Authors in the networks were represented by vertices

and an edge was created between any two authors whenever they coauthor a document

together. We conducted a descriptive social network analysis of the networks, then used
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mathematical models to characterize them. We further modeled the complexity of the

structure of each network, the interactions between researchers, and built predictive mod-

els for the establishment of future collaboration ties. Furthermore, we implemented the

models in a shiny-based application for co-authorship network visualization and scienti�c

collaboration link prediction tool which we named AuthorVis.

Our �ndings suggest that each one of the collaborative research networks of Malaria,

HIV/AIDS and TB has a complex structure and the mechanism underlying their for-

mation is not random. All collaboration networks proved vulnerable to structural weak-

nesses. In the Malaria coauthorship network, we found an overwhelming dominance of

regional and international contributors who tend to collaborate among themselves. We

also observed a tendency of transnational collaboration to occur via long tenure authors.

We also �nd that TB research in Benin is a low research productivity area. We modeled

the structure of each network with an overall performance accuracy of 79.9%, 89.9%, and

93.7% for respectively the malaria, HIV/AIDS, and TB coauthorship network.

Our research is relevant for the funding agencies operating and the national control pro-

grams of those three diseases in Benin (the National Malaria Control Program, the Na-

tional AIDS Control Program and the National Tuberculosis Control Program).
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Chapter 1

General Introduction

Infectious diseases have long claimed the lives of millions of people worldwide. They

disproportionately a�ect the developing nations where 90% of the deaths are caused by

very few diseases including Malaria, Tuberculosis (TB) and HIV/AIDS [1]. Malaria, TB

and HIV/AIDS remain the three major public health concerns in Sub Saharan Africa

where they are responsible for high mortality, morbidity rates and impact negatively on

the socioeconomic way of life of the populations [2, 3]. These three diseases have been

given special attention at the Millenium Declaration in its 6th Goal of Millenium Devel-

opment [4]. Initiatives such as the US President's Malaria Initiative, the Global Fund for

Malaria, TB and HIV/AIDS and the President's Emergency Plan for AIDS have led to

the investment of more than 70 million US dollars to encourage Research and Develop-

ment, Private-Public partnership as well as to reinforce the activities of non-governmental

organizations within the healthcare systems of the a�ected countries [5�7].
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General Introduction

The Global Fund disbursement in 2010 peaked at over 1.45 billion dollars for HIV/AIDS,

416 million dollars for TB and 714 million dollars for Malaria [8, 9]. With these �nancial

supports at hand, e�orts have led to a sharp increase of public health interventions and

many positive public health outcomes in terms of the reduction of mortality and mor-

bidity related to those diseases [10]. For example, in Benin, the new �nancing provided

for improved entomological surveillance to reduce the morbidity and mortality related to

malaria by 75% by 2015. Encouraged and motivated by the success stories in controlling

these diseases, some authors formulated the ambitious zero incidence goal of TB and HIV

and the zero death goal of the three diseases by 2015 [12].

After the declaration of the Millenium Development Goal 6 (MDG6) in 2000, signi�cant

progress has been made in the treatment and prevention of Malaria, TB and HIV/AIDS,

leading to the reverse of the mortality and morbidity due to these three diseases. Nev-

ertheless, sub Saharan Africa still carries the burden of these diseases. For example, in

2009, 2.6 million new cases and 1.8 million of death related to HIV were estimated out of

which 68% and 72% of respectively new cases and deaths were in Africa [13]. TB cases

were estimated at 9.4 million and 1.3 million deaths out of which HIV-positive cases

make up 12% of all cases and 23% of all TB deaths [14]. Although the rapid expansion

of vector control strategies worldwide, malaria was responsible of 225 million cases and

781,000 death in 2009 out of which over 90% were in Africa [9].

In the Republic of Benin, TB and HIV/AIDS have become a common aspect of the public

health system. The three are the main impediments of economic and social progress that

are characteristics of poverty. According to a 2000 World Health Organization (WHO)
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press report, malaria slows economic growth on the African continent by 1.3% each year

[15]. And it is known that Tuberculosis and HIV/AIDS patients experienced severe

economic burden in terms of access to health care, treatment and diagnosis [16]. The

situation is further compounded by the poorly developed immunity among the children

and the elderly, and the predominant malnutrition problem experienced by a majority of

the population [17]. Between 2000 and 2013, the impact of the increase in funding has led

to an annual decrease in the incidence of 7.6%, 0.6% and 5.2% respectively in HIV/AIDS,

TB and Malaria. Similar results were obtained in terms of prevalence with a decrease of

1.3% in HIV/AIDS and 0.8% in TB. Annual death rates decreased also at about 3.1%,

1.2% and 5.3% respectively in HIV/AIDS, TB and Malaria [9, 13, 14].

Successful scienti�c collaborations have led to the eradication of chickenpox and the near

eradication of poliomyelitis through the development of vaccines [17]. For Malaria and

HIV/AIDS, the development of a vaccine has proven signi�cantly di�cult to develop de-

spite the decades of active research that has not been successful so far [18�20]. This is

why researchers need to form continuous and sustainable collaborations through intensive

network practices that go beyond the regional boundaries [21]. Scienti�c collaborations

give researchers the opportunity to work and learn from each other. Such collaborations

are further needed to overcome the overgrowing challenge of co-infections of HIV/AIDS

and Tuberculosis [22, 23].

Despite the increasing �nancing e�ort and increasing number of published reports, the

literature does not provide su�cient data regarding co-authorship networks of scienti�c

research collaborations and their dynamics in the �elds of malaria and TB and HIV/AIDS
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research in Africa, and particularly in Benin. This situation results in a lack of infor-

mation on the main players and drivers of the progress made. As for the eradication of

chickenpox [17], collaborative research will undoubtedly play an important role in the

successful attainment of the MDG6 in Subsaharan Africa in general and particularly, in

Benin. Understanding the structure of these networks is capital since it can help improve

research prioritization [24], identify proli�c researchers, better design, strategic planning

and implementation of research programs [25], and promote cooperation and translational

research initiatives [26]. In this dissertation, we document, describe, analyze, and model

the di�erent aspects and processes of scienti�c research collaboration of the three leading

infectious diseases in the Republic of Benin. The social network analysis of research col-

laboration approach is chosen to reveal undiscovered knowledge on e�ort of researchers

in working together towards the reduction of the burden of Malaria, TB and HIV/AIDS.

Modern times have rendered research and scienti�c collaborations irreplaceable policy

formulations processes. This is because research collaborations form a stable basis for

the provision of evidence based information in the formulation of fundamental principles

and guidelines for the elaboration of public health strategies, particularly in developing

countries like Benin. For this reason, this dissertation focuses on the Network analysis of

the scienti�c collaborations through co-authorship network analysis.
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1.1 General and speci�c Objectives

The purpose of this research is to analyze the structure and dynamics of scienti�c collab-

orations and co-authorship in the �elds of Malaria, Tuberculosis and HIV/AIDS research

areas over the last 20 years in the Republic of Benin. Our results can help improve grant

and research resource allocation to funding and help research organizations and national

control programs to promote and encourage trans and interdisciplinary research in the

country. Additionally, our �ndings recommend new approaches to support the Beninese

national control programs via better strategic planning and implementation of public

health policies, research and development. We also propose a prototype of an online

research collaboration tool to assist health policy makers and funding organizations to

promote research collaboration in the republic of Benin. More speci�cally, we address the

following research questions:

• What is the structure of scienti�c research collaboration networks in Benin over the

last 20 years in Malaria, TB and HIV/AIDS research?

• Who are the most proli�c authors, scienti�c research groups within each �eld?

• How have transnational research evolved over the last two decades in the Republic

of Benin?

• What are the characteristics and the dynamics of the current co-authorship research

collaborations in Benin in Malaria, TB and HIV/AIDS research?
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This dissertation �lls the gap in the current literature, and reveals the role of the col-

laborative research in the prevailing research networks. Our research meets the following

speci�c objectives:

1. To identify the most productive and proli�c scienti�c research groups and authors

within each research area.

2. To document and describe the structure of Malaria, TB, HIV/AIDS co-authorship

networks and their characteristics, how they evolve over time in Benin over the last

two decades.

3. To unravel the mechanistic phenomenon explaining the formation and trends of

these networks over time.

4. To predict and recommend future research collaboration ties in Benin in the three

research areas.

5. To develop a prototype of co-authorship visualization and scienti�c collaboration

tool for Malaria, TB and HIV/AIDS research in Benin.
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1.2 Hypotheses

We hypothesize that tie formation in each co-authorship network:

• is dependent on observed authors (vertices) characteristics

• is dependent on the concept of distance in latent space, and

• is dependent on collaboration types and/or membership to a certain research com-

munity or cluster.
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Chapter 2

A review of the related literature on

disease research and applications of

network analysis

2.1 Brief Overview of Malaria, Tuberculosis and HIV/AIDS

AIDS is a health condition caused by the Human Immunode�ciency Virus (HIV) [27, 28].

HIV infects and attacks the cells that are responsible for the immune system in the body

(CD4 cells) that provide protection against infections and illness. The virus infects the

human host by making him vulnerable and unable to �ght future infections [29]. The

virus eventually weakens and kills the CD4 cells resulting in a weak immune system and
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vulnerability to diseases. HIV is transmitted through body �uids exchange, and the in-

fection exists in four stages. The �rst stage is the primary infection stage and lasts within

2 to 4 weeks. It is characterized by �u-like symptoms, and the infected person is highly

contagious. The second stage is the asymptomatic stage that may last for about ten

years, and the infected person does not display signi�cant symptoms of the infections.

The third stage is the symptomatic stage. At this stage, the virus weakens the immune

system, and the infected person su�ers from both mild and chronic symptoms as the in-

fected person su�ers opportunistic diseases. Illnesses like malaria and TB in HIV infected

subjects, are experienced in a severe manner. The fourth stage is AIDS; it causes death

within two years if left untreated [29, 30].

According to the World Health Organization (WHO) the signs for HIV/AIDS change

through the stages of infections as the disease progresses. To determine whether a person

is infected, an HIV test needs to be conducted. ELISA method based HIV testing is

one of the most common antibody-based testing method characterized by 99% accuracy

rate [27]. It is recommended that a HIV negative test result should be con�rmed after

three months because the immune system can sometimes take up to 12 weeks to develop

the tested antibodies [31]. It is however possible to get false negative results during the

12 weeks window period. The antiretroviral (ARV) drug therapy is initiated when the

infected person reaches the third or fourth stage of infection to suppress the virus and

boost the immune system. Such measures are taken because there is currently, no cure

for HIV and the early initiation of the therapy may result in drug resistance [32�34].

Unlike HIV/AIDS, TB is a highly infectious disease that is caused by a bacteria called
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Mycobacterium tuberculosis. The disease exists in active and inactive forms. The active

form, also known as the open disease causes the infected person to su�er and to be highly

infectious. The inactive/latent TB infection is not infectious, and the infected individual

does not su�er from the signs and symptoms associated with the active disease. Healthy

individuals with latent infection have approximately 10% probability of getting active TB

disease over their life. Chances of infection are high in the �rst two years after the expo-

sure to the bacteria, and in the case where the host develops any form of lung or immune

system damage [35, 36]. On the other hand, in HIV infected individuals co-infected with

TB, there exists a 10% annual chance of developing active TB [37�39]. Active TB in

adults may result from re-infection with a new strain of TB or perhaps a reaction to the

latent infection. Consequently, researchers surmise that silica inhalation, HIV infection,

and silicosis are responsible for the high risk of TB infection in the working adults' pop-

ulation [38, 40]. TB symptoms are characterized by a chronic cough, night-time fevers,

profuse sweating, and signi�cant weight loss within a short time. However, studies show

that people with TB can be infectious prior to showing the symptoms or complaining

of any form of pulmonary discomfort. In the worst case scenario, TB goes beyond the

pulmonary and infects other parts of the body, especially for people infected with HIV.

HIV complicates the manifestation of TB in terms of its symptoms and signs in 70% of

the HIV/AIDS infected population su�ering from TB [38]. Studies indicate that people

with undetected open TB disease are the leading cause of TB infections. Even though

TB is a treatable disease, the treatment procedure is extremely aggressive. The treat-

ment procedure for �rst-time patients entails administration of a six-months dose under
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close medical supervision termed as directly observed therapy. The other challenge in

the treatment is that there are approximately 25% TB-drugs resistance cases worldwide

every year [41, 42]. Approximately 80% of people with TB can be cured of their active

TB infection, however, HIV and Silicosis increases the risk of reinfection by 20%. The

infection among individuals with silicosis, may cumulatively contribute to lung damage

and work inability. Additionally, the HIV/AIDS increases the risk of opportunistic infec-

tions, which may result in a poor outcome for the TB treatment [43�45].

Completing the trifecta is malaria, a parasitic infectious disease caused by the Plasmod-

ium parasites. Even though, malaria is predominantly found in the tropical regions, 48%

of the instances of infections have been experienced in the Northern and Southern parts

of America, Asia, and Africa, putting approximately 50% of the world's population at

risk. The malaria pathogens are Plasmodium ovale, Plasmodium malariae, Plasmodium

vivax, and Plasmodium falciparum which is the deadliest. The distribution of the dis-

ease matches that of its vectors, the female mosquitoes of the genus Anopheles [46, 47].

In the sub-Saharan African countries, the vector of the disease is Anopheles gambiae

s.l. Malaria has a range of symptoms and signs that manifest di�erently from one per-

son to another. The most common symptoms are fevers, gastrointestinal symptoms,

and fatigue, headaches, and muscle aches. The malaria pathogen infects two hosts, the

Anopheles mosquito, and the infected human. When the infected mosquito feeds from

an individual, it injects sporozoites into the circulatory system of the bitten person. The

sporozoites reside in the liver cells until they become mature schizonts. The schizonts

rupture upon maturity and release merozoites, which infect the red blood cells [48]. The
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two most used malaria test are rapid tests using an instant result kit akin to the home

pregnancy test device, and the blood smear test that is examined under the microscope

for the presence of red blood cells that are infected by the parasite. Treatment entails

administration of drugs that range in types. While some malaria drug prescriptions may

have a three days dosage, others may have up to one week dosage [49, 50].

HIV/AIDS, TB, and Malaria form together a trifecta of diseases caused respectively by

a virus, a bacteria, and a parasite.

2.2 Network Analysis of Scienti�c Research collabora-

tion

Collaboration in science is essential to research and development, knowledge discovery,

technology and innovation. The e�ectiveness of collaboration in science can be measured

using scientometrics. According to Leydesdor� and Milojevic [51], scientometrics uses

quantitative and computational methods to analyzing and measuring science, communi-

cation in science and science policy. The �eld of scientometrics emerged from Eugene

Gar�eld's idea to improve Information Retrieval [52], followed by the creation of the

Science Citation Index (SCI) in the 1960s, and the availability of scienti�c databases

references publications. The discipline of Scientometrics is aimed at providing guidance

to several research issues involving the measurement of science impact, the measurement

of impact journals and institutional units, theories of citation, and the mapping of sci-

ence. Here, we focus on the mapping of science since it is essential to understanding the
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dynamic of science, informing policy decisions, and identifying important �elds, research

groups, as well as specialties based on evidence from the literature [51]. Such goals can

be achieved by mapping publications, authors and analyzing patterns of collaborations

between them.

Since the publication of the �rst co-authored paper in 1665, scienti�c co-authorship has

spread signi�cantly throughout the scienti�c realm and the number of co-authored sci-

enti�c publications have tremendously increased [53]. According to Wagner [54], the

increase in international scienti�c co-authorship has been of a fast growth. International

co-authorship originates from international collaborations between scientists. In general,

international collaborations have more visibility than national collaborations and often

result in publications in high impact journals [55].

The paradigm of co-authorship network is rooted in network theory. In a co-authorship

network, the reasearchers are represented by the set of vertices and the relationship be-

tween them are represented by the set of edges. An edge between two researchers in such

a network means that they both coauthor a publication. Unlike citation networks, the

scienti�c community has dedicated less attention to co-authorship networks because of

the long tradition of citation network analysis in bibliometric [21, 56]. Nevertheless, the

analyses of how complex co-authorship networks form and evolve in time is crucial for

identifying leading researchers in a particular scienti�c domain, describing their extant to

collaborate with their peers, and evaluating the impact of their research [26]. An example

of such an investigation is illustrated in Newman scienti�c collaboration paper series on

Biomedical research, physics and computer science co-authorship networks [21, 56�58].
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Taking publications as units, the analyses of scienti�c collaboration facilitate the study

of trans and inter-disciplinary research by focusing on the dynamics of the collaboration

networks [59]. In addition, these networks can provide important information regarding

cooperation patterns among authors and their status and location in the structures of the

scienti�c community [60]. Furthermore, Mali et al. [61] assert that co-authorship social

network studies are highly relevant for funding organizations for promising and emerging

topics support in science.

Although many authors have proposed di�erent features for classifying co-authorship

networks [62�64], the categorization features of Andrade et al. [62] identi�es three levels

of classi�cation of scienti�c collaboration: the cross-disciplinary level with the intradis-

ciplinarity and interdisciplinarity subdimensions, the cross-sectoral level with the intra-

mural and extramural research collaboration subdimensions and the cross-national level

including the national and international scienti�c collaboration subdimensions. For a full

description of each level of scienti�c collaboration, we refer the reader to Mali et al. [61].

The methods of co-authorship network studies have emerged from social network analysis

and graph theory. Such studies heavily relied upon access to scienti�c collaboration data

sources such as SCOPUS, the Web Of Science, PubMed, Medline or even Google Scholar.

In general, Mali et al. [61] identify three methodological approaches to studying scienti�c

co-authorship networks:

(i) basic analysis of network properties using temporal data (usually in the
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form of a time-series of snapshots), (ii) deterministic approaches to the anal-

ysis of scienti�c co-authorship networks, and (iii) statistical modeling of net-

work dynamics

In addition to the three approaches outlined by Mali et al. [61] and mentioned above,

co-authorship networks can be analyzed on the basis of formal network properties, includ-

ing network degree, density, path, path length, shortest path and the global clustering

coe�cient. Many scienti�c collaboration network studies have adopted this graph-based

approach to scienti�c co-authorship investigation. In the next paragraphs, we present

and discuss the purpose, methods and the results of some of those studies.

Newman [21] investigated scienti�c network collaboration in biomedical research, physics

and computer science. In this study, Newman collected data from four databases and

presented distribution of collaboration networks, demonstrated the presence of clustering

and highlights di�erences between the scienti�c �elds under investigation. According to

his �ndings, Newman [21] concluded on the "smallworldness" of such networks in which

scientists are only separated by shorter paths. In a second paper published the same

year, Newman [57] provided a deeper analysis of the networks using the same data. He

presented a variety of statistical properties of the networks, identi�ed giant collaborative

components and study centrality and connectedness measures. In Newman [58], the au-

thor evaluated various nonlocal network properties including shortest paths and distance

between researchers. He proposed a modi�ed version of the standard breadth-�rst search

algorithm for evaluating the geodesic distance between the scientists in the network. He

later weighted the networks by the number of paper published by pairs of researchers as
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well as their number of coauthors, and calculated all the distances using Dijkstra's algo-

rithm. His analyses provided insights in the strength of collaboration in each network.

In a last paper in the same series, the author summarized the results of the three previ-

ous studies and showed how patterns of collaboration varied between scientists within a

scienti�c �eld over time [56].

In another study, Hou et al. [65] applied a variety of graph-based algorithms to quantify

the importance and impact of science, analyzing data retrieved from the Science Citation

Index (SCI) over a period expanding from 1978 to 2014. In addition to methods of Social

Network Analysis (SNA), the authors used co-occurrence analysis, cluster analysis and

frequency analysis of words to describe the microstructure of the scientometrics network,

revealing the major collaborative clusters and identifying the center of the scientometrics

collaborative network. All analyses were performed using a free online software called

Bibexcel and visualizations were displayed using the Pajek program. Similarly, to New-

man's publications, this paper applied basic network analysis based on network properties

such as degree, closeness and betweenness centrality measures. Unlike Newman's stud-

ies, it also accounted for citation data. Yet another paper reported the collaborative

patterns in co-authorship network in the scienti�c discipline of reproductive biology [66].

This study conducted a bibliometric analysis on 4,702 papers published in the �eld from

2003 to 2005. Although their analysis was basic, the study did not make use of any

network property measures but was rather, mainly descriptive. Nevertheless, the study

identi�ed important components by applying an unspeci�ed clustering algorithm using

the Bibliométricos software, and the Pajek program for data visualization. A similar
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bibliometric analysis is also reported by Toivanen and Ponomariov [67] who investigated

the research collaboration patterns in the African regional systems. Their data were pub-

lication records from African institutions from 2005 to 2009, processed via a proprietary

text mining software named VantagePoint. Analysis of the network was performed using

the UCINET software. The authors adopted an empirical clustering method based on

the geographic regions within the African research context. Their research uncovered the

dynamic nature of African collaborative e�orts despite the lack of research capabilities,

the structural weaknesses, and the uneven integration of resources.

Some researchers have studied scienti�c network co-authorship across a scienti�c dis-

cipline in speci�c institutions or organizations. For example, Bellanca [68] used basic

network analysis to measure interdisciplinary research by describing three co-authorship

networks of researchers in Biology and chemistry departments at the University of York.

After extracting publication records from the Web Of Science, the author used the Bibex-

cel tool and the UCINET software to analyze the co-authorship networks. The analysis

was descriptive involving the assessment of basic network properties such as node degree,

betweenness, and clustering coee�cient. They discovered fewer interdisciplinary research

between biologists and chemists within the University but more interdisciplinary links

between biology and mathematics, bioinformatics, biophysics and biochemistry. Their

�ndings are potentially important for the development of strategies to promote interdis-

ciplinary research within the University. Another study conducted in a Spanish institution

analyzed collaboration between Spanish authors [69]. After retrieving 448 published pa-

pers between 1998 and 2007, the authors used basic network analysis, implemented in the
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Pajek program, to their network and identify group of authors as well as their relationship

with others. In their future directions, the authors recommended that a dynamic time

series analysis method as the next step to better understand their co-authorship network.

In some other studies, the research focus was on a single country, across a speci�c scien-

ti�c discipline.

Using Bibexcel, and the UCINET software package, Ghafouri et al. [24] proposed a so-

ciogram analysis to social co-authorship network of Iranian researchers, in an attempt to

help improve research prioritization, research centers establishment, teams and new cur-

ricula in the �eld of emergency medicine. Their results revealed a poorly connected, loose

and sparse co-authorship network in the �eld of emergency medicine in Iran. While their

study was keyword based and might have not included all papers, they recommended

the rethink of research prioritization, the establishment of new research centers more

emergency medicine specialists to Iranian policy makers. Yet another Iranian study by

Salamati & Soheili [70] investigated the �eld of violence, assessing scienti�c research out-

puts by Iranian researchers extracted from the Science Citation Index Expanded (SCIE),

PubMed and Scopus databases, and covering the period 1972 to 2014. The authors used a

combination of tools including Ravar Matrix, NetDraw to map coauthorship networks and

VOSViewer, a software to draw co-word maps. Using basic network properties such as

closeness, betweenness, eigenvector centrality measures, they identi�ed structural holes,

active authors, analyzed the structural indices of their network and evaluated the trend of

published articles. One important limitation of their study was the attempt to manually

standardize Iranian authors' names and the keyword based search leading to the lack of

18



A review of the related literature on disease research and applications of network analysis

comprehensiveness of the search results.

A similar study of Iranian researchers on Medical Parasitology using NetDraw and the

UCINET software package was also reported by Sadoughi et al. [71]. The study used

basic network analysis to identify proli�c researchers in the �eld of Medical parasitology

by collecting 1048 published documents of all types in the �eld from 1972 to 2013 from

the Web Of Science. The study identi�ed aspects of scienti�c collaborations to help policy

makers in the medical parasitology research area. A Brazilian study reported in the liter-

ature used the same methodological approach to generate new tools to help the Brazilian

research fund to better select and prioritize research proposals [25]. Publication records

were collected from the Web Of Knowledge (also known as Web Of Science) scienti�c

database on seven neglected tropical diseases. Co-authorship networks were generated

for each disease and analyzed using Pajek and NetDraw, a tool of the UCINET software

package. The text-mining was implemented using the VantagePoint software. The results

generated new information leading to better design and strategic planning and implemen-

tation of a research funding program. This study further supports that traditional criteria

to fund research such as research productivity or impact factor of scienti�c journals are

not valuable indicators for grant selection in low productivity neglected tropical diseases

research areas. This Brazilian study is one of the few that focused on co-authorship net-

work in the �elds of neglected tropical diseases and the vast �eld of tropical infectious

disease.

In an attempt to promote cooperative and translational research initiatives, another study

investigated the state of scienti�c collaboration on Chagas disease research [26]. The
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study presented the analyzis of the scienti�c literature on Chagas disease published in

the PubMed database between 1940 and 2009. On a total of 13,989 documents retrieved,

the authors applied bibliometrics, social network analysis, and clustering methods imple-

mented via the Pajek program to analyze the evaluation of collaboration patterns and to

identify in�uential research groups. The results revealed a dramatic increase in research

collaborations. As in Newman [21], this study concluded that the co-authorship network

of Chagas disease constitutes a "small world" network characterized by a high degree of

clustering. Another important remark is the scarcity of African co-authorship network

studies. Our review only identi�ed the study by Toivanen and Ponomariov [67] who fo-

cused on research collaboration patterns in the African regional systems with less insights

into speci�c research areas.

The majority of the studies reviewed above implemented their analyses using the Pajek

program [72] or the UCINET software package which has the built-in NetDraw tool [73].

The Pajek program is suitable for the analysis and visualization of large networks. It has

Graphical user interface and has other features including multidiemnsional scaling and

structural analysis. Unlike the Pajek program, the UCINET software package has built-in

advanced features and can handle networks which size up to 10,000 nodes, and accepts

a large number of network �le format including the pajek format. In their entirety, the

studies reviewed above applied descriptive, basic social analysis methods.

Recently, Zhang [74] proposed a complex approach to social network analysis, emphasizing

only on link prediction, one of the network topology inference questions. Her approach in-

volved the development of a computationally e�cient solution based on machine learning
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techniques such as naive bayes, support vector machine, K-nearest neighbor implemented

in the data mining software Weka [75] and the Python package Scikit [76]. The approach

was tested on di�erent datasets including a citation network, a co-authorship network and

a protein-protein network. Quite often, these methods are not perfect since they failed

to correctly tease out unreliable nodes from reliable ones, compromising the reliability

of the network. However, new methodological approaches to scienti�c co-authorship net-

work analysis are emerging to address those limitations. For example, Oliveira et al. [77]

proposed a Bayesian approach to the analysis of such networks. Yet another limitation

worth noting is that none of the studies reviewed above applied dynamic network analyses

such as dynamic time series analysis or longitudinal network analysis [61].

2.3 Visualization tools for Co-authorship Networks

Various authors have proposed diverse tools for speci�cally visualizing and exploring co-

authorship network data. One of such tools has been reported by Liu and colleagues [78]

who proposed an author navigator application for visual examination of co-authorhip net-

works. In their conception of the toolkits, the authors combined a web based application

tool for the interactive navigation of the network and a Java based backend swing applica-

tion for the management of CGI requests. To support Brazilian researchers, Barbosa and

colleagues proposed VRRC, a web based tool for the visualization and recommendation

of co-authorship network [79]. According to its developers, VRRC provides an inter-

active visualization, an overview of the collaborations over time, and recommendations
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to initiate new collaborations and reinforce existing ones. VICI, another co-authorship

visualization tool was proposed by Odoni and colleagues [80]. VICI combined a Python

based backend system for the extraction and management of the network data and a

web based frontend using Flask [81] to display the network. The visualization of the

network was �nally rendered using the Javascript D3.js [82] library. NeL2, a general

purpose tool for the visualization of networks as a layered network diagram was proposed

by Nakazono, Misue, and Tanaka [83]. They applied their tool to the visualization of

co-authorship networks to visualize transitions in the network over a period of time, as

well as various co-authorship data.

Another framework, the WebRelievo system was proposed for the visualization of the

evolutionary processes of Web pages [84]. Other techniques were also proposed for the

visualization of co-citation networks [85], and for the visualization of the relationship of

scienti�c literature [86]. In addition to their inability to display large networks, those

proposed tools are limited by their lack of interactivity and their inability for the end

user to easily control the display. We therefore could not just re-use any one of them in

this dissertation.
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Chapter 3

A review of past approaches to the

analysis of bibliometric data and

co-authorship networks

To create and analyze graphs representing co-authorship of research publications this

dissertation will rely on two types of methods. The �rst are methods for recognition when

two super�cially di�erent representations of an author's name correspond to the same

author, which is called "author name disambiguation". The second set of methods relate

to the representation of graphs and di�erent measures used to quantify the importance

of relationships among the components of the graph (including vertices and subgraphs).

In the following sections we will overview both types of work.
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3.1 Author Name Disambiguation

Author Name Disambiguation (AND) is required because multiple names can refer to

the same author, many authors may share the same name due to abbreviations, name

misspellings, or identical names in publications [87]. AND remains an important re-

search focus in the computer science community, prompting to proposed solutions to

control authorship with manual curation via participative individual and community ef-

fort such as the Author-ity project [88], DBLife [89], the Open Researcher & Contributor

ID (ORCID) [90], authorclaim.org, or researcherID.com. While most co-authorship anal-

ysis studies have tended to use a manual curation of AND [91], automatic approaches to

AND involving supervised and unsupervised machine learning methods have also been

proposed [92, 93]. Unfortunately, the proposed solutions presented above are still in their

infancy. They have several limitations in that they often target a unique bibliographic

database and do not usually contain old or relatively recent records. The Author-ity

database for example in its last release (as of June 2018), only includes PubMed and

Medline AND records up to September 2008. Here, because our data span from 1996

to 2016, we leveraged on the work of Bilenko [94] using an automatic, supervised fuzzy

matching machine learning approach to disambiguate and normalize the bibliographic

information collected (See section 4.2.1).
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3.2 Basic Descriptive Analysis for Network Graphs

Vertex and edge characteristics are fundamental elements of network characterization.

These characteristics are centered upon vertex and edge centrality measures. Although

a vast number of di�erent centrality measures have been proposed for the descriptive

analysis of network graphs, the most common vertex and edge centrality measures are:

• Degree centrality: It is de�ned as the number of ties to a given author.

• Betweenness centrality: it is the number of shortest paths between other pairs of

vertices that go through a particular vertex. It relates to the perspective that

importance relates to where a vertex is located with respect to the paths in the

network graph. According to Freeman [95], it is de�ned as:

cB(v) =
σ(s, t|v)∑

s 6=t6=v∈V σ(s, t)
(3.1)

where σ(s, t|v) is the total number of shortest paths between vertices s and t that

pass through vertex v, and σ(s, t) is the total number of shortest paths between s

and t regardless of whether or not they pass through v.

• Closeness centrality: the number of steps required for a particular author to access

every other authors in the network. It captures the notion that a vertex is central

if it is close to many other vertices. Considering a network G = (V,E) where V is

the set of vertices and E, the set of edges, the closeness centrality cCl(v) of a vertex
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v is de�ned as:

cCl(v) =
1∑

u∈V dist(v, u)
(3.2)

where dist(v, u) is de�ned as the geodesic distance between the vertices u, v ∈ V .

• Eigenvector centrality: degree to which an author is connected to other well con-

nected authors in the network. It seeks to capture the idea that the more central

the neighbors of a vertex are, the more central that vertex itself is. According to

Bonacich [96] and Katz [97], the Eigenvector centrality measure is de�ned as:

cEi
(v) = α

∑
{u,v}∈E

cEi
(u) (3.3)

Where the vector cEi
= (cEi

(1), . . . , cEi
(Nv))

T is the solution to the eigenvalue

problem AcEi
= α−1cEi

, where A is the adjacency matrix for the network G.

According to Bonacich [96], an optimal choice of α−1 is the largest eigenvalue of A

• Brokerage: degree to which a vertex occupy an advantageous position such that

they can broker interactions between other vertices in the network.

• Edge betweenness centrality extends from the notion of vertex centrality. It re�ects

the number of shortest paths traversing that edge.

26



A review of past approaches to the analysis of bibliometric data and co-authorship
networks

3.2.1 Characterizing Network cohesion

There are many techniques to determine network cohesion [98]:

• Cliques: According to Kolaczyk and Csárdi [98], cliques are de�ned as complete

subgraphs such that all vertices within the subset are connected by edges.

• Density: De�ned as the frequency of realized edges relative to potential edges, the

density of a subgraph H in G provides a measure of how close H is to be a clique

in G. Density values vary between 0 and 1:

den(H) =
|EH |

|VH |(VH − 1)/2
(3.4)

• Transitivity: The transitivity of G is a measure of the relative frequency of G de�ned

as:

clT =
3τ∆(G)

τ3(G)
(3.5)

where τ∆(G) is the number of triangles in G, and τ3(G) is the number of connected

triples (sometimes referred to as 2-star). This measure is also referred to as the

fraction of transitive triples. It represents a measure of global clustering of G sum-

marizing the relative frequency with which connected triples close to form triangles

[98].

• Connectivity, Cuts, and Flows: The concepts of vertex and edge cuts is derived

from the concept of vertex (edge) connectivity. The vertex (edge) connectivity of a
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graph G is the largest integer such that G is k-vertex- (edge-) connected [98]. These

measures helped assess the most important vertices for information �ow and the

long-term sustainability of each network. Since co-authorship networks are undi-

rected graphs, the concept of weak and strong connectivity is irrelevant. A graph

G is said to be connected if every vertex in G is reachable from every other vertex.

Usually, one of the connected components can dominate the others, hence the con-

cept of giant component. The giant component characterizes the connectedness of

the vertices in the network.

• Graph Partitioning: Regularly framed as a community detection problem, graph

partitioning identi�es cohesive subsets of vertices generally well connected among

themselves and well separated from the other vertices in the network graph. Two

established methods of graph partitioning are Hierarchical clustering (agglomerative

vs divisive) and Spectral clustering [98].

3.3 Modeling of Network data

The purposes of network graph modeling are to test signi�cance of the characteristics of

observed network graphs, and to study proposed mechanisms of real-world networks such

as degree distributions and small-world e�ects [98]. A model for a network graph is a

collection of possible graphs G with a probability distribution Pθ de�ned as:

{Pθ (G), G ∈ G : θ ∈ Θ} (3.6)
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where θ is a vector of parameters ranging over values in Θ.

Given an observed network graph Gobs and some structural characteristics η(·), our goal

is to assess if η(Gobs) is unusual. We then compare η(Gobs) to collection of values {η(G) :

G ∈ G }. If η(Gobs) is too extreme with respect to this collection, then we have enough

evidence to assert that η(Gobs) is not a uniform draw from G .

3.3.1 Mathematical models for Network Graphs

There are mainly four proposed mathematical models for network graphs:

• Classical Random Graph Models: First established by Erd®s and Rényi [99�101], it

speci�es a collection of graphs G with a uniform probability P(·) over G . A variant

of this model called the Bernoulli Random Graph Model was also de�ned by Gilbert

[102].

• Generalized Random Graph Models: These models emanated from the general-

ization of Erd®s and Rényi's formulation, de�ning a collection of graphs G with

prespeci�ed degree sequence.

• Mechanistic Network Graph Models: These models mimic real-world phenomena

and include Small-World Models commonly referred to as "six-degree separation".

It was introduced by Watts and Strogatz [103] and have since received a lot of in-

terests in the existing literature especially in Neuroscience. Small-world networks

usually exhibit high levels of clustering and small distances between vertices. Clas-

sical models are not �t to better represent such behaviors since they usually display
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low levels of clustering and small distance between vertices. Examples of known

small-world networks include the network of connected proteins or the transcrip-

tional networks of genes [104]. A variant of Small-World models is the Preferential

Attachment Models de�ned based on the popular principle of "the rich get richer".

Preferential attachment models gained fascination after the work of Barabási and

Albert who studied the growth of the World Wide Web [105]. Examples of Prefer-

ential Attachment networks include that of the World Wide Web and the scienti�c

citation network [106, 107]. An important characteristic of these models is that as

time tend to in�nity, there degree distribution tends to follow a power law.

3.3.2 Statistical models for Network Graphs

Although mathematical models tend to be simpler than statistical models, the latter

allow model �tting and assessment. Various classes of network graph models have been

proposed. Here, we present the three main classes of statistical network models and a

version of ERGM adapted to temporal snapshots:

3.3.2.1 Stochastic Block Model

Blockmodel is a statistical method to identify, in a given network, clusters or classes

of authors that share structural characteristics [108, 109]. Each such cluster forms a

position. The units within a cluster have the same or similar connection patterns. Given

a graph G = (V,E) and its adjacency matrix Y, for two distinct nodes i, j ∈ V , the
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block model de�ned by Kolaczyk and Csárdi [98], speci�es that each element Yij of Y is

conditional on the class label q and r of the vertices i and j. The model has the form:

Pr(Y = y) =

(
1

κ

)
exp

{∑
q,r

θqrLqr(y)

}
(3.7)

where Lqr is the number of edges in the observed graph y connecting vertices of classes

q and r, θqr is the parameter estimates, and κ is a normalization constant de�ned as:

κ =
∑
y

exp

{∑
q,r

θqrLqr(y)

}
(3.8)

Stochastic block model (SBM) originated from the ideas that equivalent units can be

grouped together. There are three de�nitions of equivalences which are structural, auto-

morphic and regular [61]. In practice, the di�erences in types of equivalence tend to blur

when stochastic block modeling is applied to real networks.

3.3.2.2 Exponential Random Graph Model

Also referred to as p* models, Exponential Random Graph Models (ERGMs) are proba-

bility models for network designed in analogy to Generalized Linear Models (GLMs) [98].

ERGMs have gained increasing interests especially in modeling social networks. Robins

et al. [110] provide a nice introduction to ERGM as well as a general framework for

ERGM creation which we closely followed in this dissertation.

Given a random graph G = (V,E), for two distinct nodes i, j ∈ V , we de�ne a random
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binary variable Yij such that Yij = 1 if there is an edge e ∈ E between i and j, and

Yij = 0 otherwise. Since co-authorship networks are by de�nition undirected networks,

Yij = Yji and the matrix Y = [Yij] represents the random adjacency matrix for G. The

general formulation of ERGM is therefore:

Pr(Y = y) =

(
1

κ

)
exp

{∑
H

θHgH(y)

}
(3.9)

where each H is a con�guration, a set of possible edges among a subset of the vertices

in G and gH(y) =
∏

yij∈H yij is the network statistic corresponding to the con�guration

H; gH(y) = 1 if the con�guration is observed in the network y, and is 0 otherwise. θH is

the parameter corresponding to the con�guration H (and is non-zero only if all pairs of

variables in H are assumed to be conditionally dependent); κ is a normalization constant

de�ned as:

κ =
∑
y

exp

{∑
H

θHgH(y)

}
(3.10)

3.3.2.3 Temporal Exponential Random Graph Model

The Temporal Exponential Random Graph Model (TERGM) is an extension of the

ERGM described in section 4.4.2.2 proposed by Hanneke, Fu, and Xing [111] from the

work of Robins and Pattison [112]. The TERGM was designed with the idea of account-

ing for inter-temporal dependence in longitudinally collected network data. For a full

description of the TERGM, we refer the reader to Leifeld, Cranmer, and Desmarais [113].

32



A review of past approaches to the analysis of bibliometric data and co-authorship
networks

3.3.2.4 Latent Network Model

Designed in analogy to Mixed Models, Latent Network Models (LNM) allow the incorpo-

ration of latent or unobserved variables in network modeling. These models speci�cally

account for structural equivalence, to model hidden factors or information not available

in the network. Kolaczyk and Csárdi [98] provide a formulation of LNM. Given the ad-

jacency matrix Y of a graph G = (V,E), for each element Yij of Y, the latent variable

model is of the form:

Yij = h(θ, zi, zj, εij) (3.11)

where θ is a constant, the εij are independent and identically distributed pair-speci�c

e�ects, and h is a symmetric function. The model assumes that each vertex i ∈ V has a

latent variable zi. Considering observed covariates Z, the probability of forming an edge

between two nodes i and j (i, j ∈ V ) is independent of all other vertex pairs given values

of latent variables, and is de�ned as:

Pr(Y|Z, θ) =
∏
i 6=j

Pr (Yij|zi, zj, θ) (3.12)
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Chapter 4

Methodology

4.1 Overview

To attain objective 1, our methodological approach consists in performing descriptive

analysis of the network data of each co-authorship network, following the methodology

used by Newman et al. [21] and Ghafouri et al. [24]. For objective 2, we use clustering

methods, and shortest path algorithms as explained by Newman [57, 58]. Next, we apply

mathematical modeling to attain objective 3. Regarding objective 4, we apply advanced

statistical modeling including dynamic or longitudinal network analysis methods as rec-

ommended by Mali et al. [61]. We use a number of visualization methods to display the

results. Finally, we develop a prototype of co-authorship tool to predict future research

collaboration ties using the best performing statistical models.

The methodology work�ow is presented in �gure 4.1.
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4.2 Data Collection

Our research utilized secondary data collection techniques using the systematic literature

search. We collected publication records indexed in the Thompson's Institute for Scien-

ti�c Information Web Of Science (formerly known as the Web of Knowledge). For each

disease domain, we searched the WOS databases using combinations of disease related

MeSH terms. For the malaria research domain, we combined the following MeSH terms:

"Malaria", "Anopheles", "Plasmodium" and "vector". The HIV/AIDS related MeSH

terms are "HIV", "AIDS", "VIH", and "HIV infections". The TB related MeSH terms

include "Tuberculosis", "Mycobacterium", and "Infection". We restricted the search to

the period from 1996 to 2016 and to "Benin" for country. We manually screened the

records in order to only select those published by Beninese authors, or papers published

on each disease domain involving at least one author a�liated to a Beninese research in-

stitution. No restriction was placed upon the document types. For each disease domain,

we �rst queried the WOS with each MeSH term independently, then combined the other

terms so the query return the maximum number of results. The Full citations information

containing the authors' names, their institutional a�liations, the year of publication, as

well as the number of times the document was cited were recorded as bibliographic text

�les. After a second manual screening, only records that met the above listed inclusion

criteria were �nally selected. The selected records were saved in bibliographic text �les

and input to parser and functions for disambiguating the names of authors and other

entities such as cities or research facilities.
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4.2.1 Parsing and Information Disambiguation

We used Dedupe, a python library (obtained from https://github.com/datamade/

dedupe) to disambiguate authors' names and assign a unique identi�cation number to

each author. We manually annotated 10% of the names and then trained the algorithm

to automatically disambiguate the remaining of the entries. Dedupe is interactive and

adjusts further annotations as the disambiguation process evolves. We evaluated our

AND fuzzy matching machine learning method by computing Precision and recall met-

rics. Dedupe was also used to normalize and disambiguate other information such as

research center a�liations, city, and country. At the end of the Information Disambigua-

tion process, a disambiguated Tethne corpus object was generated and used as input to

the co-authorship network generation processing.

4.2.2 Network Generation

Using NetworkX [114], another python library, we wrote a script taking the disambiguated

Tethne corpus object as input to generate undirected multigraph co-authorship networks

containing parallel edges. Each author or researcher from the disambiguated Tethne

corpus represented a vertex. An edge was created between two authors (vertices) when

they author a document together. Multiple parallel edges were created between two

authors when they coauthor multiple papers together. Our script output NetworkX graph

objects where vertices were de�ned by several attributes including name, a�liation, city,

country, number of publication and total number of times cited. Edges had attributes
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associated with them such as a unique identi�er, the number of times a pair of authors was

cited and the number of publications of a pair of authors. The undirected multigraph

networkX objects were �nally exported as .graphML �les and used as input for data

analyses.

4.3 Descriptive Data Analysis

For each co-authorship network, the numbers of authors, edges, and publications are

plotted against the co-authorship years span. Using igraph, a network analysis package

developed in R, each of the graphML �les is converted into an igraph network object.

For the descriptive analysis, we use the igraph package to compute the vertex degree

and examined the degree distribution using both the natural frequency and the log scale

degree distribution to characterize the type of distribution. We also computed vertex

closeness, betweenness, eigenvector centrality measures and edge betweenness centrality

measures to respectively identify the top 10 most connected authors, the top 10 broker

authors, the top 10 network hubs, and the top 10 most important edges for information

�ow.
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4.3.1 Characterizing Network cohesion

The extent to which subsets of authors are cohesive with respect to their relation in

the co-authorship network was assessed through network cohesion. Speci�cally, we deter-

mined if collaborators (co-authors) of a given author tend to collaborate as well, and what

subset of collaborating authors tend to be more productive in the network. Using the

igraph package, we conducted clique detection by computing the maximal cliques and

their sizes, the density, and the transitivity. We also conducted a census of the connected

components in each network, identify the giant component and characterize its size. Cut

vertices were also computed to list the weak articulation points of each network.

The agglomerative hierarchical clustering method was used to identify clusters (or re-

search communities) in the network. Finally, we generated a visualization of each co-

authorship network weighting the vertex size by their betweenness values and assign-

ing colors based on their cluster membership determined by the hierarchical clustering

method.
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4.4 Modeling of Network Data

4.4.1 Mathematical Modeling

We input the observed characteristics of each co-authorship network to an igraph func-

tion to perform 1, 000 Monte-Carlo based simulations of the four di�erent mathematical

models for network graphs (Classical Random Graph, Generalized Random Graph, Watts-

Strogatz Small-World, and the Barabási-Albert Preferential Attachment) presented in

section 3.3.1. We assessed the signi�cance of the observed characteristics by compar-

ing them to those of the 1, 000 simulated networks using a one sample Student's t-test.

Characteristics we assessed signi�cance for are the average shortest paths, the cluster-

ing coe�cient and the number of communities detected by the hierarchical clustering

methods.

4.4.2 Statistical Modeling

To model the complexity of the structure of each co-authorship network, we �t the SBM,

the ERGM, the TERGM, and the LNM (presented in section 3.3.2) to each co-authorship

network data. For each model, we computed and included in the model an important

social network principle referred to as homophily which is de�ned in our network as

the tendency of similar authors to collaborate. Another very important social network

principle we also computed and included in the model, is the one of structural equivalence

which is the similarity of network positions on the formation of collaboration ties in a
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given network. We used the results from the static and temporal statistical network

models listed above to verify the hypotheses in section 1.2. The purpose of this approach

to network modeling is to unveil structural patterns driving collaboration tie formation

in each co-authorship network.

4.4.2.1 Stochastic Block Model

We used SBM to both model each of the observed networks but also as a model based

clustering technique. After �tting the SBM, we examined the posterior probability of class

membership from the returned object. We then determined the class membership of each

vertex class assignment based on the maximum a posteriori criterion. Class membership

was added to the network as an additional nodal attribute. Subroutines of R package

mixer [115�118] was used to �t and evaluate the SBM. Mixer used the Integration

Classi�cation Likelihood (ICL) criterion to select the number of classes �t to the observed

network. We �nally examined the summary plot generated by the Mixer package which

contains the ICL, the degree distribution, the reorganized adjacency matrix, and the

inter/intra class probability plots. While the ICL plot displays the optimal number of

classes, the degree distribution helps assess the goodness-of-�t of the SBM to the observed

data. The reorganized adjacency matrix plot shows the interactions between the classes

of the network and the inter/intra class probabilities plot highlights the inter and intra

interactions between the detected classes.
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4.4.2.2 Exponential Random Graph Model

The R package ergm [119, 120] was used to �t ERGM to the observed networks. We

used ERGM to model the network ties, the dependent variable as a function of nodal

and dyadic attributes (covariates) such as the number of times an author was cited, the

number of publications, the number of collaborators, the collaboration type as well as its

community membership as determined by the SBM.

Given the high transitivity coe�cient of this network, we also included transitivity as a

network structural process. As recommended for ERGM model speci�cation for undi-

rected network, we investigated homophily which is the tendency of similar author to

collaborate. We also included factor attribute e�ect in the model.

Several models containing nodal, dyadic and structural terms were �t to the observed

network data. The �rst model we �t is a naive model containing only the ERGM "edge"

term. This model is nothing but the Bernoulli random graph model [99]. We then �t an-

other model containing only nodal and/or dyadic terms. Third, we �t a structural model

containing only high-order terms representing network statistics such as triangles, k-stars,

geometrically weighted edge-wise shared partner distribution and many more [98, 110].

Model log-likelihood, the Akaike's Information (AIC) and the Bayesian Information (BIC)

criteria were used to select the best ERGM. The best model was selected based on the

lowest AIC, or the lowest BIC, and the highest log-likelihood. Usually, AIC and BIC

decrease or increase together. In case of con�icting trend in AIC and BIC values, the

log-likelihood was used to select the best model. We checked for model diagnostics by

computing and inspecting the Goodness-Of-Fit visualization for the best model using a
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subroutine of the ergm package. A maximum of 1,000 iterations and 1,000 simulations

was set as parameters to the ERGMs.

4.4.2.3 Temporal Exponential Random Graph Model

All Temporal Exponential Random Graph Models (TERGMs) were �t using the Markov

Chain Monte Carlo Maximum Likelihood Estimation (MCMC-MLE) implemented in the

btergm R package [113]. We divided each network in di�erent snapshots spanning dif-

ferent intervals of time using a manual process such that the temporal snapshots are not

overly dense or sparse early on or in later time periods. We used igraph to visualize

and manually veri�ed that the temporal snapshots are balanced across the time periods.

We then modeled the network ties, the dependent variable as a function of nodal and

dyadic variables. Dyadic stability and delay reciprocity memory TERGM terms were

also included in the model. To check whether there is a linear trend in collaboration

tie formation, we also included a linear time covariate in the model. We accounted for

network structural predictors and homophily on the type of collaboration. Model log-

likelihood, the Akaike's Information (AIC) and the Bayesian Information (BIC) criteria

were used to select the best TERGM corresponding to the lowest AIC or BIC, and highest

log-likelihood. AIC and BIC are estimates of a function of the posterior probability of a

model being true. Under a Bayesian setup, a lower BIC or AIC means that a model is

more likely to be the true model.

To evaluate the extent to which the �nal model captures the endogenous properties

and processes of the observed network, we assessed model diagnostics, by inspecting
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the within-sample and out-of-sample goodness-of-�t visualization computed from a sub-

routine of the btergm package. For the out-of-sample goodness-of-�t, we estimated the

model on the �rst network snapshots leaving out the last network snapshot in the series.

We simulated 1, 000 networks from the model and assessed how the simulated networks

predicted the left out network. As described by Desmarais and Cranmer [121], we also

provided a micro-interpretation of the �nal TERGM.

4.4.2.4 Latent Network Model

Ho� [122] suggested an approach based upon the principles of eigen-analysis of specifying

latent variables which we followed in this dissertation. The R package eigenmodel de-

veloped by Ho� [123] was used to �t the LNM to the observed networks. We �t LNM with

both no pair-speci�c and pair-speci�c covariates such as the type of collaboration and

community assignment from the SBM. The rationale of �tting the pair-speci�c models

with those two variables is supported by our third hypothesis which states that collabo-

ration ties in each co-authorship network are driven by homophily in terms of community

membership and/or collaboration type. We also �t other pair-speci�c covariates model

using nodal and dyadic covariates. We visualized and compared the co-authorship net-

work using 3 dimensional layouts determined according to the inferred latent eigenvectors

in each model. Finally, we used a 5-fold cross-validation method to assess the goodness-

of-�t of each model which we compared using ROC curves via the R packageROCR [124].

The creation of the co-authorship tool is presented in Chapter 8.
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Chapter 5

Results: The Malaria Co-authorship

Network

5.1 Data

The search was conducted using combinations of Malaria related MeSH terms including

"malaria", "Anopheles", "Plasmodium" and "vector". The �nal query set (Table 5.1)

returned 685 records. After screening, 424 documents met the selection criteria. On

average, there was 10.67 authors per published document.

After the Author Name Disambiguation, we identi�ed 1792 unique authors with a preci-

sion of 99.87% and a recall of 95.46%. The generated multigraph co-authorship network

therefore contained 1792 vertices (authors) and 116,388 parallel edges (collaborations).
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Table 5.1. Malaria Bibliographic Search Queries.

Set Queries Results

#1
TOPIC: (malaria) OR TOPIC: (mosquito),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN)

513

#2
TOPIC: (malaria) OR TOPIC: (mosquito) OR TOPIC: (anopheles),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN)

529

#3
TOPIC: (malaria) OR TOPIC: (mosquito) OR TOPIC: (anopheles)
OR TOPIC: (plasmodium) OR TOPIC: (bednet),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN)

544

#4
TOPIC: (malaria) OR TOPIC: (mosquito) OR TOPIC: (anopheles)
OR TOPIC: (plasmodium) OR TOPIC: (net) OR TOPIC: (vector),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN)

685

Final Set #1 OR #2 OR #3 OR #4 685

The evolution of the published Malaria related documents, authors and collaborations

from January 1996 to December 2016 is presented on �gure 5.1.

Figure 5.1: Evolution of the published Malaria related documents, authors and col-
laborations from January 1996 to December 2016
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5.2 Descriptive Data Analysis

The degrees of the multigraph network range between 1 and 1338 with an average degree

distribution of 106.46. We noted in addition, a substantial number of vertices with low

degrees (Fig. 5.2). There was also a non-trivial number of vertices with higher order of

degree magnitudes. A log scale distribution of the degrees demonstrate that the vertex

degrees tend to follow a heavy-tail distribution.

After we convert the multigraph network in a weighted graph, it results in a simple graph

of 1792 vertices and 95,787 weighted edges. Mean Closeness centrality ranges between

3.118 × 10−7 and 5.152 × 10−6 with a median of 5.112 × 10−6. This measure suggests

a highly right-skewed distribution. Betweenness measures range between 0 and 245600

with a median of 1985. A network visualization with the vertices' size proportional to

betweenness centrality measures clearly reveals the presence of broker authors (Table 5.2).

The median eigenvectors measure is 0.005, its mean is estimated at 0.09. Eigenvectors

measures reveal the presence of multiple cluttered authors suggesting the presence of

closed collaboration groups. Table 5.2 presents a list of the 10 authors with the highest

Eigenvectors values.

The computation of edge betweenness identi�es co-authorship collaborations that are

important for the �ow of information. In Table 5.2, We present the top 10 most important

collaborations for the �ow of information in the Malaria co-authorship network in Benin.
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Figure 5.2: Degree distribution of the Malaria co-authorship network

5.2.1 Network Cohesion

A total of 365 maximal cliques are identi�ed in the network among which 9 cliques of

size 2, 14 cliques of size 3, 155 cliques of size 8, and 142 cliques of size 7. Larger maximal

cliques sizes range from 102 authors to 365 authors and are all found once across the

network.

The malaria co-authorship network has a density of 0.0596 and a transitivity of 0.965

indicating that 96.5% of the connected triples in the network are close to form triangles.

The transitivity metrics is a measure of the global clustering of the network.

The network is not connected and a census of all the connected components within the

network reveals the existence of a giant component that dominates all the other connected

components. This giant component includes 94% (1686 vertices) of all the vertices in the
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Table 5.2. List of the most important authors and collaborations in the Malaria
co-authorship network

Top 10 Brokers
MASSOUGBODJI ACHILLE
HAY SIMON I
KAREMA CORINE
SANNI AMBALIOU
KENGNE ANDRE PASCAL
AKOGBETO MARTIN
NDAM NICAISE TUIKUE
MALIK ELFATIH M
DABIRE K ROCH
DELORON PHILIPPE

Top 10 most connected authors (Top 10 network hubs)
MASSOUGBODJI ACHILLE
KAREMA CORINE
GONZALEZ RAQUEL
MENENDEZ CLARA
DALESSANDRO UMBERTO
OGUTU BERNHARDS R
FAUCHER JEANFRANCOIS
BASSAT QUIQUE
MARTENSSON ANDREAS
HAY SIMON I

Top 10 most important edges for information �ow
DABIRE K ROCH � KENGNE ANDRE PASCAL
BALDET THIERRY � KENGNE ANDRE PASCAL
AKOGBETO MARTIN � MALIK ELFATIH M
AVLESSI FELICIEN � MOUDACHIROU MANSOUROU
AKOGBETO MARTIN � AVLESSI FELICIEN
MASSOUGBODJI ACHILLE � RAHIMY MOHAMED CHERIF
DIABATE ABDOULAYE � KENGNE ANDRE PASCAL
GARCIA ANDRE � SANNI AMBALIOU
KAREMA CORINE � MALIK ELFATIH M
HAY SIMON I � MALIK ELFATIH M

Weak articulation points
NOEL VALERIE
DJOGBENOU LUC
ZOHOUN I
SANNI AMBALIOU
EDORH ALEODJRODO PATRICK
ALLABI AUREL
HOUNKONNOU MAHOUTON NORBERT
FAYOMI BENJAMIN
KINDEGAZARD DOROTHEE A
DJOUAKA ROUSSEAU
RAHIMY MOHAMED CHERIF
BALDET THIERRY
DOSSOUGBETE L
GARCIA ANDRE
MASSOUGBODJI ACHILLE
AKOGBETO MARTIN

network with none of the other components alone carrying less than 1% of the vertices

in the network (Fig. 5.3).

The assessment of information �ow in the network via cut vertices reveal the existence

of 16 authors as the most vulnerable vertices in the network. Table 5.2 lists the authors
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that constitute the weak articulation points in the malaria co-authorship network. Cut

vertices are crucial to the sustainability of networks [98].

The agglomerative hierarchical clustering method identi�es 23 research communities (or

clusters) in the network. Sizes of the clusters range between 2 and 570 with large research

communities containing between 202 and 569 authors. Medium size research communities

contain between 10 and 62 authors. Only 7 out of the 23 research communities identi�ed

are part of the giant component. Figure 5.3 displays the giant component of the network

with each di�erent colors representing each of the 7 research communities.
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Figure 5.3: Malaria co-authorship network � Main component.
Authors (vertices) of the same color belong to the same research community or cluster
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5.3 Modeling

5.3.1 Mathematical Modeling

The hierarchical clustering method of community detection algorithm has identi�ed 23

di�erent clusters/communities in the co-authorship network out of which 7 form a giant

component. One of the question of interest in this section is whether the number of com-

munities detected is expected or not. The results of 1,000 Monte Carlo based simulations

to test the signi�cance of this observed characteristic are presented on �gures 5.4 and 5.5.

Figure 5.4 clearly demonstrates that the number of communities detected is unusual from

the perspective of both Classical random graphs and generalized random graphs (p-value

< 0.0001). From the Classical random graph model, the expected number of communities

is 3.934 (95%CI: 3.90 � 3.97). Similarly, the expected number of communities from the

generalized random graph model is 7.501 (95%CI: 7.39 � 7.61).

Figure 5.5 displays the number of detected research communities using the Barabási-

Albert's preferential attachment and the Watts-Strogatz models. Supprisingly enough,

the observed number of communities is also extreme per both models (p-value < 0.0001).

The expected number from the Watts-Strogatz model simulations is 3.056 (95%CI: 3.04

� 3.07) and 45.569 (95%CI: 45.42 � 45.72) from the Barabási-Albert model simulations.

We also compared the clustering coe�cient and the average shortest-path length. The

observed clustering coe�cient is 0.9645. Surprisingly, there is substantially more cluster-

ing in our malaria co-authorship network than expected from all 4 mathematical models
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Figure 5.4: Monte-Carlo simulations: Number of detected communities by the random
graph models

(p-value < 0.0001). The expected clustering coe�cient is 0.0596 (95%CI: 0.05963068 �

0.05964648) and 0.4334 (95%CI: 0.4333912 � 0.4334522) respectively for the classic ran-

dom graph and the generalized random graph models.

Similarly, The Watts-Strogatz Small World model expected clustering is 0.7464 (95%CI:

0.7464326 � 0.7464356).

We observed an average shortest-path length of 2.99 in the malaria co-authorship net-

work. This observed shortest-path length is signi�cantly larger than what is expected

from the random graph models (p-value < 0.0001) and signi�cantly lower than what is

expected from Watts-Strogatz small world model and the Barabási-Albert preferential

attachment model (p-value < 0.0001).

The average shortest-path length is 1.94 (95%CI: 1.941955 � 1.941960) and 2.26 (95%CI:
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Figure 5.5: Monte-Carlo simulations: Number of detected communities by the Watts-
Strogatz and the Barabási-Albert models

2.259468 2.259586) respectively for the classic random graph and the generalized random

graph models.

For the Watts-Strogatz small world and the Barabási-Albert models, the average shortest-

path length is respectively 3.83 (95%CI: 3.81 � 3.86) and 9.17 (95%CI: 9.14 � 9.21).

All simulations were also performed on the giant component of the network and led

to similar outcomes.
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5.3.2 Statistical Modeling

5.3.2.1 Stochastic Block Model

The ICL plot on �gure 5.6 shows that the malaria co-authorship network has been �t

with 39 classes by the SBM with a degree of latitude of 30 to 39 classes being reasonable.

The degree distribution of the �tted SBM (blue curve) provides a decent description

of the observed distribution (yellow histogram). In the inter/intra class probabilities

network, the vertices correspond to the 39 classes detected by the SBM. The vertex sizes

are proportional to the number of authors assigned to each class. Each vertex is further

broken down in a pie chart with each portion re�ecting the relative proportion of the types

of collaboration. Yellow represents the proportion of authors of international a�liations,

orange represents regional authors who are a�liated with African institutions other than

Beninese institutions, and green for authors a�liated to Beninese research institutions.

In general, we observe a dominance of international and regional researchers over national

researchers across all detected clusters.

A close look at the reorganized adjacency matrix, reveals the presence of 4 larger classes

(classes number 2, 4, 10 and 27) and 35 other classes of smaller sizes. One of the larger

class (class 27) displays a tendency of its members to only establish collaboration ties

between themselves. This class seems to have the characteristics of a clique. Examination

of the distribution of each class by their type of collaboration (Figure 5.7) indicates that

this class of authors (class 27) is primarily made of international contributors to the

malaria research e�ort in Benin. Although members of this class seem to have rare
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Figure 5.6: Summary of the goodness-of-�t of the SBM analysis on the Malaria co-
authorship network.

collaboration ties with members of other classes, we also notice the presence of very few

broker authors as national liaisons between this class 27 and another larger class (class

2). Though, it also appears in the other three larger classes that the authors tend to

primarily collaborate within their respective classes, they also tend to collaborate with

authors of other classes.

Figure 5.7 also shows that the co-authorship malaria network in Benin is dominated by
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Figure 5.7: Distribution of national, international and regional authors by communi-
ties detected by the SBM in the Malaria network.

international researchers with national contributors unevenly distributed across the de-

tected research communities. In order to better explain the inter/intra class interactions,

we highlight in �gure 5.8, the main classes driving the structure of the network. We

present the results from the SBM on the classes with 50 authors or more. This reorga-

nization clearly con�rmed the presence of a clique of mainly international contributors

who tend to collaborate rarily outside their class. The larger size here (Figure 5.8) is

very diversed and contains all regional contributors to the malaria research e�ort. The

presence of 3 smaller cliques which collaborate intensively between themselves is worth

noting as well (See inter/intra class probabilities network on �gure 5.8).
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Figure 5.8: Summary of the goodness-of-�t of the SBM analysis highlighting interac-
tions between the top 5 larger classes of the Malaria co-authorship network.

5.3.2.2 Exponential Random Graph Model

Table 5.3 summarizes the results of the di�erent models we �t to the observed network.

Model 1 is analogous to the null model in a typical General Linear Model (GLM). The

probability of any two authors establishing a collaboration tie is therefore expressed as

the inverse logit of the edge coe�cient. The inverse logit of a coe�cient x is de�ned

as logit−1(x) = 1/(1 + exp(−x)). The conditional log-odds for a collaboration between

authors in the network is −2.76. The associated probability of any two authors establish-

ing a collaboration tie is therefore 5.96%. To put this in perspective, this probabibility

is the same as the density of the malaria co-authorship network. Since, our network is

characterized by a high transitivity, we modeled the triangle ERGM term along with the

edge term in model 2. We see some improvements in the model performance with a sig-

ni�cantly positive but small triangle e�ect on the collaboration tie formation (Coe�cient
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= 0.08, p < 0.001).

In model 3, we describe the co-authorship network as a function of the number of col-

laborations, the number of publications, and the number of citations of authors inside

the network. We also include confounding homophily term on cluster assignment from

the SBM and on the collaboration type. Compared to models 1 and 2, model 3 has

tremendously improved (See AIC and BIC in table 5.3). The edge e�ect has decreased

(Coe�cient = −7.98, p < 0.001) with the associated conditional probability (given all

other terms in the model) equal to 0.03%. We observed a small, though positively signif-

icant e�ect of the number of collaborators and the number of publications on the odds of

collaboration tie formation between any two authors. One unit increase in the number of

collaborators increases the odds of collaboration tie by 2% while one unit increase in the

number of publications increases the odds of establishing a collaboration tie by 12.75%.

On the other hand, model 3 has found a very small but signi�cant negative e�ect of the

number of times an author was cited on the odds of collaboration tie formation. One unit

increase in the number of citation of a given author was associated with 1% decrease in

the odds of collaboration between two authors conditional on all the other terms in the

model.

It clearly appears that the process underlying the malaria co-authorship network is driven

by homophily on cluster assignment or membership to a speci�c research community and

the type of collaboration. The conditional probability of two authors collaborating ad-

justed by the homophily on their membership to a research community is estimated at

8.32% compared to the baseline probability of 0.03% given all other terms in model 3.
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Adjusted by the collaboration type, the same probability is estimated at 0.05% condi-

tional on all other terms in the model. The overall conditional probability adjusting for

all terms in model 3 is estimated at 14.06% which is a lot greater than the 5.95% esti-

mated from model 1.

In model 4, we introduced factor attributes on the collaboration type in order to in-

vestigate the likelihood of researchers a�liated to Beninese institutions to establish in-

ternational and regional or African collaboration ties. While model 4 slightly improved

upon model 3, it displays minor changes in the coe�cient of the terms it has in common

with model 3. Overall, compared to researchers with international research a�liations,

researchers a�liated to Beninese research institutions have 37.7% average decrease in the

odds of establishing collaboration ties. On the other hand, researchers a�liated to other

African research institutions have 78.6% increase in the odds of establishing a collabora-

tion tie than researchers a�liated to international research institutions. In other words,

in model 4, the probability for researchers a�liated to international institutions to estab-

lish a collaboration tie is estimated at 14.19%, that of researchers a�liated to Beninese

institutions is 10.72%, and that of researchers a�liated to African institutions other than

Beninese institutions is 22.79%.

None of the structural models containing high order ERGM terms, nor the models contain-

ing the dyadic attribute terms converged after the maximum of 1,000 iterations making

estimates from these models unreliable. This observation justi�es the reason why we do

not present the results from these models in table 5.3. The unability of model containing

structural terms to converge also makes it impossible for us to assess model degeneracy
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as recommended by Handcock et al. [125].

Table 5.3. ERGM of the co-authorship Malaria network.

Model 1 Model 2 Model 3 Model 4

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Network structural predictor
Intercept(edge) −2.76 (0.00)∗∗∗ −5.00 (0.01)∗∗∗ −7.98 (0.02)∗∗∗ −8.22 (0.02)∗∗∗

Triangle � 0.08 (0.00)∗∗∗ � �

Number of collaborations � � 0.02 (0.00)∗∗∗ 0.01 (0.00)∗∗∗

Number of publications � � 0.12 (0.00)∗∗∗ 0.13 (0.00)∗∗∗

Number of times cited � � −0.01 (0.00)∗∗∗ −0.01 (0.00)∗∗∗

Homophily on cluster assignment � � 5.58 (0.02)∗∗∗ 5.68 (0.02)∗∗∗

Homophily on collaboration type � � 0.46 (0.01)∗∗∗ 0.61 (0.00)∗∗∗

Factor attribute e�ect (collaboration type)
International � � � REF
National � � � −0.32 (0.02)∗∗∗

Regional � � � 0.58 (0.01)∗∗∗

Number of iterations 6 18 8 9
Akaike's Information Criterion (AIC) 725268 660444 220964 217026
Bayesian Information Criterion (BIC) 725280 660469 221038 217125
Model Log Likelihood −362633 (df = 1) −330220 (df = 2) −110475.9 (df = 6) −108505.2 (df = 8)

REF = reference, SE = Standard Error, df = degree of freedom
∗∗∗p < .001
∗∗p < .01
∗p < .05

Figure 5.9 presents the goodness-of �t of model 4. The observed properties are depicted

by the black lines. Gray lines with circles represent the 95% con�dence intervals for

the simulated network properties. Goodness-of-�t is asserted when the black lines lie

in-between the con�dence intervals lines. The wide range of degree distribution of our

co-authorship network makes it di�cult to assess model �t in terms of degree distribution.

But it is clear that in general, model 4 �ts poorly to the observed network despite the

highly signi�cant estimates obtained. We therefore have strong evidence con�rming that

there is likely something other than the terms included in this model that are driving

the structure of the network, possibly additional attributes our study did not control for.

The following section attempts to address this shortcoming.
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Figure 5.9: ERGM goodness-of-�t of �nal model 4 assessment.

5.3.2.3 Temporal Exponential Random Graph Model

The observed cumulative network was subset in seven snapshots representing respectively

the following time spans: 1996 � 2006, 2007 � 2009, 2010 � 2011, 2012 � 2013, 2014, 2015

and 2016. Figure 5.10 displays the topological structure of the snapshots of the di�erent

time steps.

Table 5.4 summarizes the results of the di�erent temporal models we �t to the observed
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Figure 5.10: Topological structure of the di�erent snapshots of the malaria co-
authorship network.

network. Models 1, 2, and 3 are equivalent to a pooled ERGM across the 7 di�erent time

points (Fig. 5.10). The null model of the TERGM (model 1) suggests that the baseline

log-odds for collaboration tie formation between authors in the network is −4.66. This

coe�cient is equivalent to a baseline probability of 0.9% for any two authors in the net-

work to establish a stable collaboration tie. This probability is signi�cantly lower than

the 5.96% baseline probability of collaboration tie establishment reported by the ERGM

(section 5.3.2.2).

Model 2 of the TERGM describes the co-authorship network as a function of the number

of collaborations, the number of publications, and the number of citations of authors

inside the network. It is also adjusted by homophily on cluster assignment from the SBM

and on the collaboration type. Compared to model 1, model 2 has slightly improved
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(See AIC and BIC in table 5.4). The edge e�ect has decreased (Coe�cient = −10.14,

p < 0.001) with the associated conditional probability (given all other terms in the

model) equal to 0.004%. We observed a relatively high positively signi�cant e�ect of the

homophily on cluster assignment on the odds of collaboration tie formation between any

two authors. Adjusting for the other variables in model 2, authors of the same research

groups/communities are 4.96 times as likely to collaborate than authors that belong to

di�erent research groups. The e�ect of the other attributes in model 2 are minor. When

we adjust for attribute e�ect on the collaboration type, we obtained model 3 which is

slightly better than model 2. Relatively to model 2, the edge e�ect decreases more fol-

lowed by an even stronger e�ect of the homophily on cluster assignment of the authors

in the network (Coe�cient = 5.06, p < 0.001).

After introducing temporal dependencies terms, we obtained model 4 which tremendously

improved compared to models 1, 2 and 3. Model 4 con�rms the observation made in sec-

tion 5.3.2.2 that the process underlying the malaria co-authorship network is driven by

homophily on cluster assignment or membership to a speci�c research community and

the type of collaboration. It further con�rms that the linear trend suspected observed in

�gure 5.1 is signi�cantly associated with the odds of collaboration tie formation in the

Malaria co-authorship network. Model 4 suggests that the baseline conditional proba-

bility of any two authors to collaborate is estimated at 0.02% given all other terms in

the model. The coe�cient associated to the dyadic stability term is 1.07 meaning that

the odds of existent and non existent collaboration ties at one time point to remain the

same at the next time point increased on average by 65.7%. In other words, the odds of
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new collaboration ties and non-ties to occur from one time point to another is 34.3%. In

addition, the TERGM showed that the probability of sustainable collaboration tie for-

mation among international researchers is 12.13% versus 12.24% for researchers a�liated

with national institutions (p > 0.05). However, this probability signi�cantly increases to

20.26% for researchers a�liated to African research institutions other than those in Benin.

These probabilities con�rm the results from the ERGM �nal model with respect to the

higher probability of tie formation between researchers a�liated to African institutions

other than Beninese institutions. None of the structural temporal models containing high

order TERGM terms, nor the models containing the dyadic attribute terms converged

after the maximum of 1,000 iterations making estimates from these models untrustful.

Table 5.4. Temporal ERGM of Malaria co-authorship network.

Model 1 Model 2 Model 3 Model 4

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Network structural predictor
Intercept(edge) −4.66 (0.00)∗∗∗ −10.14 (0.02)∗∗∗ −10.45 (0.02)∗∗∗ −8.65 (0.05)∗∗∗

Number of collaborations � 0.03 (0.00)∗∗∗ 0.03 (0.00)∗∗∗ 0.03 (0.00)∗∗∗

Number of times cited � −0.03 (0.00)∗∗∗ −0.02 (0.00)∗∗∗ −0.03 (0.00)∗∗∗

Number of publications � 0.45 (0.00)∗∗∗ 0.46 (0.00)∗∗∗ 0.45 (0.00)∗∗∗

Homophily on cluster assignment � 4.96 (0.02)∗∗∗ 5.06 (0.02)∗∗∗ 4.79 (0.02)∗∗∗

Homophily on collaboration type � 0.44 (0.01)∗∗∗ 0.56 (0.01)∗∗∗ 0.54 (0.01)∗∗∗

Factor attribute e�ect (collaboration type)
International � � REF REF
National � � −0.10 (0.02)∗∗∗ 0.01 (0.02)
Regional � � 0.55 (0.01)∗∗∗ 0.60 (0.01)∗∗∗

Temporal dependencies
Dyadic stability � � � 1.07 (0.01)∗∗∗

Linear trends � � � −0.18 (0.01)∗∗∗

Akaike's Information Criterion (AIC) 94681198 93740511 93737596 67005816
Bayesian Information Criterion (BIC) 94681230 93740624 93737742 67005991
Model Log Likelihood −47340597 −46870248 −46868789 −33502897

REF = reference, SE = Standard Error
∗∗∗p < .001
∗∗p < .01
∗p < .05
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Figure 5.11 presents the goodness-of-�t assessment for the TERGM model 4. We can see

that this model containing temporal dependencies �ts better to the observed Malaria co-

authorship network than the �nal ERGM model 4. While the �rst �ve sub�gures compare

the distribution of endogenous network statistics between the observed network and the

simulated ones, the last sub�gure presents the Receiver Operating Characteristics (ROC)

and precision-recall (PR) curves. In general, the closer the curve is to the left-hand border

and the top border of the ROC space, the more accurate the prediction is. On the other

hand, the closer the curve is to the 45-degree diagonal of the ROC space, the less accurate

is the prediction. The ROC for model 4 is depicted by the dark red curve compared to

the ROC of a random graph depicted by the light red curve. Similarly, the dark blue

curve represents the PR of model 4 versus the light blue curve representing the PR of a

random graph [113]. It clearly appears that the �nal TERGM model 4 outperformed the

random null model with an Area Under the Curve (AUC) value estimated at 79.98%.
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5.3.2.4 Latent Network Model

Figure 5.12 presents a 3-dimensional visualization of the Malaria co-authorship network,

with layouts determined according to the inferred latent eigenvectors from the no pair-

speci�c model (on top), the model containing nodal covariates (middle), and the model

containing nodal and dyadic covariates (bottom). Blue vertices represent authors a�li-

ated to Beninese research institutions, Red vertices are authors a�liated to international

institutions, Gold vertices represent authors a�liated to African research institutions

other than Benin, and White vertices represent authors with no determined a�liations.

Node sizes are proportional to the betweenness value of each vertex. Looking at the three

visualizations, it clearly appears that the �rst two visualizations are somewhat similar

while the third is di�erent. In fact, in the �rst two visualizations, the authors are clustered

in mainly three clusters. We can see that all the authors a�liated to Beninese research

institutions (in blue) are clustered in one cluster while authors with international a�lia-

tions (in red) and regional authors (in gold) are distributed across all three main clusters.

These observations suggest a signi�cant geography e�ect on the odds of collaboration tie

establishment in the malaria co-authorship network.

The �rst two visualizations also highlight key brokers that liaison between clusters. In the

third visualization, on the other hand, there appears to be only one main cluster. This

last observation suggests that the nodal covariates and mainly homophily on research

community membership and type of a�liation explain much less coarse-scale network

compared to dyadic covariates. Indeed, when the dyadic covariates are added to the

model, there is less structure left to be captured by the latent variables. These results
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compensate the lack of-�t of the ERGM model and con�rmed our �ndings in the previous

section.

Figure 5.12: Visualizations of the Malaria co-authorship network with layouts deter-
mined according to the inferred latent eigenvectors in the LNM models (International

(Red); Regional (Gold); Local (Blue)).
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The ROC curves on �gure 5.13 show that the �rst two models appear to be comparable

in their performance from the perspective of edge status prediction with an Area Under

the Curve (AUC) being roughly 98.8%.

Figure 5.13: ROC curves comparing the goodness-of �t of the Malaria co-authorship
network for three di�erent eigenmodels, specifying (i) no pair speci�c covariates (blue),
(ii) nodal covariates (red), and (iii) nodal and dyadic covariates (green), respectively.
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5.4 Discussion and Conclusion

In this chapter, we provide insights in the structural characteristics of the malaria co-

authorship network in the Republic of Benin over a relatively long period. The 20 years

of data collected coincides with the onset of active malaria research from 1996 until to-

day. The signi�cant increase in malaria research and collaborations (�gure 5.7) between

the authors over the years is an expected �nding given the regain and renewed interest

in malaria control and elimination goals set forth [126, 127]. Our results show that the

mechanism underlying the formation of the malaria co-authorship network in Benin is

not random. It further demonstrates that the malaria research collaboration network in

Benin is a complex network that seems to display small-world properties (often referred

to as "six degrees of separation").

The non-trivial number of authors with higher order of magnitudes con�rms the pres-

ence of closed research groups where collaborative research likely happens only among

members. In other words, interdisciplinary collaboration tends to occur at higher levels

between proli�c researchers with the majority of the collaborations happening between

researchers from the same scienti�c communities. Prominent authors with long tenure

tend to collaborate with similar authors, young or less proli�c authors tend to collaborate

with both proli�c authors and authors with very few collaborations. Similar �ndings were

reported by Janet Okamoto [128] who studied scienti�c collaboration on a much smaller

scale. Key brokers facilitate scienti�c collaborations within and outside their scienti�c
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community [68]. Betweenness centrality measures identify such brokers who are impor-

tant hubs for inter and transdisciplinary research. Many of the main brokers proved to

also be the most connected and the most central authors con�rming the presence of long

publishing tenure authors in our network [129]. The �ow of information in this network in

Benin is slow as it only relies on 16 authors representing less than 1% of all the authors in

the network. Such a low information �ow was also reported by Salamatia and Soheili [70]

in a 2016 study on a co-authorship analysis of Iranian researchers in the �eld of violence.

Generally, the most important authors in a co-authorship network are the ones with the

highest degree of collaborations [130, 131]. However, to the long-term substainability of

the malaria research network in Benin, the 16 authors identi�ed as cut vertices are the

most important authors. In other words, the removal of less than 1% of the authors from

the network would lead to its collapse. Such a collapse would undoubtedly be detrimental

to the future of malaria research in Benin. This �nding clearly con�rms the conclusion

of Toivanen and Ponomariov [67] that the African research collaboration network is vul-

nerable to structural weaknesses and uneven integration.

Small-world networks are known to have small shortest path distance and a high cluster-

ing coe�cient. Although this co-authorship network seems to display such properties, the

Monte-Carlo simulations revealed that the observed network has unexpected properties

compared to classic small-world networks. A study of co-authorship network conducted on

Chagas disease has found similar �ndings [26]. Unlike our study, the authors of the Cha-

gas disease co-authorship study did not deepen their analysis to con�rm the small-world

nature of their observed network. Other mechanisms such as preferential attachment
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have been found to explain the structure of international scienti�c collaboration network

[132]. Unlike those studies, our network displayed unexpected properties that are more

extreme than the 4 mathematical models we simulated. Our network has signi�cantly

higher clustering than expected from the 4 mathematical models presented here. One

observation we are sure of is that none of the random graph models used here tend to

explain the growth and the structure of the malaria co-authorship network in Benin. We

therefore claim without any doubt that the structure and growth of our network is not

random con�rming the presence of hidden factors explaining the current structure of the

network. Assessing such factors and the extent to which they in�uence scienti�c collab-

orations is important for the future of malaria research and its long-term sustainability.

Unfortunately, none of the proposed mathematical models seem to accurately describe

the observed structure of the network. To address these limitations, advanced statistical

modeling was used to further explain the structure of the network.

Our �rst approach to modeling our network relied on the use of SBM. In addition of

being a model based clustering method, the SBM identi�ed important organizational and

interactional patterns in the network. It identi�ed a large clique of mainly international

researchers with little or no collaborations with other research groups. It also identi�ed

the main broker authors in the network. For example, in the �rst two visualizations on

�gure 5.12, the brokers with a�liations to national institutions are MASSOUGBODJI

ACHILLE, AKOGBETO MARTIN, and SANNI AMBALIOU. These authors are also the

ones with the highest citation counts. Such an observation is not surprising given their

long tenure, their publication records, and known expertise in malariology, parasitology
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and medical entomology. The overwelming dominance of regional and international play-

ers in the network is consistent with previous observations by Onyancha and Maluleka

[133] who concluded on a much higher likelihood of Sub-Saharan African countries to

collaborate with non-African states.

Overall, the ERGM and TERGM show that the mechanistic phenomenon driving collab-

oration ties in the malaria research in Benin is in�uenced by homophily on the type of

a�liation (national, international or regional) and on membership to a research group

or cluster, verifying therefore our third hypothesis. The models clearly show that the

dominance of the Beninese malaria research arena by international and regional players,

and further demonstrates the lower likelihood of local Beninese researchers to establish

international collaboration ties compared to regional researchers. This latter �nding has

been con�rmed by the LNM which also con�rms our second hypothesis. The ERGM and

the TERGM revealed that factors such as number of publications, number of citations

and number of collaborations are associated to higher likelihood to establishing collabo-

ration ties, con�rming therefore our �rst hypothesis.

It is worth noting that many of the studies on co-authorship network analysis are descrip-

tive in nature. This study is one of the rare co-authorship network analysis to model a

co-authorship network using advanced statistical models. ERGM is the leading approach

to modeling network [134]. The literature has reported application of this model in study-

ing various social network such as the analysis of friendship and obesity [135, 136], the

exploration of the association between hormone and social network structure [137]. Sim-

ilarly to friendship networks, the use of ERGM to model co-authorship networks is easily
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justi�ed. However, the size of our network prevented the �tting of complex models includ-

ing dyadic and structural terms. In addition, our best ERGM model failed to adequately

�t the observed network data. This lack of goodness-of �t, according to Hunter, Goudreau

and Handcock [138], could be improved by including the geometrically weighted edgewise

shared partner, geometrically weighted dyadic shared partner, and geometrically weighted

degree network statistics to our model. Although, we follow such recommendations by

including these structural network statistics to our �nal model, the ERGM model failed

to converge after a maximum of 1,000 iterations. At about 750 iterations, we noticed that

the processing became both computationally intensive and expensive in terms of CPU

time and memory usage. In a recently published paper, Schmid and Desmarais [134]

acknowledged the di�culty of �tting network which size is of the order 1,000 vertices

using ERGM. They recommended that using the maximum pseudolikelihood estimation

(MPLE) instead of the Monte Carlo maximum likelihood (MCMLE) could tremendously

reduce computation time. Having followed these recommendations too, the ERGM model

containing dyadic and structural terms still failed to converge. By �nally including tem-

poral dependencies and �tting a temporal ERGM, we have tremendously improved the

�tness with a predictive performance of roughly 80%. Nevertheless, we suspect that the

number of edges, the large size of the network added to the possibility of hidden/latent

variables might justify the failure of the models containing the dyadic and structural en-

dogenous terms to converge. We remedy this situation by applying LNM to the observed

network data.

All three latent network models (LNM) proved to be successful in �tting the observed
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network data. A study by Kronegger et al. [139] conducted an investigation aiming

at describing the collaboration in Slovenian scienti�c communities using data from four

di�erent disciplines. Their methodological approach is consistent with ours. The main

di�erence is their application of Stochastic Actor-Oriented Model (SAOM) on the dy-

namics of their co-authorship networks. Since the SAOM is an actor-oriented modeling

method and we are interesting in tie prediction here, we relied rather on a tie-oriented

approach by applying the TERGM to our network data.

Our results suggest that the regain in Malaria research funding has appealed to research

groups all around the world, hence the explosion in publications number and research

collaborations. As the disease continues to be main public health concern in the Republic

of Benin, it is essential to consolidate the knowledge generated from the numerous studies

on the disease and reinforce the di�erent communities involved in the research e�ort. In

addition, there is an urgent need to reinforce the malaria research network in Benin by

continuously supporting, stabilizing the identi�ed key brokers and most productive au-

thors, and promoting the junior scientists in the �eld. However, we observed a tendency

of the international researchers to only collaborate among themselves. Although the rise

in scienti�c collaboration between advanced and developing nations [140], the latter ob-

servation may limit e�ective and sustainable technology transfer in Benin. It is possible

that some of the isolated cliques within the network have top-notch research capabilities

and skills researchers a�liated to Beninese institutions can acquire, should the research

groups be more inclusive. Unfortunately, our visualizations showed that broker authors
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that liaison those closed groups to national researchers tend to be regional or interna-

tional researchers as well. We therefore recommend, that policies should be designed, at

international, regional and country level, to diversify research groups operating in any

Sub-Saharan African countries. Such policies will ultimately enable e�ective technology

transfer, multidisciplinarity, and promote junior African researchers to advance the search

of a solution to the Malaria problem in Africa and particularly, in Benin.
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Chapter 6

Results: The HIV/AIDS Co-authorship

Network

6.1 Data

The literature search was conducted in the Web Of Science (WOS) using combinations

of HIV/AIDS related MeSH terms including "HIV", "AIDS", "VIH" and "HIV Infec-

tions". The �nal query set (Table 6.1) returned 237 records. After a rigorous screening

process, 102 documents met the selection criteria. On average, there were 9.47 authors

per published document.

The Author Name Disambiguation process led to the identi�cation of 516 unique au-

thors with a precision of 99.88% and a recall of 82.54%. The generated multigraph

co-authorship network therefore contained 516 vertices (authors) and 5,114 parallel edges
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Table 6.1. HIV/AIDS Bibliographic Search Queries.

Set Queries Results

#1 TOPIC: (HIV AIDS) Re�ned by: COUNTRIES/TERRITORIES: (BENIN) 52

#2 TOPIC: (HIV AIDS) AND ADDRESS: (BENIN) 107

#3
TOPIC: (HIV) OR TOPIC: (AIDS) AND ADDRESS: (BENIN),
Re�ned by:COUNTRIES/TERRITORIES: (BENIN)

182

#4
TOPIC: (HIV) OR TOPIC: (VIH) OR TOPIC: (AIDS) AND ADDRESS: (BENIN),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN)

182

Final Set #1 OR #2 OR #3 OR #4 237

(collaborations). The number of unique authors for HIV research is roughly one third

of the Malaria ones. As displayed in �gure 6.1, we can see the signi�cant increase in

publications, scienti�c collaborations and the number of authors involved in HIV/AIDS

research from 2008 until 2016. This general upward trend seems to be linear from the

year 2008 to 2016. The variation seen between adjacent years may re�ect the relatively

small productivity of HIV research prior to the year 2008.

Figure 6.1: Evolution of the published HIV related documents, authors and collabo-
rations from January 1996 to December 2016
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6.2 Descriptive Data Analysis

For the multigraph network, the degree distribution varies between 1 and 403 with an

average degree distribution of 19.82 and a median of 12. In addition, there was a sub-

stantial number of vertices with low degrees (Fig. 6.2). The log scale distribution of the

degrees on �gure 6.3 reveals that there was also a non-trivial number of vertices with

higher order of degree magnitudes. There is a tendency of the vertex degrees to follow a

heavy-tail distribution suspected on �gure 6.2.
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Figure 6.2: Degree distribution of the HIV/AIDS co-authorship network

After we convert the multigraph network in a weighted graph, it results in a simple graph

of 516 vertices and 3,966 weighted edges. Closeness centrality measures range between

3.76× 10−6 and 3.19× 10−5 with a median of 3.13× 10−5. Betweenness measures range

between 0 and 49,280 with a median of 426.2. A network visualization with the vertices'

size proportional to betweenness centrality measures clearly reveals the presence of broker
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authors (Figure 6.4 and Table 6.2). The median Eigenvectors is 0.202 with a mean of

0.045. The eigenvectors measures con�rm the presence of author hubs in the network

suggesting the presence of closed collaboration groups. Table 6.2 presents a list of the 10

author hubs with the highest Eigenvectors values.

1 2 5 10 20 50 100 200

1
2

5
10

20
50

10
0

Log Vertex Degree

Lo
g 

A
ve

ra
ge

 N
ei

gh
bo

r 
D

eg
re

e

Figure 6.3: Log-Average Neighbor degree Distribution of the HIV/AIDS co-authorship
network

Edge betweenness centrality measures identify co-authorship collaboration ties that are

important for the �ow of information. Table 6.2 presents the top 10 most important

collaboration ties for the �ow of information in the HIV/AIDS co-authorship network in

Benin.
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Table 6.2. List of the most important authors and collaborations in the HIV/AIDS
co-authorship network

Top 10 Brokers
ZANNOU DJIMON MARCEL
ALARY MICHEL
LEROY VALERIANE
AZONDEKON ALAIN
ANAGOUNOU SEVERIN
ADE GABRIEL
AZONKOUANOU ANGELE
NDOYE IBRA
NDOUR MARGUERITE
AFFOLABI D

Top 10 most connected authors (Top 10 network hubs)
ZANNOU DJIMON MARCEL
ALARY MICHEL
ANAGOUNOU SEVERIN
LOWNDES CATHERINE M
LABBE ANNIECLAUDE
DABIS FRANCOIS
MINANI ISAAC
BEHANZIN LUC
DIABATE SOULEYMANE
EKOUEVI DIDIER K

Top 10 most important edges for information �ow
ZANNOU DJIMON MARCEL � LEROY VALERIANE
ZANNOU DJIMON MARCEL � NDOUR MARGUERITE
ALARY MICHEL � AZONKOUANOU ANGELE
ZANNOU DJIMON MARCEL � NDOYE IBRA
ANAGOUNOU SEVERIN � ADE GABRIEL
ZANNOU DJIMON MARCEL � WACHINOU ABLO PRUDENCE
ZANNOU DJIMON MARCEL � DALMEIDA MARCELLINE
AZONDEKON ALAIN � ADE GABRIEL
AZONKOUANOU ANGELE � AZONDEKON ALAIN
ZANNOU DJIMON MARCEL � COFFIE PATRICK A

Weak articulation points
ATADOKPEDE FELIX
NDOUR MARGUERITE
DALMEIDA MARCELLINE
AZONDEKON ALAIN
GANDAHO PROSPER
AFFOLABI D
ADE GABRIEL
ZANNOU DJIMON MARCEL
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6.2.1 Network Cohesion

In total, 29 maximal cliques were detected in the network among which 2 cliques of size

24, 1 clique of size 23 and 4 cliques of size 3. Larger maximal cliques sizes range from 14

authors to 25 authors.

The HIV/AIDS co-authorship network has a density of 0.0298 indicating that the baseline

probability of collaboration tie formation is 2.98%. The network also has a transitivity

of 0.482 meaning that 48.2% of the connected triples in the network are close to form

triangles. The transitivity metrics is a measure of the global clustering of the network.

The network is not connected and a census of all the connected components within the

network reveals the existence of a giant component that dominates all the other connected

components. The giant component of the HIV/AIDS co-authorship network includes

88.6% (457 vertices) of all the vertices in the network with the other components alone

carrying less than 1% of the vertices (Fig. 6.4).

Information �ow assessment of this network via cut vertices con�rms the existence of

8 authors as the most vulnerable vertices in the network. Table 6.2 lists the authors

that constitute the weak articulation points in the HIV/AIDS co-authorship network.

The identi�cation of cut vertices is a measure of the vulnerability of the HIV/AIDS co-

authorship network [98].

Via the agglomerative hierarchical clustering method, we identify 24 di�erent research

communities (or clusters) which sizes range between 1 and 108 authors. Large research

communities contain between 71 and 108 authors. Medium size research communities

contain between 10 and 55 authors. Out of the 24 clusters detected, 12 are part of the
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giant component. Figure 6.4 displays the structure of the network with each di�erent

colors representing each of the 24 clusters.

Figure 6.4: Topological Structure of the HIV/AIDS co-authorship network. Authors
(vertices) of the same color belong to the same research community or cluster
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6.3 Modeling

6.3.1 Mathematical Modeling

We performed 1,000 Monte Carlo based simulations to test the signi�cance of the observed

characteristics of the HIV/AIDS co-authorship network. Figure 6.5 clearly demonstrates

that the number of communities detected is unusual from the perspective of both Classical

random graphs and generalized random graphs (p-value < 0.0001). From the Classical

random graph model, the expected number of communities was 5.574 (95%CI: 5.53 �

5.62). Similarly, the expected number of communities from the generalized random graph

model is 6.65 (95%CI: 6.60 � 6.70).
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Figure 6.5: Monte-Carlo simulations of the HIV/AIDS network: Number of detected
communities by the random graph models

Figure 6.6 displays the number of detected research communities using the Barabási-

Albert's preferential attachment and the Watts-Strogatz models. The observed number
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of communities was extreme per both models (p-value < 0.0001). The expected num-

ber from the Watts-Strogatz model simulations is 3.181 (95%CI: 3.16 � 3.21) and 22.8

(95%CI: 22.7 � 23.0) from the Barabási-Albert model simulations. We also compared the

clustering coe�cient and the average shortest-path length. Let's recall that the observed

clustering coe�cient is 0.482. On one hand, there was substantially more clustering in

our HIV/AIDS co-authorship network than expected from both random graph models

(p-value < 0.0001). The expected clustering coe�cients was 0.0365 (95%CI: 0.0363 �

0.0365) and 0.0842 (95%CI: 0.0841 � 0.0843) respectively for the classic random graph

and the generalized random graph models.

On the other hand, there was substantially less clustering in our HIV/AIDS co-authorship

network than expected by the Watts-Strogatz Small World model which expected clus-

tering was 0.72615 (95%CI: 0.72611 � 0.72618).
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Figure 6.6: Monte-Carlo simulations of the HIV/AIDS network: Number of detected
communities by the Watts-Strogatz and the Barabási-Albert models
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We observed an average shortest-path length of 2.75 in the HIV/AIDS co-authorship net-

work. This observed shortest-path length is signi�cantly larger than what was expected

from the random graph models (p-value < 0.0001) and signi�cantly lower than what was

expected from Watts-Strogatz small world model and the Barabási-Albert preferential

attachment model (p-value < 0.0001).

The average shortest-path length was 2.49069 (95%CI: 2.49062 � 2.49077) and 2.381

(95%CI: 2.380 2.381) respectively for the classic random graph and the generalized ran-

dom graph models.

For the Watts-Strogatz small world and the Barabási-Albert preferential attachment mod-

els, the average shortest-path length is respectively 5.31 (95%CI: 5.28 � 5.36) and 7.35

(95%CI: 7.31 � 7.38).

We performed the same simulations on the giant component of the network with sim-

ilar results leading to similar outcomes.
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6.3.2 Statistical Modeling

6.3.2.1 Stochastic Block Model

The SBM identi�es 26 classes with a degree of latitude of 17 to 26 classes being reasonable

(See ICL plot on �gure 6.7).

Figure 6.7: Summary of the goodness-of-�t of the SBM analysis on the HIV/AIDS
co-authorship network.

Regarding the degree distribution, the �tted SBM describes well the observed degree

distribution. On the network depicting the inter/intra probabilities between the classes,
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the vertices represent the 26 identi�ed classes, with each one of them divided into a pie

chart displaying the proportion of authors of international a�liations (lightblue), authors

of regional or other African a�liations (darkblue), and authors a�liated to Beninese re-

search institutions (yellow). Generally, the dominance across the classes of international

and regional players is observed. In addition, we observe denser ties between medium

size and smaller size classes.

A close examination of the pie charts reveals that almost all the classes are heterogeneous.

We note the presence of 2 large classes which are classes 5 and 12 (See reorganized adja-

cency matrix on �gure 6.7). Class 5 is dominated by researchers with Beninese a�liations

but appears sparser than class 12 which is dominated by international authors (Figure

6.7).

Figure 6.8: Distribution of national, international and regional authors by communi-
ties detected by the SBM in the HIV/AIDS network.
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On �gure 6.9, we present the SBM results emphasizing the largest classes (with more

than 20 members). Here, we can con�rm that smaller classes tend to collaborate more

among themselves and intra-class collaborations tend to occur more.

Figure 6.9: Summary of the goodness-of-�t of the SBM analysis highlighting interac-
tions between the largest classes of the HIV/AIDS co-authorship network.
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Model 1 Model 2 Model 3

Estimate (SE) Estimate (SE) Estimate (SE)

Network structural predictor
Intercept(edge) −3.48 (0.02)∗∗∗ −7.51 (0.06)∗∗∗ −7.55 (0.07)∗∗∗

Number of times cited � 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗

Number of collaborations � 0.08 (0.00)∗∗∗ 0.08 (0.00)∗∗∗

Number of publications � −0.29 (0.01)∗∗∗ −0.28 (0.01)∗∗∗

Homophily on cluster assignment � 5.01 (0.05)∗∗∗ 5.02 (0.05)∗∗∗

Homophily on collaboration type � 0.77 (0.05)∗∗∗ 0.72 (0.05)∗∗∗

Factor attribute e�ect (collaboration type)
International � � REF
National � � −0.05 (0.04)
Regional � � 0.21 (0.03)∗∗∗

AIC 35668.54 18956.20 18912.74
BIC 35678.34 19014.98 18991.12
Log Likelihood −17833.27 −9472.10 −9448.37
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6.3. ERGM of the HIV/AIDS co-authorship network.

6.3.2.2 Exponential Random Graph Model

Di�erent models were �t with the ERGM method (Table 6.3). Model 1, the null model,

contains only the "edge" term. The inverse logit of the coe�cient associated with this

term is 0.0298 which is the baseline probability of collaboration ties establishment and

also the density of the HIV/AIDS co-authorship network.

In model 2, we included all nodal variables, a homophily term on collaboration type and

on cluster assignment determined from the SBM. Model 2 improved tremendously com-

pared to model 1 (See AIC, BIC and model likelihood in table 6.3). We note a decrease
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in the edge e�ect (Coe�cient = −7.51, p < 0.001) with the associated conditional prob-

ability (given all the other terms in the model) estimated at 0.05%. For the remaining

terms in model 2, we observed a positive and signi�cant e�ect except for the number of

publications. Model 3 di�ers from model 2 in that it includes a factor term on the collab-

oration type with a substantial improvement compared to model 2. Model 3 is therefore

chosen as our last model. Regarding the number of publication, a one unit increase in the

number of publication is associated with 32.3% average decrease in the odds of collabora-

tion ties establishment. Model 3 further proves that the process underlying the structure

of the HIV/AIDS co-authorship network in Benin is mainly driven by homophily on clus-

ter assignment or membership to a research community or group (Coe�cient = 5.02,

p < 0.001). The conditional probability of any two authors belonging to the same re-

search group to collaborate is estimated at 7.38% compared to the baseline probability

of 2.98%. The same probability changes to 14.06% after adjustment by the collabora-

tion type, and 11.82% after adjusting for the number of citations, collaborations and

publications. Compared to researchers a�liated to international institutions, researchers

a�liated to Beninese institutions have 5.1% average decrease in the odds of collabora-

tion tie establishment. This average decrease is not statistically signi�cant (p > 0.05).

For researchers a�liated to institutions other than Beninese institutions, the odds of col-

laboration tie establishment increases on average by 18.9% compared to internationally

a�liated researchers. Overall, model 3 estimated the probability of collaboration tie for-

mation at 11.8% for international researchers, 11.3% for national researchers and 14.2%

for regional players.
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Since none of the models containing endogenous ERGM terms and/or the dyadic vari-

ables, attained convergence, we do not present those results in table 6.3.

Figure 6.10: ERGM goodness-of-�t of �nal model 3 assessment on the HIV/AIDS
co-authorship network.

Figure 6.10 presents the goodness-of-�t of the �nal model 3. It appears that the ERGM

�ts well the observed HIV/AIDS co-authorship network in terms of edge-wise, dyad-wise

shared partners, degree, geodesic distances, triad census. In addition, 89.9% of the time,

model 3 accurately predicted new collaboration ties among the authors (AUC = 89.9%,

random models light curves not displayed).
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6.3.2.3 Temporal Exponential Random Graph Model

We subset the cumulative observed network in six snapshots according to the following

time spans: 1996 � 2001, 2002 � 2008, 2009 � 2010, 2011 � 2012, 2013 � 2014 and 2015 �

2016. In �gure 6.11, we show the topological structure of the network snapshots for the

di�erent time steps.

Figure 6.11: Topological structure of the di�erent snapshots of the HIV/AIDS co-
authorship network.

Table 6.4 summarizes the results of the di�erent temporal models �t to the observed snap-

shots of the network. The coe�cient for the edge term in the null pooled ERGM model 1

is estimated at −5.18 with an associated baseline pooled probability of collaboration tie

formation of 0.56%. This probability is lower than the density of the cumulative network.

After adjusting for the nodal variables and the homophily terms, model 2 improved

slightly over the null model 1. Model 3 adjusted model 2 by including a factor attribute
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e�ect on the collaboration type with a slight improvement over model 2. Model 3 con-

tains the same terms as the �nal model of the ERGM in the previous section. Unlike the

�nal model of the ERGM, we observed here a signi�cant decrease of 33.6% in the odds of

researchers a�liated with Beninese institutions to collaborate compared to international

researchers. This e�ect is maintained after adjusting for the temporal dependencies in

model 4.

Model 4 displays a tremendous improvement over model 3, and is hence our �nal TERGM.

The results of model 4 con�rm the observation made in section 6.3.2.2 that the process of

collaboration tie establishment in the HIV/AIDS network is mainly driven by homophily

on collaboration type and on membership to research groups or communities.

Both temporal dependencies e�ects are signi�cant in the �nal model. We observed a sig-

ni�cantly positive dyadic stability e�ect accompanied with a signi�cantly negative linear

trends e�ect. For dyadic stability, the coe�cient is 0.37 meaning that the odds of existent

and non existent collaboration ties at one time point to remain the same at the next time

point increased on average by 30.9%. In other words, the odds of new collaboration ties

and non-ties to occur from one time point to another is 69.1%. Overall, the probability

of international authors to establish a stable collaboration tie is 7.94% versus 6.30% and

9.62% respectively for national and regional researchers.

The goodness-of-�t assessment of the �nal TERGM model 4 is presented in �gure 6.12.

The �rst �ve sub�gures comparing the distribution of endogenous network statistics be-

tween the observed network and the simulated ones show a good �t of the �nal model to

the observed network data. The AUC of the ROC curve in the six sub�gures is 79.9%
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Table 6.4. Temporal ERGM of the HIV/AIDS co-authorship network.

Model 1 Model 2 Model 3 Model 4

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Network structural predictor
Intercept(edge) −5.18 (0.02)∗∗∗ −8.73 (0.05)∗∗∗ −8.68 (0.06)∗∗∗ −7.86 (0.09)∗∗∗

Number of times cited � 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗

Number of collaborations � 0.12 (0.00)∗∗∗ 0.11 (0.00)∗∗∗ 0.10 (0.00)∗∗∗

Number of publications � −0.10 (0.01)∗∗∗ −0.06 (0.01)∗∗∗ −0.03 (0.01)
Homophily on cluster assignment � 4.60 (0.05)∗∗∗ 4.61 (0.05)∗∗∗ 4.46 (0.05)∗∗∗

Homophily on collaboration type � 0.52 (0.04)∗∗∗ 0.50 (0.04)∗∗∗ 0.59 (0.04)∗∗∗

Factor attribute e�ect (collaboration type)
International � � REF REF
National � � −0.29 (0.03)∗∗∗ −0.25 (0.04)∗∗∗

Regional � � 0.14 (0.03)∗∗∗ 0.21 (0.03)∗∗∗

Temporal dependencies
Dyadic stability � � � 0.37 (0.04)∗∗∗

Linear trends � � � −0.08 (0.02)∗∗∗

AIC 5591754.39 5563258.81 5563125.93 3715452.45
BIC 5591781.15 5563352.48 5563246.37 3715595.64
Log Likelihood −2795875.19 −2781622.40 −2781553.96 −1857715.22

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

for model 4 in predicting ties in the last snapshot. While this performance is lower than

the performance of the �nal ERGM model 3 from the previous section, the walktrap and

edge betweenness modularity distributions from model 4 predicted well the observed ones.

Finally, the walktrap community comembership prediction displays an AUC of 80%.
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6.3.2.4 Latent Network Model

In �gure 6.13, we present the 3-dimensional visualization of the HIV/AIDS co-authorship

with layouts determined according to the inferred latent eigenvectors from the no pair-

speci�c model (on top), the model containing nodal covariates (middle), and the model

containing nodal and dyadic covariates (bottom). Blue vertices represent authors a�li-

ated to Beninese research institutions, Red vertices are authors a�liated to international

institutions, Gold vertices represent authors a�liated to African research institutions

other than Benin, and White vertices represent authors with no determined a�liations.

Vertex sizes are set to be proportional to the betweenness value of each vertex, with

bigger vertices emphasizing key broker authors in the network.

The �rst visualization represents the LNM with no pair-speci�c covariates. It shows

mainly two clusters with little demarcation. We can see that there is a heterogeneity in

the spatial distribution of the vertices. After adjusting for the nodal covariates (second

visualization), the clustering of the nodes appears less apparent. This results seem to

suggest the non-signi�cant role of geography in the establishment of collaboration ties in

the HIV/AIDS co-authorship network.

After adding dyadic variables to the model, the resulting visualization shows that there

is less structure left to be captured by the latent variables (bottom sub�gure on �gure

6.13). This observation can explain the failure of our ERGM and TERGM containing

dyadic covariates to converge. It also con�rms our ERGM and TERGM �ndings.

We assess the goodness-of-�t of the LNMs. The ROC curves on �gure 6.14 shows that
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the LNM model containing the nodal covariates (AUC = 0.966) outperforms the null

model (AUC = 0.898).

Figure 6.13: Visualizations of the HIV/AIDS co-authorship network with layouts de-
termined according to the inferred latent eigenvectors in the LNM models (International

(Red); Regional (Gold); Local (Blue); Unknown (White)).
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Figure 6.14: ROC curves comparing the goodness-of �t of the HIV/AIDS co-
authorship network for the model specifying (i) no pair speci�c covariates (blue) and

the model specifying (ii) nodal covariates (red).
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6.4 Discussion and Conclusion

This chapter deciphers the HIV/AIDS co-authorship network over the last 20 years. The

results from the descriptive analyses in this chapter are similar to the descriptive analyses

results from chapter 6. Similar to our �ndings for the malaria co-authorship network, the

HIV/AIDS co-authorship network in Benin is a complex network, as it exhibits unex-

pected properties that are more extreme than the 4 mathematical models used for the

Monte-Carlo based simulations. The observed characteristics disproved previous studies

supporting the idea that co-authorship have small world properties [26] or are preferen-

tial attachment networks [132]. In fact, unlike our methodology, those studies mainly

used descriptive methods and did not apply advance statistical methods to test their net-

work properties. The HIV/AIDS co-authorship network in Benin has a low density with

a highly right-skewed node degree distribution. Compared to the malaria co-authorship

network, the relatively low transitivity provides evidence of less hierarchy - well connected

authors in this network tend to connect with poorly connected ones. This also indicates

that this network is less assortative than the malaria co-authorship network, with proli�c

and non tenure authors connected to similar authors. As in Salamati and Soheili [70],

The �ow of information in the HIV/AIDS network in Benin is slow as it only relies on 8

authors representing less than 1% of all the authors in the network. The removal of these

authors from the network would lead to its collapse. Such a structural vulnerability is

not just inherent to the HIV/AIDS co-authorship network, as it is a global observation

already reported elsewhere [67]. Since the mathematical models applied here, fell short to
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thoroughly explain the mechanistic phenomenon explaining the growth and the structure

of the network, we suspect hidden factors which we attempted to model using advanced

statistical models.

As our �rst modeling approach, the SBM identi�ed heterogeneous classes with no dom-

inance of regional, national or international players, despite a reported higher likelihood

of Sub-Saharan African countries to collaborate with non-African states [133].

Based on the results from our ERGM and TERGMmodels, in the HIV/AIDS co-authorship

network, authors are more likely to establish collaboration ties within their research

groups or communities. Unfortunately, we were not able to control for transitivity as all

the models adjusting for this term failed to converge. We suspect the size and complex-

ity of this network to have prevented the convergence of such models, even after 1,000

iterations [134].

Factors such as number of publications, number of citations and number of collaborations

were found to have a small but signi�cant (p<0.001) association with co-authorship, con-

�rming therefore our �rst hypothesis. Adding temporal dependencies to our ERGM

tremendously improved the �tness of the model to the observed network data, but at a

cost of decreased performance compared to the model without temporal dependencies.

The LNM complements the ERGM and TERGM by adding another layer of analysis.

With the LNM, we are able to visualize the e�ect of geography on the structure of the

network. The lack of clear cluster demarcation suggests that distance does not play a

signi�cant role in collaboration tie formation in the HIV/AIDS network.
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Our results con�rm that the regain in HIV/AIDS research funding has led to a signi�-

cant increase in publications number and research collaborations in Benin. In order to

consolidate the knowledge generated, there is an urgent need to reinforce the HIV/AIDS

research network in Benin given its vulnerability. Identi�ed key brokers and most pro-

ductive authors need to continuously be supported, and identi�ed junior scientists in the

�eld be promoted.
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Chapter 7

Results: The Tuberculosis

Co-authorship Network

7.1 Data

The literature search was conducted in the Web Of Science using combinations of TB

related MeSH terms including "Tuberculosis", "Mycobacterium", "Infection". The �nal

query set (Table 7.1) returned 109 records. The records were manually screened to verify

the involvement of either an author from Benin or the use of data collected in Benin.

Overall, 37 documents met the selection criteria. On average, there were 9.38 authors

per published document.

After the Author Name Disambiguation, we identi�ed 173 unique authors with a preci-

sion of 99.99% and a recall of 99.99%. The generated multigraph co-authorship network
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Table 7.1. TB Bibliographic Search Queries.

Set Queries Results

#1 TOPIC: (Tuberculosis) AND ADDRESS: (BENIN) 109

#2
TOPIC: (Tuberculosis),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN )

77

#3
TOPIC: (Mycobacterium Tuberculosis),
AND ADDRESS: (Benin)

77

#4
TOPIC: (Tuberculosis) OR TOPIC: (Infection) AND ADDRESS: (BENIN),
Re�ned by: COUNTRIES/TERRITORIES: (BENIN)

89

Final Set #1 OR #2 OR #3 OR #4 109

therefore contained 173 vertices (authors) and 1,937 parallel edges (collaborations). As

displayed in �gure 7.1, we can see the signi�cant increase in publications, scienti�c collab-

orations and the number of authors involved in TB research from 2008 until 2016. This

general upward trend seems to be linear from the year 2008 to 2016.

Figure 7.1: Evolution of the published TB related documents, authors and collabora-
tions from January 1996 to December 2016
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7.2 Descriptive Data Analysis

For the multigraph network, the degree distribution ranged between 2 and 165 with

an average degree distribution of 17.36 and a median of 15. In addition, there was a

substantial number of vertices with low degrees (Fig. 7.2). The log scale distribution of

the degrees on �gure 7.3 reveals that there was a tendency of proli�c authors to collaborate

with less proli�c authors.
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Figure 7.2: Degree distribution of the TB co-authorship network

After converting the multigraph network in a weighted graph, the network results in a

simple graph of 173 vertices and 1,502 weighted edges. Closeness centrality measures

range between 3.68 × 10−5 and 3.28 × 10−4 with a median of 3.18 × 10−4. Betweenness

measures range between 0 and 3,077 with a median of 12.49. A network visualization

with the vertices' size proportional to betweenness centrality measures clearly reveals the

presence of broker authors (Figure 7.4 and Table 7.2). The median Eigenvectors is 0.087
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Figure 7.3: Log-Average Neighbor degree Distribution of the TB co-authorship net-
work

and a mean of 0.138. Eigenvectors measures reveal the presence of author hubs in the

network suggesting the presence of closed collaboration groups. Table 7.2 presents a list

of the top 10 author hubs with the highest Eigenvectors values.

Edge betweenness centrality measures identify co-authorship collaboration ties that are

important for the �ow of information. Table 7.2 presents the top 10 most important

collaboration ties for the �ow of information in the TB co-authorship network in Benin.

7.2.1 Network Cohesion

Overall, 28 maximal cliques were detected in the network among which 1 clique of size

10, 2 cliques of size 5, and 2 cliques of size 4. The largest clique has size 10.

The TB co-authorship network has a density of 0.10095 indicating that the baseline
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Table 7.2. List of the most important authors and collaborations in the Tuberculosis
co-authorship network

Top 10 Brokers

AFFOLABI DISSOU
GNINAFON MARTIN
DE JONG BOUKE C
TREBUCQ ARNAUD
ODOUN MATHIEU
ANAGONOU SEVERIN
WACHINOU PRUDENCE
FAIHUN FRANK
KASSA FERDINAND
ADE SERGE

Top 10 most connected authors (Top 10 network hubs)

GNINAFON MARTIN
AFFOLABI DISSOU
ANAGONOU SEVERIN
MERLE CORINNE S C
TREBUCQ ARNAUD
OLLIARO PIERO L
RUSTOMJEE ROXANA
LO MAME BOCAR
LIENHARDT CHRISTIAN
HORTON JOHN

Top 10 most important edges for information �ow

ODOUN MATHIEU � GNINAFON MARTIN
FAIHUN FRANK � DE JONG BOUKE C
ODOUN MATHIEU � TREBUCQ ARNAUD
ZELLWEGER J P � GNINAFON MARTIN
TREBUCQ ARNAUD � ADJONOU CHRISTINE
ODOUN MATHIEU � WACHINOU PRUDENCE
AFFOLABI DISSOU � BAHSOW OUMOU
AFFOLABI DISSOU � TOUNDOH N
AFFOLABI DISSOU � BEKOU W
AFFOLABI DISSOU � MAKPENON A

Weak articulation point

WACHINOU PRUDENCE

probability of collaboration tie formation is 10.095%. The network also has a transitivity

of 0.6305 meaning that 63.05% of the connected triples in the network are close to form

triangles. The transitivity measures the global clustering of the network.

The network is not connected and a census of all the connected components within the
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network reveals the existence of a giant component that dominates all the other connected

components. The giant component of the TB co-authorship network includes 90.8% (157

vertices) of all the vertices in the network with the other components alone carrying less

than 0.1% of the vertices in the network (Fig. 7.4).

Figure 7.4: Topological Structure of the Tuberculosis co-authorship network. Authors
(vertices) of the same color belong to the same research community or cluster

Information �ow assessment of the network via cut vertices reveals the existence of a

single author as the most vulnerable vertex in the network (Table 7.2). The cut vertex

constitute the weak articulation point of the TB co-authorship network. Cut vertices
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represent a measure of the vulnerability of the network [98].

The agglomerative hierarchical clustering method identi�es 6 di�erent clusters in the

network. Sizes of the clusters range between 14 and 58 authors. Out of the 6 research

clusters detected, 5 are in the giant component. Figure 7.4 displays the giant component

of the network with each di�erent colors representing each of the 6 clusters.

7.3 Modeling

7.3.1 Mathematical Modeling

From the hierarchical clustering method of community detection, 6 di�erent clusters

were detected in the co-authorship network out of which 5 form a giant component. We

performed 1,000 Monte Carlo based simulations to test the signi�cance of this observed

characteristic of the TB co-authorship network. Figure 7.5 clearly demonstrates that

the number of communities detected is unusual from the perspective of both Classical

random graphs and generalized random graphs (p-value < 0.0001). From the Classical

random graph model, the expected number of communities was 4.734 (95%CI: 4.70 �

4.77). Similarly, the expected number of communities from the generalized random graph

model is 5.34 (95%CI: 5.29 � 5.38).

Figure 7.6 displays the number of detected clusters or research communities using the

Barabási-Albert's preferential attachment and the Watts-Strogatz models. Here too, the

observed number of communities was extreme per both models (p-value < 0.0001). The
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Figure 7.5: Monte-Carlo simulations of the TB network: Number of detected commu-
nities by the random graph models

expected number from the Watts-Strogatz model simulations is 3.017 (95%CI: 3.01 �

3.03) and 13.77 (95%CI: 13.70 � 13.85) from the Barabási-Albert model simulations.
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Figure 7.6: Monte-Carlo simulations of the TB network: Number of detected commu-
nities by the Watts-Strogatz and the Barabási-Albert models
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We also compared the clustering coe�cient and the average shortest-path length. Let's re-

call that the observed clustering coe�cient is 0.614. On one hand, there was substantially

more clustering in our TB co-authorship network than expected from both random graph

models (p-value < 0.0001). The expected clustering coe�cients was 0.10087 (95%CI:

0.10068 � 0.10107) and 0.1937 (95%CI: 0.1934 � 0.1939) respectively for the classic ran-

dom graph and the generalized random graph models.

On the other hand, there was substantially less clustering in our TB co-authorship network

than expected from the Watts-Strogatz Small World model which expected clustering was

0.7259 (95%CI: 0.7258 � 0.7260).

We observed an average shortest-path length of 2.126 in the TB co-authorship network.

This observed shortest-path length is signi�cantly larger than what was expected from the

random graph models (p-value < 0.0001) and signi�cantly lower than what was expected

from Watts-Strogatz small world model and the Barabási-Albert preferential attachment

model (p-value < 0.0001).

The average shortest-path length was 2.0548 (95%CI: 2.0546 � 2.0550) and 2.072 (95%CI:

2.0715 � 2.0726) respectively for the classic random graph and the generalized random

graph models.

For the Watts-Strogatz small world and the Barabási-Albert models, the average shortest-

path length is respectively 2.623 (95%CI: 2.616 � 2.631) and 6.06 (95%CI: 6.03 � 6.09).

We performed the same simulations on the giant component of the network with sim-

ilar results leading to the same outcomes.
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7.3.2 Statistical Modeling

7.3.2.1 Stochastic Block Model

The SBM identi�es 14 classes with a degree of latitude of 9 to 14 classes being reasonable

(See ICL plot on �gure 7.7).

Figure 7.7: Summary of the goodness-of-�t of the SBM analysis on the Tuberculosis
co-authorship network.

The �tted SBM describes well the observed degree distribution. The vertices in the net-

work depicting the inter/extra probabilities represent the 14 identi�ed classes, with each
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one of them divided into a pie chart displaying the proportion of authors of international

a�liations (lightgreen), authors of regional or other African a�liations (red), and authors

a�liated to Beninese research institutions (blue). Generally, the dominance across the

classes of international and regional players is observed. From the inter/intra probability

network shows denser inter class ties. Looking at the pie charts, we can see that the

classes are heterogeneous with most of the classes having the same sizes (7.7). Figure 7.8

presents the distribution of the classes by a�liation types.

Figure 7.8: Distribution of national, international and regional authors by communi-
ties detected by the SBM in the TB network.
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Model 1 Model 2 Model 3

Estimate (SE) Estimate (SE) Estimate (SE)

Network structural predictor
Intercept(edge) −2.19 (0.03)∗∗∗ −7.84 (0.16)∗∗∗ −7.86 (0.17)∗∗∗

Number of times cited � 0.01 (0.00)∗∗∗ 0.01 (0.00)∗∗∗

Number of collaborations � 0.08 (0.00)∗∗∗ 0.07 (0.00)∗∗∗

Number of publications � −0.05 (0.01)∗∗ 0.01 (0.02)
Homophily on cluster assignment � 6.02 (0.13)∗∗∗ 6.12 (0.14)∗∗∗

Homophily on collaboration type � 0.83 (0.10)∗∗∗ 0.90 (0.10)∗∗∗

Factor attribute e�ect (collaboration type)
International � � REF
National � � −0.40 (0.09)∗∗∗

Regional � � 0.22 (0.08)∗∗

AIC 9737.42 3776.48 3747.34
BIC 9745.03 3822.12 3808.20
Log Likelihood −4867.71 −1882.24 −1865.67
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7.3. ERGM of the TB co-authorship network.

7.3.2.2 Exponential Random Graph Model

We �t multiple ERGMs (Table 7.3). In the null model (model 1), the inverse logit

of the coe�cient associated with the intercept (edge term) is 0.10 which is the baseline

probability of collaboration tie establishment and also the density of the TB co-authorship

network.

Model 2 including all nodal variables, a homophily term on collaboration type and on clus-

ter assignment improved tremendously compared to model 1 (See AIC, BIC and model

likelihood in table 7.3). We note a decrease in the edge e�ect (Coe�cient = −7.84,

p < 0.001) with the associated conditional probability (given all the other terms in the

model) estimated at 0.039%. For the remaining terms in model 2, we observed a positive
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and signi�cant e�ect except for the number of publications. Model 3 including the collab-

oration type as factor term, improved substantially compared to model 2. We therefore

chose model 3 as our �nal model. One unit increases the number of citation, increases

the odds of collaboration ties establishment by 1%. A one unit increase in the number

of collaborations is associated with a 7.25% increase in the odds of collaboration ties

establishment. The coe�cient associated with the number of publications is insigni�cant.

Model 3 further proves that the process underlying the structure of the TB co-authorship

network in Benin is mainly driven by homophily on cluster assignment or membership to

a research community or group (Coe�cient = 6.12, p < 0.001). The conditional prob-

ability of any two authors belonging to the same research group is estimated at 14.93%

compared to the baseline probability of 10%. The same probability changes to 30.15%

after adjustment by the collaboration type, and 32.08% after adjusting for the number

of citations, collaborations and publications. Compared to research a�liated to inter-

national institutions, researchers a�liated to Beninese institutions have 49.2% average

decrease in the odds of collaboration tie establishment. This average decrease is not

statistically signi�cant (p > 0.05). For researchers a�liated to institutions other than

Beninese institutions, the odds of collaboration tie establishment increase on average by

24.05% compared to internationally a�liated researchers. Overall, model 3 estimated the

probability of collaboration ties formation at 32.08% for international researchers, 24.05%

for national researchers and 37.05% for regional players.

Unfortunately, none of the models containing endogenous ERGM terms and/or the dyadic

variables, attained convergence, we do not present those results in table 7.3.
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Figure 7.9 presents the goodness-of-�t of the �nal model 3. It appears that the ERGM

�ts somewhat poorly the observed TB co-authorship network in terms of edge-wise, dyad-

wise shared partners, degree, geodesic distances, triad census. Meanwhile, it displays a

93.7% for the ROC model (in red) and 80.9% for the Precision Recall (PR) model.

7.3.2.3 Temporal Exponential Random Graph Model

We subset the cumulative observed network in �ve snapshots according to the following

time spans: 1996 � 2008, 2009 � 2011, 2012 � 2013, 2014 � 2015 and 2016. In �gure 7.10,

we show the topological structure of the network snapshots for the di�erent time steps.

Figure 7.10: Topological structure of the di�erent snapshots of the TB co-authorship
network.

Table 7.4 summarizes the results of the di�erent temporal models �t to the observed

snapshots of the network. The coe�cient for the edge term in the null pooled ERGM
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model 1 is estimated at −3.75 with an associated baseline pooled probability of collabo-

ration tie formation of 2.30%, which is lower than the density of the observed cumulative

TB network.

Model 2 adjusts for the nodal variables and the homophily terms improved slightly over

the null model 1. Model 3 adjusted model 2 by including a factor attribute e�ect on the

collaboration type with a slight improvement over model 2. Unlike the �nal model of the

ERGM, we observed in model 3, a signi�cant decrease of 23.4% in the odds of researchers

a�liated with Beninese institutions to collaborate compared to international researchers.

This percentage decrease changes to 40.5% after adjusting for the temporal dependencies

in model 4.

We chose Model 4 as our �nal model because it signi�cantly improved over model 3.

The results of model 4 con�rm our observation from the ERGM results that the process

of collaboration tie establishment in the TB network is mainly driven by homophily on

collaboration type and on membership to research groups or communities.

Temporal dependencies e�ects proved signi�cant in the �nal model. A signi�cantly posi-

tive dyadic stability e�ect accompanied with a signi�cantly negative linear trends e�ect

is observed. For dyadic stability, the coe�cient is 0.44 meaning that the odds of existent

and non existent collaboration ties at one time point to remain the same at the next time

point increased on average by 35.6%. In other words, the odds of new collaboration ties

and non-ties to occur from one time point to another is 64.4%. Overall, the probability

of international authors to establish a stable collaboration tie is 15.71% versus 11.71%

and 16.11% respectively for national and regional researchers.
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Table 7.4. Temporal ERGM of the TB co-authorship network.

Model 1 Model 2 Model 3 Model 4

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Network structural predictor
Intercept(edge) −3.75 (0.02)∗∗∗ −10.07 (0.15)∗∗∗ −10.01 (0.16)∗∗∗ −8.62 (0.28)∗∗∗

Number of times cited � 0.00 (0.00)∗ 0.00 (0.00) −0.00 (0.00)∗∗

Number of collaborations � 0.14 (0.00)∗∗∗ 0.14 (0.00)∗∗∗ 0.16 (0.00)∗∗∗

Number of publications � 0.68 (0.03)∗∗∗ 0.72 (0.03)∗∗∗ 0.57 (0.03)∗∗∗

Homophily on cluster assignment � 5.24 (0.11)∗∗∗ 5.23 (0.11)∗∗∗ 5.40 (0.13)∗∗∗

Homophily on collaboration type � 0.69 (0.08)∗∗∗ 0.69 (0.08)∗∗∗ 0.73 (0.09)∗∗∗

Factor attribute e�ect (collaboration type)
International � � REF REF
National � � −0.21 (0.07)∗∗ −0.34 (0.08)∗∗∗

Regional � � 0.03 (0.07) 0.03 (0.08)

Temporal dependencies
Dyadic stability � � � 0.44 (0.07)∗∗∗

Linear trends � � � −0.36 (0.06)∗∗∗

AIC 431184.00 419860.54 419853.82 253170.25
BIC 431205.66 419936.36 419951.30 253284.48
Log Likelihood −215590.00 −209923.27 −209917.91 −126574.12
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The goodness-of-�t assessment of the �nal TERGM model 4 is presented in �gure 7.11.

Regarding the endogenous network statistics, we observe a better �t of the �nal TERGM

model 4 compared to the �nal ERGM model 3. In other words, the simulated network by

model 4 show a good �t to the observed TB network data. The AUC of the ROC curve of

model 4 (see dark red curve on sub�gure 6) is estimated at 83.2% meaning that 83.2% of

the times, model 4 accurately predicts ties in the last snapshot. While this performance

is lower than the performance of the �nal ERGM model 3 from the previous section, the

walktrap and edge betweenness modularity distributions from model 4 predicted well the

observed ones. Finally, the walktrap community comembership prediction displays an

AUC of 71.4% (see dark red curve on sub�gure 5).
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7.3.2.4 Latent Network Model

On the 3-dimensional visualization of the TB co-authorship network presented on �g-

ure 7.12, the layouts are determined according to the inferred latent eigenvectors from

the no pair-speci�c model (on top), the model containing nodal covariates (middle), and

the model containing nodal and dyadic covariates (bottom). Blue vertices represent au-

thors a�liated to Beninese research institutions, Red vertices are authors a�liated to

international institutions, Gold vertices represent authors a�liated to African research

institutions other than Benin, and White vertices represent authors with no determined

a�liations. Vertex sizes are set to be proportional to the betweenness value of each ver-

tex, with bigger vertices emphasizing key broker authors in the network.

The �rst visualization represents the null LNM with no pair-speci�c covariates. It shows

mainly three clusters. The largest cluster appears more spatially heteregeneous than the

other two. It is also the largest cluster that contains the majority of the authors a�li-

ated with Beninese research institutions. The other two clusters seem to be dominated

respectively by international and regional researchers. This model �ts reasonably well to

the observed TB network (AUC = 0.912). This observation suggests a signi�cant e�ect

of geography in the odds of collaboration tie establishment. After adjusting for the nodal

covariates (second visualization), there is less structure left to be captured by the latent

variables and the clustering is no more apparent. Adding dyadic attributes to the model

leads to similar outcome despite an increase in terms of performance (AUC = 0.974).

On �gure 7.13, we present the ROC curves of each of the LNM models containing the

nodal covariates and the null model.
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Figure 7.12: Visualizations of the TB co-authorship network with layouts determined
according to the inferred latent eigenvectors in the LNM models (International (Red);

Regional (Gold); Local (Blue); Unknown (White)).
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Figure 7.13: ROC curves comparing the goodness-of �t of the TB co-authorship
network for the model specifying (i) no pair speci�c covariates (blue) and the model

specifying (ii) nodal covariates (red).
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7.4 Discussion and Conclusion

This chapter provides insights in the structural characteristics of the TB co-authorship

network in Benin over the last 20 years. The evolution of the number of publications,

authors and collaboration ties suggests a linear growth over the investigation period. We

expected such �ndings given the place of TB in the public health concerns of Benin and

the intensive e�ort towards the reduction of the incidence and the numerous campaigns

of sensibilization [141]. The �ndings from the descriptive analysis suggest that the mech-

anism underlying the formation of the TB co-authorship network in Benin is not random.

However, we found inconclusive evidence of small world properties that further Monte-

Carlo simulations disproved. The presence of closed research groups is supected given

the non-trivial number of authors with higher order of magnitudes. The observed trend

of proli�c authors in the TB network to collaborate with less proli�c ones is another

indication suggesting that TB research is a low productivity research �eld in Benin. Only

37 published documents were found relevant to the present study. In fact, none of the

top 10 key brokers in our TB co-authorship network, was on the list of the top most

connected authors and therefore would suggest the relative absence of long publishing

tenure authors in the network [129].

The �ow of information in the TB co-authorship network in Benin is slow as it only relies

on a single author. A study by Salamatia and Soheili [70] on a co-authorship analysis of

Iranian researchers in the �eld of violence reported similar but less extreme �ndings. For

Bales et al. [130, 131], the most important authors in co-authorship networks generally
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tend to be the ones with the highest degree of collaborations. For information �ow, cut

vertices provide a better approach to identifying vertices that are important to the long-

term substainability of co-authorship networks [98]. The only author identi�ed as a cut

vertex is therefore the most important author for information �ow.

Our observed network has unexpected properties compared to classic small-world net-

works. Our TB co-authorship network displays properties that are more extreme than

those of small-world and preferential attachement networks contradicting previous studies

reporting co-authorship network as having small-world or preferential attachment prop-

erties [26, 132].

As the �rst advanced statistical model we applied to this network, the SBM identi�ed het-

erogeneous classes with higher probabilities towards inter class ties establishment. This

observation is di�erent from what we observed for the malaria and the HIV/AIDS co-

authorship network which both display low inter class probabilities and higher intra class

probabilities of tie formation.

As in the malaria and the co-authorship network, the ERGM and TERGM results suggest

that authors within the TB co-authorship network are more likely to establish collabora-

tion ties within their research groups or communities. Although marginal, factors such as

number of publications, number of citations and number of collaborations are associated

to higher likelihood to establishing collaboration ties, con�rming therefore our �rst hy-

pothesis. Adding temporal dependencies to our ERGM models tremendously improved

the �tness of the model to the observed network data, but at a cost of decreased perfor-

mance compared to the model without temporal dependencies.
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We expected the ERGMs and TERGMs containing ERGM structural terms to converge

for the TB co-authorship network given its relatively smaller size. Unfortunately, as for

the malaria and the HIV/AIDS co-authorship networks, adding such terms to the models

proved computationally expensive. None of the models converged after 1, 000 iterations.

We therefore, suspect the complexity of the network to have prevented the convergence

of the models containing structural ERGM terms [134].

With the LNM, we complement the ERGM and TERGM by adding an extra layer of anal-

ysis. Visualizing the e�ect of geography on the structure of the network, we notice that

none of the nodal or dyadic covariates played a signi�cant role in the spatial distribution

of the network. Such an observation contradicts that of the HIV/AIDS co-authorship

network. The cluster demarcation observed with the null LNM suggests that distance

does play a signi�cant role in collaboration tie formation in the TB co-authorship net-

work.

As the co-infection TB-HIV/AIDS continues to be an important aspect of the public

health strategies in the Republic of Benin, consolidating the knowledge generated from

the TB-related research is crucial. Furthermore, public health policies must empower and

reinforce the di�erent research groups or communities involved in the research e�ort. Our

results suggest a need for a continuous support to the TB research network, considering

its low productivity status in Benin. Such actions will help stabilize the research groups

already involved in TB research and promote the junior scientists in the �eld. We �nally

believe that such measures will ultimately insure the long-term sustainability of the TB

co-authorship and collaborative research network in Benin.
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Chapter 8

AuthorVis: A Co-authorship

Visualization and Scienti�c

Collaboration Prediction tool

8.1 Background

In this chapter, we describe a co-authorship network exploration, and link prediction tool

we created and that is speci�c to the three networks investigated in this dissertation.

While many network visualization solutions have already been proposed, most of them

are not speci�cally adapted to co-authorship networks [78, 80, 83, 142]. Even those de-

signed for visualizing co-authorship networks have several limitations among others, their

inability to satisfactorily display large networks, the lack of interactivity in the display,
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and the inability for the end user to control the display [83].

Here, we present a tool that not only addresses those limitations, but provides a visu-

alization of each of the networks and allows the end user to query each network. Our

approach integrates bibliometrics information to the visualization. In our design model,

all the authorship information are embedded within the display of the network. In the

visualization interface, users can select a particular node or author to emphasize its sub-

network, hover over a node to display author's information or select an edge between

two vertices/authors to display information related to materials co-authored by the two

vertices de�ning that particular edge.

8.2 Data

Currently, AuthorVis is designed speci�cally for the visualization of the Malaria, Tu-

berculosis and HIV/AIDS collaborative network in Benin. We refer the reader to section

4.2 for details on the collection and treatment of the co-authorship data. On the server

end, each network data is maintained as an igraph object. Each submitted user query is

interpreted and incorporated in an igraph function to extract the network data. Another

igraph object is generated as a result and converted into a JSON data using an executable

Python script that we provided within the tool.
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8.3 Programmer View

8.3.1 Design and Architecture

AuthorVis is implemented as a Shiny dashboard with an R based backend system that

manages each co-authorship network data as an igraph object [143]. The backend server

side is a combination of a Shinyserver and an HTTP server (Figure 8.1). The Shiny

application is built using the Shinyboard [144, 145] R package. A set of R scripts

manages global libraries (global.R), controls the dashboard user interface (ui.R), and

handles backend processings (server.R). The user interface script (ui.R) communicates

with the frontend dashboard interface on the client side and the backend processing script

(server.R) on the Shinyserver. When the user submits a request, it is passed from the

dashboard interface to server.R via ui.R. The request is subsequently processed, and

the output is transferred to the dashboard on the client side via ui.R. However, when

the request is a query to explore and visualize a co-authorship network, the server also

outputs a graph object which is converted into JSON graph �le thanks to a python script.

The graph �le is then transferred to the HTTP server to be displayed on the Network

Visualization Interface. The HTTP server has been implemented with the Node.js built-in

HTTP module. Node.js is a Javascript server-side platform for the development of web

servers [146]. The front-end Network Visualization Interface is handled by the HTTP

web server which renders the JSON graph object into an HTML �le (index.html). A

script (code.js) written in Javascript using the Javascript D3.js [82] library handles

user interactivity and the control of the display. D3.js or Data-Driven Documents has

130

https://nodejs.org


AuthorVis: A Co-authorship Visualization and Scienti�c Collaboration Prediction tool

been designed for manipulating documents based on data and to generate interactive and

dynamic data visualizations in web browsers (Figure 8.1).

8.4 User View

8.4.1 Shiny Dashboard Interface

The frontend Shiny dashboard interface has �ve menu options displayed on its left sidebar.

The network query and exploration interface is accessible from the "Explore Network"

menu option and the link prediction interface is accessible via the "Prediction" menu

option. Other options in the side bar menu include the "Codes" menu where we share

the Shiny dashboard scripts, the "Readme" menu displaying a documentation for the tool,

and the "About" menu which provides general information on the tool (See sub�gure (d)

on �gure 8.2).

When the user selects the "Explore Network" menu option, the dashboard brings him to

the appropriate page containing a simple query builder. After selecting a network, the

user can de�ne a time period and may search for a speci�c author or set of authors. As

the user builds his query, the dashboard responds interactively, displaying the number of

vertices and edges returned by the query. When the user clicks on the "Query Network!"

button, the query is submitted to the server. Once the processing is done, a URL is

displayed and the user is prompted to click on it to launch the Network Visualization

Interface (sub�gures (a) and (b) on �gure 8.2).
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Figure 8.3 is a screenshot of the dashboard prediction page with its simple query builder.

It is accessible via the "Prediction" menu option in the side bar. Here again, the user is

prompted to select a network, a �rst and second authors, and choose a model. Upon click

on the "Predict Tie Probability!" button, the query is submitted to the server. Once the

processing is done, the output is sent back to the page for display. The prediction tool

is model-based and used the �nal ERGMs and TERGMs from chapters 5, 6, and 7 to

calculate a micro-interpretation probability of collaboration between two authors [121].

8.4.2 Network Visualization Interface

The frontend Network Visualization Interface has three main parts: a left control pane,

an SVG scene, and a right link information pane. The user can adjust the display of the

network by modifying the default options of the physics of the network [147] using the

control pane on the left. The SVG scene displays the queried network. In the SVG scene,

a mouse hover over a vertex displays a tooltip of details on the author represented by the

vertex, and a single click on a vertex displays a word cloud of the keywords expertise on

that vertex, showing what the work of the vertex author is about. A double-click on a

vertex highlights the subnetwork of the author represented by that speci�c vertex. Once

an edge is clicked, its color turns blue and the list of published materials co-authored by

the two vertices de�ning the clicked edge is displayed on the link information right pane.

All published materials listed in the right pane can be traced back to their publication

page on the web via their DOI or the WOS accession number with a single click (sub�gure

(d) on �gure 8.2).
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Figure 8.3: Screenshot of the co-authorship prediction page.

AuthorVis can be used by policy makers to visualize collaboration interactions in time

between researchers. Figure 8.4, for example, depicts the co-authorship network of the

10 most cited papers in malaria research in Benin, highlighting one author (Prof. Martin

AKOGBETO) as the most important author for the sustainability of the network.

8.5 Deployment

The system is packed in a Docker container to facilitate its use and installation. The

docker container is accessible at https://hub.docker.com/r/rosericazondekon/authorvis/.

The project source �les can be forked or cloned from Github at https://github.com/

rosericazondekon/authorvis.
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Figure 8.4: Co-authorship network of the top 10 most cited papers in Malaria research
in Benin.
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Chapter 9

General Conclusion

In this dissertation, we have documented and described the collaborative pattern in

Malaria, HIV/AIDS and TB research in Benin. Our �ndings suggest that each one of the

collaborative research network of Malaria, HIV/AIDS and TB has a complex structure.

We modeled these complex structures to predict the establishment of future collabora-

tion ties. We implemented the models in a shiny-based application for co-authorship

visualization and scienti�c collaboration prediction tool which we named AuthorVis.

Strengths and Limitations

The application of temporal or dynamic modeling techniques is the major strength of

our research along with its application of not only descriptive methods but also robust

network analysis methods such as inferential methods like Monte-Carlo simulations, un-

like most studies on co-authorship analysis. Our data mining strategy involved a robust
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machine learning algorithm that helped address the crucial issue of the disambiguation of

authors names and assigns a unique identi�er to each of them. To the best of our knowl-

edge, our study is the �rst to describe the malaria research collaborations network via

co-authorship network analysis in Benin. It is also the �rst to apply statistical network

models to investigate co-authorship networks in a speci�c research area in an African

country.

The fact that we collected data only from the Web Of Science can be considered as an im-

portant limitation of this study. However, according to Falagas and colleagues [148], who

compared PubMed, Scopus, Web Of Science and Google Scholar in their paper, the Web

Of Science appears as a reasonable scienti�c database source for our analysis. In addition,

it proved to cover a wide range of both old and recently published papers. Falagas and

colleagues [148] found PubMed to be the optimal choice in terms of scienti�c database.

For that reason we ran the same bibliographic searches in PubMed. Unfortunately, the

Web Of Science returns more relevant data than PubMed.

Another major limitation is related to the manual curation of the scienti�c publications

and the keyword based searches of the literature involved in this study. It is therefore

worth acknowledging the possibility of error or incompleteness of the scienti�c publica-

tions reviewed. However, we limited this possibility by casting a wider net, querying the

Web Of Science API with wider keywords, then narrowing the search down by combining

the keywords. Yet another major limitation is that only one manual curator has reviewed

the publications for the selection criteria. Having multiple curators would have allowed us

to evaluate the quality of the search by measuring selection agreement statistics (kappa
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statistic for example) between the curators.

The nature of all co-authorship studies in itself is another limitation of this study. Collab-

orators, in co-authorship networks, do not often come from the same scienti�c discipline,

or do not play the same roles on a particular research project. The data we collected did

not allow us to accurately assess or even infer the disciplines each author comes from or

their speci�c contribution in the published documents.

Future Directions

There are several future directions. Our work can be extended to the entire African

collaboration network in Malaria, HIV/AIDS and TB. Since collaborations usually are

often initiated between individuals, labs or even countries, the analysis of bipartite co-

authorship networks is an interesting direction to our study.

Currently, AuthorVis is speci�cally built for Malaria, TB and HIV/AIDS in Benin.

Future developments may extend the tool to other research domain. Adding a gen-

eral purpose module to AuthorVis for the visualization of any user-input co-authorship

network is an interesting venture since it will also require the integration of a data pre-

processing module to facilitate the disambiguation and deduplication of co-authorship

information. Furthermore, incorporating a layered structured network visualization [83]

functionality to the visualization in order to display temporal changes in the evolution of

the co-authorship network is another interesting direction. It can, in addition be designed

into a real-time, cross-domain, and cross-collection co-authorship visualization interface

capable of automatically searching the literature.
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General Conclusion

Outside of the realm of co-authorship analyses, the same idea of network analyses and

visualization can be extended to other important disciplines such as Neuroscience. In

analogy to co-authorship networks, the brain functioning can be represented as a brain

connectivity network (connectome) where parcels or anatomical regions or regions of in-

terest of the brain represent the vertices and the edges determine statistical dependency

of combined neuronal activities between the vertices.

Basic network analyses have already enabled the development of network-based clinical di-

agnostics of certain pathologies such as schizophrenia [149], stroke [150], and Alzheimer's

disease [151]. Although trending, modeling brain connectivity networks by means of the

methods used in this dissertation remains limited to very few studies [152�157] in neuro-

science. Since it is important to better explain the functional organization of the brain

and to allow inference of speci�c brain properties, the visualization of real time brain

connectivity dynamics has potentials for the development of Brain Computer Interfaces.

See appended neuroscience manuscript draft.
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Abstract 

Estimated connectomes by the means of neuroimaging techniques have enriched our knowledge of the 

organizational properties of the brain leading to the development of network-based clinical diagnostics. 

Unfortunately, to date, many of those network-based clinical diagnostics tools, based on the mere 

description of isolated instances of observed connectomes are noisy estimates of the true connectivity 

network. Modeling brain connectivity networks is therefore important to better explain the functional 

organization of the brain and allow inference of specific brain properties. In this report, we present pilot 

results on the modeling of combined MEG and fMRI neuroimaging data acquired during an n-back memory 

task experiment. We adopted a pooled Exponential Random Graph Model (ERGM) as a network statistical 

model to capture the underlying process in functional brain networks of 9 subjects’ MEG and fMRI data 

out of 32 during a 0-back vs 2-back memory task experiment. Our results suggested strong evidence that 

all the functional connectomes of the 9 subjects have small world properties. A group level comparison 

using a non-parametric paired permutation t-test comparing the conditions pairwise showed no significant 

difference in the functional connectomes across the subjects. Our pooled ERGMs successfully reproduced 

important brain properties such as functional segregation and functional integration. However, the ERGMs 

reproducing the functional segregation of the brain networks discriminated between the 0-back and 2-back 

conditions while the models reproducing both properties failed to successfully discriminate between both 

conditions. The pilot results presented here are promising and would improve in robustness with a larger 

sample size. Nevertheless, our pilot results tend to support previous findings that functional segregation 

and integration are sufficient to statistically reproduce the main properties of brain network. 

 

Keywords: Functional brain connectomes, ERGM, Functional connectivity, Neuroimaging data 
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BACKGROUND 

The development of sophisticated neuroimaging techniques has enabled the acquisition of non-

invasive quantitative data prompting to the development of new concept of the analyses of these 

data. In the existing literature, estimated connectomes by the means of neuroimaging techniques 

have enriched our knowledge of the organizational properties of the brain and enabled the 

development of network-based clinical diagnostics of certain pathologies such as schizophrenia 

[1], stroke [2], and Alzheimer’s disease [3]. Although the mere descriptive analyses of the 

functional brain connectivity used in those researches have improved our knowledge of brain 

connectivity maps, there remains a gap in the literature since the description of isolated instances 

of observed connectivity network are noisy estimates of the true connectivity network [4,5]. In 

fact, the brain functioning can be represented as a connectivity network (connectome) where 

parcels or anatomical regions or regions of interest (ROIs) of the brain represent the vertices and 

the edges determine statistical dependency of combined neuronal activities between the vertices 

[6]. 

Modeling brain connectivity networks is therefore important to better explain the functional 

organization of the brain and to allow inference of specific brain properties. At first, three main 

mathematical models referred as null models or generative models have been proposed to infer 

some observed basic network properties such as network size, connection density, and degree 

distribution. The first is the simple random network model proposed by Erdős and Rényi [7]; a 

more general formulation of this model was described by Gilbert [8]. Random network models 

help to hypothesis testing whether the topology of a brain connectivity network arise purely by 

chance. The second model was proposed by Watts-Strogatz [9] and termed as the Watts-Strogatz 

small-world model. This model generates random networks spanning at the middle ground of the 

topological spectrum of random networks and lattice networks. Small world networks are 

characterized by a relatively high clustering coefficient and a small average path length between 

nodes. The third model is the preferential attachment model proposed by Barabási and Albert [10]. 

This model generates more realistic, scale-free degree distribution networks from the concept of 

“the rich get richer”. Although these models allow hypothesis testing and the identification of 

relevant network properties, they come up short at explaining the organizational mechanisms of 

brain connectivity network formation [5]. In addition, these mathematical models are not estimable 
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from the observed data, do not allow fitness to the data, and hence cannot provide a reasonable 

representation of the observed network [11]. 

To remedy the limitations of generative null models, statistical models have been proposed to not 

only support inference but to capture and explain the process underlying the formation of the 

network structure. Unlike mathematical network models, statistical network models are designed 

to consider all the alternative networks estimated and weighted from observed data [12]. 

Furthermore, they specifically allow the assessment of significance of terms in the model and 

evaluation thanks to the goodness of fit. To date, three classes of such statistical network models 

have been proposed: the class of exponential random graph models, the class of stochastic block 

models, and the class of latent network models [11]. Analogous to standard regression models, the 

class of exponential random graph models (ERGM) also referred to as p* models (ERGM family 

models) appears as a flexible choice to simultaneously assess the role of specific network features 

in the overall organization of the complexity of brain networks. ERGM based connectivity 

analyses can help simulate and discriminate normal and abnormal brain organization and 

functioning [13]. In the social science literature, p* models prove successful at studying complex 

network interactions [14–18]. 

In neuroscience, the application of p* family models is still limited as very few studies have proved 

to successfully use them to model neuroimaging data based connectomes. To the best of our 

knowledge, the first study of this kind was reported in 2011 by Simpsons et. al [19] who applied 

ERGM on connectomes derived from 10 fMRI data collected from 10 subjects. Another study 

conducted in 2016 was reported by Sinke et. al [20] who applied Bayesian ERGM on diffusion 

tensor imaging (DTI) collected from 382 healthy subjects. More recently, in 2018, Obando and De 

Vico Fallani [5] published the first study to model functional connectomes derived from EEG data 

collected on 108 subjects during eyes-open (EO) and eyes-closed (EC) resting-state conditions. 

While it is understandable that all those studies pioneered the use of p* family models on 

neuroimaging connectomes, the applicability of ERGM family models to other connectomes 

inferred from other neuroimaging data is yet to be proved. In this report, we described how we 

applied p* models to combined MEG and fMRI neuroimaging data acquired during a memory task 

experiment.  
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There also remains many methodological unanswered issues such as the connectivity metrics to 

derive network topology, the ERGM terms to include in the modeling process, as well as how 

ERGM must be fit to the subject’s connectomes. Simpsons et. al [19] and Obando and De Vico 

Fallani [5] for instance, fit a single ERG model to each subject data. Such a methodological 

approach lacks robustness when for example, one seeks to estimate a single model that 

discriminates between EO and EC resting state conditions. ERGM family models have a lot of 

potentials, especially in providing a better and more robust alternative network-based diagnostic 

model to the descriptive network-based diagnostic methods of medical conditions [1–3,21,22]. We 

address the lack of robustness from the previous studies by taking a pooled ERGM approach 

combining functional connectomes across subjects for each condition. 

To the best of our knowledge, this report is the first to ever describe the application of ERGM to 

combined MEG and fMRI data. 

 

METHODS 

Participants 

Participants were 32 healthy, right-handed adults between the ages of 18 and 40 recruited from the 

community using local print and electronic media. Recruited participants were all English speakers 

with at least 12 years of education. No exclusion was made on the basis of race, ethnicity, or 

gender. Because of the MRI scans, all participants were assessed for contraindications to MRI 

scanning, such as implanted electronic devices or ferrous metal in sensitive areas.  

 

Experiment 

The participants were asked to perform n-back memory tasks during MEG scans. In our n-back 

tasks, participants are presented a sequence of visual stimuli one-by-one. For each stimulus, they 

need to decide if the current stimulus is the same as the one presented n trials ago. Specifically, 

the participants performed 0-back and 2-back memory tasks during which they are asked to match 

geometric shapes. The MEG paradigm consists of nine experimental blocks: two blocks each of 

matching pictures with five control blocks, each lasting 32s for a total scan length of 4:48 min. 
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Each block begins with a brief instruction statement: “Match Faces” or “Match Tools”. Each 

matching block consists of six images. For each face block, three images of each gender and target 

affect is presented. All images are presented sequentially, with no inter-stimulus interval, for a 

period of 5s and in a randomized fashion for both 0-back and 2-back memory tasks. The order of 

the paradigm is counterbalanced across subjects. During MEG recordings, subjects respond by 

pressing a button on one of two button boxes, allowing for the determination of accuracy and 

reaction time. 

 

MEG acquisition 

All participants undergo MEG scanning at the Medical College of Wisconsin (MCW) MEG lab. 

Before the experiment, a Polhemus Isotrak® system is used to digitize participants’ cardinal 

landmarks (nasion and pre-auricular points) and head shape. Four head position indicator coils are 

fixed to the participants’ head and referenced to the other digitized landmarks. Two electrodes are 

placed along the plane of the chest to collect ECG signal. MEG data are acquired with the 

participant seated upright in the scanner. Data are sampled at 2,000 Hz. The scanning session 

consists in two to five runs of 10 minutes each. Prior to each subject’s scanning session, one to 

two runs of five to 10 minutes each of empty room MEG data are recorded for noise 

characterization. In addition, one to two runs of 10 minutes of Eyes-Open (EO) resting state of 

MEG data are also recorded after the experimental runs. All MEG scanning sessions take place on 

a different day than MRI scanning sessions. 

 

MRI acquisition 

All participants undergo high-resolution T1-weighted structural MRI at the MCW 7 Tesla MRI 

facility. MRI scanning sessions include localizer scans and a GE SPGR T1 acquisition with 

approximately 1x1x1 mm voxel size and parameters optimized for grey-white contrast. For each 

subject, the scanning session requires approximately 90 minutes and takes place on a different day 

than the MEG scanning session. 
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Data processing 

MRI data 

The fMRI data are processed using FreeSurfer [23], thanks to which, the brain is anatomically 

parcellated into 68 Regions of Interest (ROIs) or parcels using the automatic parcellation (‘aparc’) 

annotation. A neuroanatomical label is assigned to each ROI on a cortical surface model based on 

probabilistic information estimated from a manually labeled training set [23,24]. 

MEG data 

We apply MaxFilter, an essential pre-processing tool for MEG data, in order to remove noise 

sources likely to originate from outside the sensor array. We then transform the MEG data using 

the temporally extended signal space separation method (tSSS) to remove strong interference 

caused by external and nearby sources. The tSSS-reconstructed MEG data are processed using 

MNE-Python [25,26], an open source Python library for the processing of EEG and MEG data. 

Next, the data are cleaned using Independent Component Analysis (ICA) to remove EOG and 

ECG artifacts. For each subject, the MEG recordings are co-registered to the anatomical fMRI 

preprocessed data. BEM, source, and forward solution for each run are then computed. Next, the 

MEG data are resampled at 500Hz, and notch filtered at 60Hz. Further filtering including low and 

high band filters at respectively 50Hz and 1Hz are applied as well. For each subject, the recording 

MEG runs are further concatenated in one single raw file. The precomputed forward solutions are 

averaged across runs and a covariance matrix is computed from the empty room MEG runs. The 

forward solution and the covariance matrix are used to compute an inverse solution. Using detected 

event ids corresponding to the stimuli presentation, we next proceed to the extraction of the events. 

The extracted events are epoched accordingly. From the previously computed inverse solution, the 

inverse operator is determined and applied to each of the epoched 0-back and 2-back conditions 

separately. The resting state MEG runs are processed similarly to the experimental runs without 

the event detection step. For each 0-back, 2-back, and resting state conditions, we compute the 

spectral coherence [27] to measure functional connectivity (FC) between MEG signals of ROIs or 

parcels 𝑥 and 𝑦 at a specific frequency band f as follows: 

𝑆𝐶𝑥𝑦(𝑓) =
|𝑆𝑥𝑦(𝑓)|

2

𝑆𝑥𝑥(𝑓)𝑆𝑦𝑦(𝑓)
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where 𝑆𝑥𝑦 is the cross-spectrum between 𝑥 and 𝑦, and 𝑆𝑥𝑥 and 𝑆𝑦𝑦 are respectively the autospectra 

of 𝑥 and 𝑦. The connectivity matrix 𝑆𝐶(𝑓) of size 68 × 68 where the entry 𝑆𝐶𝑥𝑦(𝑓) contains the 

value of the spectral coherence between the MEG signals of ROIs or parcels 𝑥 and 𝑦 at the 

frequency f. The connectivity matrices are computed at each and across theta (4 – 8Hz), alpha (8 

– 15Hz), beta (15 – 35Hz), and gamma (35 – 120Hz) frequency bands. All data processing is 

performed using MNE-Python, an Open-source Python software [28]. 

 

Network generation 

The computed connectivity matrices are adjacency symmetric matrices representing undirected 

weighted network, where the vertices are the 68 ROIs or brain parcels generated from the ‘aparc’ 

annotation and the edges are weighted by the magnitude of the spectral coherence. The adjacency 

matrices are then filtered to obtain the strongest edges in each brain network. While various studies 

[6,29–31] recommend different filtering techniques of the adjacency matrix, we decide to set an 

arbitrary threshold depending on each connectivity matrix. Using NetworkX [32], a python library 

for exploring complex networks, we generate binary functional brain connectivity networks from 

the filtered adjacency matrices. Each one of the graphs are exported in a graphml format for model 

estimation in R, an open-source environment for statistical computing [33]. 

 

Assessing the small worldness of the connectivity networks 

Small world networks interposed between random and lattice networks. Like a regular lattice, they 

show high clustering and like regular random networks, they display low average path length. 

While the high clustering supports degeneracy and triangular integration, and may facilitate 

functional specialization, the low average path length facilitates efficient integration across the 

brain network. Since healthy brain networks have been proved to have small world organization 

[9], these two properties of small world networks have been used in clinical applications, 

particularly in the classification of brain disorders. [34,35]. To assess the small worldness of the 

generated functional connectivity networks, there remains the question regarding which clustering 

coefficient values should be considered high and which average path length values should be 

deemed as low. To address this question, Fornito et al. [36] propose a simple solution which 
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consists in comparing the clustering and average path length values in each of the observed 

functional connectivity networks to comparable values computed in appropriately randomized 

control networks. Consequently, two indices which we adopt here, are defined: 

- The normalized clustering coefficient γ defined as: 

𝛾 =
𝐶𝑙

〈𝐶𝑙𝑟𝑎𝑛𝑑〉
 

Where 𝐶𝑙𝑟𝑎𝑛𝑑 is the average clustering coefficient computed over an ensemble of randomized 

surrogate network and 𝐶𝑙 is the average clustering coefficient of the observed network defined as: 

𝐶𝑙 =
1

𝑁
∑

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖𝜖𝑁

 

Where 𝑁 is the number of nodes, 𝑘𝑖 is the degree of node 𝑖, and 𝑡𝑖 is the number of closed triangles 

attached to node 𝑖 in the observed network. 

- The normalized measure of path length λ defined as: 

𝜆 =
𝐿

〈𝐿𝑟𝑎𝑛𝑑〉
 

Where 〈𝐿𝑟𝑎𝑛𝑑〉 is the mean of the average path length computed over an ensemble of randomized 

surrogate network, and 𝐿 is the observed average path length defined as: 

𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝑑𝑖𝑗

𝑖,𝑗𝜖𝑁;𝑖≠𝑗

 

Where 𝑑𝑖𝑗 is the distance of the shortest path, between nodes 𝑖 and 𝑗. 

In a small world network therefore, one would expect 𝜆 ∼ 1 and 𝛾 > 1.  

Humphries et al. [37] proposed the ratio of  𝛾 and 𝜆 as a single scalar index to quantify the small-

worldness of a network: 

𝜎 =
𝛾

𝜆
 

A network with small world properties should be associated with a value of 𝜎 greater than 1. 
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For each of the connectivity networks, we constructed an ensemble of 1,000 surrogate random 

networks using Monte-Carlo based simulations. We next compute respectively 𝛾, 𝜆, and 𝜎 as 

defined above. Any network with a value of 𝜎 greater than 1 is characterized as having small world 

properties. Since all our data have been recorded from “healthy individuals”, we expect all the 

functional connectivity networks to display small world organization across all three conditions 

(0-back vs 2-back vs resting state). 

 

Statistical Group Analysis 

After the computation of the spectral connectivity in MNE-Python, the ROIs are exported in MNI 

coordinates in millimeters. The connectivity matrices are also exported as connectivity matrix 

files. Each matrix file contains the 68 lines by 68 columns of connectivity values. We then use the 

Network Based Statistic Toolbox (NBS) developed in Matlab by Zalesky et al. [38] to compare 

the brain networks between conditions. We used a non-parametric paired permutation t-test 

comparing the three conditions pairwise with a statistical significance level set at 0.05. The number 

of permutations is set at 100,000 for each comparison. 

 

Exponential Random Graph Model Estimation 

Given a network graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges, let the 

matrix 𝐘 = [𝑌𝑖𝑗], be the random adjacency matrix of 𝐺. Each entry 𝑌𝑖𝑗 denotes a binary variable 

indicating the presence or absence of edge between two vertices 𝑖 and 𝑗. Since our brain 

connectivity network is an undirected network, 𝑌𝑖𝑗 = 𝑌𝑗𝑖. Let’s denote the matrix 𝐲 = [𝑦𝑖𝑗] a 

particular realization of 𝐘. The general formulation of ERGM has the form [11]: 

ℙ𝜃(𝐘 = 𝐲) = (
1

𝜅(𝜃)
) 𝑒𝑥𝑝 {∑𝜃𝐻𝑔𝐻(𝐲)

𝐻

} 

Where 𝐻 is a configuration in 𝐺, 𝑔𝐻(𝐲) = ∏ 𝑦𝑖𝑗𝑦𝑖𝑗𝜖𝐻
, 𝜃 is a vector of parameter, and 𝜅(𝜃) is a 

normalization constant defined as: 

179



𝜅(𝜃) =∑𝑒𝑥𝑝 {∑𝜃𝐻𝑔𝐻(𝐲)

𝐻

}

𝑦

 

Several variants of ERGM have been proposed [39], here we rely on the temporal ERGM variant 

proposed by Leifeld et al. [40] which applied without any temporal dependencies corresponds to 

a pooled ERGM. We refer the reader to Leifeld et al. [40] for a detailed explanation of the model. 

Our main assumption justifying this choice is that different brain processes are involved in the 0-

back, and 2-back memory tasks. Therefore, all changes in the functional connectivity brain 

networks under each condition are attributable to variation according to an underlying ERGM. 

Since the subjects are dependent from each other, the estimates of the pooled ERGM reflect the 

average effects across all the subjects’ brain networks under a specific condition. 

We model several organizational and functional mechanisms of the brain including functional 

segregation and functional integration [41,42]. Functional integration refers to distributed 

processes defining brain function and is measured in connectomics by the average path length 

(already defined above) or the global efficiency 𝐸𝑔 defined as: 

𝐸𝑔 =
1

𝑁(𝑁 − 1)
∑

1

𝑑𝑖𝑗
𝑖,𝑗𝜖𝑁;𝑖≠𝑗

 

Functional segregation refers to the idea that all vertices in the brain network (or ROIs or brain 

parcels) will display divergent pattern of activity and hence be statistically independent. In 

connectomics, functional segregation is measured by the clustering coefficient (already defined 

above) and the local efficiency 𝐸𝑙 defined as: 

𝐸𝑙 =
1

𝑁
∑𝐸𝑔(𝐺𝑖)

𝑖𝜖𝑁

 

Where 𝐺𝑖 is the subgraph formed by the vertices connected to 𝑖. 

Model construction and estimation are computed using the statistical software R [33]. In the 

btergm R package that we used, functional integration and functional segregation are already 

respectively coded as the GWNSP (Geometrically Weighted Nonedgewise Shared Partner 

distribution) and the GWDSP (Geometrically Weighted Dyadwise Shared Partner distribution) 

ERGM terms [6]. We also model other ERGM terms including degree distribution, k-triangles (for 

180



transitivity) and k-stars (for highly connected vertices). We assess the Goodness-Of-Fit (GOF) of 

each model, simulating 1,000 networks from the estimated model and comparing them to the 

observed networks. The best model is selected based on the lowest Akaike Information Criterion 

(AIC) or the Bayesian Information Criterion (BIC) and the highest log likelihood. 

The R packages igraph [43], sna [44] and network [45] are also used for the manipulation of the 

brain network graphs. All computations are performed in Rstudio-server setup on a 64 cores CPU 

server equipped with a 512GB RAM. 

RESULTS 

In this section, we present pilot results based on a subset of nine subjects out of the 32 participants 

we collected neuroimaging data from. Likewise, only results on the 0-back and 2-back conditions 

are presented as the resting state data were yet to be processed at the pilot stage. Also, these pilot 

results were obtained from the connectivity matrices computed across all the frequency bands. 

Small-worldness Assessment 

The results of the small-worldness assessment are presented in table 1. As we can see, across all 

subjects for the 0-back and the 2-back conditions, the functional connectivity brain network have 

values for γ that are larger than one and values for α that are close to one. Consequently, the values 

for σ are all larger than one. This is a strong evidence suggesting that all the functional connectivity 

brain networks have small-world properties. 

 

Table 1. Small-worldness assessment of the brain networks based on 1000 randomized control 

surrogates 

 0-back  2-back 

subjects γ λ σ  γ λ σ 

1 4 1.107 3.613  4 1.104 3.623 

2 3 1.156 2.595  3 1.157 2.593 

3 4 1.167 3.428  4 1.226 3.263 

4 5 1.16 4.31  5 1.161 4.307 

5 4 1.142 3.503  4 1.18 3.39 

6 4 1.214 3.295  4 1.205 3.32 

7 3 1.113 2.695  3 1.12 2.679 
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Group level comparison 

In the group level analysis, we see no significant difference (p>>0.1) between the connectivity 

values of the 0-back versus the 2-back conditions across all and for each of the frequency bands. 

This lack of significance is illustrated in figure 1 which displays the 300 strongest connections 

between the identified ROIs or brain parcels.  

182



 

Figure 1. Connectivity plots of the 0-back (top) compared to the 2-back (bottom) memory tasks in 

subject 1. 
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Exponential Random Graph Model 

Most of the model configurations we fit did not converge and/or degenerate. Table 2 presents the 

configurations of ERGMs we successfully fit at this pilot stage. At this stage, none of our model 

configurations containing the k-star or triangle ERGM terms was successful. All of them 

degenerated around 50 iterations and did not converge. 

Table 2. Successful ERG model configurations 

Models edges degree GWDSP GWNSP 

Null x    

Model 1   x  

Model 2 x x x  

Model 3 x x x x 

 

Table 3 presents the estimates of the ERGM configurations. We can see that the model estimates 

were all significantly higher than zero. However, for the null and model3, the confidence intervals 

of the estimates for the 0-back and 2-back conditions overlap meaning that those models failed to 

discriminate between both conditions. On the other hand, model1 and model2 discriminate 

between 0-back and 2-back conditions as the model estimates were significantly different than 

zero and their confidence intervals do not overlap. Overall, the ERGM model containing both the 

functional segregation and functional integration did not prove successful at discriminating 

between the 0-back and the 2-back conditions (see coefficient plot at Figure 2). 

Given the low sample size, the AIC, BIC, and the log-likelihood were only computed for the null 

model. We could not efficiently compare the models according to those values. However, model3 

containing the functional segregation and functional integration ERGM terms proves interesting 

as we believe an increase in the sample size would tremendously improve it at discriminating 

between 0-back and 2-back conditions. 

Figure 4 shows the GOF plot of model 3 for both 0-back and 2-back conditions. The plain black 

line represents the feature distribution from the observed brain networks and the dashed black line 

is the feature distribution from the 1,000 simulated networks from model3. We expect both lines 

to overlap when the model captures the underlying ERGM process. As we can see in the GOF in 
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figure 4, model3 captures well the underlying ERGM process for 0-back and 2-back. However, 

the simulated walktrap modularity distribution (in red) does not match well the observed one (in 

black). 

 

Conclusion 

In this report, we use a pooled variant of ERGM to capture differentially the underlying ERGM 

process involved in two nback memory tasks. Our models perform decently well given the 

significant model estimates. The low sample size of the brain networks is a tangible reason 

justifying the failure of most of the model configurations we attempted to fit. Consequently, we 

could not compare the model according to the AIC, BIC and the log-likelihood values. A larger 

sample size would enable a better model specification. The insignificant difference between the 

connectivity values of the 0-back and 2-back conditions at the group level comparison has been 

confirmed at the statistical modeling step. Nevertheless, the pilot results presented here are 

promising and would improve in robustness when all the remaining pre-processing will be 

completed and integrated to the analysis. While our results are not complete, they tend to support 

previous findings reported by De Vico  Fallani et al. [5] that functional segregation and integration 

are sufficient to statistically reproduce the main properties of brain network.  

It is worth noting that our connectivity networks were computed across all the frequency bands. 

Also, it would have been interesting to compare the resting state connectivity network pairwise 

with the ones of the 0-back and 2-back conditions. Unfortunately, those data were not pre-

processed enough to be included in the analyses.  

Finally, the connectivity values in this report are estimated by means of the spectral coherence 

which is known to suffer from possible volume conduction effects [46]. Other measures of 

connectivity such as Phase Lag Index (PLI), Phase-Locking Value (PLV), coherency, or the 

Imaginary coherence are potential alternatives worth considering. Although a binarizing threshold 

may influence the topology of the network, our thresholding procedure to filter the connectivity 

value and binarize the strongest edges has been based on the observation of the connectivity plot. 

A density based thresholding procedure has been proposed in [5] and proved to ensure a 

meaningful network.  
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Table 3. 

 

 0back  2back 

 Null Model1 Model2 Model3  Null Model1 Model2 Model3 

edges -2.05 [-2.09; -2.00]*  -0.85 [-0.94; -0.76]* -2.63 [-2.83; -2.43]*  -2.06 [-2.10; -2.02]*  1.26 [1.21; 1.26]*** -2.73 [-2.91; -2.55]* 

degree   1.64 [1.10; 2.18]* 0.59 [0.09; 1.10]*    -4.22 [-4.39; -4.05]*** 0.26 [-0.24; 0.75] 

GWDSP  -0.34 [-0.34; -0.33]* -0.22 [-0.24; -0.20]* 1.48 [1.29; 1.67]*   -0.54 [-0.57; -0.52]* -41.16 1.47 [1.31; 1.64]* 

GWNSP    -1.72 [-1.92; -1.53]*     -1.71 [-1.87; -1.55]* 

AIC 145963.24     245249.42    

BIC 145982.51     245269.7    

Log 
Likelihood -72979.62     -122622.71    

 

***p < 0.001, **p < 0.01, *p < 0.05 (or 0 outside the confidence interval)
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Figure 2. Coefficient plot of model3 comparing 0-back and 2-back conditions 
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(a) Model3 GOF for 0-back condition (b) Model3 GOF for 2-back condition 

Figure 3. GOF of model3 comparing 0-back and 2-back conditions. 
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