2,587 research outputs found

    Smart Inertial Particles

    Full text link
    We performed a numerical study to train smart inertial particles to target specific flow regions with high vorticity through the use of reinforcement learning algorithms. The particles are able to actively change their size to modify their inertia and density. In short, using local measurements of the flow vorticity, the smart particle explores the interplay between its choices of size and its dynamical behaviour in the flow environment. This allows it to accumulate experience and learn approximately optimal strategies of how to modulate its size in order to reach the target high-vorticity regions. We consider flows with different complexities: a two-dimensional stationary Taylor-Green like configuration, a two-dimensional time-dependent flow, and finally a three-dimensional flow given by the stationary Arnold-Beltrami-Childress helical flow. We show that smart particles are able to learn how to reach extremely intense vortical structures in all the tackled cases.Comment: Published on Phys. Rev. Fluids (August 6, 2018

    MUSE: Modularizing Unsupervised Sense Embeddings

    Full text link
    This paper proposes to address the word sense ambiguity issue in an unsupervised manner, where word sense representations are learned along a word sense selection mechanism given contexts. Prior work focused on designing a single model to deliver both mechanisms, and thus suffered from either coarse-grained representation learning or inefficient sense selection. The proposed modular approach, MUSE, implements flexible modules to optimize distinct mechanisms, achieving the first purely sense-level representation learning system with linear-time sense selection. We leverage reinforcement learning to enable joint training on the proposed modules, and introduce various exploration techniques on sense selection for better robustness. The experiments on benchmark data show that the proposed approach achieves the state-of-the-art performance on synonym selection as well as on contextual word similarities in terms of MaxSimC

    Learning-Assisted Automated Reasoning with Flyspeck

    Full text link
    The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the proofs, producing an AI system capable of answering a wide range of mathematical queries automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39% of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided

    General self-motivation and strategy identification : Case studies based on Sokoban and Pac-Man

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we use empowerment, a recently introduced biologically inspired measure, to allow an AI player to assign utility values to potential future states within a previously unencountered game without requiring explicit specification of goal states. We further introduce strategic affinity, a method of grouping action sequences together to form "strategies," by examining the overlap in the sets of potential future states following each such action sequence. We also demonstrate an information-theoretic method of predicting future utility. Combining these methods, we extend empowerment to soft-horizon empowerment which enables the player to select a repertoire of action sequences that aim to maintain anticipated utility. We show how this method provides a proto-heuristic for nonterminal states prior to specifying concrete game goals, and propose it as a principled candidate model for "intuitive" strategy selection, in line with other recent work on "self-motivated agent behavior." We demonstrate that the technique, despite being generically defined independently of scenario, performs quite well in relatively disparate scenarios, such as a Sokoban-inspired box-pushing scenario and in a Pac-Man-inspired predator game, suggesting novel and principle-based candidate routes toward more general game-playing algorithms.Peer reviewedFinal Accepted Versio

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure
    corecore