192 research outputs found

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN

    Globally Intelligent Adaptive Finite-/Fixed- Time Tracking Control for Strict-Feedback Nonlinear Systems via Composite Learning Approaches

    Full text link
    This article focuses on the globally composite adaptive law-based intelligent finite-/fixed- time (FnT/FxT) tracking control issue for a family of uncertain strict-feedback nonlinear systems. First, intelligent approximators with new composite updating laws are developed to model uncertain nonlinear terms, which encompass prediction errors to enhance intelligent approximators' learning behaviors and fewer online learning parameters to diminish computational burden. Then, a novel smooth switching function coupled with robust controllers is designed to pull system states back when the transients are out of the approximators' active domain. After that, a modified FnT/FxT backstepping technique is constructed to render output to follow the reference trajectory, and an adaptive law is employed to alleviate the impact of external disturbances. It is theoretically confirmed that the proposed control strategies ensure globally FnT/FxT boundedness of all the closed-loop variables. Finally, the validity of theoretical results is testified via a simulation case.Comment: 6 pages,12 figure

    An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Get PDF
    In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known

    Estimator-based adaptive neural network control of leader-follower high-order nonlinear multiagent systems with actuator faults

    Get PDF
    The problem of distributed cooperative control for networked multiagent systems is investigated in this paper. Each agent is modeled as an uncertain nonlinear high-order system incorporating with model uncertainty, unknown external disturbance, and actuator fault. The communication network between followers can be an undirected or a directed graph, and only some of the follower agents can obtain the commands from the leader. To develop the distributed cooperative control algorithm, a prefilter is designed, which can derive the state-space representation to a newly constructed plant. Then, a set of distributed adaptive neural network controllers are designed by making certain modifications on traditional backstepping techniques with the aid of adaptive control, neural network control, and a second-order sliding mode estimator. Rigorous proving procedures are provided,which show that uniform ultimate boundedness of all the tracking errors can be achieved in a networked multiagent system. Finally, a numerical simulation is carried out to evaluate the theoretical results

    Neural networks-based robust adaptive flight path tracking control of large transport

    Get PDF
    For the ultralow altitude airdrop decline stage, many factors such as  actuator nonlinearity, the uncertain atmospheric disturbances, and model  unknown nonlinearity affect the precision of trajectory tracking. A robust  adaptive neural network dynamic surface control method is proposed. The  neural network is used to approximate unknown nonlinear continuous  functions of the model, and a nonlinear robust term is introduced to  eliminate the actuator’s nonlinear modeling error and external disturbances. From Lyapunov stability theorem, it is rigorously proved that all the signals in the closed-loop system are bounded. Simulation results confirm the perfect tracking performance and strong robustness of the proposed method

    Observer and Command-Filter-Based Adaptive Fuzzy Output Feedback Control of Uncertain Nonlinear Systems

    Full text link
    corecore