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Summary

The problem of distributed cooperative control for networked multiagent systems is investigated

in this paper. Each agent is modeled as an uncertain nonlinear high-order system incorporating

with model uncertainty, unknown external disturbance, and actuator fault. The communication

network between followers can be an undirected or a directed graph, and only some of the fol-

lower agents can obtain the commands from the leader. To develop the distributed cooperative

control algorithm, a prefilter is designed, which can derive the state-space representation to

a newly constructed plant. Then, a set of distributed adaptive neural network controllers are

designed by making certain modifications on traditional backstepping techniques with the aid of

adaptive control, neural network control, and a second-order sliding mode estimator. Rigorous

proving procedures are provided, which show that uniform ultimate boundedness of all the track-

ing errors can be achieved in a networked multiagent system. Finally, a numerical simulation is

carried out to evaluate the theoretical results.

KEYWORDS

adaptive control, backstepping techniques, distributed cooperative control, multiagent systems,

neural network control

1 INTRODUCTION

In the past decade, cooperative control of multiagent systems has been receiving much attention because of the reason that multiple simpler agents

show more beneficial comparing with single complicated agent. Research on higher-order cooperative control is motivated in part by the study of

the flock behavior of birds. In some practical engineering applications, higher-order dynamics is used to model the specific systems, for example,

the jerk system, which is a typical third-order dynamics.1,2 Therefore, the extension from lower-order dynamics to higher-order ones becomes a

necessary and significant field to study. But results about high-order nonlinear multiagent systems are still scarce.

Without considering the influence of actuator faults, some advanced control algorithms have been developed for high-order multiagent systems.

By utilizing an encoding-decoding scheme and perturbation analysis of matrices, Qiu et al3 investigated a leaderless and leader-follower quantized

consensus for a kind of high-order systems with limited communication data rate. Sun et al4 studied decentralised region tracking control for a group
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of high-order nonlinear agents and developed a set of decentralised adaptive neural network (NN) controllers by employing artificial potential func-

tions, NN approximation, and adaptive backstepping techniques. Without employing any function approximators, a predefined performance design

approach is proposed in Yoo5 for distributed containment control of heterogeneous nonlinear strict-feedback systems; the developed algorithm

guaranteed that the containment control errors can be preserved within certain given predefined bounds. The synchronization problem of identi-

cal linear high-order multiagent systems was studied in Xiang et al,6 and a dynamical controller is constructed only depending on the weighted sum

of relative output errors and the local measured output. Under the backstepping framework, two novel distributed adaptive fuzzy controllers are

investigated for the cooperative control problem of two classes of high-order nonlinear multiagent systems in other works7,8; the proposed meth-

ods can overcome the effect of the unknown nonlinear dynamics and unknown disturbances, respectively. Hua et al9 studied consensus control

of high-order stochastic nonlinear agents with unknown nonlinear dead-zone under directed graph. The authors developed a distributed output

tracking consensus controller based on backstepping method and dynamic surface control technique. Qi et al10 considered leader-follower consen-

sus of Lipschitz nonlinear dynamics. The finite-time coordinated tracking problem for a class of high-order uncertain nonlinear multiagent systems

was studied in Fu and Wang11 by using sliding mode control techniques. Regarding the directed and fixed graph condition, a distributed adaptive

controller is designed in Shi and Shen12 by employing Nussbaum-type gain technique and function approximation capability of neural networks. In

Shen et al,13 a distributed adaptive fuzzy control is investigated by using the approximate ability of the fuzzy logic systems to guarantee that each

follower can asymptotically synchronize to the leader. But all the solutions mentioned above lack the capacity of fault tolerance due to the neglect

of the impact of the actuator faults.

Fault-tolerant performance is a significant requirement for the coordinated control of practical high-order nonlinear systems. In the last few

years, only limited solutions have been concerning high-order systems fault-tolerant control (FTC). For example, Shen et al14 presented a novel FTC

scheme that can guarantee all followers to synchronize a leader asymptotically and the tracking errors to converge to a small adjustable neighbor-

hood of the origin. In the presence of actuator faults and network disconnections, Ma and Yang15 discussed the active FTC problem for nonidentical

high-order multiagent systems and presented a high-gain observer-like protocol and a cooperative FTC controller.

In this paper, the control objective is to design a distributed cooperative tracking control scheme such that each follower agent can track a

time-varying leader under bidirectional or directional communication network environments. The main contributions are summarized as follows:

1. A novel estimator-based recursive approach is proposed for the distributed cooperative control of multiagent systems, and the key is redesigning

errors variable znj in the last step of the backstepping design.

2. A new distributed adaptive NN FTC algorithm is developed for the cooperative tracking of leader-follower high-order nonlinear systems, and

rigorous proofs have been achieved step by step.

3. By adopting NN technology associated with adaptive control method, the proposed algorithm can provide robustness to eliminate the negative

effectiveness of model uncertainty, unknown external disturbance, and actuator fault.

The rest of this paper is organized as follows. The graph theory, dynamics of the agent, and relative assumptions are given in Section 2. In Section3,

the distributed adaptive NN cooperative controller control algorithms are developed. A simulation example is given in Section 4 to demonstrate the

effectiveness of the proposed algorithm. Finally, the conclusions are given in Section 5.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Brief graph theory for multiagent system

In cooperative systems, many control laws are usually assumed to be distributed in the sense that it respects a communication network topology.

The communication restrictions by topologies can severely limit the power of local distributed control algorithm at each individual agent. A com-

munication network models the information flows over a multiagent network. A team of m high-order nonlinear systems labeled as agent 1 to m are

considered here. The communication topology among the m agents is assumed to be bidirectional or directional, and the interactions among the

agents can be represented by an undirected or a directed graph  = ( ,  ,A), where  is a set of the indices of the agents and  ⊆  ×  is a set of

edges that describe the communications between the agents. If (i, j) ∈  , then i is neighboring to j, which means that agent j can obtain information

from agent i. A = [aij] ∈ R
n×n is a weighted adjacency matrix with nonnegative adjacency elements aij. Moreover, it is assumed that aii = 0. If the

state of agent i is available to agent j, then agent i is said to be a neighbor of agent j. The neighbor set of node vj is denoted by j, where j ∉ j. The

in-degree matrix of the weighted graph  is denoted by D = diag{d1, … , dn} with di =
∑n

j=1 aij. The Laplacian matrix L of  is defined as L = D − A.

Note that A, D, and L are all constant and bounded matrices. Define graph ̄ with  = {0, i}. Denote B = diag{b1, … , bn} be the leader adjacency

matrix and bi > 0 if agent i has access to agent 0; otherwise, bi = 0.

2.2 Problem formulation

In this paper, we consider a network with m + 1 agents, in the sense that their states keep updated relaying on local information exchange. The flow

of the information exchange among agents is described by a fixed and directed graph . The dynamics of the agents are described in the nonlinear
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Brunovsky form14,16

ẋij = x(i+1)j, (1)

ẋnj = uf
j
+ fj(xj) + ζj, i = 1, … , n − 1, j = 1, … ,m, (2)

where xij ∈ R
q is the i-th state of the j-th agent; xj = [x1j, … , xnj]T ∈ R

n×q is the state matrix of the j-th agent with q ≥ 1 being the dimension of the

space; fj(xj) ∶ R
qn → R

q is an unknown function that is also locally Lipschitz with fj(0) = 0; uf
j

is the control input; and ζj ∈ R
q denotes an unknown

external disturbance; it is assumed to be bounded. Specifically, when n = 3, x1j, x2j, and x3j are the position vector, velocity vector, and acceleration

vector of the j-th agent, respectively.

In practical applications, actuator may become faulty. In this paper, the following fault is considered:

uf
j
= uj + fju(t), (3)

where uj ∈ R
q is the control protocol of the j-th agent and fju denotes an unknown and bounded time-varying signal.

The dynamics of the time-varying leader agent, labeled 0, is described by

ẋi0 = x(i+1)0, (4)

ẋn0 = f0(t, x0), (5)

for i = 1, … , n−1, where xi0 ∈ R
q is the i-th state of the leader agent; x0 = [x10, x20, … , xn0]T ∈ R

qn is the state vector with bounded x10, x20, … , xn0;

f0(t, x0) ∶ [0,∞) × R
qn → R

q is piecewise continuous at t and locally Lipschitz in x0 with f0(t,0) = 0 for all t ≥ 0 and x0 ∈ R
qn, and it is unknown to

all the other agents. Assume that the leader is forward complete, ie, ∀x0(0), the solution x0(t) exists ∀t ≥ 0. In other words, there is no finite escape

time. The dynamics (4) to (5) can be identified as an exosystem that generates a desired command trajectory.

Remark 1. For the sake of simplicity in description, let q = 1 if not otherwise specified in the following analysis. However, it is worth noting that

all the results hereafter can be directly extended to the higher dimensional case by using the Kronecker product.

In this paper, it is assumed that only the relative state information can be used for the controller design. More precisely, for the j-th agent, the

only obtainable information is the neighborhood synchronization error. Then, the following assumptions are considered to facilitate the controller

design:

Assumption 1. (Zhang and Frank16) Topology ̄ contains a spanning tree with the root node being agent 0.

Remark 2. It should be noted that if the preceding assumption does not hold and there is a set of k(1 ≤ k < N) agents Sk = n1, … , nk in 

with sk ∈  , which can not receive the commands from the leader agent, then it means that Sk do not have access to information of agents

S̄k = ∖Sk . Obviously, there must exist some agent in Sk in the following 2 cases: isolated or act as leaders, which do not receive information. It

is obvious that both of the 2 cases cannot contribute to final synchronization to the leader agent.

Assumption 2. (Zhang and Frank16) The disturbance ζj is bounded such that |ζj| ≤ ζMj, where ζMj is an unknown positive constant.

Assumption 3. (Shen et al14) The increased bias torque fju is bounded, that is, |fju| ≤ f̄ju, where f̄ju is an unknown positive scalar.

Assumption 4. (Cao et al17) The time derivative of f0(t, x0) is bounded, ie, supt|ḟ0(t, x0)| ≤ f̄0, where f̄0 is a positive constant.

3 DISTRIBUTED ADAPTIVE NEURAL NETWORK COOPERATIVE CONTROL

In this section, we will show how to design the distributed adaptive NN fault-tolerant controllers for the follower agents such that the cooperative

tracking problem can be solved.

3.1 Definitions and Lemmas

Some necessary definitions and lemmas regarding systems (1) to (2) are needed in the following derivation.

Lemma 1. (Huang et al18) Suppose n and m are 2 positive real numbers, and a ≥ 0, b ≥ 0, then, for any constant c > 0, anbm ≤ can+m +
m

n+m

[
n

c(n+m)

] n
m

bn+m.

Definition 1. (Zou and Kumar19) It is assumed that only a subset of agents can receive commands from leader, and the communication network

among the neighboring agents is undirected. To facilitate the further design, a reference tracking signal x̄ij needs to be constructed for each
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individual follower agent. By using the nearest neighbor rule and the weighted average of its neighboring agents' states, we can compute x̄ij for

the j-th agent as follows:

x̄ij =

∑
l∈j

ajlxil + bjxi0∑
l∈j

ajl + bj
, i = 1, … , n − 1, j = 1, … ,m, (6)

where j denotes the neighbor set of agent j and j ∉ j, l ∈ j means that the l-th agent is a neighbor of the j-th agent. Since the matrix L + B

is symmetric and positive define, it implies that
∑

l∈j

ajl + bj ≠ 0. Thus, the reference signal x̄ij in Equation 6 is well defined.

Definition 2. (Lewis et al26) The solutions of the following dynamic system

ẋ(t) = f(x, t), y = h(x, t), x(t) ∈ R
n, t ≥ t0 (7)

are said to be uniformly ultimately bounded (UUB) if there exist positive constants α and β, and ∀δ ∈ (0, β), there is a positive constant T = T(δ),
such that ||x(t0)|| < δ ⇒ ||x(t)|| < α, ∀t ≥ t0 + T.

Based on the preceding defined signal x̄ij, the following lemma is needed for the further design.

Lemma 2. (Zou and Kumar19) Let yij = xij − x̄ij(i = 1, … , n − 1; j = 1, … ,m) be the state error between xij and the reference signal x̄ij . If yi∗ =
[yi1, … , yim]T = 0, then xij = xi0.

Lemma 3. (Zou and Kumar20) Define a continuous function V(t) ≥ 0, ∀t ∈ R
+, if V̇(t) ≤ −γV + ε, where γ > 0 and ε are constants, then

V(t) ≤ 𝜅 + (V(0) − 𝜅)e−γt (8)

with 𝜅 = ε∕γ.

Lemma 4. (Khalil21) Boundedness theorem: If I = [a, b] is a closed and bounded interval, and f ∶ I → R is a continuous function on I, then f is bounded

on I.

Definition 3. Define the errors variables z∗j = [z1j, z2j, … , znj]T with the aid of backstepping techniques:

z1j = x1j − x̄1j, (9)

zij = xij − x̄ij − αij, for 2 ≤ i ≤ n − 1, (10)

znj = xnj − x̂nj − αnj, (11)

where x̂nj is an estimator designed in Equations 32 to 33. It is obvious that if zi∗ = xi∗ − x̄i∗ = D−1(L + B)(xi∗ − Inx0), then zi∗ = 0 means that

xi∗ − Inx0 = 0.

3.2 The NN-based approximation theory

In the following design process, NN will be utilized to eliminate the adverse effect from the unknown nonlinear function fj(xj) in Equation 2. Based

on the approximation property of NN,22 a nonlinear continuous function can be approximated to any desired accuracy over a compact setΩz. Taking

f(z):Rl → R
m as an example, an ideal weights matrix W∗ should exist such that the ideal NN can approximate f(z) as accurately as possible onΩz ⊂ R

l:

f(z) = W∗Tϕ(z) + 𝜖z, (12)

where W∗ ∈ R
p×m is the optimal weight matrix of NN, p is the number of neuron, and ϕ(z) = [ϕ1(z), … ,ϕp(z)]T represents a basis function vector

that can be chosen as sigmoid, Gaussian, etc. In general, W∗ is only used for analytical purposes, which needs to be estimated. 𝜖z ∈ R
m denotes

the minimum possible deviation between W∗Tϕ(z) and f(z), which is bounded with ||𝜖z|| ≤ 𝜖N, where 𝜖N is an unknown positive constant. For all

z ∈ Ωz ⊂ R
l, W∗ is defined as

W∗ ≜ arg min
W∈Rp×m

{
sup
z∈Ωz

‖‖‖f(z) − WTϕ(z)‖‖‖
}

. (13)

By employing NN, f(z) ∈ R
m can be approximated on Ωz as follows:

fNN(W, z) = ŴTϕ(z), (14)

where Ŵ ∈ R
p×m denotes an adjustable weight matrix.



ZHOU ET AL. 5 of 13

Remark 3. It is worthy to note that the NN approximation error 𝜖z would be decreased sufficiently small as p increases. Furthermore, ||𝜖z|| can

be reduced to arbitrary small if p is large enough.23,24

3.3 Recursive controller design procedure

By employing the recursive method in a distributed manner, a sequence of virtual controllers αij will be designed in this subsection only relay-

ing on the neighboring information. Moreover, the actual controllers uj will be constructed by utilizing adaptive control, neural network control,

backstepping method associated with a predesigned second-order sliding mode estimator. Detailed recursive procedures are given as follows.

Step 1: Let α2j be the first virtual controller of the j-th agent. Using Equation 1 for Equation 9, it has

ż1j = ẋ1j − ̇̄x1j = x2j − x̄2j = z2j + α2j. (15)

Consider z1j = x1j − x̄1j of the first-order subsystem in Equation 1, and select the following Lyapunov function V1:

V1 = 1
2

zT
1∗z1∗, (16)

where z1∗ = [z11, z12, … , z1m]T .

Using Equations 15 to 16, one can derive the time derivative of V1 as

V̇1 = zT
1∗ż1∗ =

m∑
j=1

z1j(z2j + α2j). (17)

In order to ensure that the time derivative of the Lyapunov function V1 is negative definite, an appropriate distributed virtual controller α2j should

be designed, which is given by

α2j = −c1jz1j, (18)

where c1j is the design parameter, satisfying c1j > 0. By using Equations 10, 15, and 18, ż1j becomes

ż1j = −c1jz1j + z2j. (19)

From Equation 9, it has z1∗ = D−1(L + B)(x1∗ − Inx0), then we get Dz1∗ = (L + B)(x1∗ − Inx0). When z1∗ → 0, it means that x1∗ − Inx0 → 0.

Therefore, by substituting Equation 18 into Equation 17, it yields

V̇1 = −zT
1∗diag(c1∗)z1∗ +

m∑
j=1

z1jz2j,

= −c1zT
1∗z1∗ +

m∑
j=1

z1jz2j,

(20)

where c1 = minj{c1j}.

Step 2: Using Equations 1 and 10, the following equation can be obtained.

ż2j = x3j − x̄3j − α̇2j,

= z3j + α3j −
𝜕α2j

𝜕x1j
x2j −

∑
l∈j

𝜕α2j

𝜕x1l
x2l −

𝜕α2j

𝜕x10
x20,

(21)

whereα3j is a virtual controller. Consider z2j = x2j−x̄2j of the second-order subsystem in Equation 1, and redesign the second Lyapunov function V2 as

V2 = V1 + 1
2

zT
2∗z2∗, (22)

where z2∗ = [z21, z22, … , z2m]T . Utilizing Equations 20 and 21, we can obtain the time derivative of V2 as follows:

V̇2 = V̇1 +
m∑

j=1

z2j ż2j,

= −c1zT
1∗z1∗ +

m∑
j=1

z1jz2j +
m∑

j=1

z2j

⎛⎜⎜⎝z3j + α3j −
𝜕α2j

𝜕x1j
x2j −

∑
l∈j

𝜕α2j

𝜕x1l
x2l −

𝜕α2j

𝜕x10
x20

⎞⎟⎟⎠ ,
(23)

To guarantee V̇2 < 0, the appropriate distributed virtual control α3j is designed as

α3j = −z1j − c2jz2j +
𝜕α2j

𝜕x1j
x2j +

∑
l∈j

𝜕α2j

𝜕x1l
x2l +

𝜕α2j

𝜕x10
x20, (24)

where c2j > 0 is a design parameter. By using Equations 10, 21, and 24, ż2j becomes

ż2j = −z1j − c2jz2j + z3j. (25)



6 of 13 ZHOU ET AL.

Using Equation 24 for Equation 23, we have

V̇2 = −
i∑

k=1

ckzT
k∗zk∗ +

m∑
j=1

zijz(i+1)j, (26)

where c2 = minj{c2j}.

Step i, i = 3, … , n − 1: Follow the preceding design procedure, it has

zij = x(i+1)j − x̄(x+1)j − α̇ij,

= z(i+1)j + α(i+1)j −
i−1∑
k=1

𝜕αij

𝜕xkj
x(k+1)j −

i−1∑
k=1

∑
l∈j

𝜕αij

𝜕xkl
x(k+1)l −

i−1∑
k=1

𝜕αij

𝜕xk0
x(k+1)0.

(27)

Choose the i-th Lyapunov function candidate Vi as

Vi = Vi−1 + 1
2

zT
i∗zi∗, (28)

where zi∗ = [zi1, zi2, … , zim]T . Taking the time derivative of Vi, it has

V̇i = V̇i−1 +
m∑

j=1

zijżij,

= −
i−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

zi−1jzij +
m∑

j=1

zij

⎡⎢⎢⎣z(i+1)j + α(i+1)j −
i−1∑
k=1

𝜕αij

𝜕xkj
x(k+1)j −

i−1∑
k=1

∑
l∈j

𝜕αij

𝜕xkl
x(k+1)l −

i−1∑
k=1

𝜕αij

𝜕xk0
x(k+1)0

⎤⎥⎥⎦ ,
(29)

where ck = minj{ckj}, k = 1, … , n − 1. Designing the intermediate controller α(i+1)j as

α(i+1)j = −z(i−1)j − cijzij +
i−1∑
k=1

∑
l∈j

𝜕αij

𝜕xkl
x(k+1)l +

i−1∑
k=1

𝜕αij

𝜕xkj
x(k+1)j +

i−1∑
k=1

𝜕αij

𝜕xk0
x(k+1)0, (30)

where cij > is a design parameter. By substituting Equation 30 into Equation 29, V̇i can be rewritten as

V̇i = −
i∑

k=1

ckzT
k∗zk∗ +

m∑
j=1

zijz(i+1)j. (31)

Step n: Denote x̂nj and f̂0j be the estimate of xn0 and f0 for the j-th agent, respectively. Inspired by Cao et al,17 a second-order sliding mode estimator

(Equations 32-33) is proposed for each agent to guarantee that x̂nj → xn0 in finite time T̄s, for j = 1, … ,m. T̄s can be calculated according to Theorem

4.1 in Cao et al.17 When t ≥ T̄s, it has x̂nj ≡ xn0, then we can get znj ≡ xnj − xn0 − αnj.

̇̂xnj = f̂0j − γ1sign
⎡⎢⎢⎣
∑
l∈j

ajl(x̂nj − x̂nl) + bj(x̂nj − xn0)
⎤⎥⎥⎦ , (32)

̇̂f0j = −γ2sign
⎡⎢⎢⎣
∑
l∈j

ajl(f̂0j − f̂0l) + bj

(
f̂0j − f0(t, x0)

)⎤⎥⎥⎦ , (33)

where γ1 > 0 and γ2 > f̄0 are constants.

Differentiating znj = xnj − x̂nj − αnj, it can be obtained that

żnj = ẋnj − ̇̂xn0 − α̇nj,

= uj + fju(t) + fj(xj) + ζj(t) − α̇nj − f̂0j + γ1sign
⎡⎢⎢⎣
∑
l∈j

ajl(x̂nj − x̂nl) + bj(x̂nj − xn0)
⎤⎥⎥⎦ ,

= uj + fju(t) + fj(xj) + ζj(t) −
n−1∑
k=1

𝜕αnj

𝜕xkj
x(x+1)j −

n−1∑
k=1

∑
l∈j

𝜕αnj

𝜕xkl
x(k+1)l −

n−1∑
k=1

𝜕αnj

𝜕xk0
x(x+1)0 − f̂0j + γ1sign

⎡⎢⎢⎣
∑
l∈j

ajl(x̂nj − x̂nl) + bj(x̂nj − xn0)
⎤⎥⎥⎦ .

(34)

In the following analysis, in order to derive the final algorithm for the control objective, a discussion on how to design a model-dependant control

approach (ie, for the case that the unknown function fj(xj) is available) will be given in Step n(a) in priority to deduce the design of the distributed

adaptive neural network controller in Step n(b).

Step n(a) Consider the case that the unknown function fj(xj) in Equation 2 is available.

From Assumptions 2 and 3, it is easy to assume that there exist a positive constant ξj such that |ζj + fju| ≤ ξj. Denote ξ̂j be the estimate of ξj, and

choose the n-th Lyapunov function candidate Vn as

Vn = Vn−1 + 1
2

zT
n∗zn∗ +

1
2

m∑
j=1

η−1
2j ξ̃

2
j , (35)

where η2j > 0 is a design parameter.
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Taking the time derivative of Vn with respect to Equations 31 to 34, we obtain

V̇n = −
n−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

z(n−1)jznj +
m∑

j=1

znjżnj −
m∑

j=1

η−1
2j ξ̃j

̇̂ξj,

= −
n−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

z(n−1)jznj +
m∑

j=1

znj

⎡⎢⎢⎣−
n−1∑
k=1

𝜕αnj

𝜕xkj
x(k+1)j + uj + fju(t) + fj(xj) + ζj(t) − ̇̂xn0 −

n−1∑
k=1

∑
l∈j

𝜕αnj

𝜕xkl
x(k+1)l −

n−1∑
k=1

𝜕αnj

𝜕xk0
x(k+1)0

⎤⎥⎥⎦ −
m∑

j=1

η−1
2j ξ̃j

̇̂ξj.

(36)

Construct the distributed adaptive controller uj and the following adaptation law ξ̂j as follows:

uj = −z(n−1)j − cnjznj +
n−1∑
k=1

𝜕αnj

𝜕xkj
x(k+1)j +

n−1∑
k=1

∑
l∈j

𝜕αnj

𝜕xkl
x(k+1)l + f̂0j +

n−1∑
k=1

𝜕αnj

𝜕xk0
x(k+1)0 − fj(xj) − ξ̂jsign(znj) − γ1sign

⎡⎢⎢⎣
∑
l∈j

ajl(x̂nj − x̂nl) + bj(x̂nj − xn0)
⎤⎥⎥⎦ , (37)

̇̂ξj = η2j

(|znj| − β2jξ̂j

)
, (38)

where β2j > 0 is a design parameter.

Substituting Equations 37 to 38 into Equation 36, we obtain

V̇n = −
n−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

z(n−1)jznj +
m∑

j=1

znj

[
−z(n−1)j − cnjznj + ζj + fju − ξ̂jsign(znj)

]
−

m∑
j=1

ξ̃j|znj| + β2jξ̃jξ̂j. (39)

With the aid of Lemma 1, the following inequality is achieved for the further proof

β2jξ̃jξ̂j ≤ −1
2
β2jξ̃2

j + 1
2
β2jξ2

j . (40)

Using Equation 40 for Equation 39, we can derive

V̇n ≤ −
n∑

k=1

ckzT
k∗zk∗ −

m∑
j=1

1
2
β2jξ̃2

j + μ1

≤ −μ2Vn + μ1,

(41)

where μ1 =
m∑

j=1
μ1j, μ1j = 1

2
β2jξ2

j
, μ2 = min{mink{2ck},minj{β2jη2j}}. Denote μ̄2 = μ1

μ2
, by employing Lemma 3, then Equation 41 satisfies

0 ≤ Vn(t) ≤ μ̄2 + (Vn(0) − μ̄2)e−μ2 t. (42)

From Equation 42 and Lemma 4 (ie, boundedness theorem in Khalil21), we can further achieve that zj∗ is bounded for i = 1, … , n; moreover,

xi∗ − Inx0 is bounded from Definition 3 and Theorem 3.2 in Zhou and Xia,25 then it derives the boundedness of xij − xi0.

Step n(b) Please note that the proposed controller (Equation 37) will not work when the function fj(xj) in Equation 2 is completely unknown. Thus,

we further consider the case that when fj(xj) is unavailable.

By employing the NN, fj(xj) can be approximated to an arbitrary accuracy in the following form.

fj(xj) = W∗T
j ϕj(xj) + 𝜖j, (43)

where W∗
j
∈ R

pj is the optimal weight matrix of NN, 𝜖j ∈ R is the approximation error, and ϕj(xj) ∈ R
pj are the basis function vector.

Before moving on, the following assumption is needed.

Assumption 5. There exist unknown constants 𝜖j such that |𝜖j| ≤ 𝜖j, for j = 1, … , n.

Denote Ŵj be the estimation of the ideal NN weight W∗
j

, ξ̂j be the estimate of ξj with |𝜖j + ζj + fju| ≤ ξj, and reselect the n-th Lyapunov function

candidate Vn as

Vn = Vn−1 + 1
2

zT
n∗zn∗ +

1
2

m∑
j=1

W̃T
j Γ

−1
j W̃j +

1
2

m∑
j=1

η−1
2j ξ̃

2
j , (44)

where Γj ∈ R
pj×pj is a positive definite matrix and η2j > 0 is a design parameter.

From Equations 31 to 34, we can get the time derivative of Vn as follows:

V̇n = −
n−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

z(n−1)jznj +
m∑

j=1

znjżnj −
m∑

j=1

W̃T
j Γ

−1
j

̇̂Wj −
m∑

j=1

η−1
2j ξ̃j

̇̂ξj,

= −
n−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

z(n−1)jznj +
m∑

j=1

znj

⎡⎢⎢⎣−
n−1∑
k=1

𝜕αnj

𝜕xkj
x(k+1)j −

n−1∑
k=1

∑
l∈j

𝜕αnj

𝜕xkl
x(k+1)l + uj + fju(t) + fj(xj) + ζj(t) − ̇̂xn0 −

n−1∑
k=1

𝜕αnj

𝜕xk0
x(k+1)0

⎤⎥⎥⎦
−

m∑
j=1

W̃jΓ−1
j

̇̂Wj −
m∑

j=1

η−1
2j ξ̃j

̇̂ξj.

(45)
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Design the distributed adaptive NN controller uj and the following adaptation laws ξ̂j and Ŵj as follows.

uj = −z(n−1)j − cnjznj +
n−1∑
k=1

𝜕αnj

𝜕xkj
x(k+1)j +

n−1∑
k=1

∑
l∈j

𝜕αnj

𝜕xkl
x(k+1)l + f̂0j

+
n−1∑
k=1

𝜕αnj

𝜕xk0
x(k+1)0 − ŴT

j ϕj(xj) − ξ̂jsign(znj)

− γ1sign
⎡⎢⎢⎣
∑
l∈j

ajl(x̂nj − x̂nl) + bj(x̂nj − xn0)
⎤⎥⎥⎦ ,

(46)

̇̂ξj = η2j

(|znj| − β2jξ̂j

)
, (47)

̇̂Wj = Γj

(
znjϕj(xj) − β3jŴj

)
, (48)

where β2j > 0 and β3j > 0 are design parameters.

Substituting Equations 46 to 48 into Equation 45, it yields

V̇n = −
n−1∑
k=1

ckzT
k∗zk∗ +

m∑
j=1

z(n−1)jznj +
m∑

j=1

znj

[
−z(n−1)j − cnjznj + W̃T

j ϕj(xj) + 𝜖j + ζj + fju − ξ̂jsign(znj)
]

−
m∑

j=1

znjW̃
T
j ϕj(xj) −

m∑
j=1

ξ̃j|znj| + β2jξ̃jξ̂j + β3jW̃
T
j Ŵj.

(49)

With the aid of Lemma 1, we have

β3jW̃
T
j Ŵj = −β3jW̃

T
j W̃j + β3jW̃

T
j W∗

j

≤ −1
2
β3jW̃

T
j W̃j +

1
2
β3j||W∗

j ||2.

(50)

Using Equations 40 and 50 for Equation 49, we can derive

V̇n ≤ −
n∑

k=1

ckzT
k∗zk∗ −

m∑
j=1

1
2
β2jξ̃2

j −
m∑

j=1

1
2
β3jW̃

T
j W̃j + μ3,

≤ −μ4Vn + μ3,

(51)

where μ3j = 1

2
β2jξ2

j
+ 1

2
β3j||W∗

j
||2, μ3 =

∑m
j=1 μ1j, μ4 = min{mink{2ck},minj{β2jη2j, β3j𝜆min(Γj)}}. Denote μ5 = μ3

μ4
, by employing Lemma 3, then

Equation 51 satisfies

0 ≤ Vn(t) ≤ μ5 + (Vn(0) − μ5)e−μ4 t. (52)

From the above discussion, we are ready to present the results.

Theorem 1. A group of m high-order nonlinear multiagent systems with a leader (Equations 4-5) is described by Equations 1 to 2, and Assumptions 1 to 5

are satisfied. If the control laws are provided by Equation 46 associated with a series of intermediate controllers (Equations 18, 24, and 30), and the

adaptive laws are given by Equations 47 to 48, then zj∗ is UUB; furthermore, xi∗ − Inx0 are UUB, for t ≥ T̄s, i = 1, … , n.

Proof. From Equation 52 in Step n(b) and Lemma 4 (ie, boundedness theorem in Khalil21), it can be shown that zj∗ is bounded for i = 1, … , n;

furthermore, xi∗ − Inx0 is bounded according to Definition 3 and the Theorem 3.2 in Zhou and Xia,25 which means that xij − xi0 is bounded.

This completes the proof.

Remark 4. The role of parameter cij(i = 1, … , n, j = 1, … ,m)designed in every virtual controller αij(2 ≤ i ≤ n) and control law uj is to construct

the structure of Equations 41 and 51 for the further theoretical analysis. From Cao et al,17 the parameters γ1 > 0 and γ2 > f̄0 designed in

Equations 32 and 33 are utilized to guarantee that x̂nj → xn0 and f̂0j → f0(t, x0) in finite time. The adaptive parameter ξ̂j in Equation 47 is designed

to reject the adverse effect from the external disturbance ζj and approximation error 𝜖j. The adaptive parameter matrix Ŵj in Equation 48 is

utilized to estimate the NN optimal weight matrix W∗
j

to further overcome the modeling uncertainty from fj(xj).

Remark 5. From Equations 35 and 42 in Step n(a), and Equations 44 and 51 in Step n(b), it has V̇n < 0, as long as the following conditions hold,

respectively. ||zi∗|| ≥ √
μ1

ci
, ||zi∗|| ≥ √

μ3

ci
.

Therefore, the parameters cij, for i = 1, … , n, j = 1, … ,m, determine the final accuracy of zj∗, ie, the smaller the desired zj∗, the bigger the

controller parameter cij, for i = 1, … , n, j = 1, … ,m, are required.

Remark 6. Using Equations 44 and 52, it holds that ||zi∗|| ≤
√

2μ5 + 2(Vn(0) − μ5)e−μ4 t . If Vn(0) = μ5, taking μ6 =
√

2μ5 yields ||zi∗|| ≤ μ6; if

Vn(0) ≠ μ5, there must exist T such that ∀t > T, limt→T e−μ4 t = 0, ie, ||zi∗|| ≤ μ6. Therefore, we conclude that ||zi∗|| ≤ μ6, which means that|xij − xi0| ≤ μ6.
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4 NUMERICAL EXAMPLE

In this section, we take an example to show the effectiveness of the proposed distributed control algorithm Equation 46. Firstly, a 6-node directed

graph is considered, which can be seen in Figure 1. Let 0 be a leader agent. It is obvious that the communication graph  satisfies Assumption 1. For

simplicity, the corresponding adjacent weights aij between the networked agents are assumed to be 1, and all the others are 0.

FIGURE 1 Communication graph 

FIGURE 2 State of the agent 0

FIGURE 3 Response of the CPI
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Consider the following third-order uncertain nonlinear dynamics:

ẋ1j(t) = x2j,

ẋ2j(t) = x3j,

ẋ3j(t) = uj + fj(x1j, x2j, x3j) + ζj(t),

with

ẋ31(t) = u1 + 0.2(x11 + x31) + d1,

ẋ32(t) = u2 + 0.3(x12 + x22 − 1) + d2,

ẋ33(t) = u3 + 0.3 cos(x13 + x23) + d3,

ẋ34(t) = u4 + 0.2 sin(x14 + x24) + d4,

ẋ35(t) = u5 + 0.2 sin(x15) + d5,

where dj is assumed to be random and bounded by |dj| ≤ 1 for j = 1, … ,5.

The dynamics of the leader node is given by

ẋ10(t) = x20,

ẋ20(t) = x30,

ẋ30(t) = −x20 − x30 + 0.03 sin(t∕2) + 0.06 cos(t∕2)

− (x10 + x20 − 1)2(x10 + 4x20 + 3x30 − 1)∕3.

FIGURE 4 Response of the tracking error x1j − x10

FIGURE 5 Response of the tracking error x2j − x20
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FIGURE 6 Response of the tracking error x3j − x30

TABLE 1 The number of neurons piand the running time

Time k k = 500 k = 500 k = 500 k = 500 k = 500

The number of neurons pi 3 6 12 24 36

Running time, s 1.289 1.305 1.319 1.356 1.409

In this simulation, only the actuators in the 1st, 4th, and 5th agents become faulty when t ≥ 15 seconds. The faulty actuators are described as

f1u(t) =
{

0 t < 15 s
0.1rand(ti) + 0.055 sin(0.5πt) t ≥ 15 s

, (53)

f4u(t) =
{

0 t < 15 s
0.1rand(ti) + 0.05 cos(0.5πt) t ≥ 15 s

, (54)

f5u(t) =
{

0 t < 15 s
0.1rand(ti) + 0.06 sin(0.5πt − π∕3) t ≥ 15 s

. (55)

In this example, we use 6 neurons for each NN, and the sigmoid basis functions are used. The initial value of NN weights are assumed to be Ŵj(0) =
[0,0,0,0,0,0]T for j = 1, … ,5.

The design parameters are selected as γ1 = 3, γ2 = 4, c1 = c2 = c3 = 5, η2j = β2j = β3j = 1, Γj = I6. The initial values are chosen as x̂31 = 0.5,

x̂32 = −0.4, x̂33 = 0.1, x̂34 = 0.2, x̂35 = 0.2, f̂01 = 0.1, f̂02 = −0.2, f̂03 = 0.3, f̂04 = −0.2, f̂05 = −0.3, ξ̂j = 0. To examine the overall control effort, we

define a comprehensive performance index (CPI) as follows:

CPI =

(
5∑

j=1

u2
j

)1∕2

. (56)

The simulation results are presented in Figures 2 to 5. The state of the leader node 0 is bounded, which can be seen from Figure 2. Figure 3 shows

the response of CPI using Equation 46. Figures 4 to 6 show the time histories of tracking errors x1j − x10, x2j − x20 and x3j − x30 for j = 1, … ,5,

respectively. From Figure 3, it can be seen that, under the control torque, which are shown in Figure 1, the control objective is achieved. These figures

demonstrate the efficiency of the proposed algorithm in guaranteeing distributed tracking despite the presence of complex unknown dynamics,

external disturbances, and actuator faults. Therefore, the distributed cooperative control laws in Theorem 1 are effective. Furthermore, Table 1

shows the results of computational load by using different number of neurons pi. The comparisons concerning pi and the running time of simulation

program are implemented in the same work environment (ie, the same computer, programming way, and timekeeping method). The results imply

that the computational burden increases as the number of neurons goes up.

5 CONCLUSIONS

With a predesigned second-order sliding mode estimator, a new backstepping-based distributed adaptive NN control scheme was presented in this

paper for a group of uncertain nonlinear high-order multiagent systems with actuator faults. The proposed algorithm can overcome the affections

of the external disturbances and modeling uncertainties while guaranteeing the convergence of the tracking errors. Furthermore, the stability of

the closed-loop systems were ensured step-by-step in the sense of the Lyapunov stability.
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