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In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric
disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural
network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is
derived; the unknown nonlinearmodel functions are approximated bymeans of the RBF neural network. Also, an adaption strategy
is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system
are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect
tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-
zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the
atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the
assumption that system functions must be known.

1. Introduction

Ultralow altitude airdrop (ULAA) is a crucial ability of a
large transport aircraft, which is mainly applied in delivering
heavyweight equipment to the precise desired region and
critical to the success of military tasks [1, 2]. The process
of ultralow altitude airdrop includes five stages: preparation,
falling, flat, tracking, and pull-up. Subsequent to the falling
stage, heavyweight equipment and supplies drop to the
desired location accurately. Uncertainty during the airdrop
process is inevitable, so the model functions are very likely to
be unknown. Besides, the ground effect [3, 4], sensor mea-
surement error, the low altitude airflow [5], and other uncer-
tain factors seriously disturb trajectory control and threaten
flight safety and mission performance [6]. What is more, the
aircraft with low-speed flying states demonstrates poor anti-
interference performance, which is highly susceptible to low
altitude atmospheric disturbances.

Over recent years, quite a few meaningful achievements
have been made in developing advanced aircraft controllers
to ensure the accuracy and aircraft safety of airdrop [1, 2, 7].
For example, it is proposed that a remarkable robustness

of double ring mixed with iterative sliding-mode controller
can reject constant uncertainties and uncertain atmospheric
disturbances [1]. In addition, based on the decoupled and
linearized aircraft model achieved by using the input-output
feedback linearization approach, an iterative SM (sliding-
mode) flight controller is presented, which achieves a global
dynamic switching function in the first level for the purpose
of eliminating the reaching phase of the sliding motion.
Meanwhile, a nonlinear function in the second level is
designed to constitute an integral sliding manifold, which
weakens the overcompensation of the integral term to big
errors effectively [2]. Recently, a novel autopilot inner-loop
based on LQR and 𝐿

1
adaptive approach that employs a

semilinear time-varying system with cargo disturbances to
approximate the model nonlinearities is presented to sup-
press the unknown disturbances caused by cargo movements
[7]. However, it is worth noting that when designing the
controller, the above references do not consider actuator
input nonlinearities such as dead-zone and backlash and
ignore the actuator dynamic characteristics and nonlinear
factors; instead, they consider that the actual deflection angle
is equal to the rudder angle instruction [8]. Nonetheless,
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because the actual steering control rudder deflection actuator
includes mechanical link and hydraulic transmission device
which inevitably lead to dead-zone or backlash nonlinearity
in the steering gear, the stability of the system is undermined
and even system divergence might occur as a result [9].

For the moment, controllers that consider actuator input
dead-zone or backlash of transport have not been reported,
but the control methods used in nonlinear system with dead-
zone or backlash have already been extensively researched
[10–14]. For example, a novel adaptive fuzzy backstepping
control method is developed, which uses fuzzy logic systems
to approximate the unknown nonlinear functions and a fuzzy
filter state observer to estimate the immeasurable states [10].
Recently, an adaptive fuzzy decentralized output feedback
control scheme based on the adaptive backstepping DSC
design technique has been proposed to be employed in
a class of interconnected nonlinear pure-feedback systems
[11]. Moreover, an adaptive fuzzy robust output feedback
control problem is considered in a class of SISO nonlinear
systems in a strict-feedback form, which first uses fuzzy logic
systems to approximate the unstructured uncertainties and
later utilizes the information of bounds of dead-zone slopes
and treats the time-varying inputs coefficients as a system
uncertainty [12].What is more, as for a class of pure-feedback
uncertain nonlinear systemswith unknowndead-zone inputs
and immeasurable states, based on the information of the
dead-zone slopes and the unknown inputs coefficients that
are treated as a system uncertainty, an adaptive fuzzy output
feedback control method is proposed via the backstepping
recursive design technique [13].

In the execution of the input nonlinearity of airdrop
decline phase of flight path angle that tracks control problem,
this paper proposes an adaptive neural network dynamic
surface control method, which boasts a first-order low-
pass filter introduced in the traditional backstepping control
technique to avoid explosion of differential problems. The
adaptive law is used to estimate the unknown model errors
and external disturbance. Besides, the robust compensation
term and neural network are introduced to implement the
closed-loop system stability control, which effectively elimi-
nates the adverse effect produced by actuator nonlinearity on
the system. Moreover, it has been proven that the designed
controller is able to guarantee that all signals are semiglobally
uniformly ultimately bounded. Finally, simulation verifies the
feasibility and effectiveness of the obtained theoretical results.

2. Problem Statement

2.1. Aircraft Modeling with Actuator Input Nonlinearity. Dur-
ing the airdrop decline stage, the pilot mainly uses frequent
manipulation servo to drive the rudder deflection to ensure
that the aircraft quickly and accurately tracks the reference
flight path angle instruction. In this process, aircraft model
that only considers longitudinal motion can be depicted as
follows [1]:
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where 𝛾 is the flight path angle; 𝜃 = 𝛾 + 𝛼 with 𝜃 being the
pitch angle; 𝑞 is the pitch rate; 𝑢 is rudder angle instruction;
and 𝛿 is the servo actuator driving actual rudder angle. 𝑓
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pitch moment of inertia;𝑚 is the mass of the aircraft;𝑉 is the
airspeed;𝑇 is the engine thrust, and 𝑞 = 𝜌𝑉2

/2 is the dynamic
pressure; 𝜌 is the air mass density; 𝐶

𝑚∗
is the pitch moment

coefficients and 𝐶
𝐿∗

is the lift coefficients.
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2.2. Actuator Dead-Zone or Backlash Nonlinearity Model.
According to the actual aircraft actuator that performs with
dead-zone and backlash, a class of nonlinearities can be
represented by a generalized model as follows:

𝑓
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(𝑢) , (2)

where 𝑘(𝑢, 𝑡) > 0 is an unknown continuous function and
𝜀
𝛿
(𝑢) is the bounded modeling error which satisfies |𝜀
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∗
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Assumption 2. The slope of nonlinearity characteristic 𝑘(𝑢, 𝑡)
is bounded and there always exist unknown constants 𝑘min >
0 and 𝑘max > 0 satisfying 0 < 𝑘min ≤ 𝑘(𝑢, 𝑡) ≤ 𝑘max.
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where 𝑘(𝑢, 𝑡) stands for the slope of the dead-zone charac-
teristic, 𝑏

𝑟
and 𝑏
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According to (4) and Assumption 2, it can be inferred that
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Case 2. When considering backlash nonlinearity, the analyt-
ical expression of 𝛿(𝑢) can be delivered as
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where 𝑘(𝑢, 𝑡) > 0 is the slope of backlash and 𝐵
𝑟
> 0 and
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< 0 are relative positions and they are constant parameters.
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As a result, Assumption 2 is satisfied and |𝜀
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dead-zone and backlash nonlinearities can be viewed as the
particular cases of the input nonlinearity in our paper.
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where𝐾
0
> 0 is a constant.

Control Objective. As for the aircraft longitudinal model
with actuator nonlinearity, uncertain external atmospheric
disturbance, unknown model function, and Nussbaum-gain
technique will be used in this paper to design controller so
that the flight path angle 𝑦 can track the reference flight path
angle 𝑦

𝑑
instruction quickly and accurately.
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2.3. Nussbaum-Type Gain. Because the Nussbaum-gain tech-
nique is used in this paper, some results for Nussbaum-gain
are presented as follows.

A function𝑁(⋅) is called a Nussbaum-type function if it is
even and smooth and possesses the following properties [15]:
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defined in [0, 𝑡

𝑓
) with 𝑉(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑡

𝑓
), where 𝑡

𝑓
∈

[0,∞].𝑁(𝜁) is an even and smooth Nussbaum function. If the
following inequality holds

𝑉 (𝑡) ≤ 𝜅
1
+ 𝑒

−𝜅
2
𝑡
∫

𝑡

0

[𝑔 (𝑥 (𝜏))𝑁 (𝜁 (𝜏)) + 1] �̇�𝑒
𝜅
2
𝜏
𝑑𝜏

∀𝑡 ∈ [0, 𝑡
𝑓
) ,

(10)
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1
represents a suitable constant, 𝜅

2
is a positive constant,

and 𝑔(𝑥(𝜏)) is a time-varying parameter, which takes value in
the unknown closed intervals 𝐼 = [𝑙−, 𝑙+], with 0 ∉ 𝐼, then𝑉(𝑡),
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Lemma 6 (see [17]). The hyperbolic tangent function tanh(⋅)
will be used in this paper, and it is commonly believed that it is
continuous, differentiable, and monotonic, and it satisfies that
for any 𝜐 > 0 and 𝑞 ∈ 𝑅
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Remark 7. Throughout this paper, make ‖ ⋅ ‖ denote the 2-
norm, ⋅̂ is the estimate of ⋅∗, the estimate error is ⋅̃ = ⋅∗ − ⋅̂,
and 𝜆max(𝐴) denotes the largest eigenvalue of a squarematrix
𝐴.

3. Adaptive Flight Controller Design

3.1. NN Basics. Considering the unknown nonlinear func-
tion of model (8), this paper uses the RBF neural network to
approximate the unknown function 𝑔
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3.2. Controller Design. Based on the backstepping progres-
sive controller design method, the adaptive law is introduced
to estimate the unknown parameters of the system, and the
design steps of the adaptive dynamic surface controller are as
follows.
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can reject the influence of modeling approximation error and
external disturbance.

To avoid repeatedly differentiating 𝛼
1
which results in the

“explosion of complexity,” make 𝛼
1
pass through a first-order

filter with the time constant 𝜏
2
> 0 to acquire 𝛼

2,𝑓
as

𝜏
2
�̇�
2,𝑓
(𝑡) + 𝛼

2,𝑓
(𝑡) = 𝛼

1
(𝑡) ,

𝛼
2,𝑓
(0) = 𝛼

1
(0) .

(17)

Subsequently, define the second tracking error variable as
𝑒
2
= 𝑥

2
− 𝛼

2,𝑓
, and the time derivative of 𝑒

2
is

̇𝑒
2
= 𝑥

3
− �̇�

2,𝑓
. (18)

Similarly, design the virtual law and the parameter adaptive
law as follows:
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+ �̂�

2
tanh(𝑒2

𝜐
2

) − �̇�
2,𝑓
) , (19)

̇̂
𝑊

2
= Γ

2
(𝑒

2
Φ
2
− 𝜎

3
�̂�

2
) ,

̇̂
𝛿
2
= 𝜇

2
(𝑒

2
tanh(𝑒2

𝜐
2

) − 𝜎
4
�̂�
2
) ,

(20)

where 𝛿∗
2
= 𝜀

∗

2
, �̂�

2
and �̂�

2
are the estimates of𝑊∗

2
and 𝛿∗

2
,

respectively, and 𝑘
2
> 0, 𝜐

2
> 0, 𝜇

2
> 0, 𝜎

3
> 0, and 𝜎

4
> 0

are design parameters. Γ
2
= Γ

−1

2
is the adaptive gain matrix.

Likewise, make 𝛼
2
pass through a first-order filter with time

constant 𝜏
3
> 0 to achieve 𝛼

3,𝑓
as

𝜏
3
�̇�
3,𝑓
(𝑡) + 𝛼

3,𝑓
(𝑡) = 𝛼

2
(𝑡) ,

𝛼
3,𝑓
(0) = 𝛼

2
(0) .

(21)

Design the third tracking error variable 𝑒
3
= 𝑥

3
− 𝛼

3,𝑓
, note

(8) and (12), and the time derivative of 𝑒
3
is

̇𝑒
3
= 𝑓

3
(𝑘 (𝑢, 𝑡) ⋅ 𝑢 + 𝜀

𝛿
(𝑢)) + 𝑊

∗𝑇

3
Φ
3
+ 𝜀

3
+ Δ𝑑

𝑛

− �̇�
3,𝑓
.

(22)

Finally, the virtual control law and adaptive law of parameters
are designed as follows:

𝑢 = 𝑁 (𝜁) [𝑘
3
𝑒
3
+ �̂�

𝑇

3
Φ
3
+ �̂�

3
tanh(

𝑒
3

𝜐
3

) − �̇�
3,𝑓
] , (23)

�̇� = 𝑘
3
𝑒
2

3
+ 𝑒

3
�̂�

𝑇

3
Φ
3
+ �̂�

3
𝑒
3
tanh(

𝑒
3

𝜐
3

) − 𝑒
3
�̇�
3,𝑓
, (24)

̇̂
𝑊

3
= Γ

3
(𝑒

3
Φ
3
− 𝜎

5
�̂�

3
) ,

̇̂
𝛿
3
= 𝜇

3
(𝑒

3
tanh(

𝑒
3

𝜐
3

) − 𝜎
6
�̂�
3
) ,

(25)

where 𝛿∗
3
= |𝑓

3
|𝜀
∗

𝛿
+ 𝜀

∗

3
+ Δ𝐷

𝑛
, 𝑘

3
> 0, 𝜐

3
> 0, 𝜇

3
> 0, 𝜎

5
> 0,

and𝜎
6
> 0 are design parameters, �̂�

3
and �̂�

3
are the estimates

of𝑊∗

3
and 𝛿∗

3
, respectively, and Γ

3
= Γ

−1

3
is the adaptive gain

matrix.

4. Stability and Tracking Performance
Analysis of the Controller

Theorem 8. According to the control system (8), for the closed-
loop system composed of control law (14), (19), (23), and (24)
and the adaptive law of parameters (15), (20), and (25), if
Assumptions 1∼3 are satisfied and the initial states of system
are bounded, control parameters 𝜎

𝑖
(𝑖 = 1, . . . , 6), 𝑘

𝑖
, 𝜐

𝑖
, and

𝜏
𝑖
(𝑖 = 2, 3) will make all variables of the closed-loop system

semiglobally uniformly ultimately bounded with tracking error
converging to zero.

Define the third-order subsystem Lyapunov function 𝑉
3
:

𝑉
3
=
1

2
𝑒
2

3
+
1

2
�̃�

𝑇

3
Γ
−1

3
�̃�

3
+
1

2𝜇
3

�̃�
2

3
. (26)

Combining (22), (23), and (25), the time derivative of (26) is

�̇�
3
≤ 𝑓

3
𝑘 (𝑢, 𝑡)𝑁 (𝜁) �̇� +

𝑒3
 (
𝑓3
 𝜀

∗

𝛿
+ 𝜀

∗

3
+ Δ𝐷

𝑛
)

+
(𝑒

3
𝑦
3
)

𝜏
3

+ 𝑒
3
𝑊

∗𝑇

3
Φ
3
− �̃�

𝑇

3
Γ
−1

3

̇̂
𝑊

3
−
1

𝜇
3

�̃�
3

̇̂
𝛿
3
.

(27)
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Adding and subtracting �̇� on the right-hand side of (27), one
has

�̇�
3
≤ [𝑓

3
𝑘 (𝑢, 𝑡)𝑁 (𝜁) + 1] �̇�

+ 𝛿
∗

3
(
𝑒3
 − 𝑒3 tanh(

𝑒
3

𝜐
3

))

− �̃�
𝑇

3
Γ
−1

3
(
̇̂
𝑊

3
− 𝑒

3
Γ
3
Φ
3
)

−
�̃�
3

𝜇
3

(
̇̂
𝛿
3
− 𝑒

3
𝜇
3
tanh(

𝑒
3

𝜐
3

)) − 𝑘
3
𝑒
2

3
.

(28)

Substitute (28) for (25) and the application of Lemma 6 leads
to

�̇�
3
≤ [𝑓

3
𝑘 (𝑢, 𝑡)𝑁 (𝜁) + 1] �̇� + 0.2785𝛿

∗

3
𝜐
3
− 𝑘

3
𝑒
2

3

+ 𝜎
5
�̃�

𝑇

3
�̂�

3
+ 𝜎

6
�̃�
3
�̂�
3
.

(29)

Use the following inequalities:

𝜎
5
�̃�

𝑇

3
�̂�

3
≤ −
𝜎
5

2


�̃�

3



2

+
𝜎
5

2

𝑊
∗

3



2

,

𝜎
6
�̃�
3
�̂�
3
≤ −
𝜎
6

2
�̃�
2

3
+
𝜎
6

2
𝛿
∗

3

2

.

(30)

Noting (29), one can obtain

�̇�
3
≤ −𝛽𝑉 + [𝑓

3
𝑘 (𝑢, 𝑡)𝑁 (𝜁) + 1] �̇�

3
+ 𝑎

0
, (31)

where 𝛽 = min{2𝑘
3
, 𝜇

3
𝜎
6
, 𝜎

5
/𝜆max(Γ

−1

3
)} and 𝑎

0
=

0.2785𝛿
∗

3
𝜐
3
+ (𝜎

6
/2)𝛿

∗

3

2
+ (𝜎

5
/2)‖𝑊

∗

3
‖
2.

Multiply (31) by 𝑒𝛽𝑡, and then integrate (31) in [0, 𝑡]. Thus,

�̇�
3
≤ ∫

𝑡

0

[𝑓
3
𝑘 (𝑢, 𝜏)𝑁 (𝜁) + 1] �̇�𝑒

−𝛽(𝑡−𝜏)
𝑑𝜏 +

𝑎
0

𝛽

+ 𝑉
3
(0) .

(32)

According to Assumption 2 and Lemma 5,𝑉
3
(𝑡), 𝜁(𝑡), and the

term ∫𝑡
0
𝑓
3
𝑘(𝑢, 𝜏)𝑁(𝜁)�̇� 𝑑𝜏 are bounded.

Define the upper bound 𝑄 as follows:

∫

𝑡

0

𝑓3𝑘 (𝑢, 𝜏)𝑁 (𝜁) + 1
 �̇�𝑒

−𝛽(𝑡−𝜏)
𝑑𝜏 ≤ 𝑄. (33)

From (32) and (33), we can get

𝑉
3
≤
𝑎
0

𝛽
+ 𝑉

3
(0) + 𝑄. (34)

Notice (26) and (34), 𝑉
3
(𝑡) is bounded, and

𝑒3
 ≤
√2𝑉

3
(𝑡) ≤ √2(

𝑎
0

𝛽
+ 𝑉

3
(0) + 𝑄) = 𝑀,


�̃�
3


≤ √2𝑉

3
(𝑡) = 𝑀,


�̃�

3


≤ √2𝑉

3
(𝑡) = 𝑀,

(35)

where 𝑄 > 0 and𝑀 > 0 are unknown constants.

Define the output errors 𝑦
2
= 𝛼

2,𝑓
−𝛼

1
and 𝑦

3
= 𝛼

3,𝑓
−𝛼

2
,

and from (13)∼(16), (18)∼(21), and (23)∼(26) we can know
that there exist continuous functions 𝐵

2
(⋅) and 𝐵

3
(⋅) that

satisfy



�̇�
2
+
𝑦
2

𝜏
2



≤ 𝐵
2
(𝑒

1
, 𝑒

2
, 𝑦

2
, �̃�

1
, �̃�

1
, 𝛾

𝑑
, �̇�

𝑑
, �̈�

𝑑
) ,



�̇�
3
+
𝑦
3

𝜏
3



≤ 𝐵
3
(𝑒

1
, 𝑒

2
, 𝑒

3
, �̃�

1
, �̃�

2
, �̃�

1
, �̃�

2
, 𝑦

2
, 𝑦

3
, 𝛾

𝑑
, �̇�

𝑑
, �̈�

𝑑
) .

(36)

From (36), we can obtain the following inequalities:

𝑦
2
�̇�
2
≤
𝑦2
 𝐵2 −

𝑦
2

2

𝜏
2

,

𝑦
3
�̇�
3
≤
𝑦3
 𝐵3 −

𝑦
2

3

𝜏
3

.

(37)

Identical to (26), define the first-order subsystem Lyapunov
function:

𝑉
1
=
1

2
𝑒
2

1
+
1

2
�̃�

𝑇

1
Γ
−1

1
�̃�

1
+
1

2𝜇
1

�̃�
2

1
+
1

2
𝑦
2

2
. (38)

Noticing 𝑥
2
= 𝑒

2
+ 𝛼

1
+ 𝑦

2
, according to Lemma 6, (15),

(16), and Young’s inequalities 𝑓
5
𝑒
1
𝑒
2
≤ (𝑓

2

5
𝑒
2

1
)/2 + 𝑒

2

2
/2 and

𝑓
5
𝑒
1
𝑦
2
≤ (𝑓

2

5
𝑒
2

1
)/2 + 𝑦

2

2
/2, the time derivative of 𝑉

1
is

�̇�
1
≤ (𝑓

2

5
− 𝑘

1
) 𝑒

2

1
+
𝑒
2

2

2
−
𝜎
1

2


�̃�

1



2

−
𝜎
2

2
�̃�
2

1
+
1

2
𝑦
2

2

+ 𝑦
2
�̇�
2
+ 𝑎

1
,

(39)

where 𝑎
1
= (𝜎

2
/2)𝛿

∗

1

2
+ (𝜎

1
/2)‖𝑊

∗

1
‖
2
+ 0.2785𝜐

1
𝛿
∗

1
.

Subsequently, define the second-order subsystem Lyapunov
function:

𝑉
2
=
1

2
𝑒
2

2
+
1

2
�̃�

𝑇

2
Γ
−1

2
�̃�

2
+
1

2𝜇
2

�̃�
2

2
+
1

2
𝑦
2

3
. (40)

By virtue of Lemma 6, the time derivative of 𝑉
2
is

�̇�
2
≤ (1 − 𝑘

2
) 𝑒

2

2
+
𝑒
2

3

2
−
𝜎
3

2


�̃�

2



2

−
𝜎
4

2
�̃�
2

2
+
1

2
𝑦
2

3

+ 𝑦
3
�̇�
3
+ 𝑎

2
,

(41)

where 𝑎
2
= 𝜎

4
𝛿
∗

2

2
/2 + 𝜎

3
‖𝑊

∗

2
‖
2
/2 + 0.2785𝜐

2
𝛿
∗

2
. According

to (34) and (35), 𝑉
3
is bounded and 𝑒

3
, �̂�

3
, and �̂�

3
are

semiglobally, uniformly, and ultimately stable and bounded.
In summary, define the following Lyapunov function:

𝑉 = 𝑉
1
+ 𝑉

2
. (42)
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Figure 1: Flight path angle and the track angle tracking error curves comparison.

Noting (37), (39), and (41), the time derivative of 𝑉 is

�̇� ≤ (𝑓
2

5
− 𝑘

1
) 𝑒

2

1
+ (
3

2
− 𝑘

2
) 𝑒

2

2
−
𝜎
2
�̃�
2

1

2
−
𝜎
4
�̃�
2

2

2

−
𝜎
1

2


�̃�

1



2

−
𝜎
3

2


�̃�

2



2

+

3

∑

𝑖=2

(
𝑦𝑖
 𝐵𝑖)

+

3

∑

𝑖=2

[(−
1

𝜏
𝑖

+
1

2
)𝑦

2

𝑖
] + 𝑎

3
,

(43)

where 𝑎
3
= 𝑎

1
+ 𝑎

2
+ 𝑀

2
/2, define the following set Ω

2
=

{(𝑒
1
, 𝑒

2
, 𝑒

3
, 𝑦

2
, 𝑦

3
, �̃�

1
, �̃�

2
, �̃�

1
, �̃�

2
)|𝑉 ≤ 𝑃, |𝑒

3
| ≤ 𝑀}, and 𝑃 >

0 is a constant, since Ω
1
is a compact set. Ω

1
× Ω

2
is also

compact, and it is easy to see from (36) and (37) that all the
variables of the continuous functions𝐵

2
(⋅) and𝐵

3
(⋅) are in the

setΩ
1
×Ω

2
.Therefore,𝐵

2
(⋅) and𝐵

3
(⋅) havemaximal𝐷

2
(⋅) and

𝐷
3
(⋅) onΩ

1
× Ω

2
, respectively. And then use the inequalities

|𝑦
2
||𝐷

2
| ≤ 𝑦

2

2
𝐷
2

2
/(2𝑐

2
) + 𝑐

2
/2, |𝑦

3
||𝐷

3
| ≤ 𝑦

2

3
𝐷
2

3
/(2𝑐

3
) + 𝑐

3
/2,

where 𝑐
2
> 0and 𝑐

3
> 0 are design parameters. As a result,

(43) can be written as

�̇� ≤ −
𝜎
1

2


�̃�

1



2

−
𝜎
3

2


�̃�

2



2

+

3

∑

𝑖=2

[(
𝐷
2

𝑖

(2𝑐
𝑖
)
−
1

𝜏
𝑖

+
1

2
)𝑦

2

𝑖
] + (𝑓

2

5
− 𝑘

1
) 𝑒

2

1

+ (
3

2
− 𝑘

2
) 𝑒

2

2
−
𝜎
2

2
�̃�
2

1
−
𝜎
4

2
�̃�
2

2
+ 𝑎

4
,

(44)

where 𝑎
4
= 𝑎

3
+ (𝑐

2
+ 𝑐

3
)/2, and, then, select 1/𝜏

𝑖
> 𝐷

2

𝑖
/(2𝑐

𝑖
) +

1/2 + 𝜆 (𝑖 = 2, 3), 𝑘
1
> 𝑓

2

5
+ 𝑘

0
, 𝑘

2
> 3/2 + 𝑘

0
, where 𝑘

0
>

0, 𝜆 > 0 are design parameters, we arrive at

�̇� ≤ −2𝜇𝑉 + 𝑎
4
. (45)

Solving inequality (45), we can achieve𝑉 ≤ 𝑎
4
/(2𝜇)+[𝑉(0)−

𝑎
4
/(2𝜇)]𝑒

−2𝑢𝑡. Obviously, all the signals of the closed-loop
system are bounded and we can get

lim
𝑡→∞

𝑉 (𝑡) ≤
𝑎
4

2𝜇
. (46)

By increasing the design parameters 𝑘
0
, 𝜆, 𝜇

𝑖
, and 𝜎

𝑖
(𝑖 =

1, . . . , 6) and meanwhile reducing 𝜆max(Γ
−1

1
) and 𝜆max(Γ

−1

2
),

we can obtain 𝜇 > 𝑎
4
/(2𝑃). When 𝑉 ≥ 𝑃, �̇� < 0, 𝑉 ≤ 𝑃

is an invariant set. If 𝑉(0) ≤ 𝑃, then 𝑉(𝑡) ≤ 𝑃∀𝑡 > 0.
The tracking error can converge to a sphere with a radius of
𝑎
4
/(2𝜇). Choose 𝜇 > max{𝑎

4
/(2𝑃), 𝑎

4
/𝜀}, and thus 𝑒2

1
≤ 2𝑉 ≤

𝜀. By adjusting the design parameters, 𝜀 can be arbitrarily
small, and the tracking error can converge to any small area
of the origin.

5. Simulation Analysis

An adaptive dynamic surface control law is designed to
guarantee that the aircraft flight path angle 𝛾 can track the
desired trajectory 𝛾

𝑑
= 3

∘ sin(𝑡) accurately. Assuming the
atmospheric disturbances Δ𝑑

𝑤
= 0.02 sin(2𝑡) and Δ𝑑

𝑛
=

0.05 cos(𝑡), the initial states of the system are 𝑥
1
(0) = 𝑥

2
(0) =

𝑥
3
(0) = 0 and the estimation initial values of adaptive

parameters are set as �̂�
1
(0) = �̂�

2
(0) = �̂�

3
(0) = 0 and 𝜁(0) = 1.

Adaptive gain matrix is Γ
1
= Γ

3
= diag{0.5}, the controller

design parameters are determined as 𝜎
1
= 𝜎

2
= 𝜎

5
= 𝜎

6
=

0.5, 𝑘
0
= 3, 𝑘

1
= 2.5, 𝑘

2
= 1.5, 𝑘

3
= 3.5, 𝜏

1
= 𝜏

2
= 𝜏

3
= 0.2,

and 𝑐
2
= 𝑐

3
= 1, and 𝜆 = 0.5 after experimental tuning, in

which the Nussbaum function 𝑁(𝜁) = 𝑒𝜁
2

cos(𝜋𝜁/2) is used.
Gauss function is selected as the basis function of radial basis
neural network; as a result,

Φ (x) = 𝑒−(x−𝜇𝑖)
𝑇

(x−𝜇
𝑖
)/𝜐
2

𝑖 , 𝑖 = 1, 2, . . . , 𝑙, (47)

where �̂�𝑇

Φ(x) contains 𝑙 = 27 nodes with centers evenly
spaced in [−4, 4] × [−4, 4] × [−4, 4] and width 𝜐

𝑖
= 2 and

the initial values of the neural network weights �̂�(0) are set
as 0.

5.1. Control Performance Analysis with Considering Dead-
Zone Nonlinearity. In order to investigate the influence of
the dead-zone on airdrop control performance, the scheme
proposed in this paper (scheme 1) is comparedwith the adap-
tive dynamic surface controller without considering actuator
input dead-zone nonlinearity (scheme 2). The simulation
results are presented in Figure 1.

First of all, the present study adopts scheme 2 to merely
investigate the effect of dead-zone on closed-loop system
without taking external disturbances into account.The dead-
zone model is shown in (48); simulation result is depicted
as line b of Figure 1. And line a is the desired flight path
angle instruction. Drawing a comparison between line a and
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Figure 2: The curves of pitch angle and pitch rate.
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Figure 3: Comparison of control input curves.

line b, it can be easily seen that the dead-zone leads to the
reduction of the performance of the control system, which
renders the aircraft unable to track the desired trajectory
command accurately.

Based on line b coupled with the effects of outside
atmosphere disturbance of Δ𝑑

𝑤
and Δ𝑑

𝑛
on the aircraft

control performance, the simulation result is shown as line c
in Figure 1. It can be seen that the aircraft flight path angle
tracking performance declines remarkably, which aggravates
the instability of the closed-loop system and undermines the
accuracy and safety of airdrop.

5.2. Tracking Control Analysis with Considering
Actuator Input Nonlinearity

Example 9. When dead-zone nonlinearity happens to be
present in system (8), choose the expression of𝛿(𝑢) as follows:

𝛿 (𝑢) =

{{{{

{{{{

{

1.2 (𝑢 − 0.35) , 𝑢 ≥ 0.35

0, −0.35 < 𝑢 < 0.35

1.2 (𝑢 + 0.35) , 𝑢 ≤ −0.35.

(48)

The initial conditions and atmosphere disturbance expres-
sions remain unchanged, simulation results are shown as line
d and line c of Figure 1, as well as in Figures 2 and 3, where
line d is the tracking curve of flight path angle with scheme 1.

It can be seen from Figure 1 that the flight controller
(scheme 1) can effectively overcome the effects of dead-zone
and the atmospheric disturbance on the system, ensure the
fast track of the desired flight path angle instruction, and
track rapid error that converges to zero. Compared with the
scheme proposed in this paper, there are palpablymuchmore
tracking errors in scheme 2. It can be easily seen fromFigure 2
that, by virtue of themethod of this paper, the trend of system

state variables turns stable. From Figure 3, it can be seen that
scheme 1 can effectively overcome the problem of control
input flutter caused by dead-zone nonlinearity.

Example 10. When the backlash nonlinearity is concerned,
choose the expression of 𝛿(𝑢) as follows:

𝛿 (𝑢)

=

{{{{{

{{{{{

{

1.2 (𝑢 −
1

57.3
) , �̇� > 0, 𝛿 = 1.2 (𝑢 −

1

57.3
) ,

1.2 (𝑢 +
1

57.3
) , �̇� < 0, 𝛿 = 1.2 (𝑢 +

1

57.3
) ,

𝛿 (𝑡
−
) , others.

(49)

The controller is identical to that of Example 9 without
changing the control parameters, initial conditions, and
Nussbaum functions. Simulation results are as demonstrated
in Figures 4 and 5.

From Figure 4, we can infer that when considering actu-
ator input backlash nonlinearity, scheme 1 can achieve
tracking control performance as good as that of dead-zone
nonlinearity; it effectively overcomes the adverse effects of
backlash nonlinearity on the system and boasts considerable
robustness. According to Figure 5, the estimation of the
unknown parameters values gradually approaches the actual
values with satisfactory and fast approximation.

6. Conclusions

The method proposed in this paper boasts the following
advantages. Firstly, the approach can accurately estimate the
unknown model parameters and use the neural networks
to approximate the unknown system functions. In this way,
the assumption that model function must be identified
was overthrown. Secondly, this scheme introduces a robust
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Figure 5: The curves of adaptive parameter estimation.

adaptive compensation term, which effectively eliminates
the adverse effects of external atmospheric disturbances, the
neural network approximation error, and actuator nonlinear
modeling error on the system. Finally, the approach has a
reference value to a certain extent for solving the tracking
control problem with a class of uncertain nonlinear systems
with input nonlinearity, which is similar to the structure
examined in the present study.
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