7 research outputs found

    NLOS Channel Identification and Mitigation in Ultra Wideband ToA-Based Wireless Sensor Networks

    No full text
    Recently, Ultra Wideband (UWB) Time of Arrival(ToA)-based localization in Wireless Sensor Networks (WSNs)have received considerable attention. For a typical WSN operating in indoor environments, the localization performance can be degraded considerably due to the existence of non-line-of-sight (NLOS) channel conditions between the sensor nodes. In these channel conditions the ranging accuracy is degraded due to the attenuation and/or loss of the Direct Path (DP) signal which ultimately imposes a positive bias on the ToA-based distance estimation. As a result there is a need for robust algorithms that have the capability to identify and mitigate those NLOS ranging conditions. In this paper, we propose a novel, low complexity wireless channel condition estimation algorithm that identifies the condition of the channel. Based on the estimated ToA and Received Signal Strength (RSS) the algorithm identifies the channel condition which can be either LOS, NLOS-DP available, or NLOS-DP not available. A channel measurement campaign was conducted in an office environment and the measurement results confirms the validity of our algorithm. To integrate our channel condition estimation into the localization schemes, we propose two weight assignment schemes which generate either a ¨soft weightör a ¨hard weight ¨. Simulation results show that our estimator has robust performance with success rate of 85%. The simulations also show that by taking advantage of the channel condition estimation, we are able to reduce the RMSE of the localization estimate by over 40%. IEEE Proceeding

    Identification & Mitigation of NLOS Information for UWB based Indoor Localization

    Get PDF
    Technology advancements such as GPS, automation and robotics have completely changed the world and produced new industries, once thought to be unimaginable a century ago. As with all technology, these systems come with limitations and can be further improved. At this time, all of these systems share one common problem; they cannot work together in an indoor environment. The advent of indoor positioning systems aims to create a union between these technologies such as allowing robots to be location aware. Indoor positioning is currently a new technology with no defined standard. Ultra-wideband based indoor positioning systems have become popular because of their resistance to multipath and high resolution due to a large bandwidth. The Ultra-wideband based system in this thesis utilizes the time of arrival technique to calculate distances and thus a user’s position. Time of arrival is only reliable when there is a line-of-sight between two transceivers. If there is no line-of-sight, the distances calculated are inaccurate thus impacting the accuracy of a user’s position. This thesis proposes a practical, non-hardware intensive solution to identify if there is a no line-of-sight condition and mitigates the measured range between a tag and the anchor nodes. Line-of-sight identification was implemented using the channel impulse response data. Ranging and positioning mitigation was achieved using a geometric based mitigation scheme. An accuracy of 90% was achieved for the identification of no line-of-sight and an improvement factor of 2.81 was achieved for the calculated mitigated position of a tag

    Localization and Tracking of Intestinal Paths for Wireless Capsule Endoscopy

    Get PDF
    Wireless capsule endoscopy (WCE) is a non-invasive technology used for visual inspection of the human gastrointestinal (GI) tract. Localization of the capsule is a vital component of the system, as this enables physicians to identify the position of abnormalities. Several approaches exist that use the received signal strength (RSS) of the radio frequency (RF) signals for localization. However, few of these utilize the sparseness of the signals. Due to intestinal motility, the capsule positions will change with time. The distance travelled by the capsule in the intestine, however, remains more or less constant with time. In this thesis, a compressive sensing (CS) based localization algorithm is presented, that utilize signal sparsity in the RSS measurements. Different L1-minimization algorithms are used to find the sparse location vector. The performance is evaluated by electromagnetic (EM) simulations performed on a human voxel model, using narrow-band (NB) and ultra wide-band (UWB) signals. From intestinal positions, the distance the capsule has travelled is estimated by use of Kalman- and particle filters. It was found that localization accuracy of a few millimeters is possible under ideal conditions, when the RSS measurements are generated from a path loss model. When using path loss data from the EM simulations, localization accuracy on the order of 20-30 mm was achievable for NB signals. Use of UWB signals resulted in localization errors between 35-60 mm, depending on frequency range and bandwidth. From generated intestinal positions, the travelled distance was estimated with a minimum accuracy of a few millimeters, when using a VNL Kalman filter and moderate amounts of observation noise. The results are found from a limited amount of data. In order to increase the confidence in the presented results, the performance of the localization algorithm and the filters should be evaluated with a larger number of datasets

    Perception for context awareness of agricultural robots

    Get PDF
    Context awareness is one key point for the realisation of robust autonomous systems in unstructured environments like agriculture. Robots need a precise description of their environment so that tasks could be planned and executed correctly. When using a robot system in a controlled, not changing environment, the programmer maybe could model all possible circumstances to get the system reliable. However, the situation gets more complex when the environment and the objects are changing their shape, position or behaviour. Perception for context awareness in agriculture means to detect and classify objects of interest in the environment correctly and react to them. The aim of this cumulative dissertation was to apply different strategies to increase context awareness with perception in mobile robots in agriculture. The objectives of this thesis were to address five aspects of environment perception: (I) test static local sensor communication with a mobile vehicle, (II) detect unstructured objects in a controlled environment, (III) describe the influence of growth stage to algorithm outcomes, (IV) use the gained sensor information to detect single plants and (V) improve the robustness of algorithms under noisy conditions. First, the communication between a static Wireless Sensor Network and a mobile robot was investigated. The wireless sensor nodes were able to send local data from sensors attached to the systems. The sensors were placed in a vineyard and the robot followed automatically the row structure to receive the data. It was possible to localize the single nodes just with the exact robot position and the attenuation model of the received signal strength with triangulation. The precision was 0.6 m and more precise than a provided differential global navigation satellite system signal. The second research area focused on the detection of unstructured objects in point clouds. Therefore, a low-cost sonar sensor was attached to a 3D-frame with millimetre level accuracy to exactly localize the sensor position. With the sensor position and the sensor reading, a 3D point cloud was created. In the workspace, 10 individual plant species were placed. They could be detected automatically with an accuracy of 2.7 cm. An attached valve was able to spray these specific plant positions, which resulted in a liquid saving of 72%, compared to a conventional spraying method, covering the whole crop row area. As plants are dynamic objects, the third objective of describing the plant growth with adequate sensor data, was important to characterise the unstructured agriculture domain. For revering and testing algorithms to the same data, maize rows were planted in a greenhouse. The exact positions of all plants were measured with a total station. Then a robot vehicle was guided through the crop rows and the data of attached sensors were recorded. With the help of the total station, it was possible to track down the vehicle position and to refer all data to the same coordinate frame. The data recording was performed over 7 times over a period of 6 weeks. This created datasets could afterwards be used to assess different algorithms and to test them against different growth changes of the plants. It could be shown that a basic RANSAC line following algorithm could not perform correctly under all growth stages without additional filtering. The fourth paper used this created datasets to search for single plants with a sensor normally used for obstacle avoidance. One tilted laser scanner was used with the exact robot position to create 3D point clouds, where two different methods for single plant detection were applied. Both methods used the spacing to detect single plants. The second method used the fixed plant spacing and row beginning, to resolve the plant positions iteratively. The first method reached detection rates of 73.7% and a root mean square error of 3.6 cm. The iterative second method reached a detection rate of 100% with an accuracy of 2.6 - 3.0 cm. For assessing the robustness of the plant detection, an algorithm was used to detect the plant positions in six different growth stages of the given datasets. A graph-cut based algorithm was used, what improved the results for single plant detection. As the algorithm was not sensitive against overlaying and noisy point clouds, a detection rate of 100% was realised, with an accuracy for the estimated height of the plants with 1.55 cm. The stem position was resolved with an accuracy of 2.05 cm. This thesis showed up different methods of perception for context awareness, which could help to improve the robustness of robots in agriculture. When the objects in the environment are known, it could be possible to react and interact smarter with the environment as it is the case in agricultural robotics. Especially the detection of single plants before the robot reaches them could help to improve the navigation and interaction of agricultural robots.Kontextwahrnehmung ist eine Schlüsselfunktion für die Realisierung von robusten autonomen Systemen in einer unstrukturierten Umgebung wie der Landwirtschaft. Roboter benötigen eine präzise Beschreibung ihrer Umgebung, so dass Aufgaben korrekt geplant und durchgeführt werden können. Wenn ein Roboter System in einer kontrollierten und sich nicht ändernden Umgebung eingesetzt wird, kann der Programmierer möglicherweise ein Modell erstellen, welches alle möglichen Umstände einbindet, um ein zuverlässiges System zu erhalten. Jedoch wird dies komplexer, wenn die Objekte und die Umwelt ihr Erscheinungsbild, Position und Verhalten ändern. Umgebungserkennung für Kontextwahrnehmung in der Landwirtschaft bedeutet relevante Objekte in der Umgebung zu erkennen, zu klassifizieren und auf diese zu reagieren. Ziel dieser kumulativen Dissertation war, verschiedene Strategien anzuwenden, um das Kontextbewusstsein mit Wahrnehmung bei mobilen Robotern in der Landwirtschaft zu erhöhen. Die Ziele dieser Arbeit waren fünf Aspekte von Umgebungserkennung zu adressieren: (I) Statische lokale Sensorkommunikation mit einem mobilen Fahrzeug zu testen, (II) unstrukturierte Objekte in einer kontrollierten Umgebung erkennen, (III) die Einflüsse von Wachstum der Pflanzen auf Algorithmen und ihre Ergebnisse zu beschreiben, (IV) gewonnene Sensorinformation zu benutzen, um Einzelpflanzen zu erkennen und (V) die Robustheit von Algorithmen unter verschiedenen Fehlereinflüssen zu verbessern. Als erstes wurde die Kommunikation zwischen einem statischen drahtlosen Sensor-Netzwerk und einem mobilen Roboter untersucht. Die drahtlosen Sensorknoten konnten Daten von lokal angeschlossenen Sensoren übermitteln. Die Sensoren wurden in einem Weingut verteilt und der Roboter folgte automatisch der Reihenstruktur, um die gesendeten Daten zu empfangen. Es war möglich, die Sendeknoten mithilfe von Triangulation aus der exakten Roboterposition und eines Sendesignal-Dämpfung-Modells zu lokalisieren. Die Genauigkeit war 0.6 m und somit genauer als das verfügbare Positionssignal eines differential global navigation satellite system. Der zweite Forschungsbereich fokussierte sich auf die Entdeckung von unstrukturierten Objekten in Punktewolken. Dafür wurde ein kostengünstiger Ultraschallsensor auf einen 3D Bewegungsrahmen mit einer Millimeter Genauigkeit befestigt, um die genaue Sensorposition bestimmen zu können. Mit der Sensorposition und den Sensordaten wurde eine 3D Punktewolke erstellt. Innerhalb des Arbeitsbereichs des 3D Bewegungsrahmens wurden 10 einzelne Pflanzen platziert. Diese konnten automatisch mit einer Genauigkeit von 2.7 cm erkannt werden. Eine angebaute Pumpe ermöglichte das punktuelle Besprühen der spezifischen Pflanzenpositionen, was zu einer Flüssigkeitsersparnis von 72%, verglichen mit einer konventionellen Methode welche die gesamte Pflanzenfläche benetzt, führte. Da Pflanzen sich ändernde Objekte sind, war das dritte Ziel das Pflanzenwachstum mit geeigneten Sensordaten zu beschreiben, was wichtig ist, um unstrukturierte Umgebung der Landwirtschaft zu charakterisieren. Um Algorithmen mit denselben Daten zu referenzieren und zu testen, wurden Maisreihen in einem Gewächshaus gepflanzt. Die exakte Position jeder einzelnen Pflanze wurde mit einer Totalstation gemessen. Anschließend wurde ein Roboterfahrzeug durch die Reihen gelenkt und die Daten der angebauten Sensoren wurden aufgezeichnet. Mithilfe der Totalstation war es möglich, die Fahrzeugposition zu ermitteln und alle Daten in dasselbe Koordinatensystem zu transformieren. Die Datenaufzeichnungen erfolgten 7-mal über einen Zeitraum von 6 Wochen. Diese generierten Datensätze konnten anschließend benutzt werden, um verschiedene Algorithmen unter verschiedenen Wachstumsstufen der Pflanzen zu testen. Es konnte gezeigt werden, dass ein Standard RANSAC Linien Erkennungsalgorithmus nicht fehlerfrei arbeiten kann, wenn keine zusätzliche Filterung eingesetzt wird. Die vierte Publikation nutzte diese generierten Datensätze, um nach Einzelpflanzen mithilfe eines Sensors zu suchen, der normalerweise für die Hinderniserkennung benutzt wird. Ein gekippter Laserscanner wurde zusammen mit der exakten Roboterposition benutzt, um eine 3D Punktewolke zu generieren. Zwei verschiedene Methoden für Einzelpflanzenerkennung wurden angewendet. Beide Methoden nutzten Abstände, um die Einzelpflanzen zu erkennen. Die zweite Methode nutzte den bekannten Pflanzenabstand und den Reihenanfang, um die Pflanzenpositionen iterativ zu erkennen. Die erste Methode erreichte eine Erkennungsrate von 73.7% und damit einen quadratischen Mittelwertfehler von 3.6 cm. Die iterative zweite Methode erreichte eine Erkennungsrate von bis zu 100% mit einer Genauigkeit von 2.6-3.0 cm. Um die Robustheit der Pflanzenerkennung zu bewerten, wurde ein Algorithmus zur Erkennung von Einzelpflanzen in sechs verschiedenen Wachstumsstufen der Datasets eingesetzt. Hier wurde ein graph-cut basierter Algorithmus benutzt, welcher die Robustheit der Ergebnisse für die Einzelpflanzenerkennung erhöhte. Da der Algorithmus nicht empfindlich gegen ungenaue und fehlerhafte Punktewolken ist, wurde eine Erkennungsrate von 100% mit einer Genauigkeit von 1.55 cm für die Höhe der Pflanzen erreicht. Der Stiel der Pflanzen wurde mit einer Genauigkeit von 2.05 cm erkannt. Diese Arbeit zeigte verschiedene Methoden für die Erkennung von Kontextwahrnehmung, was helfen kann, um die Robustheit von Robotern in der Landwirtschaft zu erhöhen. Wenn die Objekte in der Umwelt bekannt sind, könnte es möglich sein, intelligenter auf die Umwelt zu reagieren und zu interagieren, wie es aktuell der Fall in der Landwirtschaftsrobotik ist. Besonders die Erkennung von Einzelpflanzen bevor der Roboter sie erreicht, könnte helfen die Navigation und Interaktion von Robotern in der Landwirtschaft verbessern

    Ultra-wideband Based Indoor Localization of Mobile Nodes in ToA and TDoA Configurations

    Get PDF
    Zandian R. Ultra-wideband Based Indoor Localization of Mobile Nodes in ToA and TDoA Configurations. Bielefeld: Universität Bielefeld; 2019.This thesis discusses the utilization of ultra-wideband (UWB) technology in indoor localization scenarios and proposes system setup and evaluates different localization algorithms in order to improve the localization accuracy and stability of such systems in non-ideal conditions of the indoor environment. Recent developments and advances of technology in the areas of ubiquitous Internet, robotics and internet of things (IoT) have resulted in emerging new application areas in daily life in which localization systems are vital. The significant demand for a robust and accurate localization system that is applicable in indoor areas lacking satellites link, can be sensed. The UWB technology offers accurate localization systems with an accuracy of below 10 cm and covering the range of up to a few hundred meters thanks to their dedicated large bandwidth, modulation technique and signal power. In this thesis, the technology behind the UWB systems is discussed in detail. In terms of localization topologies, different scenarios with the focus on time-based methods are introduced. The main focus of this thesis is on the differential time of arrival localization systems (TDoA) with unilateral constellation that is suitable for robotic localization and navigation applications. A new approach for synchronization of TDoA topology is proposed and influence of clock inaccuracies in such systems are thoroughly evaluated. For localization engine, two groups of static and dynamic iterative algorithms are introduced. Among the possible dynamic methods, extended Kalman filter (EKF), H∞ and unscented Kalman filter (UKF) are discussed and meticulously evaluated. In order to tackle the non-line of sight (NLOS) problem of such systems, for detection stage several solutions which are based on parametric machine learning methods are proposed. Furthermore, for mitigation phase two solutions namely adjustment of measurement variance and innovation term are suggested. Practical results prove the efficiency and high reliability of the proposed algorithms with positive NLOS condition detection rate of more than 87%. In practical trials, the localization system is evaluated in indoor and outdoor arenas in both line of sight and non-line of sight conditions. The results show that the proposed detection and mitigation methods can be successfully applied for both small and large-scale arenas with the higher performance of the localization filters in terms of accuracy in large-scale scenarios
    corecore