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ABSTRACT 

Technology advancements such as GPS, automation and robotics have completely 

changed the world and produced new industries, once thought to be unimaginable a 

century ago. As with all technology, these systems come with limitations and can be 

further improved. At this time, all of these systems share one common problem; they 

cannot work together in an indoor environment. The advent of indoor positioning systems 

aims to create a union between these technologies such as allowing robots to be location 

aware. Indoor positioning is currently a new technology with no defined standard. Ultra-

wideband based indoor positioning systems have become popular because of their 

resistance to multipath and high resolution due to a large bandwidth. 

 The Ultra-wideband based system in this thesis utilizes the time of arrival 

technique to calculate distances and thus a user’s position. Time of arrival is only reliable 

when there is a line-of-sight between two transceivers. If there is no line-of-sight, the 

distances calculated are inaccurate thus impacting the accuracy of a user’s position. This 

thesis proposes a practical, non-hardware intensive solution to identify if there is a no 

line-of-sight condition and mitigates the measured range between a tag and the anchor 

nodes. Line-of-sight identification was implemented using the channel impulse response 

data. Ranging and positioning mitigation was achieved using a geometric based 

mitigation scheme. An accuracy of 90% was achieved for the identification of no line-of-

sight and an improvement factor of 2.81 was achieved for the calculated mitigated 

position of a tag. 
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Chapter 1 - Introduction 

1.1 Motivation 

 Real time indoor positioning systems are a growing field due to the increase in use of 

mobile and portable devices. The need of a solution for indoor location based services is 

increasing [1]. When a person wishes to travel, getting the location and route to a 

destination has never been easier with the advent of cell phones and Global Positioning 

Systems (GPS). GPS works well outdoors but has poor performance indoors due signal 

attenuation from the walls of a building. To get a target’s position indoors, a different 

solution is required; that solution is indoor localization, also known as “indoor GPS”. 

There are a variety of proposed methods to get a user’s position indoors, with the most 

popular using Wireless Local Area Network (WLAN) and Ultra-Wideband (UWB) 

spectrum. WLAN based systems use finger printing algorithms; however, WLAN based 

positioning does not provide good accuracy [2].  There is currently no set standard in 

terms of wireless spectrum for indoor positioning due to all of the various types of 

complex indoor environments. The best candidate for high accuracy positioning is an 

UWB based Indoor Positioning System (IPS), especially since UWB does not interfere 

with other wireless spectrums and has accuracy on the order of centimeters [2]. The 

downfall of UWB based IPS’, particularly systems employing Time of Arrival (ToA), is 

that they suffer from location inaccuracies due to the multipath effect from physical 

obstructions found in an indoor environment [3]. These obstructions cause a scenario 

called No Line-of-Sight (NLOS) to occur between the transmitter and receiver. By 

identifying and mitigating the inaccuracies caused by NLOS, the biggest downfall of 

UWB based IPS’ could be solved, thus making the system more robust while maintaining 

accuracy. 

 

1.2 Problem Statement 

As indoor environments can be complex, there is no single model or algorithm that 

can account for all of the possible scenarios that an IPS might encounter. Some typical 
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indoor environments can include hospitals, residential housing, restaurants, office 

buildings, malls, and warehouses. All of the mentioned environments can have different 

probabilities of NLOS occurring through various types of obstructions. Existing Indoor 

positioning systems that are based solely on Received Signal Strength Indicators (RSSI) 

are not very accurate due to multipath fading, and require a premade RSSI fingerprint 

map to be made prior to being deployed. The UWB based IPS systems are very accurate 

but the biggest challenge faced when using ToA is when there is NLOS between a user 

and an anchor node. In the case of NLOS, the signal does not take the shortest theoretical 

path which leads to a positively biased distance reported by ToA calculation. This 

positively biased ToA calculation is due to the signal taking multiple paths to reach the 

receiver. The shortest distance between two points is a straight line and when there is an 

obstruction between these two points, the signal must travel in a nonlinear fashion. NLOS 

causes the distance reported to always be greater than the LOS distance. Thus, in 

situations where NLOS conditions occur, the distance reported between an anchor and a 

tag must always be corrected downwards. Furthermore, in order to mitigate an NLOS 

reported distance, NLOS must first be identified. 

 

1.3 Thesis Contribution 

The main contributions of this research is a mitigation algorithm that effectively and 

dynamically mitigates the position of a target if only two anchors remain LOS, along 

with a method to detect whether the target is NLOS. The mitigation algorithm presented 

in this research is a geometric based algorithm that utilizes the geometry of the anchor 

nodes. A similar geometric concept was applied using cellular network towers as in [12], 

[13].  

The proposed algorithm will mitigate the calculated NLOS range between a tag and 

an anchor, which results in an improvement in of a tag’s coordinates after range 

processing through trilateration. In this writing, the algorithm only handles the case 

where NLOS occurs in a system setup using three anchor nodes and one anchor 

experiences NLOS within a single room. The algorithm requires the identification of 
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NLOS for range measurements between the tag and all anchor nodes. Once an anchor is 

identified as being NLOS, the algorithm will mitigate the NLOS range measurement. The 

identification of NLOS is developed and implemented into a real time system using the 

DecaWave TREK1000 system and does not rely on previously sampled measurements. A 

simulation of the mitigation algorithm is developed and the results are provided. Data for 

the simulation is acquired using real world experimental data from the TREK1000 

system. As NLOS severity increases, the mitigated position becomes more accurate in 

comparison to the position using the raw range reported. In this research, the experiments 

use three anchors and one tag to perform simulations and practical implementations to 

demonstrate the validity and practicality of the solution proposed. 

 

1.4 Thesis Structure 

This thesis is organized as follows: Chapter 1 describes the challenges of UWB based 

indoor positioning and the contribution of the research on an introductory basis. Chapter 

2 provides a technical background for the work presented and a literature review of 

existing work done in the field of indoor positioning. Chapter 3 provides the proposed 

methodology and description of the work. Chapter 4 presents the final simulated results 

for the mitigation algorithm and the NLOS identification results when using the system in 

a real world implementation with the TREK1000 hardware. Chapter 5 provides a final 

conclusion and recommendations for future work in the proposed system. 
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CHAPTER 2 – Background & Literature Review 

2.1 Introduction to Ultra-Wideband 

UWB is a wireless spectrum with a frequency range spanning from 3.1 to 10.6 

gigahertz (GHz). It was first employed by Guglielmo Marconi in 1901 to transmit Morse 

code; it is by no means a new technology. Since UWB spans over such a large range of 

frequencies, the Federal Communications Commission (FCC) decided it must regulate 

UWB such that it does not interfere with other communications standards within the 3.1 

to 10.6 GHz band. In order to prevent interference with other IEEE wireless standards, 

the FCC decided that the maximum transmit power UWB can produce is −41.3 

dBm/MHz. Figure 2.1 shows a chart that compares various existing wireless standards in 

terms of bandwidth and Power Spectral Density (PSD). In Figure 2.1, it is seen that UWB 

overlaps with the IEEE WLAN 802.11a (Wi-Fi) spectrum. For this reason, it was 

required that the FCC limit the transmit power of UWB in order to not interfere with 

existing home Wi-Fi connections. 

 
Figure 2.1: PSD vs. Operating Frequency of IEEE wireless standards [4] 
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2.2 Advantages of Using UWB for Indoor Positioning 

Indoor positioning using the UWB spectrum has been adopted by the market by 

companies such as Time Domain, DecaWave and UbiSense. UWB offers many 

advantages to competing IEEE wireless protocols. Some notable advantages of UWB 

based communications are listed below [8]: 

 

• It can coexist with other IEEE wireless spectrums 

• Offers a large channel capacity 

• Good performance in noisy environments, works with low SNR 

• Low transmit power, hard to detect and intercept 

• Resistant to jamming 

• High performance in multipath channels 

In Table 2.1 [8], UWB is compared to other competing IEEE wireless standards. It is 

seen that UWB can deliver very high data rates and spans over frequencies, giving it a 

very high bandwidth. The DecaWave device used in these experiments claims up to 300 

meters of range using UWB. All of these factors, in addition to the fact that UWB does 

not require a separate spectrum license from the FCC, make UWB a good choice for 

indoor positioning applications. The prime advantages of UWB are the robustness of the 

signal and the high resolution of the signal due to the large bandwidth [9]. 

 
Table 2.1: UWB comparison to competing IEEE wireless standards [8] 
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2.3 Indoor Positioning Systems: Infrastructure vs. Infrastructure Free Systems 

Indoor positioning systems are not yet standardized and there are many proposed 

solutions which can be broken down into two groups: infrastructure based systems and 

infrastructure free based systems. Infrastructure based systems are more costly due to the 

requirement of extra, specialized hardware but also provide much better accuracy while 

infrastructure free systems are cheaper but are not as accurate. UWB based indoor 

positioning systems fall under the infrastructure based category. 

 

2.3.1 Infrastructure Based Systems 

Infrastructure based systems require specialized hardware that needs to be deployed 

throughout and indoor setting. Infrastructure based systems can be deployed via:  

• Bluetooth 

• UWB 

• ZigBee 

• Light 

• Ultrasound 

• RFID 

Infrastructure based IPS’ have more complex hardware that enables ranging techniques 

such as ToA, Time Difference of Arrival (TDoA) and Angle of Arrival (AoA) to be 

deployed. The TREK1000 test system is ToA based and in order to wirelessly calculate 

the time of flight for the signal, all receivers must be synchronized to the same time base.  

 

2.3.2 Infrastructure Free Based Systems 

Infrastructure free systems do not require specialized hardware and are marketed as 

being readily deployable using current technology, namely WLAN (also known as Wi-

Fi). Since WLAN is already commonly used within homes, businesses and offices; it is 

inexpensive and is a good candidate for research as well since industry is more inclined 

6 
 



 

to adapt technologies that do not require high capital investment. The two most popular 

types of Wi-Fi indoor positioning techniques are: 

• Wi-Fi RSSI Fingerprinting 

• Wi-Fi RSSI Ranging 

RSSI based measurements are popular for indoor positioning using Wi-Fi because 

RSSI can be easily extracted from off-the-shelf WLAN hardware. TDoA, ToA and AoA 

are hard to implement in WLAN/Wi-Fi systems because not all off-the-shelf WLAN 

hardware offers features to calculate these metrics. Calculating time delay and angular 

measurements using commercial WLAN routers is also more challenging due to the 

processing of other WLAN traffic and spectrum resolution limitations. Standard WLAN 

hardware does not provide the time of flight for a packet to a node. RSSI is not very 

accurate and typically has positioning accuracy of up to 1 meter [5]. To accomplish 

positioning using WLAN, more than one router would be required for RSSI finger 

printing. Localization techniques that incorporate RSSI are good candidates for 

applications such as finding a store in a mall since 1 meter of accuracy is sufficient for 

this. Any applications requiring very high accuracy, within centimeters, should employ 

techniques other than RSSI. 

 

2.4 Commercial Applications of Indoor Positioning Systems 

IPS’ have a broad range of applications. Some applications can include, locating 

tagged assets in a building such as tools in a factory, locating products stored in 

warehouses, tracking of employees within an office complex or medical personnel in a 

hospital, and robot automation within buildings. IPS’ can also be used for data mining for 

marketing companies for scenarios such as observing the most frequent travel path of 

users within a mall, which can allow prospective business owners to identify the best 

location to set up a store. IPS’ can also be used within malls to gather data about users’ 

shopping habits and identify shopping destinations that users commonly visit. Marketing 

and advertising companies can then identify where to place advertisements in a mall and 

what coupons to offer users that frequent certain stores. A geo-fencing system can also be 
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employed within stores that will identify that a user is inside a certain store and 

potentially in the future, send coupons and offers directly to a user’s mobile phone as 

soon as they walk into the store. Indoor localization has many applications that would be 

beneficial to society as long as it does not cross any ethical boundaries. 

 

2.5 Existing Indoor Positioning Techniques 

The primary ranging technique used for indoor positioning in this thesis is time of 

arrival. ToA and other popular indoor positioning techniques are outlined and briefly 

explained in the following subsections. The DecaWave TREK1000 system uses a two-

way ranging ToA technique which does not require precise timing. This method allows 

for the precise timing of a range signal and greatly minimizes ranging error compared to 

other positioning techniques. 

 

2.5.1 Time of Arrival Technique 

ToA is a technique that involves calculating the distance between two nodes by 

using the time it takes for the radio signal to travel between the transmitting and receiving 

node. ToA requires both the anchor and the tag to have a synchronized time base to 

accurately timestamp packets. If the anchor and tag are not time synchronized, two-way 

ranging is applied, such as in the DecaWave TREK1000 system, where the ranging 

message is sent from the anchor to the tag, then back to the anchor to precisely calculate 

the signal time of flight.  More is discussed in Section 3.2.1. 

 

2.5.2 RSSI Fingerprinting 

RSSI fingerprinting is commonly used in systems employing WLAN based 

indoor positioning. RSSI fingerprinting involves taking RSSI measurements from 

multiple access points at predetermined distance intervals and storing them in a database 

of measured RSSI values at each point. These premeasured RSSI values are then 

compared to the measured value from a user which gives an estimation of the position. 
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RSSI fingerprinting is not feasible in practice due to fingerprint maps required to be 

created. To create a fingerprint map for every possible WLAN access point, for every 

room, would require extensive setup prior to a system being able to run. 

 

2.5.3 Time Difference of Arrival  

TDoA works by calculating the cross correlation between signals arriving at 

nodes. The nodes must all be time synchronized as well. TDoA and the cross correlation 

of the signals produce hyperbolas that intersect as a specific point. TDoA allows the 

anchor nodes to continuously broadcast a range signal and not have to interact with the 

tag. This allows for many tags to be deployed since they do not communicate with anchor 

nodes but instead only listen to them. This technique is applied to GPS systems found 

today. That is why millions of users are able to simultaneously use GPS at the same time. 

The drawback of this system is that that crystal oscillator on both the tag and the anchor 

must be perfectly aligned, which is never the case. For this reason, two-way ToA ranging 

is used. 

 

2.5.4 Angle of Arrival 

AoA is a method to obtain the angle of a received signal from a known transmitting 

node to in order to calculate the position of a user. The angle of signal can be determined 

if the transmitter and receiver devices use directional antennas and the signal transmitted 

only under LOS conditions. For the application of indoor positioning, the main 

disadvantage of AoA is that in NLOS conditions the angle of the incoming signal may be 

incorrect due to signal reflections (multipath) from obstacles in the room. Signal 

reflections will cause an incorrect angle to be calculated. A room with many metallic 

objects can impact the performance of AoA since metallic objects severely attenuate the 

signal and reflect waves. Angle of arrival requires and array of directional antennas 

which can only receive signals from a certain direction. Directional antennas are also 

extra hardware and cost which is a disadvantage to using two-way ToA ranging. 
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2.6  Physical Hardware Used and Specifications  

The hardware used in this thesis is created by DecaWave. The primary reason for 

choosing the DecaWave hardware is because DecaWave offers low cost products with 

reasonable line-of-sight accuracy (up to 10cm accuracy), relative to other competing 

indoor positioning based manufacturers.  

 

2.6.1 DecaWave Hardware 

The hardware chosen for the experiments was the EVK1000 and TREK1000 

evaluation kit which are manufactured by DecaWave. The hardware in both the 

EVK1000 and TREK1000 kits consists of the same physical hardware, which is the 

EVB1000 evaluation board as shown in Figure 2.2. The difference between the EVK1000 

and TREK1000 evaluation kits is in the firmware and software provided by DecaWave 

for each kit.  

 
Figure 2.2: EVB1000 board by DecaWave [6] 

The EVK1000 evaluation kit offers firmware to provide a two way ranging distance 

measurement that displays the distance between two EVK1000 units. It also comes with a 

premade PC program called “DecaRanging” that displays channel impulse response 

information along with other diagnostic information. The EVK1000 system was mainly 

used for acquiring a visual display of channel impulse response information under 

different NLOS scenarios. The TREK1000 system was used as the IPS. The TREK1000 
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system is also capable of getting channel impulse response information but this causes 

the performance of the system to slow down slightly. 

 The EVB1000 board consists of three main components: the DW1000 chip by 

DecaWave, the STM32F10x microcontroller by STMicroelectronics, and an UWB omni-

directional planar antenna. The DW1000 chip is responsible for sending out messages 

through UWB, obtaining channel information and decoding/detecting incoming 

messages. The DW1000 is the “heart” of the system. The STM32F10x is a 32 bit 

microprocessor that communicated with the DW1000 chip via Serial Peripheral Interface 

(SPI) transactions and sends out messages to a PC through Universal Serial Bus (USB) or 

Universal Asynchronous Receiver/Transmitter (UART). SPI, USB and UART are 

different types of hardware communication protocols. Figure 2.3 shows a high level 

system block diagram of the EVB1000 board. 

 

 
Figure 2.3: EVB1000 System Block Diagram [7] 
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2.6.2 DW1000 Operating Characteristics 

The EVB1000 runs all UWB communication from the DW1000 chip onboard the 

unit. The operating capabilities of the DW1000 are found in Figure 2.4. There are total of 

6 available channels, each with different combinations of center frequency and 

bandwidth. There are also various preamble codes supporting a 16 or 64 MHz Pulse 

Repetition Frequency (PRF). The operating capabilities of the DW1000 are based on the 

Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard. For an in-

depth explanation of the UWB operating parameters, the user is referred to the IEEE 

802.15.4 standard. 

 
Figure 2.4: Operating Capabilities of the EVB1000 board. 

The selection of channels allows multiple independent IPSs to be set run 

simultaneously with no interference. This scenario can occur if for instance, a company 

wishes to track assets and personnel but on two separate systems. It is also important to 

note that while the IEEE 802.15.4 standard allows a UWB bandwidth of up to 1331.2 

MHz, the DW1000 has a maximum receive bandwidth of only 900 MHz. For the 

experiments shown in this thesis, the TREK1000 system used will be configured to run 

on channel 2 with a 16 MHz PRF. 

 

2.7 Related Work 

A summary of related works is outlined in Table 2.2. The related work entails 

multiple overlapping areas research, which incorporate research in the UWB spectrum, 
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NLOS identification and classification, and ranging / positioning methods. This research 

can be directly applied to the TREK1000 system used in this thesis for a hardware 

implementation demonstration. As seen from Table 2.2, there is a lack of research in 

geometric based mitigation, especially using UWB. None of the related works outlined in 

Table 2.2 provided a hardware implementation. 

 

2.7.1 Geometric Based Mitigation 

      Geometric based mitigation is based on the geometrical layout of the positioning 

system. In [12], [13] cell geometry and the base station layout from cellular network 

towers are utilized. Range scale factors are estimated from a constrained nonlinear 

optimization problem. The solutions in [12], [13] do not require the identification of 

LOS/NLOS conditions. For the application in this research, identification and 

classification of NLOS was incorporated to a geometric based algorithm, along with 

RSSI measurements in the UWB spectrum. A hardware demonstration was also 

delivered. 

 

2.7.2 NLOS Identification / Classification 

      NLOS Identification is a crucial parameter in this research because it enables the 

ability to only mitigate ranges that are strictly NLOS. This saves processing time and 

ultimately can lead to increased battery life if the processing is done on a mobile node. 

Guvenc in [11] proposes NLOS identification using channel statistics such as CIR. 

Alsindi in [14] goes further and also classifies NLOS by severity. It is classified as being 

“hard” or “soft”. NLOS classification can be an important parameter because it can, in 

the future, be used as a way to mitigate NLOS range measurements based on the severity 

of NLOS. The identification and classification of NLOS is accomplished in this research 

and also applied to a real time hardware implementation. 
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Cai, Li, Yuan, 
Hei 
(2015)[10]  x     x x  

Wi-Fi based IPS to using 
only channel state 
information and RSSI to 
mitigate NLOS. 

Guvenc, 
Chong, 
Watanabe 
(2007)[11] 

x x  x    x  

NLOS identification using 
channel statistics and CIR. 

Khajehnouri, 
Sayed (2005) 
[12] 

   x x x  x  
Cellular based; geometric 
means of mitigating NLOS. Venkatraman, 

Caffery, You 
[13] 

   x x x  x  

Alsindi, Duan, 
Zhang, Tsuboi 
(2009)[14] x x x x x   x  

NLOS channel identification 
and classification of 
“hard”/”soft NLOS. Used 
experimental measurements. 

Wann, Chin 
(2007)[15] x x  x   x x  

Uses a hybrid RSSI / ToA 
approach to identify and 
mitigate NLOS. 

Yang, Peipei, 
Xinwei, 
Qinyu, 
Naitong(2006) 
[16] 

x x x x      

Used the same DecaWave 
hardware to study NLOS 
through different materials. 
Showed measurement error 
between “hard” / “soft” 
NLOS. 

Wann, Yeh, 
Hsueh [17] x x  x x   x  

NLOS identification 
/mitigation using Kalman 
filter and hybrid of TDoA / 
AoA. 

Marano, 
Gifford, 
Wymeersch, 
Win 
(2010)[18] 

x x  x    x  

Study based from 
experimental measurements 
using UWB hardware, 
mitigated position and 
detected NLOS using 
channel parameters. 

Research 
Covered in 
this Thesis 

x x x x  x x x x 
 

Table 2.2: Summary of Related Works 
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2.7.3 Non- Geometric Based Approaches to Mitigation in NLOS Environments 

There are alternative approaches to deal with the problem of NLOS inaccuracies 

in a ToA based system that are not geometric based, as proposed in this research. The two 

main approaches are hybrid schemes and techniques involving the Kalman filter. Both of 

these alternatives are more complex, and require extra information, thus extra hardware 

and increased cost. These alternative techniques do have their place and are best used in 

IPS system where NLOS with more than one anchor is extremely high. 

 

2.7.3.1 Hybrid Schemes 

Hybrid schemes are common solutions proposed in an attempt to achieve a more 

accurate position. Chen [19] states that it is reasonable to combine multiple schemes to 

achieve an accurate position and proposes a geometrical hybrid ToA/AoA scheme. In the 

hybrid ToA/AoA scheme proposed, the 3D location estimate of a Mobile Station (MS) is 

found by using the ToA/AoA measurements from the three Base Stations (BS) by finding 

all possible intersections. Results showed that the scheme accurately estimated the MS 

despite the NLOS error distribution. Akgul in [20] proposes a hybrid mitigation method 

where ToA and AoA are used in combination. The paper first explains mechanics of the 

ToA approach in using either the first peak or the strongest peak, both which are affected 

by NLOS conditions. The paper then explains how AoA assisted error mitigation can 

assist by selecting paths that are closest to the previous sampling point. The motivation 

behind proposed AoA-assisted error mitigation is that the direct path through ToA can be 

very weak and might not be selected as the first/strongest path. Using AoA, the potential 

direct path can be selected using a Least Squared (LS) solution. The results showed that 

the proposed algorithm in [20] performed very close to the actual distance and showed 

improvement over using the first detected path, which was the NLOS path. 

There has been research in using RSSI with ToA to achieve favorable position 

accuracy [15]. The authors use an unconstrained nonlinear optimization approach to 

process the ToA/RSSI and show how it performs under different NLOS scenarios. BSs 

were placed in different configurations and simulated using their proposed algorithm. The 
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ToA/RSSI hybrid algorithm performed better than other algorithms such as the equal-

weight unconstrained linear test. 

 

2.7.3.2 Predictive Schemes – Kalman Filter 

The Kalman filter is a commonly used predictive approach to NLOS mitigation. 

The Kalman filter uses additional measurement inputs that are acquired over time. It is 

commonly used in GPS navigation for scenarios where the user enters a tunnel and loses 

sight with the satellites. This type of scenario, where satellite communication is lost, is 

known as dead reckoning. Commonly used inputs to a Kalman filter are acceleration, 

velocity, yaw, pitch, and roll. In [21], a modified biased Kalman filter is applied to 

mitigate NLOS in a system using UWB. The work in [21] uses measured ToA values and 

uses a modified biased Kalman filter to estimate ToA. The measured ToA, along with the 

estimated ToA is input to a standard deviation calculation with a sliding window and a 

LOS/NLOS test is performed. The LOS/NLOS test required the identification of NLOS, 

which is accomplished using the standard deviation of the range measurement. The 

results showed that the mitigated range resembled that of the true range. In [22] an 

Inertial Measurement Unit (IMU) aided TDoA system is used in an indoor environment. 

The IMU provides accelerometer and gyroscope information. The IMU data, along with 

the TDoA based system information is used as inputs to the extended Kalman filter.  The 

results demonstrated significant improvements in using an extended Kalman filter over a 

stand-alone TDoA. 
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CHAPTER 3 – Methodology and Description of the Work 

3.1 System Overview 

This chapter explains the proposed work and the methodology of IPSs based on the 

ToA technique. The out of the box TREK1000 system provides tag tracking features but 

has no method to detect and mitigate NLOS. The enhancements applied to this system are 

summarized in Table 3.1 below. 

TREK1000 System 
Capabilities 

Out of Box 
Solution 

Thesis 
Additions 

Hardware setup and 
connectivity X  

2D/3D Tracking X  
PC Application /  
User Interface X  

NLOS Detection  X 
NLOS Classification  X 
Ranging Mitigation  X 
2D Position 
Mitigation  X 

Table 3.1: Thesis Additions to Existing System 

The out of box TREK1000 system is able to successfully pair with all anchors/tags, take 

range measurements and calculate the position of the tag. When an obstruction is placed 

between a tag and one or more anchors, the position and reported of the tag will be 

inaccurate. The NLOS inaccuracy varies and depends on the size of the obstruction and 

the material of the obstruction. 

An overall flow chart of this system can be found in Figure 3.1. In the block diagram, the 

out of box system functions are shown along with the additions presented in this thesis. 

NLOS is detected by using the channel information and NLOS ranges are mitigated using 

an algorithm developed. The mitigation of NLOS ranges will result in increased position 

accuracy. 
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Figure 3.1: Operational Flow Chart of the IPS with Added Modifications. 

 

3.2 Distance Measurement - Time of Arrival  

The method used in this thesis for calculating the distance between the tag and 

anchors was ToA. In this section ToA is explained, along with problems that may occur 

using this method. Section 2.5.1 briefly explained the ToA technique.  
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3.2.1 Time of Arrival – Introduction 

ToA is a one dimensional distance estimation technique that involves using two 

nodes and calculating the total time it takes for a radio signal to travel between the 

transmitting and receiving antenna. ToA works very well in LOS situations. LOS is 

defined as both the transmitter and receiver having a clear path between them with no 

obstructions between them. NLOS is the opposite of LOS, where there is an obstruction 

between the transmitter and receiver and the signal must use non-direct paths to reach a 

node, thus not taking the shortest path. 

Distance estimation based on the ToA technique is a very time sensitive task. The 

speed of electromagnetic radiation through free space is the speed of light, c = 299 792 

458 m/s (approximately 3.00×108  m/s). By knowing the total time it takes for a signal to 

propagate from one node to another, as well as knowing the speed of the signal, the 

distance between two nodes can easily be calculated. The formula for calculating distance 

between two nodes using the ToA technique can be expressed as, 

 𝑑 = 𝑐𝑡𝑝𝑟𝑜𝑝 , (1) 

where, c, is the speed of light through free space and 𝑡𝑝𝑟𝑜𝑝 is the propagation time of the 

radio signal. In practice, there are additional delays that must be accounted for such as 

hardware and antenna delay. These additional delays can vary, depending on the 

hardware and antenna used and must be accordingly accounted for in the ToA 

calculation. Hardware delay is further discussed in Section 3.2.4. 

 

3.2.2 Line-of-Sight Scenario 

The ToA technique under LOS conditions is shown in Figure 3.2. From the 

figure, the 𝑡𝑝𝑟𝑜𝑝 is seen as being 1 nanosecond, thus given the speed of light, the distance 

is calculated from (1), which results in 0.3 meters. 
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Figure 3.2: Line-of-Sight in Time of Arrival Technique 

 

3.2.3 No Line-of-Sight Scenario 

The weakness of ToA is seen when NLOS occurs. In NLOS conditions, wireless 

signals that cannot pass through an object must reflect from walls or diffract from an 

object to reach a target node. Reflection and diffraction of a wireless signal will occur in 

LOS situations as well but the first signal to reach a receiver will be the direct, 

unobstructed path. Incoming reflected/diffracted signals entering a receiver are then 

discarded. An illustration of NLOS reflection and diffraction is shown in Figure 3.3. 

 

Figure 3.3: NLOS and Multipath in Time of Arrival Technique 

In NLOS conditions, the incoming received signal is a result of the reflected 

and/or diffracted signal. This causes 𝑡𝑝𝑟𝑜𝑝  be greater than it should be, which causes 

calculated distance to be greater. Theoretically in NLOS conditions, the time and distance 

calculated must always be greater than the time and distance in an LOS path. Since LOS 

is always the shortest path, there cannot be a situation where the NLOS ToA is shorter 
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than the LOS ToA. Since a radio wave propagates at the speed of light, a one nanosecond 

delay equates to a measurement error of 30cm.  

The size and position of an NLOS causing obstruction also affects the ToA range 

calculation. The size of the NLOS causing obstruction and the distance between the 

anchor and tag is proportional to the measurement error induced by NLOS. A 1m x 1m 

obstruction will have a larger impact on measurement accuracy in a small room than in a 

large room. 

 

3.2.4 Real World Applications 

In real world applications, the designer must also account for hardware delays to 

process the signal. As mentioned in Section 3.2.2, a one nanosecond delay causes a 30cm 

measurement error. When applying ToA in practice, the hardware delay due to 

processing and sending time of a signal must be known. Processing time of a signal is 

specific to the hardware itself. Once the hardware delay time is known, the hardware 

processing time is subtracted from the time of flight to accurately give a correct distance 

measurement. Figure 3.4 shows the time of flight scenario for the EVB1000 unit [23].  

Another factor that affects the ToA is antenna delay. Antenna delay, also known 

as group delay is calculated by trial and error until the LOS distance measurement is 

accurate. Since the hardware is all made up of the same components, each EVK1000 unit 

will have the same antenna delay value. The ToA between an anchor and a tag is 

calculated by [23] as, 

 
𝑇𝑜𝐴 =

( 2𝑇𝑅𝑅 − 𝑇𝑆𝑃 − 2𝑇𝑆𝑅 + 𝑇𝑅𝑃 + 𝑇𝑅𝐹 − 𝑇𝑆𝐹)
4

 , (2) 

 

where 𝑇𝑅𝑅 is receive response message time, 𝑇𝑆𝑃 is send poll message time, 𝑇𝑆𝑅 is send 

response message time, 𝑇𝑅𝑃 is receive poll message time, 𝑇𝑅𝐹  is receive final message 

time and 𝑇𝑆𝐹 is send final message time. 
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Figure 3.4: Time of flight in the EVB1000 [23] 

 

3.3 Position Estimation - Trilateration 

Trilateration is a method to determine the relative coordinates of a point using 

distances to a target node from at least three other reference nodes whose coordinates are 

known. Trilateration can be done in either 2D or 3D. The choice of using 2D or 3D 

trilateration is dependent on the application.  

 

3.3.1 Position Estimation - 2D Trilateration 

In this thesis, 2D trilateration is the primary focus. A MATLAB simulation of 2D 

trilateration was used to identify the tag’s position once all three ranges were acquired. 

2D trilateration requires a minimum of three anchor nodes to determine the location of a 

tag. Trilateration in 2D solves for the intersection of three circles at a common point. 

 

3.4 Identification of NLOS 

The identification of NLOS is critical component in this thesis. Before the mitigation 

of an NLOS measurement, it must be determined if the measured distance contains 
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NLOS error.  The measured distance between two points using ToA can contain 

significant positive error bias when NLOS occurs [24]. In this thesis, NLOS is also 

classified as being “hard” or “soft”. The methodology for identifying NLOS is explained 

in Section 3.4.5, and the classifications used are seen in Section 4.3.1. “Hard” NLOS is 

defined as being when an obstruction severely attenuates the signal, where as “soft” 

NLOS is an obstruction that causes mild/low signal attenuation. The primary method for 

identifying NLOS is based on comparing the Received Signal Strength Indicator (RSSI) 

and First Path Power Level (FPath) parameters. Through experimental results, the 

comparison of FPath and RSSI gave an accurate confidence level of NLOS detection. 

 

3.4.1 Received Signal Strength for the DecaWave EVB1000 Hardware 

The received signal strength is one of the parameters used in the identification of 

NLOS. Using the EVB1000 hardware, it was possible to acquire an estimation of the 

RSSI.  From the DW1000 documentation, a model for acquiring an estimation of the 

RSSI [25]. The model is given as, 

 𝑅𝑆𝑆𝐼 (𝑑𝐵𝑚) = 10 𝑙𝑜𝑔10 �
(𝐶)(217)
𝑁2 � − 𝐴, (3) 

where C is the channel impulse response power, N is the preamble accumulation count 

and A is a predefined constant of 115.72 dBm for a Pulse Repetition Frequency (PRF) of 

16 MHz or 121.74 dBm for a PRF of 64 MHz. 

 A chart provided by DecaWave [25], seen in Figure 3.5, illustrates the actual 

received power vs. the estimate using the model provided in (3). While the RSSI from the 

EVK1000 hardware is only an estimate, it is seen from the graph that as the RSSI 

decreases, the accuracy of the model by DecaWave is more accurate thus giving a higher 

confidence level for NLOS identification when the signal strength is more attenuated.  
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Figure 3.5: Estimated vs. Actual Received Power levels (dBm) 

 

3.4.2 Preliminary Experiments: NLOS Detection via RSSI 

Experiments were performed to find a correlation between NLOS and the RSSI. 

The hypothesis for this experiment was that by taking the average RSSI between each 

anchor node and the tag, the anchor experiencing NLOS would have a lower (more 

negative) RSSI than the average between all three. 

 

3.4.2.1 Experiment 1 – NLOS in the Centre of an Indoor Positioning System 

In the first experiment, three anchors were set up in an equilateral triangle 

formation. The separation between each anchor node was 3 meters, thus the length of the 

anchor perimeter edge length was 3 meters. The tag node was placed in the direct center 

of the triangle. An object was then placed between the anchor/tag to mimic NLOS. The 

object was moved between each anchor/tag. Only one anchor/tag was NLOS in the 
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system at any given time. An illustration of this setup is shown in Figure 3.6. A sheet of 

metal was the object placed in between the anchor/tag to create the NLOS condition. 

a1 a0

Tag

a2

3m

3m

3m

 
 

Figure 3.6: Experiment 1 - NLOS Setup 

 
First, the indoor positioning system was run with no object obstructing the view 

between any anchor/tag to imitate LOS conditions. After collecting the data, the RSSI 

between each anchor/tag was compared to the reported distance. The average reported 

LOS distance over a total of 145 measurements was found to be 1.904m. The height of 

the anchors was 1.61m from the floor. The height of the tag was 1.33m from the floor. 

Since the reported distance is a vector in the XYZ plane but the 2D map and the distance 

between each anchor are on the XY plane, the distance must be converted to its XY 

projection. Table 3.2 compares the reported distance measurements in the XYZ plane and 

compares the variance and the maximum and minimum reported distance points.  

Scenario Distance  
(m) 

Minimum 
(m) 

Maximum 
(m) 

NLOS %Error 

LOS 1.904 1.867 1.939 -------- 
NLOS Anchor 0 – Tag  2.282 2.229 2.323 +19.85 
NLOS Anchor 1 – Tag 2.170 2.133 2.219 +13.97 
NLOS Anchor 2 – Tag 2.196 2.159 2.227 +15.33 

Table 3.2: Range Comparison between LOS/NLOS - Experiment 1 
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In the NLOS scenarios, it was seen that an obstruction caused the reported 

distances to increase between 14-20%. Figure 3.7 compares reported distance with the 

RSSI. It is seen from the graph that the NLOS RSSI varied from -80.8dBm to -82.12 

dBm. The NLOS reported distance deviation varies from 2.133m to 2.323m between all 

the experiments. At around -80.7dBm, the distinction between LOS and NLOS is seen 

with the reported distance increasing significantly. It should be observed that there were 

also a few LOS RSSI measurements that were in the NLOS RSSI range but with the 

exception that reported distance still stayed accurate. The few LOS outlier points that 

were greater than -80.8 dBm were the first indication that RSSI by itself is not a very 

good indicator of LOS/NLOS conditions.  

 
Figure 3.7: Experiment 1 - Results 

 

3.4.2.2 Experiment 2 - NLOS in the Corner of an Indoor Positioning System 

In the second experiment, three anchors were set up in an equilateral triangle 

formation. The separation between each anchor node was 3 meters, thus the triangle edge 

length was 3 meters. The tag node was placed roughly 1.1 meters away from anchor_0. 

Again, an object was placed between the anchor/tag to mimic NLOS. The object was 

moved between each anchor/tag. Only one anchor/tag was NLOS in the system at any 

given time. An illustration of this setup is shown in Figure 3.8. A sheet of metal was the 

object placed in between the anchor/tag to create the NLOS condition. 
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Figure 3.8: Experiment 2 - NLOS Setup 

Similar to Experiment 1, the indoor positioning system was run with no object 

obstructing the view between any anchor/tag to imitate LOS conditions. After collecting 

the data, the RSSI between each anchor/tag was compared to the reported distance. The 

average reported LOS distance over a total of 145 measurements was found to be 

1.904m. The height of the anchors was 1.61m from the floor. The height of the tag was 

1.33m from the floor. Since the reported distance is a vector in the XYZ plane but the 2D 

map and the distance between each anchor are on the XY plane, the distance must be 

converted to its XY projection. Table 3.3 compares the reported distance measurements 

in the XYZ plane and compares the variance and the maximum and minimum reported 

distance points. For each anchor/tag, the LOS measurement was first taken, then the 

NLOS measurement was taken. 

Scenario Distance 
 (m) 

Minimum Maximum % Error  
LOS / NLOS 

LOS Anchor 0 – Tag 1.155 1.095 1.196 -------- 
NLOS Anchor 0 – Tag  1.426 1.383 1.467 +23.46 
LOS Anchor 1 – Tag 1.051 1.015 1.082 -------- 
NLOS Anchor 1 – Tag 1.344 1.329 1.512 +27.87 
LOS Anchor 2 – Tag 1.106 1.069 1.148 -------- 
NLOS Anchor 2 – Tag 1.382 1.325 1.416 +24.95 

Table 3.3: Range Comparison between LOS/NLOS – Experiment 2 
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In the NLOS scenarios, it was seen that an obstruction caused the reported 

distances to increase between 25-28%. Figure 3.9 compares reported distance with the 

RSSI. It is seen from the graph that the NLOS RSSI varied from -80.60 up to -81.63dBm. 

The NLOS reported distance deviation varies from 1.325m to 1.512m between all the 

experiments. In this experiment a clear distinction is seen between the LOS range group 

and the NLOS range group. Compared to Experiment 1, it was seen that the closer an 

anchor and tag are together, the higher the introduced NLOS error. 

 

 

Figure 3.9: Experiment 2 Results 

 

3.4.3 NLOS Detection via RSSI – Conclusion 

Through preliminary experiments, it was shown that using only RSSI was not a good 

enough indication of whether NLOS conditions occurred or not. If one or more anchors 

experienced NLOS, it is hard to differentiate which ranges are actually NLOS. For 

example, if one anchor experiences NLOS and gives an RSSI measurement higher than it 

should be, it is not known whether this RSSI measurement is high due to the fact that the 

tag is either far away from the anchor or if there is an obstruction in between. One cannot 

confidently identify NLOS conditions using RSSI as a sole parameter. It was also seen 

that as an anchor and tag get closer, the introduction of NLOS will cause the reported 

range to deviate much more severely than if the tag and anchor were farther apart. It is 
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therefore important to keep the anchor on a much higher elevation than the tag for 2D 

positioning to avoid this issue.  

 

3.4.4 Received Signal Strength in the First Path 

Since NLOS detection using RSSI was no sufficient as seen in Section 3.4.2, 

another solution had to be found to solve the problem of identifying NLOS accurately. 

The solution found to the NLOS identification problem was incorporating the use of a 

parameter called the First Path Power Level (FPath). The EVB1000 hardware allows the 

user to get an estimate of the FPath.  FPath is the measure received signal power from the 

first three arriving pulses of the received signal. This parameter, in conjunction with 

RSSI would allow for better accuracy in identifying NLOS. The FPath estimate is 

provided in [25] and is defined as, 

 
𝐹𝑃𝑎𝑡ℎ = 10 𝑙𝑜𝑔10 �

𝐹12 +  𝐹22 +  𝐹32

𝑁2 � − 𝐴, (4) 

where F1 , F2 , F3 are first path amplitude points, N is the preamble accumulation count, 

and A is a predefined constant of 115.72 dBm for a PRF of 16 MHz or 121.74 dBm for a 

PRF of 64 MHz. 

 There are instances where the first path signal may have a low amplitude due to 

NLOS and can be mistaken as noise by the DW1000. To mitigate this, a detection 

threshold is set as seen in Figure 3.10. Setting the threshold cutoff too high will cause the 

first path to be ignored and if the cutoff is set too low, it can cause noise spikes to be 

detected. For this thesis, the default threshold values set by the manufacturer were used. 
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Figure 3.10: Incoming Receiver Signals 

 

3.4.5 Determining NLOS Conditions using RSSI and FPath 

By comparing both RSSI and FPath, the identification of NLOS, along with the 

severity of it was able to be obtained from the EVK1000 hardware. The method used to 

identify NLOS was to take the difference, ∆, between the FPath and RSSI. The formula 

for the difference was, 

 ∆ = 𝑅𝑆𝑆𝐼 − 𝐹_𝑃𝑎𝑡ℎ 

𝑤ℎ𝑒𝑟𝑒, �
∆ < 6                                       𝐿𝑂𝑆 

  6 ≤ ∆ < 7          𝐿𝑂𝑆 𝑀𝑜𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒
∆ ≥ 7                                      𝑁𝐿𝑂𝑆

 
(5) 

It was found experimentally that if ∆ was over 7dBm, it would identify the presence 

of NLOS. Through experiments, a difference of 7dBm was had a 92% chance of 

identifying NLOS and thus 7dBm was chosen as a baseline for certainty of NLOS. The 

trouble region is when ∆ is between 6dBm and 7dBm. At longer ranges (>10m), ∆ was 

found to fluctuate up to just under 7dBm under LOS conditions. In a real time 

environment at long ranges (>10m), modifying ∆  to indicate NLOS at a specific ∆  

through initial calibration before setting up the system would be a viable alternative. 

NLOS identification experiments were conducted and are covered in Chapter 4. By 
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identifying NLOS conditions, a program could then be developed to mitigate the NLOS 

reported distances, consequentially also mitigating the position of the target under NLOS. 

 

3.5 NLOS Distance Correction – The Proposed Mitigation Algorithm 

In a typical non-industrial environment, anchors are located near ceiling level, 

thus most obstructions are generally avoided. In general for a system with three anchor 

nodes, the probability of an anchor experiencing NLOS, 𝑃𝑁(𝐴𝑖), is modelled as, 

𝑁𝐿𝑂𝑆 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑎𝑛𝑐ℎ𝑜𝑟 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒:  

 𝑝 =
1
3

,   𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎𝑛𝑐ℎ𝑜𝑟 𝑖𝑠 𝑁𝐿𝑂𝑆 (6) 

 𝑃𝑁(𝐴𝑖) = �3
1� 𝑝(1 − 𝑝)2 =

4
9

,   𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑐ℎ𝑜𝑟 𝐼𝐷 (7) 

𝑁𝐿𝑂𝑆 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦:  

 𝑃𝑁(𝐴𝑖 ∩  𝐴𝑖) = 𝑃𝑁(𝐴𝑖)  𝑃𝑁(𝐴𝑖) (8) 

𝑁𝐿𝑂𝑆 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡ℎ𝑟𝑒𝑒 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦:  

 𝑃𝑁(𝐴𝑖  ∩ 𝐴𝑖  ∩ 𝐴𝑖) = 𝑃𝑁(𝐴𝑖)  𝑃𝑁(𝐴𝑖)  𝑃𝑁(𝐴𝑖) (9) 

The model assumes that the most likely NLOS scenario encountered will be a 

single anchor experiencing NLOS. Since a single NLOS anchor is the most common 

occurrence, it should be handled with the highest priority. While there is a possibility of 

two or more anchors being NLOS, it was assumed in our model that anchors are placed 

near ceiling level and that they are placed in strategic locations to minimize NLOS 

probability. The test environment for our model was an open lab space lab, warehouse 

and classroom. For the mitigation algorithm, the required criteria are such that: 

 �𝐿𝑂𝑆 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 = 2 (10) 

In Figure 3.11, a room with a three anchor setup is shown. Within the boundaries of 

perimeter formed by the three anchors, a single NLOS reported range can be mitigated 
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accurately as long as the criteria for the algorithm are met. For systems with more than 

three anchors, where one or more ranges are NLOS, as long as there is three or more LOS 

ranges, other NLOS range information may be discarded from the calculation of a tag’s 

position since only three ranges are required for 2D trilateration. The algorithm can also 

mitigate a tag’s position outside the outside of the anchor perimeter, referred to as the 

outside correction area but the device performing the mitigation algorithm must know if 

the tag is within the inside or outside of the anchor perimeter. Determining whether the 

tag is within the anchor perimeter boundaries is explained in a subsequent section of this 

paper. 

 
Figure 3.11: Typical Three Anchor Setup in a Room 

The mitigation algorithm uses all known information in order to calculate a mitigated 

position. The information required is as follows: 

• Two anchors must be reporting a LOS range 

• The coordinates of the anchor nodes 

• Identification of the anchor experiencing NLOS 
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3.5.1 Mitigation Algorithm within Correction Area 

Placing the anchors will form a triangular shape. To get a user’s position in a 

room, the anchors should be placed in the corners of the room in order for the system to 

work best. Within the boundaries of anchor perimeter formed by the three anchors, an 

NLOS reported range can be mitigated as long as the criteria for the algorithm are met. 

The correction area is defined as the area enclosed by the anchors. Mitigation may also 

take place outside of the correction area but the device performing the mitigation 

algorithm must know whether the tag is within the correction area boundaries or not. 

Determining whether the tag is within the correction area boundaries or not, and 

mitigating the position outside of the correction area will be explained in a Section 3.5.2. 

 

3.5.1.1 Calculation of Correction Area Parameters 

From the known information, angles can be calculated within the correction area, 

which are then used to calculate a mitigated range. By default, anchor coordinates must 

always be known because trilateration cannot occur without reference points, which is 

that of the anchor coordinates. For a 2D IPS, the anchors should always be placed at the 

same height and cannot all lie on the same plane (ex. a straight line). The tag should lie 

on a Z-plane that is below the height of the anchors. With the coordinates of the anchors 

known, distances between the three anchors on the XY plane can be calculated as, 

 𝐸01 = ��𝐴0𝑥 − 𝐴1𝑥�
2 + �𝐴0𝑦 − 𝐴1𝑦�

2
, (11) 

 𝐸12 = ��𝐴1𝑥 − 𝐴2𝑥�
2 + �𝐴1𝑦 − 𝐴2𝑦�

2
 , (12) 

 𝐸20 = ��𝐴2𝑥 − 𝐴0𝑥�
2 +  �𝐴2𝑦 − 𝐴0𝑦�

2
. (13) 

Given that all of the anchors cannot all lie on the same axis, a three anchor setup will 

always form a triangular configuration. The most practical configuration assumes that a 

room is square or rectangular and that the three anchors are placed in the corners of the 

room. This anchor configuration will create a right triangle, as shown in Figure 3.11. All 

three angles within the correction area can be calculated as, 
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 θ0 =  cos−1 �
 𝐸122   − (𝐸202 + 𝐸012 )

(−2)𝐸20𝐸01
�, (14) 

 θ1 =  cos−1 �
𝐸202  − (𝐸122 +  𝐸012 )

(−2)𝐸122 𝐸012
� , (15) 

 θ2 =  cos−1 �
𝐸012  − (𝐸122 +  𝐸202 )

(−2)𝐸122 𝐸202
� . (16) 

  
Next, the LOS ranges are used to calculate angles within the correction area. In 

order to accurately do this, the LOS ranges must be converted from their XYZ plane 

representation to an XY projection representation. This is further discussed in the next 

sub section, 3.5.1.2. 

 

3.5.1.2 Converting the LOS ranges from 3D to 2D plane representation 

Since the tag and anchors lie on two separate Z-planes, the reported ranges 

between them will be a distance with an XYZ plane representation. Since the requirement 

is 2D positioning and the distances between the anchors are represented on the XY plane, 

the reported ranges must also be converted to an XY plane projection. This concept is 

illustrated in Figure 3.12. 

       

Figure 3.12: Range Vector (Rx) in 3D and 2D representation 

This is done by applying the Pythagorean Theorem in the XZ plane. The height 

difference between the anchors and the tag, ∆H, is taken as, 

 ∆H = Aiz −  Tiz (17) 
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While the anchor height is always known since anchors are static and do not change 

position, the exact tag height may not be known. For this, two solutions are proposed to 

estimate the height. 

1. Assume a measured static tag height based on the application. 

2. Using trilateration, use the calculated Z-coordinate that is below the plane of the 

anchor.   

In Proposal 1, since 2D positioning is used, it can be presumed that the tag will be 

ground based. Depending on the application, the height can be entered by the user once 

as in the case for a robot. The tag height can be assumed to be a general height, such as 

an average person’s height. In proposal 2, trilateration can be used to find the height of 

the tag being tracked. In trilateration with three anchors, assuming an ideal free-space 

propagation model, three intersecting spheres are formed. In an ideal scenario with exact 

range measurements, the spheres will intersect at one common point on the XY plane. 

The spheres will also intersect at two possible Z-coordinates. Without a fourth anchor, it 

is not known whether the spheres intersect on the positive Z-axis or the negative Z-axis. 

Since the tag is always below the anchors, it can be assumed that the target always lies in 

the negative Z-axis (below the anchor). This Z-coordinate can be provided by the IPS 

running trilateration. If NLOS occurs, the tag Z-coordinate will become skewed, thus the 

previous known LOS Z-coordinate should be used. From our measurements using the 

DecaWave IPS, the Z-coordinate when using three anchors was an approximate 

estimation of the actual tag height. In real-world applications, the range estimates, even in 

LOS conditions have error, thus the height will never be a perfect estimate. Next, given 

the height of the tag, the LOS range measurements can be projected to the respective XY 

plane measurements by, 

 𝑅𝑎𝑛𝑔𝑒 𝑋𝑌 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑅𝑖𝑋𝑌) = �(𝑅𝑖_𝐿𝑂𝑆2 −  ∆𝐻2), (18) 

where, 𝑅𝑖_𝐿𝑂𝑆 is the LOS range measurement between the tag and anchor A, where i is 

the anchor ID. With a tag somewhere within this correction triangle and two LOS XY 

range projections available, angles θia and θib can be calculated, where subscript i is the 

35 
 



 

anchor ID. The calculation of these angles mimics that of the Angle of Departure (AoD) 

from the anchor [26]. 

 

3.5.1.3 Mitigation Algorithm (Within Correction Area) 

With the distances between the anchors calculated and anchor ranges converted 

into 2D representations, the mitigation algorithm can developed so long as the tag 

remains within the area enclosed by the anchors; the “correction area”. The mitigation 

algorithm can be calculated for NLOS occurring at a single anchor through: 

Algorithm: 

R0 Estimation (A0 is NLOS):         

 θ1a =  cos−1 �
𝑅2𝑋𝑌

2  − �𝐸122 +  𝑅1𝑋𝑌
2 �

(−2)𝐸12𝑅1𝑋𝑌)
� (19) 

                               θ1b =  θ1 −  θ1a (20) 

 𝑅0𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = � 𝐸012 + 𝑅1𝑋𝑌
2 − (2𝐸01𝑅1𝑋𝑌 cos(θ1b)) (21) 

 
R1 Estimation (A1 is NLOS):     

 θ0a =  cos−1 �
𝑅2𝑋𝑌

2  − �𝐸202 +  𝑅0𝑋𝑌
2 �

(−2)𝐸20𝑅0𝑋𝑌
� (22) 

 θ0b =  θ0 −  θ0a              where,   [θ0a > 0] (23) 

 𝑅1𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �𝐸01 + 𝑅0𝑋𝑌
2 − (2𝐸01𝑅0𝑋𝑌 cos(θ0b)) (24) 

                                       
R2 Estimation (A2 is NLOS):                          

 θ1a =  cos−1 �
𝑅0𝑋𝑌

2  − �𝐸122 +  𝑅1𝑋𝑌
2  �

(−2)𝐸12𝑅1𝑋𝑌 � (25) 

 θ1b =  θ1 −  θ1a (26) 

 𝑅2𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = � 𝐸122 + 𝑅1𝑋𝑌
2 − (2𝐸12𝑅1𝑋𝑌 cos(θ1b)) (27) 

                  
From the experimental data collected from the DecaWave IPS, the LOS range 

measurements had some error on the order of a few centimeters. This results in an 
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imperfect intersection from the three range measurements, which creates a potential 

region that the target can be in. To further estimate the position of the tag within the 

potential region, a least square estimation [27] can be applied.  

Increased range accuracy was attained by using one of the possible corrected 

ranges calculated in (21), (24) or (27) and then positively biasing it by adding the 

calculated range with the NLOS range and averaging it. Positive biasing was achieved by, 

 
𝑅𝑖𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑏𝑖𝑎𝑠 =

�𝑅𝑖𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 −  � (𝑅𝑖𝑁𝐿𝑂𝑆)2 − (∆𝐻)2�

2
. 

(28) 

Once the NLOS range has been mitigated, the measured NLOS range is replaced with the 

mitigated range and used as the range parameter in the trilateration function to determine 

the tag’s coordinates. 

 

3.5.2 Mitigation Algorithm Outside of Correction Area 

A complete indoor positioning system should be able to correct a tag’s position 

anywhere within a room. The limitations of Section 3.5.1 allow the tag’s position to only 

be calculated if it is inside the perimeter formed by the anchors. This means that for a 

rectangular or square room using three anchors, correction can only take place for up to 

50% of the total room area. This is certainly not desirable unless only half of a rooms 

area is utilized, which is unlikely. In order to have correction capability for 100% of a 

room, the mitigation algorithm must know if the tag lies outside of the correction area. 

Once the tag location is identified as being inside or outside the correction area, the 

algorithm from Section 3.5.1.3 is modified to enable correction for 100% of the room. 

 

3.5.2.1 What changes when the Tag is outside the correction area? 

For a right triangle anchor configuration (refer to Figure 3.11), when the target is 

outside of the correction area, the range mitigation for the anchor 1, which is opposite of 

the hypotenuse will vary since, 
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 θ0b =  θ0 −  (±θ0a) (29) 

When the tag is outside of the correction area, the calculated angle, θ0a  should be 

negative and should therefore be added to θ0, producing: 

 θ0b =  θ0 −  (−θ0a). (30) 

 To determine if the point lies outside of the correction area, a line test is used. The 

anchors adjacent to the hypotenuse of the correction area triangle are not affected if the 

target is outside of the correction area due to the trigonometric identity, 

 cos (θ) =  cos (−θ) (31) 

To illustrate this concept, from Figure 3.11, knowledge of whether the tag is in 

the correction area is only needed for anchor 1, while for anchor 0 and 2, it is not required 

due to the identity in (31). If the target is outside of the correction area, then (29) is used 

in substitution of (23).  

 

3.5.2.2 Determining Whether Tag lies in Inside or Outside of Anchor Area 

As mentioned in the previous section, a line test can be used to check if a point 

lies inside of a triangular perimeter. The line test method requires slightly more 

computation and can be used for any anchor configuration. Some anchor configurations 

may be in the shape of a triangle whose edges do not lie against a wall. For example, an 

isosceles triangle will have at least two different anchor boundary edges that a tag can 

cross. 

 If the anchor configuration is a right triangle, the simplest solution is to set the 

single anchor boundary line as the reference line and set an arbitrary reference point that 

also lies within the anchor boundaries. For a system where the anchor orientation is to the 

left of the origin, the following formula is used to determine whether the tag lies inside of 

the anchor area: 
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 �𝐴𝐵�⎯� × 𝐴𝑃𝑟𝑒𝑓
�⎯⎯⎯�� ∙ �𝐴𝐵�⎯� × 𝐴𝑃𝑡𝑎𝑔 �⎯⎯⎯⎯�� ≥ 0. (32) 

 

In (32), ABC is the triangle perimeter formed by the anchor configuration. The length of 

the triangle sides are obtained from (11), (12), and (13). Vector, 𝐴𝐵�⎯�  is formed by taking 

the distance between the anchors on the primary boundary line.𝐴𝑃𝑟𝑒𝑓
�⎯⎯⎯�  , is a vector that 

originates from an arbitrary point that always lies within the perimeter of the anchors. 

𝐴𝑃𝑡𝑎𝑔�⎯⎯⎯� 
is the vector formed form the coordinates of the anchor that forms the primary 

boundary line, to the coordinates of the tag. If the final result is greater or equal than 0, 

the point must lie within the anchor area. 
 
 

3.5.2.3 Mitigation Algorithm: Outside Anchor Area 

If the computed location of the tag is found to lie outside the anchor area, the 

formulas in Section 3.5.1.3 are used with the exception that θ0a, in (30) will be added to 

θA for the anchor experiencing NLOS that is located directly across an anchor boundary 

line. For a right triangle, the mitigation algorithm for the anchors that lie on the anchor 

boundary line does not need to be modified due to (31). The algorithm has two potential 

scenarios that must be accounted for. The first scenario is that the tag’s true position can 

lie directly on the boundary line, and if the anchor across the boundary line experiences 

NLOS, the actual position will lie in between two possible calculated solutions. The 

second scenario is if the true position of the tag lies inside the anchor boundary area but 

near the boundary line, NLOS can cause the anchor to appear outside the boundary line 

and possibly beyond the second solution. These two scenarios must be addressed and 

minimized. The next few sections will explain this in more detail. 
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3.5.2.4 Scenario #1: True position of tag near but inside anchor boundary line 

If the true position of the tag is on the hypotenuse edge of the correction area and 

NLOS causes it to be appear just outside of the correction boundary, the R1 estimation 

formula will encounter accuracy loss. The R1 estimation formula can have two potential 

results, which lie opposite of each other, across the hypotenuse. The mitigated range 

calculated for A1 is always chosen as the range that is less than the NLOS range. If the 

actual tag position, Ptrue, is in between these two possible results, then the error is the 

distance away from the true position from the two possible solutions, PS1 and PS2. 

Distance between the results can be expressed as, 

 𝑑𝑒𝑟𝑟𝑜𝑟 = �(𝑃S1𝑥 − 𝑃S2𝑥)2 − (𝑃𝑆1𝑦 − 𝑃𝑆2𝑦)2 (33) 

The maximum distance error would occur if the true position of the tag, Ptrue(x,y), very 

close to solution #1 but NLOS causes the tag’s position to appear just beyond the solution 

#2, which would cause the algorithm to choose the second solution. This maximum error 

scenario is shown in Figure 3.13. 

NLOS Tag

Solution #1

Solution #2

Anchor 1 
(NLOS) Anchor 0

Anchor 2

True Position
D_error

 

Figure 3.13: Maximum Error Possible – Derror 

If the NLOS tag position is anywhere between solution 1 and 2, the default 

solution chosen will be solution 1 since NLOS always causes an increase in reported 
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distance, thus, the mitigated distance must be less than the NLOS reported distance. The 

distance error, derror, reaches a maximum as the true position of the tag approaches 

solution 2 and NLOS severity decreases to a point that the NLOS distance is very slightly 

higher than the true position distance from anchor 1 but not less than the distance to 

solution two from anchor 1. 

Solution: 

To provide the best result and minimize derror, the calculated mitigated range for 

solution 1 and the NLOS range are both are added together and averaged. Positive 

biasing is performed to avoid undershooting the tag’s position. To positively bias the 

range result, the following is applied, 

 
𝑅1ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒_𝑏𝑖𝑎𝑠= 

𝑅1ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 + �(𝑅𝑖𝑁𝐿𝑂𝑆)2 − (∆𝐻)2

2
 

(34) 

The positive biasing of the range result in (34) is also used for the anchors that 

form the anchor boundary line. Even though scenario 1 does not affect anchors 0 and 2, 

positive biasing provided better experimental results that did not undershoot the actual 

range. 

 

3.5.2.5 Scenario #2a: Tag True Position is on the Anchor Boundary  

If the NLOS tag position is slightly outside the anchor boundary, it is possible that 

the true position of the tag can also on or slightly outside the boundary line. Depending 

on the severity of NLOS, there can also be a problem at anchor 1that can cause the tag’s 

position to appear anywhere before or after solution 2. If the tag’s true position is beyond 

the boundary line but before solution 2, the algorithm would cause solution 1 to be 

chosen, causing range error. If NLOS is very severe, the NLOS tag position can appear to 

be beyond solution 2, which would make solution 2 be chosen as it is the closest range 

value that is lower than the NLOS range. From an algorithm standpoint, the algorithm 

does not know what the true position of the tag is. The algorithm must use all available 

information to make the best prediction. 
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Solution: 

 A secondary boundary line is used to avoid the issues stated in scenario 2. The 

NLOS coordinates of the tag are used in the boundary line check. If anchor 1 experiences 

NLOS, first a check is made to see whether the tag lies between the anchor boundary line 

and the secondary boundary line.  

 

Figure 3.14: Hypotenuse and Boundary Line 

To determine if the tag lies in between the two boundary lines, the following formula is 

used, 

 

𝑆𝑖𝑑𝑒 = (𝐵𝑥 − 𝐴𝑥)(𝑃𝑦 − 𝐴𝑦) − (𝐵𝑦 − 𝐴𝑦)(𝑃𝑥 − 𝐴𝑥) 
 

𝑤ℎ𝑒𝑟𝑒, �
   𝑆𝑖𝑑𝑒 < 0,             𝑝𝑜𝑖𝑛𝑡 𝑙𝑖𝑒𝑠 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 
𝑆𝑖𝑑𝑒 > 0,         𝑝𝑜𝑖𝑛𝑡 𝑙𝑖𝑒𝑠 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒
𝑆𝑖𝑑𝑒 = 0,                     𝑝𝑜𝑖𝑛𝑡 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒

 
(35) 

 

In (35), B is the endpoint coordinate of the line, A is the start point coordinates of the line, 

and P is the raw coordinates of the NLOS tag. As seen in Figure 3.14, a boundary line is 

drawn. The tag’s true position is outlined by a black dot. The NLOS position is outlined 

by an asterisk, "*". For the test cases presented in this thesis, the boundary line is offset 

from the hypotenuse line by 20%. This offset can be adjusted depending on the types of 

possible predictable NLOS that can occur. A logical check is performed to determine if 

the NLOS tag coordinates lie in between the hypotenuse and boundary line. Given the 

condition that, 
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 �𝑆𝑖𝑑𝑒𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐿𝑖𝑛𝑒 < 0�  ∧  �𝑆𝑖𝑑𝑒𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 > 0� = 𝑇𝑟𝑢𝑒, (36) 

then the point must lie between the two lines. The parameters in (36) can also indicate if 

the tag is inside or outside of the correction area. If the logical condition in (36) is found 

to be ‘true’, the following modified mitigation formula is applied for anchor 1, 

  𝑅1ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 =
�𝑅1𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1 +  𝑅1𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_2�

2
. (37) 

Since, there are two possible solutions for the range between anchor 1 and the tag, with 

each being on opposite sides of the anchor boundary line, both are added together and 

averaged. Positive biasing, as in (34), is again performed to avoid undershooting the tag’s 

position. To positively bias the range result, the following is applied, 

 
𝑅1ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒_𝑏𝑖𝑎𝑠= 

𝑅1ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 + �(𝑅𝑖𝑁𝐿𝑂𝑆)2 − (∆𝐻)2

2
 

(38) 

 

3.5.2.6 Scenario #2b: Tag NLOS Position Beyond the Secondary Boundary Line 

If the tag NLOS position is detected to be beyond the secondary boundary line, 

then the true position of the tag is also most likely to be beyond or around the secondary 

boundary line. The angle is calculated using (30) followed by (24) and then the result is 

biased as in (34). This results in solution 2 being the most correct solution. 

 

3.5.3 Complete Mitigation Algorithm 

By determining identifying NLOS as in Section 3.4, and whether the tag lies 

inside or outside of the anchor boundary area, the methodology in Sections 3.5.1 and 

3.5.2 can be combined into one full program. In a test environment with the conditions 

that three anchors are configured in a right triangle set up in a single room, and that are at 

least two anchors are LOS, a single final algorithm can be developed that encompasses 

Sections 3.5.1 and 3.5.2. The pseudo code for this algorithm is shown below. 
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Mitigation Algorithm for a Right Triangle - Pseudo Code: 

1. If (NLOS_Anchor == A0 || A2)  
2. Run Algorithm from Section 3.5.1, positively bias result. 
3. End 
4.  
5. If (NLOS_Anchor == A1)  
6. Check if tag within anchor boundary. Run algorithm from Section 3.5.2.2 
7.  
8.        If (Inside_Anchor_Boundary) 
9.        Subtract 𝜃𝐴𝑎 to algorithm in Section 3.5.1, positively bias result.   
10.        //Solution 1 
11.        End 
12.  
13.        If (Outside_Anchor_Boundary) 
14.        Check if tag is beyond anchor boundary but before secondary boundary. 
15.  
16.               If (anchor_boundary < tag_position < secondary_boundary) 
17.               Create two solutions by using ±𝜃𝐴𝑎 for the algorithm in Section 3.5.1 
18.               Take average of Solution 1&2, (Section 3.5.2.5) and positively bias  
19.               result. 
20.              End 
21.          
22.               Else If(tag_position > secondary boundary) 
23.                Add 𝜃𝐴𝑎 to algorithm in Section 3.5.1, positively bias result.  
24.               //Solution 2 
25.               End 
26. End 
27.  
28. Trilateration() again using the mitigated range. 
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CHAPTER 4 – Simulation & Hardware Implementation 

4.1 Simulation 

The mitigation algorithm simulations were developed and tested in MATLAB. The 

simulations involved developing 2D trilateration to determine a tag’s coordinates given 

three ranges and anchor coordinates, and the creation of the mitigation algorithm to apply 

to compare the mitigated result to the NLOS result and the true position of the tag. The 

method to compare the true position of the tag with the mitigated result was done by 

taking the distance between the true and mitigated position.  The results would be 

summarized and presented via a histogram.  

 

4.1.1 2D Trilateration Simulation 

A 2D trilateration simulation was developed in MATLAB in order to be able to 

determine the tag’s respective coordinates (x,y) and test the mitigation algorithm in an 

offline manner. For the purposes of this paper, ‘offline’ is defined as collecting raw data 

using the TREK1000 hardware and storing it on a file. The raw data would then be 

imported into MATLAB and algorithms would be run on a simulated, non-real time 

environment in MATLAB. The 2D MATLAB trilateration simulation would also allow a 

user to visually see the target on a map with respect to the anchors. 

The benefit of having a MATLAB trilateration simulation is because during the 

development of the algorithm, it can be rapidly developed and tested repeatedly under 

different variations of correction algorithms and compared to the uncorrected result. The 

simulation avoids the tedious task of having to constantly re-flash the hardware every 

time a software change is made. Once a desired correction algorithm performance is 

achieved, it can be implemented into the real time TREK1000 system. The resultant 

coordinates of trilateration from the MATLAB implementation developed matched that 

of the coordinates from the DecaWave sample program output, given that that 

information inputs are equivalent. 
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The 2D trilateration program is a function whose inputs are the anchor coordinates 

(xn, yn), where n is the anchor id, and the three distances reported between each anchor to 

the tag. The function is represented below with a total of nine inputs. 

 𝑇𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛2𝐷(𝑥1,𝑥2, 𝑥3, 𝑦1,𝑦2,𝑦3, 𝑟1, 𝑟2, 𝑟3) (39) 

The function ‘Trilateration_2D()’ will return the (x,y) coordinates of the tag. The 

coordinates are then mapped to a graph which provides a 2D representation of a room 

with the anchors places in specified locations. A final result of this is seen in Figure 4.1. 

 

  ,  
   (a) Tag Position Overview            (b) Tag Position Magnified 

 
Figure 4.1: 2D Trilateration Simulation in (a) along with magnified view in (b) 

 

4.1.2 Mitigation Algorithm in MATLAB 

The mitigation algorithm was simulated in MATLAB using previously collected 

live information. The mitigation algorithm consists of three separate scripts which handle 

the case of NLOS for A0, A1, and A2. A separate script was also created to analyze the 

results for A0, A1, and A2 and combine them into one overall result. An overall result 

per room as well as a final result for all the rooms combined is delivered by the fourth 

script.  The subsections below explain the testing procedure and the MATLAB 

simulation in more detail.  
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4.1.2.1 Test Setup & Procedure 

Real world data was first collected and stored using the TREK1000 equipment. 

Three different rooms were used in the experiments. The anchors were arranged at 

different distances for reach room. The tag was moved around to three positions per room 

as well. NLOS was created for each anchor at a time with the tag in the same position by 

using a 0.48m x 0.44m Styrofoam board coated with aluminum foil. The aluminum foil 

would act as a metallic layer to attenuate the UWB signal and prevent it from passing 

through the Styrofoam board. The aluminum foil board was placed about halfway in 

between the specific anchor and tag that were to simulate artificial NLOS. An example 

snapshot of how NLOS was created artificially by using an aluminum foil covered board 

is shown below in Figure 4.2. 

 

Figure 4.2: Creation of Artificial NLOS in the Warehouse Area 

The experiments performed were uniform for all test environments. A testing rubric of 

the experiments is shown below in Table 4.1. 

N = 401 Test Scenario (N measurements) 
Room Dimensions (m) LOS A0 NLOS A1 NLOS A2 NLOS 

Warehouse 3.6 x 8.34 x x x x 
WiCIP Lab 4.88 x 9.06 x x x x 

Capstone Room 8.24 x 8.56 x x x x 
Table 4.1: Testing Rubric for the experiments 

As indicated in the test rubric, three rooms of different dimensions and 

environments were tested in. For each test scenario, 401 ranging measurements were 

taken. A full test would equate to a total of 1604 range measurements per room. 
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In each room, the tag was placed in three different stationary positions. For each 

stationary tag position, each test scenario was conducted as per the rubric in Table 4.1. 

An example layout of the testing conducted in the WiCIP Lab is shown below in Figure 

4.3. P1, P2, and P3 are the testing points where the tag was placed. A0 is placed at the 

origin and the other anchors are placed to the left and/or below the origin, thus negative 

coordinates are used for A1 and A2. 

 

Figure 4.3: WiCIP Lab Test Layout 

 

4.1.2.2 Loading and Processing the Data in MATLAB 

After the TREK1000 system collected the data, it was saved to a .CSV file. Each 

of the four test scenarios per room has an individual .CSV file so that data could be 

isolated and analyzed independently. The desktop application was modified so that the 

data is presented into an easily readable format that is stored in a .CSV file. Three scripts 

were created in MATLAB for each NLOS scenario that could occur at an anchor. In each 

of the LOS test scenarios per each tag point, 401 ranging measurements and the 

associated calculated coordinates were taken and averaged to give a reference for LOS 

conditions.  

The five reference data variables for the LOS data files were the three ranges from 

the anchors to the tag; R0, R1, R2, and the coordinates of the tag; x, y. For the NLOS 

data files, all individual raw, uncorrected ranges and coordinates were loaded into 

MATLAB. The coordinates of the anchors were also added to the script. After the NLOS 
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ranges were loaded into MATLAB, the mitigation algorithm was run for each range and 

the mitigated range would then replace the NLOS range and send to the trilateration 

function.  

 

4.1.2.3 Benchmarking the Mitigation Algorithm 

The resulting coordinates from the mitigated range and the raw NLOS coordinates 

are compared to the average of the LOS coordinates by taking the distance between the 

two coordinates. The average LOS tag coordinates is also referred to as the “true 

position”. The parameter, 𝑑𝑁𝐿𝑂𝑆, is the distance delta from the true coordinates using the 

raw, NLOS measurements with no mitigation algorithm applied, which is given as, 

 𝑑𝑁𝐿𝑂𝑆 = �(𝑥𝐿𝑂𝑆 − 𝑥𝑁𝐿𝑂𝑆)2 + (𝑦𝐿𝑂𝑆 − 𝑦𝑁𝐿𝑂𝑆)2 (40) 

Consequentially, the parameter, 𝑑𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑, is the distance delta from the true coordinates 

using the calculated coordinates from the mitigation algorithm, and is given as, 

 𝑑𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑 = ��𝑥𝐿𝑂𝑆 − 𝑥𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑�
2 + �𝑦𝐿𝑂𝑆 − 𝑦𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑�

2 (41) 

As the error in (41) approaches zero, the closer the calculated mitigated position is to the 

true position. In practice there will always be a small amount of error because the ranging 

information from all of the anchors varies slightly with each measurement. The error is 

then shown on a histogram graph comparing the NLOS error with the mitigated error, in 

respect to the true coordinates. 

 

4.2 Simulation Results 

The relation of the two distance parameters, 𝑑𝑁𝐿𝑂𝑆
𝑑𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑

, gives a performance metric 

called the improvement factor. The improvement factor is a metric used to benchmark the 

performance of the mitigated solution by using the ratio of the distance of the NLOS tag 

to the true position against the distance of the mitigated tag distance to the true position. 

The larger the improvement factor, the more accurate the tag’s mitigated position is 
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compared to the raw NLOS position. The standard deviation of the NLOS and mitigated 

distance ratios are also shown as 𝜎𝑁𝐿𝑂𝑆  and 𝜎𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑 , respectively. The relation of 
𝜎𝑁𝐿𝑂𝑆

𝜎𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑
 is also shown in Tables 1 and 2. The calculation of standard deviation is found 

by, 

 𝜎 =  �
∑ 𝑑2𝑁
𝑖=1
𝑁

 (42) 

 

4.2.1 Range Mitigation Results per Room 

The mitigation algorithm was simulated in MATLAB using the collected 

experimental range measurements to observe the effect of range mitigation. Table 4.2 

shows a comparison of the true, mitigated and NLOS range measurements as  𝑅𝑡𝑟𝑢𝑒 , 

 𝑅𝑀𝑖𝑡 , and  𝑅𝑁𝐿𝑂𝑆 , respectively for the lab room as shown in Figure 4.3. A graphic 

comparison of the 𝑅0 range measurements for Position 1 (P1) in the lab room is also 

shown in Figure 4.4. From Table 4.2, it is observed that the mitigation algorithm provides 

a closer range estimate in reference to the true range. 

Table 4.2: True vs. Mitigated vs. NLOS Range Results 

N= 1203 
Lab Room 

𝑹𝒕𝒓𝒖𝒆 
(m) 

𝑹𝑴𝒊𝒕 
(m) 

𝑹𝑵𝑳𝑶𝑺 
(m) 

Position 1 

𝑹𝟎 6.999 7.004 7.156 

𝑹𝟏 6.936 7.060 7.105 

𝑹𝟐 2.589 2.629 2.892 

Position 2 

𝑹𝟎 4.955 4.883 5.126 

𝑹𝟏 4.878 4.978 5.194 

𝑹𝟐 4.455 4.373 4.650 

Position 3 

𝑹𝟎 2.887 2.832 3.120 

𝑹𝟏 2.909 2.779 3.182 

𝑹𝟐 6.634 6.690 7.027 
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From Figure 4.4, it is observed that the mitigated range has a lower deviation 

compared to the NLOS range measurements. Deviation of range measurements also 

occur in perfect LOS conditions using the TREK1000 system. The range measurement 

deviation for the NLOS and mitigated range, 𝜎𝑅𝑁𝐿𝑂𝑆 and 𝜎𝑅𝑀𝑖𝑡 respectively, is shown in 

Table 4.3. 

 
Figure 4.4: Mitigated vs. NLOS 𝑅0 for Lab, Position 1. 

 

N= 1203 
Lab Classroom Warehouse 

𝜎𝑅𝑁𝐿𝑂𝑆 𝜎𝑅𝑀𝑖𝑡  𝜎𝑅𝑁𝐿𝑂𝑆 𝜎𝑅𝑀𝑖𝑡  𝜎𝑅𝑁𝐿𝑂𝑆 𝜎𝑅𝑀𝑖𝑡  
Position 

1 

𝑹𝟎 0.0234 0.0129 0.0175 0.0111 0.0185 0.0124 
𝑹𝟏 0.0171 0.0901 0.0377 0.0218 0.0179 0.0180 
𝑹𝟐 0.0155 0.0195 0.0158 0.0173 0.2742 0.1370 

Position 
2 

𝑹𝟎 0.0231 0.0142 0.0181 0.0111 0.0149 0.0108 
𝑹𝟏 0.0177 0.0099 0.0169 0.0135 0.0212 0.0200 
𝑹𝟐 0.0201 0.0124 0.0357 0.0230 0.0183 0.0122 

Position 
3 

𝑹𝟎 0.0185 0.0124 0.0149 0.0108 0.0163 0.0108 
𝑹𝟏 0.0179 0.0180 0.0212 0.0200 0.0152 0.0076 
𝑹𝟐 0.2742 0.1370 0.0183 0.0122 0.0208 0.0122 

Table 4.3: Deviation Mitigated vs. NLOS Ranges 

An overall summary of the improvement of the mitigated ranges in comparison to 

the NLOS ranges is shown Table 4.4. From Table 4.4, the parameter 𝜀𝑀𝑖𝑡, is the percent 
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error of 𝑅𝑀𝑖𝑡 relative to 𝑅𝑡𝑟𝑢𝑒. The parameter, 𝛿𝑖𝑚𝑝, is the percent error improvement in 

range error resulting from the mitigation algorithm compared to the NLOS measurement, 

in relation to the true range. The average 𝛿𝑖𝑚𝑝 for the lab, classroom and warehouse was 

4.23%, 5.65%, and 5.68% respectively. An overall average of these values yields a 𝛿𝑖𝑚𝑝 

of 5.18%. From Table 4.4, it is seen that 𝜀𝑀𝑖𝑡 was low for most of the measurements. 

Generally, 𝑅1, had a larger 𝜀𝑀𝑖𝑡 because the mitigation algorithm relies on the secondary 

boundary line to predict the tag’s NLOS position. Range accuracy for an anchor across a 

boundary line can be affected by the offset of the secondary boundary line. 

N= 1203 
Lab Classroom Warehouse 

𝜺𝑴𝒊𝒕 (%) 𝜹𝒊𝒎𝒑 (%) 𝜺𝑴𝒊𝒕 (%) 𝜹𝒊𝒎𝒑 (%) 𝜺𝑴𝒊𝒕 (%) 𝜹𝒊𝒎𝒑 (%) 

Position 1 

𝑹𝟎 0.08 2.18 0.91 2.37 1.90 6.18 

𝑹𝟏 1.78 0.65 2.32 2.24 4.47 4.91 

𝑹𝟐 1.55 10.13 3.73 15.31 0.84 5.08 

Position 2 

𝑹𝟎 1.46 1.99 1.34 3.94 0.63 5.70 

𝑹𝟏 2.05 4.42 2.76 2.35 0.56 8.30 

𝑹𝟐 1.83 2.57 0.42 5.66 0.24 4.98 

Position 3 

𝑹𝟎 1.90 6.18 0.63 5.70 0.29 4.59 

𝑹𝟏 4.47 4.91 0.56 8.30 3.04 1.99 

𝑹𝟐 0.84 5.08 0.24 4.98 3.09 9.35 

Table 4.4: Ranging Mitigation Error and Improvement 

 

4.2.2 Position Mitigation Results per Room 

A summary of the results in a room, per position is presented in Table 4.5. From 

the table, the total number of measurements was for reach position was N=1203; a total 

stemming from the 401 measurements per each anchor per position. The improvement 

factor varied from 1.5902 to 12.5054. This was due to the severity of the NLOS 

encountered. If the NLOS range measurements were only slightly greater than the actual 

LOS range measurements, due to NLOS being “soft”, the improvement factor will be 

lower as the margin of error is lower.  
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The mitigation algorithm successfully improved the accuracy of the target’s 

coordinates for all positions within the three rooms listed in the Table 4.5. The standard 

deviation of the distance deltas was also smaller for the calculated coordinates resulting 

from the mitigation algorithm.  

N = 1203 
Results Per Tag Position in a Room 

Anchor 
Position 

𝑑𝑁𝐿𝑂𝑆
𝑑𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑

 𝜎𝑁𝐿𝑂𝑆 𝜎𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑 
𝜎𝑁𝐿𝑂𝑆

𝜎𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑
 

Lab 
1 1.5902 0.5304 0.4206 1.2611 

2 2.7754 0.5438 0.3264 1.6661 
3 4.4264 0.5132 0.2439 2.1041 

Classroom 
1 2.1172 0.6915 0.4753 1.4549 
2 2.2224 0.7294 0.4893 1.4907 
3 8.0237 0.5872 0.2073 2.8326 

Warehouse 
1 2.099 0.7264 0.5014 1.4487 
2 12.5054 0.6567 0.1857 3.5363 
3 3.3077 0.6224 0.3422 1.8188 

Table 4.5: Experimental results for each position. 

In Figure 4.5 the position accuracy is shown for the classroom setting, for anchor 0 

NLOS. The histogram indicates the distance delta from the true coordinates for both the 

NLOS and mitigated results. The CDF for this histogram is also provided. A significant 

improvement can be observed. The mitigated result provides a position that is on average 

within 7cm of the true position, compared to 40cm on average for the NLOS position. 

  

Figure 4.5: Position Accuracy for Classroom, Anchor 0 – NLOS 
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In Figure 4.6, a comparison of the performance is shown for each position overall, 

per room. It is clearly seen that the mitigation algorithm, on average, provides a much 

more accurate position. The standard deviation is also lower for the mitigation position 

solution. For most of the scenarios shown in the figure, the position accuracy more than 

doubles.

 

 Figure 4.6: Mitigation Results for Each Room – Per Position 
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4.2.3 Overall Mitigation Results 

A total overall summary of the experiments is also given in Table 4.6. On average, 

the mitigation algorithm provided an improvement factor of 2.8174 between the three 

rooms Overall, from the three rooms, the standard deviation of the results provided by the 

mitigated algorithm was lower than that of the raw NLOS results. This can also been seen 

in the histogram in Figure 4, where 𝑑𝑁𝐿𝑂𝑆 spans over a greater area than 𝑑𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑. This 

was apparent on all histograms for all anchors per position, for every room. 

N=3609 Room Dimensions 
𝑑𝑁𝐿𝑂𝑆

𝑑𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑
 𝜎𝑁𝐿𝑂𝑆 𝜎𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑 

𝜎𝑁𝐿𝑂𝑆
𝜎𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑

 

Lab 3.6m x 8.34m 2.4504 0.5293 0.3381 1.5655 

Classroom 4.88m x 9.06m 2.661 0.6721 0.4116 1.6329 

Warehouse 8.24m x 8.56m 3.3408 0.6699 0.3665 1.8278 

 Average: 2.8174 0.6237 0.3720 1.6754 

Table 4.6: Overall experimental results for each room. 

The mitigation algorithm provided an overall combined improvement factor of 

2.8174 for all of the rooms, with a deviation improvement of 1.6754. The difference in 

deviation between the NLOS solution and mitigated solution was 0.2517 meters. For the 

individual rooms, the improvement factor varied from 2.4504 to 3.3408. The 

improvement factor for the tag positions throughout the experiment varied from 1.5902 

up to 12.5054. It was seen that that the more severe the NLOS obstruction, the greater the 

ranging error; thus the greater the improvement factor. If the wide aluminum foil board 

was placed directly in front of the tag, it would cause a greater deviation in NLOS 

reported distance than if it were to be placed somewhere in between the anchor and tag, 

thereby producing a higher improvement factor.  
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4.3 Hardware & Software Implementation 

This section of the thesis focuses on the practical implementation aspect of the 

research. The main focus points of this paper were to identify NLOS conditions and to 

mitigate NLOS measurements. In order to be mitigate a range, it must first be determined 

that a range needs to be mitigated in the first place. In this work, there was both a 

hardware and software aspect. 

 

4.3.1 NLOS Identification Using the EVB1000 Board 

As discussed in Chapter 3, in order to detect NLOS, the difference between the 

FPath and the RSSI was used. Both of these parameters were not direct values taken from 

the EVB1000 but were instead calculated estimates that required multiple variable inputs 

that were taken from the registers of the EVB1000. NLOS can be identified visually 

using the Channel Impulse Response (CIR). Figure 4.7 shows the CIR graph for LOS and 

NLOS. It is seen visually that the NLOS CIR graph has a large amount of noise, and the 

first incoming pulse has amplitude similar to the rest of the incoming pulses. 

 
(a) Channel Impulse Response for LOS 

 
(b) Channel Impulse Response for NLOS 

Figure 4.7: Live Channel Impulse Response Graphs 
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4.3.2 Obtaining the First Path Power Level and RSSI Values from the Registers 

In order to obtain the first path power level of the signal, the variables F1, F2, F3, 

C and N needed to be recovered from the registers of the DW1000 chip. Figure 4.8 below 

shows an example of two registers, RX_FINFO and RX_FQUAL from which N 

(RXPACC), C (CIR_PWR) and F3 (PP_AMPL3) are extracted from [25]. All of the 

required variables are extracted from registers like these.  

 

 

Figure 4.8: Reading Registers to Get Parameters for FPath. 

The registers for these values were indexed as shown in the above figure, where each 

indexed register consisted of 32 bits (4 bytes).  The function used to recover these values 

was 

 dwt_read16bitoffsetreg(int regFileID,int regOffset),  

 

which was part of the Decawave API. In total there was three sets of these variables; one 

set for each anchor/tag combination.  These values are calculated from each anchor/tag 

that is being used. It should be noted that to recover N, a bitwise mask of 0xFFF was 

applied to the register 0x10 and then shifted to the right by 32 bits. Table 4.7. 
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Register 
Description 

Register 
Mnemonic 

Value from 
Register 

Register 
File 

(hex) 

Byte Offset for 
Value (hex) 

Receive Time 
Stamp RX_TIME F1 0x15 0x7 

Rx Frame Quality 
information RX_FQUAL F2 0x12 0x2 

Rx Frame Quality 
information RX_FQUAL F3 0x12 0x4 

Rx Frame Quality 
information RX_FQUAL C 0x12 0x6 

RX Frame 
Information 

RX_FINFO 
 N 0x10 (0x10&0xFFF) 

 >> 0x20 
Table 4.7: Values Mapped to Registers 

 

4.3.3 Delivering the Register Values to the Gateway Anchor (Anchor 0) 

After recovering the required values from each anchor/tag as described in the 

previous section, the values had to be transmitted to the computer which was connected 

to anchor 0 to be processed. Only anchor 0 is connected to a computer, thus only F1, F2, 

F3, C and N between anchor 0/tag is directly accessible. The values from Anchor 1/tag 

and 2/tag need to somehow be provided to the computer in order to detect NLOS between 

those nodes. The problem is that anchor 1 and 2 are physically placed on opposite ends of 

the room. To acquire the values between the other anchors/tag, the Medium Access 

Control (MAC) layer was modified so that the frames exchanged between each of the 

anchors/tag included the required information and passed it back to anchor 0.  

 

4.3.3.1 Message Scheme during Ranging 

The message scheme sent between an anchor/tag during ranging is as follows: 

poll, response, final, report. This is the default messaging scheme provided by DecaWave 

on the TREK1000 system. An illustration of this scheme [23] is shown below in Figure 

4.9. In order to get the required values from all of the anchor/tag combinations, the 

messages were modified to include the required values. This is further explained in the 

next sections. 
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Figure 4.9: Messages Exchanged between Anchor/Tag during ranging [23] 

 

4.3.3.2 Frame Format of the Messages 

Each message (poll, response, final, report) has a slightly different type of frame. 

A frame is the arrangement of a sequence of packets in a digital message. A packet is the 

unit of data digitally transmitted between a sender and a receiver. The standard IEEE 

802.15.4 frame format is shown in Figure 4.10 below.  

 

Figure 4.10: General IEEE 802.15.4 Frame Format [23] 

The required values are inserted into the Ranging Message portion of the frame which is 

located at octet 9 and so forth, as seen in the above figure. Out of the four messages sent 

between the anchor/tag (ie. poll, response, final, report), only the final and report message 

needed to be modified to include the required data. 

The Ranging Message portion of the final message was modified to include F1, 

F2, F3, C and N which would only be calculated on the tag. The tag would calculate 

these values every time it exchanged a message with an anchor. The final message was 
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changed to be as seen in Figure 4.11. Additions to the final message format are indicated 

by shaded cells. 

     New fields inserted into frame: 
Field: 
 
Field 
Size: 

Function 
Code 

Poll TX 
Time 

Resp RX 
Time 

Final TX 
Time C N F1 F2 F3 

1 Byte 5 Bytes 5 Bytes 5 Bytes 4 Bytes 4 Bytes 2 Bytes 2 Bytes 2 Bytes 

Buffer 
Indices: 

9 10 - 14 15-19 20-24 25-28 29-32 33-34 35-36 37-38 

(a) Frame format between Tag / Anchor ranging together 

    New fields inserted into frame: 
Field: 
 
Field Size: 

Function 
Code 

Calculated 
TOF*4 

Range 
Number C N F1 F2 F3 

1 Byte 5 Bytes 1 Byte 4 Bytes 4 Bytes 2 Bytes 2 Bytes 2 Bytes 
Buffer Indices: 9 10-14 15 16-19 20-23 24-25 26-27 28-29 

(b) Frame format for anchor final report message to gateway anchor 

Figure 4.11: Frame Additions 

 

4.3.4 Mitigation Algorithm PC Software Implementation 

The mitigation algorithm was also implemented on the software portion of the 

TREK1000 system. Once NLOS was identified, the mitigation algorithm would be run. 

For the software portion of the work, both the NLOS and mitigated position would 

appear on the screen to visually demonstrate how effective the algorithm is. If two or 

more anchors out of the three are NLOS, the algorithm will not be run and a message will 

appear. The program will also show which anchor(s) are experiencing NLOS and display 

color coded severity classification. The classifications was chosen based on testing with 

NLOS causing objects (including humans) and how they impacted the ranging result. 

Studies as in [28] show that NLOS ranging results vary depending on the obstructions 

present. In [28], it was shown for example that a glass wall had a lower impact on NLOS 

positive range biasing than a door. NLOS classification can be used as a further 

parameter in future mitigation algorithms which may rely on NLOS severity. More on 

NLOS classification can be found in Section 4.4.2. NLOS was classified and color coded 

in the following manner: 
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Δ Value Color Interpretation 
Δ  < 7 No Color LOS 

7 ≥ Δ  ≥ 10 Yellow Light NLOS 
10 ≥ Δ  ≥ 13 Orange Moderate NLOS 

Δ  > 13 Red Severe NLOS 
Table 4.8: PC Software NLOS Color Coding 

The hardware implementation section involved acquiring the RSSI and FPath 

parameters from the hardware and delivering them to the PC software based portion of 

the work. The parameters needed to be extracted from the DW1000 registers were F1, F2, 

F3, N and C. Once acquired, these parameters were then transmitted over UWB by 

adding them to the super frame. After all of the transmitted parameters are received at the 

gateway anchor (anchor 0), they are parsed by the PC software and are used as inputs to 

(3), (4), (5) to identify NLOS. Once NLOS is detected, the software implemented 

mitigation algorithm would be run accordingly, in real time. 

 

4.4 Implementation Results 

Using the TREK1000 system, the EVK1000 boards were reprogrammed to provide to 

provide RSSI and FPath signal information. The signal information was used to 

accurately identify NLOS. While the mitigation algorithm was able to be successfully 

simulated and demonstrated using MATLAB, the functionality of NLOS detection was 

not able to be simulated using MATLAB. A practical implementation was used to 

demonstrate the ability to identify NLOS. 

 

4.4.1 NLOS Identification Results per Room 

Using the same data set as for the experiments in Section 3.4.2, including the logged 

RSSI and FPath value, an observation was able to me made upon analysis of this data. 

Since the experiments in Section 3.4.2 were run as controlled experiments, where NLOS 

was artificially created and the identification of NLOS was known empirically, the data 

was compared to the empirical observations.  
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For each tag position in a room, NLOS was artificially created by placing an object 

between each anchor and the tag, with only one NLOS anchor at a time. The mean of the 

RSSI and FPath values for each anchor (402 measurements for each anchor) was taken 

and compared by taking the difference between the two parameters, Δ. The results are 

shown in Table 4.9, a, b, c. 

 

Warehouse  
N=1206 

A0 is NLOS A1 is NLOS A2 is NLOS 
RSSI FPath Δ RSSI FPath Δ RSSI FPath Δ 

Position 1 
A0 -83.96 -102.15 18.19 -81.40 -86.50 5.10 -80.94 -86.55 5.62 
A1 -83.55 -88.47 4.92 -85.75 -101.62 15.87 -84.26 -88.77 4.50 
A2 -82.43 -87.67 5.25 -83.51 -87.62 4.11 -87.53 -103.63 16.10 

Position 2 
A0 -86.24 -98.76 12.51 -80.79 -86.10 5.31 -82.69 -86.54 3.85 
A1 -82.10 -86.61 4.51 -85.40 -99.23 13.83 -81.81 -87.01 5.20 
A2 -83.23 -88.88 5.66 -83.43 -88.68 5.25 -88.29 -103.47 15.17 

Position 3 
A0 -85.89 -100.94 15.04 -82.99 -88.17 5.19 -82.67 -88.01 5.35 
A1 -82.35 -86.54 4.19 -86.45 -103.46 17.01 -82.41 -86.59 4.18 
A2 -81.98 -88.37 6.39 -83.24 -87.91 4.68 -86.41 -100.00 13.60 

(a) Warehouse NLOS Identification Results 

Classroom 
N=1206 

A0 NLOS A1 NLOS A2 NLOS 
RSSI FPath Δ RSSI FPath Δ RSSI FPath Δ 

Position 1 
A0 -83.87 -107.43 23.56 -83.12 -89.44 6.31 -81.90 -88.89 6.98 
A1 -82.78 -87.80 5.01 -85.62 -111.24 25.62 -83.33 -88.83 5.51 
A2 -80.25 -86.02 5.77 -80.39 -85.99 5.60 -82.28 -100.64 18.36 

Position 2 
A0 -85.54 -97.90 12.37 -82.12 -87.80 5.68 -81.55 -87.86 6.31 
A1 -81.57 -87.74 6.17 -86.72 -97.68 10.96 -81.81 -88.22 6.40 
A2 -81.66 -88.12 6.46 -81.70 -87.73 6.03 -83.41 -105.27 21.87 

Position 3 
A0 -83.64 -100.83 17.19 -81.55 -88.05 6.50 -81.18 -87.79 6.60 
A1 -81.43 -87.81 6.38 -84.08 -97.57 13.49 -80.64 -87.39 6.75 
A2 -80.76 -86.33 5.57 -80.73 -86.25 5.52 -84.12 -100.80 16.68 

(b) Capstone Lab NLOS Identification Results 
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Lab 
N=1206 

A0 NLOS A1 NLOS A2 NLOS 
RSSI FPath Δ RSSI FPath Δ RSSI FPath Δ 

Position 1 
A0 -82.86 -103.23 20.38 -82.31 -88.42 6.10 -81.93 -88.09 6.16 
A1 -81.56 -87.71 6.15 -83.29 -101.79 18.49 -82.54 -89.02 6.48 
A2 -80.79 -86.48 5.69 -80.74 -86.14 5.40 -81.88 -103.23 21.34 

Position 2 
A0 -83.27 -103.16 19.89 -82.09 -88.06 5.97 -81.25 -87.70 6.45 
A1 -81.37 -86.76 5.39 -82.80 -104.08 21.28 -81.40 -86.74 5.34 
A2 -80.95 -87.26 6.31 -81.49 -86.87 5.38 -82.91 -96.97 14.06 

Position 3 
A0 -82.08 -100.93 18.84 -81.63 -87.79 6.16 -81.11 -87.54 6.43 
A1 -81.00 -87.02 6.02 -82.51 -96.70 14.19 -80.74 -87.22 6.48 
A2 -82.51 -88.62 6.10 -82.31 -88.84 6.53 -83.02 -108.44 25.42 

(c) WiCIP Lab NLOS Identification Results 
 

Table 4.9: NLOS Identification Results Per Room 
 

In Table 4.9, the mean of RSSI, FPath, and Δ are displayed for every anchor node 

in each position, for each room. From the tables, it was again observed that RSSI does 

not vary much under NLOS conditions. This further strengthens the preliminary RSSI 

experiments performed, such as those in Section 3.4.2. On the other hand, the FPath 

parameter varied greatly for an anchor experiencing NLOS. In all of the experimental 

results, the mean FPath for the anchor experiencing NLOS was significantly higher 

(>6dBm) than the FPath values for the LOS anchors.  

The reason the difference, Δ,  between RSSI and FPath is used as an NLOS 

indicator instead of solely using FPath is because as mentioned previously, RSSI will not 

deviate much during NLOS conditions unlike FPath. In a scenario where all three anchor 

nodes are NLOS, the FPath parameter will be high for all of the anchors. Under this 

scenario it cannot be distinguished whether all of the anchors are experiencing NLOS or 

if the signal is a weak LOS signal. By using Δ, a much more accurate prediction can be 

made. In Table 4.9, the Δ for the anchor experiencing NLOS is highlighted. For all of the 

NLOS scenarios, Δ was >10. By selecting Δ>7 for the NLOS identification cutoff, a 90% 

NLOS identification accuracy was achieved.  

Possible error in NLOS identification originated from a signal loss due to a long 

distance between the anchor and tag or from interference from other wireless signals. Δ in 
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the WiCIP lab and capstone room was higher for LOS signals than in the warehouse area. 

The warehouse area does not have much Wi-Fi connectivity compared to the other two 

test rooms which are full of overlapping Wi-Fi access points. It is also difficult to identify 

NLOS when 6 ≤ ∆ < 7 because during this interval, NLOS causing obstructions may be 

insignificant, such as a person walking in between an anchor and a tag when the area of 

the room is large. When 6 ≤ ∆ < 7 , it had minimal error impact on the range 

measurements. 

 

4.4.2 NLOS Classification 

In the experiments performed, it was empirically found that NLOS can be 

classified as “hard” or “soft”. NLOS is said to be “hard” when signal attenuation due to 

the obstruction is very high, which causes Δ to be >10. NLOS is said to be “soft” when 

signal attenuation due to an obstruction is on the lower end, which was found to be when 

7 > Δ > 10. An example of “hard” NLOS would be when the aluminum board that was 

used in the experiments causing a Δ >10. An example of “soft” NLOS would be a person 

in between an anchor/tag or an obstruction that is relatively small in comparison to the 

distance between the anchor/tag, such as a computer monitor. 

Δ Range Observation 
7 ≥ Δ ≥ 10 Highly likely to be “soft” NLOS 

Δ > 10 Highly likely to be “hard” NLOS 
Table 4.10: Hard and Soft NLOS Classification Range 

 

The detection of NLOS using the EVB1000 hardware was successful. By taking 

the difference between RSSI and FPath, the parameter, Δ, was obtained. In the 

experiments, if Δ was >7, then NLOS is present. As seen from the results Table 4.9, the 

NLOS anchors all had a Δ that was >7. Δ was much higher than 7 in the experiments 

because an aluminum foil covered board that was used in the experiments was a 

relatively large obstruction. For scenarios where a human walks in between the 

anchor/tag, Δ jumps to around the 7 range. A low Δ (7> Δ>10) can be classified as “soft” 

NLOS. A high delta (Δ>10) can be classified as “hard” NLOS. 
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CHAPTER 5 – Conclusion and Future Work 

5.1 Conclusion 

In this thesis, NLOS conditions are identified classified and a target’s NLOS 

position is successfully mitigated when only two LOS anchors are available by utilizing 

the physical geometry of the anchor distributions in a room. The model in this research 

assumed that the probability of one anchor experiencing NLOS out of three anchors is 

highest, thus a mitigation algorithm handling this most common case is proposed. The 

mitigation algorithm was able to mitigate a target’s position, with increasing accuracy as 

the NLOS severity increased. In the experiments presented in this paper, an average 

improvement factor of 2.8174 was achieved using the proposed mitigation algorithm 

compared to the unmitigated NLOS out of the box solution. The standard deviation of the 

mitigation results was also lower than that of a system running no correction algorithm, 

with the standard deviation of the mitigated solution being 0.2517 meters less than the 

NLOS solution on average, across all the test rooms. No extra hardware or physical 

complexity is required when compared to other mitigation techniques such as the Kalman 

filter and hybrid schemes involving angle of arrival/ time of arrival. With the success in 

identifying NLOS, the proposed algorithm was able to be successfully implemented in 

the TREk1000 hardware. A 90% NLOS identification rate was achieved, with the 

identification error being primarily due to very light NLOS obstructions, such as a human 

being. For this reason, the severity of NLOS conditions was classified into “hard” or 

“soft” NLOS, which gave an estimate of how severely the signal was being attenuated. 

When NLOS was identified and classified as “soft”, especially when 6 ≤ ∆ < 7, it was 

challenging to accurately identify NLOS. The mitigation algorithm can be chosen to run 

at a user’s preference, such as only running when NLOS is moderate to severe. 
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5.2 Future Work 

There is much future work in UWB based indoor positioning using time of arrival 

as this topic is relatively new. To begin, future work may directly involve an expansion 

of the work covered in this thesis. NLOS mitigation can be done for scenarios where two 

or all of the anchors in a system using three anchors are NLOS. A possible solution to 

scenarios where more than a single anchor is NLOS would be to apply weighted factors 

to NLOS classification by correlating NLOS severity with the associated positive range 

bias due to NLOS and then mitigate by using a model that can match NLOS weighted 

factors to an approximate distance error. Other areas of future work may include 

expansion of the research in this thesis to be able to cover multiple rooms and a study on 

various room compositions and how materials and temperatures in a room may affect 

indoor positioning on the UWB spectrum.  

In the work covered in this thesis, only a single room was used at once. The 

ability to cover all the rooms in a building, with many sets of anchors per room will be 

critical. As a user moves from room to room, the ability for an anchor to handoff the tag 

to another room’s anchor is important, particularly since the geometry of anchor locations 

is used. Geometric based algorithms will need to be able to dynamically change the 

positioning orientation of the anchors used, as new anchors will range with the tag as a 

user moves around a building and some tags will need to be discarded due to leaving a 

room or an area. If a room contains many metallic objects, there may be more multipath 

and the performance of an IPS will differ compared to a room with no metallic objects. 

The effect of temperature on UWB indoor positioning may also be a good area of future 

work as indoor environments may not be climate controlled and may be very hot in the 

summer or very cool in the winter. This may cause objects inside of a room to exhibit 

different attenuation and reflection behavior, which may have an effect on indoor 

positioning systems. 
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