48 research outputs found

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    Perfect Transfer of Arbitrary States in Quantum Spin Networks

    Get PDF
    We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to NN-qubit spin networks of identical qubit couplings, we show that 2log3N2\log_3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done in PRL 92, 187902.Comment: 12 pages, 3 figures with updated reference

    F-theory and AdS_3/CFT_2

    Get PDF
    We construct supersymmetric AdS_3 solutions in F-theory, that is Type IIB supergravity with varying axio-dilaton, which are holographically dual to 2d N=(0,4) superconformal field theories with small superconformal algebra. In F-theory these arise from D3-branes wrapped on curves in the base of an elliptically fibered Calabi-Yau threefold Y_3 and correspond to strings in the 6d N=(1,0) theory obtained from F-theory on Y_3. The non-trivial fibration over the wrapped curves implies a varying coupling of the N=4 Super-Yang-Mills theory on the D3-branes. We compute the holographic central charges and show that these agree with the field theory and with the anomalies of self-dual strings in 6d. We complement our analysis with a discussion of the dual M-theory solutions and a comparison of the central charges.Comment: 83 pages, v2: references added, typos correcte

    Hard Mathematical Problems in Cryptography and Coding Theory

    Get PDF
    In this thesis, we are concerned with certain interesting computationally hard problems and the complexities of their associated algorithms. All of these problems share a common feature in that they all arise from, or have applications to, cryptography, or the theory of error correcting codes. Each chapter in the thesis is based on a stand-alone paper which attacks a particular hard problem. The problems and the techniques employed in attacking them are described in detail. The first problem concerns integer factorization: given a positive integer NN. the problem is to find the unique prime factors of NN. This problem, which was historically of only academic interest to number theorists, has in recent decades assumed a central importance in public-key cryptography. We propose a method for factorizing a given integer using a graph-theoretic algorithm employing Binary Decision Diagrams (BDD). The second problem that we consider is related to the classification of certain naturally arising classes of error correcting codes, called self-dual additive codes over the finite field of four elements, GF(4)GF(4). We address the problem of classifying self-dual additive codes, determining their weight enumerators, and computing their minimum distance. There is a natural relation between self-dual additive codes over GF(4)GF(4) and graphs via isotropic systems. Utilizing the properties of the corresponding graphs, and again employing Binary Decision Diagrams (BDD) to compute the weight enumerators, we can obtain a theoretical speed up of the previously developed algorithm for the classification of these codes. The third problem that we investigate deals with one of the central issues in cryptography, which has historical origins in the theory of geometry of numbers, namely the shortest vector problem in lattices. One method which is used both in theory and practice to solve the shortest vector problem is by enumeration algorithms. Lattice enumeration is an exhaustive search whose goal is to find the shortest vector given a lattice basis as input. In our work, we focus on speeding up the lattice enumeration algorithm, and we propose two new ideas to this end. The shortest vector in a lattice can be written as s=v1b1+v2b2++vnbn{\bf s} = v_1{\bf b}_1+v_2{\bf b}_2+\ldots+v_n{\bf b}_n. where viZv_i \in \mathbb{Z} are integer coefficients and bi{\bf b}_i are the lattice basis vectors. We propose an enumeration algorithm, called hybrid enumeration, which is a greedy approach for computing a short interval of possible integer values for the coefficients viv_i of a shortest lattice vector. Second, we provide an algorithm for estimating the signs ++ or - of the coefficients v1,v2,,vnv_1,v_2,\ldots,v_n of a shortest vector s=i=1nvibi{\bf s}=\sum_{i=1}^{n} v_i{\bf b}_i. Both of these algorithms results in a reduction in the number of nodes in the search tree. Finally, the fourth problem that we deal with arises in the arithmetic of the class groups of imaginary quadratic fields. We follow the results of Soleng and Gillibert pertaining to the class numbers of some sequence of imaginary quadratic fields arising in the arithmetic of elliptic and hyperelliptic curves and compute a bound on the effective estimates for the orders of class groups of a family of imaginary quadratic number fields. That is, suppose f(n)f(n) is a sequence of positive numbers tending to infinity. Given any positive real number LL. an effective estimate is to find the smallest positive integer N=N(L)N = N(L) depending on LL such that f(n)>Lf(n) > L for all n>Nn > N. In other words, given a constant M>0M > 0. we find a value NN such that the order of the ideal class InI_n in the ring RnR_n (provided by the homomorphism in Soleng's paper) is greater than MM for any n>Nn>N. In summary, in this thesis we attack some hard problems in computer science arising from arithmetic, geometry of numbers, and coding theory, which have applications in the mathematical foundations of cryptography and error correcting codes

    Independence in Algebraic Complexity Theory

    Get PDF
    This thesis examines the concepts of linear and algebraic independence in algebraic complexity theory. Arithmetic circuits, computing multivariate polynomials over a field, form the framework of our complexity considerations. We are concerned with polynomial identity testing (PIT), the problem of deciding whether a given arithmetic circuit computes the zero polynomial. There are efficient randomized algorithms known for this problem, but as yet deterministic polynomial-time algorithms could be found only for restricted circuit classes. We are especially interested in blackbox algorithms, which do not inspect the given circuit, but solely evaluate it at some points. Known approaches to the PIT problem are based on the notions of linear independence and rank of vector subspaces of the polynomial ring. We generalize those methods to algebraic independence and transcendence degree of subalgebras of the polynomial ring. Thereby, we obtain efficient blackbox PIT algorithms for new circuit classes. The Jacobian criterion constitutes an efficient characterization for algebraic independence of polynomials. However, this criterion is valid only in characteristic zero. We deduce a novel Jacobian-like criterion for algebraic independence of polynomials over finite fields. We apply it to obtain another blackbox PIT algorithm and to improve the complexity of testing the algebraic independence of arithmetic circuits over finite fields.Die vorliegende Arbeit untersucht die Konzepte der linearen und algebraischen Unabhängigkeit innerhalb der algebraischen Komplexitätstheorie. Arithmetische Schaltkreise, die multivariate Polynome über einem Körper berechnen, bilden die Grundlage unserer Komplexitätsbetrachtungen. Wir befassen uns mit dem polynomial identity testing (PIT) Problem, bei dem entschieden werden soll ob ein gegebener Schaltkreis das Nullpolynom berechnet. Für dieses Problem sind effiziente randomisierte Algorithmen bekannt, aber deterministische Polynomialzeitalgorithmen konnten bisher nur für eingeschränkte Klassen von Schaltkreisen angegeben werden. Besonders von Interesse sind Blackbox-Algorithmen, welche den gegebenen Schaltkreis nicht inspizieren, sondern lediglich an Punkten auswerten. Bekannte Ansätze für das PIT Problem basieren auf den Begriffen der linearen Unabhängigkeit und des Rangs von Untervektorräumen des Polynomrings. Wir übertragen diese Methoden auf algebraische Unabhängigkeit und den Transzendenzgrad von Unteralgebren des Polynomrings. Dadurch erhalten wir effiziente Blackbox-PIT-Algorithmen für neue Klassen von Schaltkreisen. Eine effiziente Charakterisierung der algebraischen Unabhängigkeit von Polynomen ist durch das Jacobi-Kriterium gegeben. Dieses Kriterium ist jedoch nur in Charakteristik Null gültig. Wir leiten ein neues Jacobi-artiges Kriterium für die algebraische Unabhängigkeit von Polynomen über endlichen Körpern her. Dieses liefert einen weiteren Blackbox-PIT-Algorithmus und verbessert die Komplexität des Problems arithmetische Schaltkreise über endlichen Körpern auf algebraische Unabhängigkeit zu testen

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    The period-index problem and Hodge theory

    Full text link
    Conditional on the Lefschetz standard conjecture in degree 2, we prove that the index of a Brauer class on a smooth projective variety divides a fixed power of its period, uniformly in smooth families. In the other direction, we reinterpret in more classical terms recent work of Hotchkiss which gives Hodge-theoretic lower bounds on the index of Brauer classes. We also prove versions of our results over arbitrary algebraically closed base fields, and as an application construct qualitatively new counterexamples to the integral Tate conjecture.Comment: 35 page

    Parallelogram decompositions and generic surfaces in H^{hyp}(4)

    Full text link
    In this paper we are interested in the stratum H^{hyp}(4) of translation surfaces, which consists of pairs (M,\omega), where M is a hyper-elliptic Riemann surface of genus 3, and \omega is a holopmorphic 1-form on M having only one zero. We first show that every surface in this stratum can be decomposed into parallelograms following a unique model. We then single out a condition on this decomposition, and show that if this condition is satisfied then the SL(2,R) orbit of the surface is dense in the stratum. Using this criterion, we show that there are generic surfaces in this stratum with coordinates in any quadratic field, and that surfaces arising from the Thurston-Veech construction with cubic trace field can be generic.Comment: 33 pages, 12 figur
    corecore