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We propose a class of qubit networks that admit perfect state transfer of any two-dimensional
quantum state in a fixed period of time. We further show that such networks can distribute arbitrary
entangled states between two distant parties, and can, by using such systems in parallel, transmit
the higher dimensional systems states across the network. Unlike many other schemes for quantum
computation and communication, these networks do not require qubit couplings to be switched
on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that
2 log3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one
allows fixed but different couplings between the qubits then perfect state transfer can be achieved
over arbitrarily long distances in a linear chain. This paper expands and extends the work done in
[1].

I. INTRODUcTION

An important task in quantum information processing
is the transfer of quantum states from one location (A)
to another location (B). In a quantum communication
scenario this is rather explicit, since the goal is the com
munication between distant parties A and B (e.g., by
means of photon transmission). Equally, in the interior
of quantum computers good communication between dif
ferent parts of the system is essential. The need is thus
to transfer quantum states and generate entanglement
between different regions contained within the system.
There are various physical systems which can serve as
quantum channels, one of them being a quantum spin
system. This can be generally defined as a collection of
interacting qubits on a graph, whose dynamics is gov
erned by a suitable Hamiltonian, e.g., the Heisenberg or
XY-Hamiltonian. One way to accomplish this task is
by multiple applications of controlled swap operations
along the communication line. Every external manipu
lation, however, inevitably induces noise in the system.
It is therefore desirable to minimise the amount of exter
nal control on the system, to the point that they do not
require any external manipulation whatsoever.

Quantum communication over short distances through
a spin chain, in which adjacent qubits are coupled by

equal strength has been studied in detail, and an expres
sion for the fidelity of quantum state transfer has been
obtained [2, 3]. Similarly, in [4], near perfect state trans
fer was achieved for uniform couplings provided a spa
tially varying magnetic field was introduced. The prop
agation of quantum information in rings has also been
investigated [5].

In our work we focus on the situation in which state
transfer is perfect, i.e., the fidelity is unity, and in which
we can design networks such that this can be achieved
over arbitrarily long distances. We will also consider
the case in which no external control is required during
the state transfer, i.e., we consider the case in which we
have, after manufacturing the network, no further control
over its dynamics. In general this will lead us to think
about more complicated networks than the linear chain
or chains with pre-engineered nearest—neighbour inter
action strengths. We provide two alternative methods
for understanding how perfect state transfer is achieved
with pre-engineered couplings. This paper expands and
extends the work done in [1]. Subsequent work has ex
amined the extension of this problem to higher excitation
subspaces [6]. The subject of perfect state transfer has
been independently studied in the first and second exci
tation subspaces in [7], where its implementation in an
array of quantum dots was considered.

More specifically, we address the problem of arranging
N interacting qubits in a network such that it allows for
perfect transfer of any quantum state over the longest
possible distance. Two qubits are coupled via an KY-
interaction if an edge connects the two corresponding
sites. We show further how one can use these networks to
transfer entangled quantum states and to generate entan
glement between distant sites in the network. The con-
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nection between our approach and the continuous-time
quantum random walk is highlighted and, in a particu
lar example, contrasted with the corresponding result for
the classical continuous time random walk.

The paper is organised as follows: In Section II we
set the scene by introducing the problem of perfect state
transfer in quantum spin systems. In Section ifi we de
rive a necessary condition for our problem in the case of
graphs with mirror symmetry. This is used in Section W
to give a limitation of the transfer in chains with uniform
couplings. In Section V we investigate hypercube geom
etry as a way to enlarge the previously found limit and
compare our result to a classical analog in Section VI.
The quantum walk on the hypercube is found useful to
derive a modv1ated spin chain in Section VII that allows
perfect transfer over arbitrary distances. We will exhibit
a group-theoretic interpretation of this chain in Section
VIII. In Sections X and XI we consider applications for
entanglement transfer and the introduction of arbitrary
phase gates on-the-fly.

IL STATE TRANSFER IN QUANTUM SPIN
SYSTEMS

In order to set the scene, let us first consider quan
tum state transfer over a general quantum network. We
define a general finite quantum network to be a simple,
connected, finite graph G := {V(G),E(G)}, where V(G)
denotes the finite set of its vertices and E(G) the set
of its edges. Two vertices i, j e V(G) are adjacent if
(i,j) E E(G). To any such graph G one can associate an
adjacency matrix A(G) whose elements satisfy

A••G
Jlif(i,j)EE(G)

otherwise.

A quantum spin system associated with such a graph is
defined by attaching a spin—i particle to each vertex of
the graph. To each vertex i E V(G) we can therefore
associate a Hilbert space 7-tj C2. The Hilbert space
associated with C is then given by

no
= ® = (C2)’,

where N := IV(G)I denotes the total number of vertices
inC.

We define the distance, d(i, j), between any two ver
tices i, j e V(G) to be the number of edges of the shortest
path between i and j, i.e., the graph geodesic between the
two vertices.

Consider the dynamics of the system to be governed
by the quantum—mechanical Hamiltonian

(i,j)EE(G)

We use the symbols 4, of and 4 to denote the familiar
Pauli matrices acting on the on—site Hilbert space 1- and
Jj is the coupling strength between the i’ and j sites
on the graph. Note that Jjj = since HG is Hermitian.
The total z-component of the spin, given by

o7 (4)
iEV(G)

is conserved, i.e., [o, H0] = 0. Hence the Hilbert space
7( decomposes into invariant subspaces, each of which
is a distinct eigenspace of the operator 4ot

For the purpose of quantum state transfer, it suffices to
restrict our attention to the N—dimensional eigenspace of
4,t which corresponds to the eigenvalue (2— N)/2. Let
us denote this subspace by S. Initial quantum states
that are in this subspace wifi remain there under time
evolution. A basis state in S0 corresponds to a spin
configuration in which all the spins except one are down
and one spin is up. Such a basis state can hence be
denoted by the ket i) where j is the vertex in C at
which the spin is up. Thus flu) j E V(G)} denotes a
complete set of orthonorrual basis vectors spanning S.

When restricted to the subspace S, Ho is repre
sented, in the above—mentioned basis, by an N x N ma
trix which is identical to the adjacency matrix A(G) of
the underlying graph G [18]. The time evolution of the
system under the action of the Hamiltonian Ho can be in
terpreted as a continuous time quantum walk on C (first
considered by Farhi and Gutmann in 1998 [8]; see also
[9]). This is because the latter is defined as the time-
evolution in an N-dimensional filbert space spanned by
states {(j)}, where j E V(G), with a Hamiltoman given
by the adjacency matrix of C.

The spin system on the graph C described above plays
(1) the role of a (noiseless) quantum channel. We see below

that the continuous time quantum walk on C can be
viewed as a quantum state transfer along the channel.

The process of transmitting a quantum state from A
to B proceeds in four steps:

1. Initialisation of the spin system to the state 0 :=

IOA0 . 0DB), which corresponds to the configura
tion of all spins down. This state is a zero energy

(2) eigenstate of H0 [19].

2. Creation of the quantum state hI-’)A E flA (at ver
tex A) which is to be transmitted. Let V’I-’)A =

alO)A +/lI1)A with cx,/3 e C and 1a12 + /312 1

3. Time evolution of the system for an interval of time,
say t0.

4. Recovery of the state at vertex B, the latter being
given by the reduced density matrix PB acting on

iEV(0)

(3)J[4u7 +4u’].
The state of the entire spin system after step 2 is given
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by

= ‘i/iA00.“OOB)
= 0A00•..00B)+61A00•O0B)
=

It evolves in time t to

= a(Q) +E(t)j)

coefficients a, /3j (t), where 1 = al2 +with complex

E1 /3(t)I2. The initial conditions are given by
!9A(O) = 3 and /j(O) = 0 for all j A. The coeffi
cient a does not change in time, as 0) is the zero-energy
eigenstate of H. Hence, it does not even acquire a phase
factor during the evolution of the state.

The output state at B after a time t is given by the
reduced density matrix

PB(t) = TI?•G\{B}j’iuJ(t))(4’(t)I

— (1
— 113B(t)12 a3(t)

—

a”/3(t) 1138(t)12 (7)

A measure of the overlap between the input state, PA
‘i/i) and the output state is the fidelity,

F(pA,pB(t)):
=

= /(‘i,bI PB(t) ‘i/i)

= i/1a12 (1 _2lflBI2+13B3* +/3)+j/3Bl2

(8)

where it is understood that /3B depends on t.
Since the 0)A component of the state ‘i/i)A is invariant

under the evolution, it suffices to focus on the evolution of
the 1)A component of the state i.e., to the choice a = 0
and fi = 1 in (5). It is therefore convenient to consider
the transfer fidelity

fAB(t) := p38(t) (BIe_tjA). (9)

where A) 1) lAO... 00) and lB) IN) =

OAO...O1B) andwehavetakenh=1.
Here we focus only on perfect state transfer. This

means that we consider the condition

fAB(to)l = 1 for some 0 < t0 <cc (10)

which we interpret to be the signature of perfect com
munication (or perfect state transfer) between A and B
in time t0. The effect of the modulus in (10) is that the
state at B. after transmission, will no longer be ‘i/i), but
will be of the form

The phase factor e’ is not a problem because i/ is inde
pendent of a and 3 and will thus be a known quantity for
the graph, which we can correct for with an appropriate
phase gate.

(5) The perfect communication distance d(A, B) is given
by the distance on the graph, for which perfect state
transfer is possible. For a fixed number of qubits, N, our
aim is to find quantum networks which maximise d(A, B).
We achieve this in two different ways:

(6) 1. By fixing the nearest—neighbour couplings to be
identical but considering more complicated graphs
(see Sections W and V).

2. By considering linear chains but allowing the
nearest—neighbour couplings to be different (Sec
tions VII and VIII).

Note that if there is perfect communication between
A and B in a time to, then perfect communication also
occurs for all times t satisfying

t = (2n + 1)to, where n E Z, (12)

provided the graph is mirror—symmetric (see Section III).

IlL CONDITIONS FOR PERFECT STATE
TRANSFER IN SYSTEMS WITH MIRROR

SYMMETRY

In the rest of the paper, we will examine different
graphs for the purposes of perfect state transfer. These
graphs will have mirror symmetry. By mirror symmetry,
we mean that the graph is identical from the points of
viewofAandB. So,alinearchainwithAandB atop
posite ends is an example of such a system. The obvious
question is how can we tell if a proposed graph will per
mit perfect state transfer? A necessary condition, as we
will show, is that the ratios of differences of the eigenval
lies of the Jiamiltonian, H, must be rational provided
the graph is mirror symmetric.

With a system capable of perfect state transfer, ini
tialised in the state A), at time we have the state

e_uJtn IA) = B) (13)

but by the definition of a symmetric system, A and B
are entirely equivalent, and thus after another period of
time to, we have the state

e_02t0 A) = e_uIt0etj IB) = el2 IA) (14)

and thus the system is periodic, up to a phase 2, with
period 2t0. Thus we conclude that a mirror symmet
ric system must he periodic if it is to allow perfect state
transfer. This may be written most simply as

alo) +e’f3I1) (11) (Al eI’i2t0 IA) = 1 (15)
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forsometimeO<t0<oo.
Let us examine the general state of a periodic system

with period 2t0. We can write

1(2to)) = aie2E :1) = a3 jj), (16)

for eigenstates Li) of Hc with corresponding eigenvalues
E3. Hence for all of the stationary states Ii), we have the
condition

2Et0 — 2 = 2kir

where the k’s are integers. Eliminating between two
of these, we get that

(E1 — E3)2t0 = 2ir(k — k)

and eliminating the t0 between any two of these (E
E) gives

E—E —

_____

— —

e Q,

where Q denotes the set of rational numbers. As the k ‘s
are integers, this implies that the ratio is rational. Hence,
a symmetric system capable of perfect state transfer must
be periodic, which is equivalent to the requirement that
the ratios of the differences of the eigenvalues are ratio-
nal.

1V. LIMITATIONS FOR PERFECT
COMMUNICATION OF A UNIFORMLY

COUPLED CHAIN

It is desirable to maximise the distance over which
communication is possible for a fixed number of qubits.
The optimal arrangement, in this case, is just a linear
chain of N qubits. where A and B are the qubits at op
posite ends of the chain.

Let us start with the XY chain of qubits, with uni
form couplings J.+i = 1 for all 1 i N — 1. The
Hamiltonian reads

N—i

H — 1 j 03J.Y
2 i i+i i i+i

In this case, one can compute fAB(t) explicitly by diago
nalizing the Hamiltoman or the corresponding adjacency
matrix. The eigenstates and the corresponding eigenval
ues are given by

N
‘2 . iirkn

= sm n)
VN+1 N+1

n=1

kir

n
3e7loglogn+ loglogn

(18)

withk=1,...,N. Thus

N

f(t)
= N+ 1 sin(N:1)sin(1)e1t.

(23)
Perfect state transfer from one end of the chain to an-

other is possible for N = 2 and N = 3, where we find

that JAB(t) = —i sin(t) and JAB(t) = — [Sin
()]2

re
spectively.

We have shown that perfect state transfer is possible
(17) for chains containing 2 or 3 qubits. We wifi now prove

that it is not possible to get perfect state transfer for
N4.

A chain is symmetric about its centre. Hence the con
dition Eq. (19) for perfect state transfer applies, i.e.

(24)

where the Em’S are eigenvalues of the unmodulated chain,
as given in (22). We will explicitly show that there is a

(19) set of eigenvalues for which this expression does not hold
for all N 4.

We are free to choose any values for the indices (pro
vided Em’ En’), so let us choose that m =2, n = N—i,
m’ = 1 and n’ = N. Hence we see, using (22), that we
recpiire

N4-i
EQ (25)

COS

to hold for perfect state transfer. To find the values of N
for which this holds, we make use of algebraic numbers.
An algebraic number x is a complex number that satisfies
an equation of the form

aox”+aix’+.•aix+a=0, (26)

with integral coefficients a. Every algebraic number
satisfies a unique polynomial equation of least degree.
The degree of this polynomial is called the degree of c.

If o satisfies a momc polynomial (i.e., a polynomial
with ao = 1) then it is called an algebraic integer of
degree n. Note that an algebraic integer of degree ri is

also an algebraic number of degree n. Rational numbers
are algebraic numbers with degree 1, and numbers with

(20) degree 2 are irrational.
Lehmer proved (for example, see [10]) that if N > 1

and gcd(k,N+1) = 1, then cos(irk/(N+1)) is an al
gebraic integer of degree (2(N + 1))/2, where q5 is the
Euler phi—function.

For n> 3 it can be shown [ii] that

______

(27)

(21)
holds, with ‘y 0.5772, Euler’s constant. Using this
bound, and by inspection of values not covered by the

(22) bound, we see that çi(2(N + 1))/2 3 for N 6.

i=1

Ek = —2cos
N+1’
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We need to prove that if cos 0 is an algebraic number
of degree> 3, the quotient

cos26
cos 6

is irrational, where 6 = ir/(N + 1).
Assume that this expression is rational, i.e.

cos2O —? p,qEZ. (28)
cosO — q

Using the trigonometric identity

cos 26 = 22 9 —

(cos0)2_?_cos6_ 1=0 (30)
2q

which has rational coefficients. According to the def
inition, cos 0 is therefore algebraic with degree 2.
Given that, from (27), cos0 is an algebraic number of
degree 3, then we have a contradiction and therefore
(cos 20)/ cos 0 must be irrational.

Hence we see that for N 6 perfect state transfer
is impossible because deg(N) 3. This simply leaves
N = 4 and N = 5 unproved, which can be done by
straightforward evaluation. Thus for N> 4

cos20

cos0

Hence, perfect state transfer is impossible for unmodu
lated chains of length N 4.

V. PERFECT STATE TRANSFER OVER
GREATER DISTANCES

Perfect state transfer over arbitrary distances is impos
sible for a simple unmodulated spin chain. Clearly it is
desirable to find a graph that allows state transfer over
larger distances, and to that end we examine the d—fold
Cartesian product of the two—link (three—vertex) chain,
G. We denote this by Gd.

In general the Cartesian product of two graphs C
{V(G),E(G)}andH :={V(H),E(H)}isagraphGxH
whose vertex set is V(G) x V(H) and two of its vertices
(g, h) and (g’, h’) are adjacent if and only if one of the
following hold:
(i)g=g’ and {h,h’}eE(H)
(ii) h = h’ and {g,g’} e E(G).

LetA=(1,1,1,...,1)andB=(3,3,3,...,3)denote
the antipodal points of Gd.

We prove that for any dirnnsion d

IfAB(t) = 1, for t = to = =. (31)

Hence, t0 is the time for perfect communication between
the vertices A and B of Gd.

Let {A(G),1 i IV()I} and {A3(H),i j
V(H)I} denote the set of eigenvalues of the graphs G
and H respectively. The eigenvalues of the adjacency
matrix of their Cartesian product G x H are precisely
the numbers: MG) + A(H), with 1 i < !V(G)I and
1 i V(H), where each number is obtained as many
times as its multiplicity as an eigenvalue of the adjacency
matrix A(G x H). This is because

A(G x H) = A(G) ®1V(H) +1V(G) ® A(H), (32)

where lv(H) is the V(H) x V(H)I identity matrix (see
e.g., [12]).

(29) The eigenvalues of the adjacency matrix of
given by

{jvIje{0,±1,±2,...,±d}} (33)

and therefore the ratios of differences of the eigenvalues
are all rational.

As already observed, the Hamiltonian of a system cou
pled via nearest neighbour XY interactions is identical
to the adjacency matrix. This will hold equally for the
Cartesian product of 0. Hence,

H = A(Gd)

=

® A(G) ®10d-j-1 (34)

= (e4(lt)®d.
(35)

Thus, if we select a time t = -ir/..J, then we get per
fect state transfer along each dimension. Each term
in the tensor product of (35) applies to a different el
ement of the basis (for example, each acts on a differ
ent 1 in the definition of A, or a different 3 in B). We
therefore achieve perfect state transfer between A and
B (as well as between any qubit and its mirror, such as
(1,1,1,2,3) —+ (3,3,3,2,1)). The fidelity of the state
transfer is simply the dth power of the fidelity for the
original chain (23).

Perfect transfer of a single qubit state can also be
achieved between the antipodes of a one—link hyper
cube in any arbitrary dimension, d, in a constant time
to = ir/2. This is because perfect transfer occurs across
a chain of two qubits in this time.

We can also extend this to the one-link hypercube
which is coupled via the Heisenberg interaction. This
is because, in the case of a two—qubit chain, the Hamil
tonian in the single—excitation subspace is represented
by a matrix with identical diagonal elements, and hence
is the same as the Hamiltonian of an XY model up to
a constant energy shift, which just adds a global phase
factor.

Note that perfect transfer is possible across a ring of
4 spin-1/2 particles. The topology of this is exactly the
same as a 2-fold Cartesian product of a one—link chain,
hence it is a special case of the hypercube we have been
discussing (whether it is coupled with the Heisenberg or
XY coupling).

we can write
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shall denote as Pj’3d, and hence

]E(N) =

n=2d

N

(an 0 ‘
1 0 b,)6

steps the probabifity of hitting B (irrespective of whether
it has previously hit) is (,?_x P x... x_)l,3a, which we

(1-P).
m=2d—1

(39)

Since we have a two—link hypercube, it will always take at
least 2d steps to get from one corner to the opposite one.
In fact, because we have a two—link hypercube, it will
always take an even number of steps to hit the opposite
corner. Thus, = 0 for odd m and m < 2d.

So, all we are interested in is the element P, which
we expect to tend towards a constant value for large n
i.e., (P2P2’)l3d P as n — 00. Thus, we are con
fronted with the problem of finding the first element in
the eigenvector of P2 which has eigenvalue 1 (see, for
example, [14]).

Take, as an example, the special case of d = 2 where
the first row of P2’ is given by

VI. CLASSICAL CONTINUOUS TIME
RANDOM WALK ON THE HYPERCUBE

In the previous Section we showed that for hypercubes
generated from both the one-link (two-vertex) chain and
the two—link (three—vertex) chain, the perfect state trans
fer time, to, is independent of the dimension d. In this
Section we will investigate the behaviour of the mean
hitting time of the classical continuous—time symmetric
random walk on which we denote by t(, and com
pare it to to. We will focus our attention on the two—link
hypercube, since in the quantum case it provides us with
a greater communication distance, d(A. B) than the one—
link hypercube does. Unlike t0, we show that t grows
exponentially with the dimension d (equation (52)). We
also note that the case of the one-link hypercube has
previously been studied [13].

A two—link hypercube C’ is generated by taking the d—
fold Cartesian product of the graph G := {V(G),E(G)}
where V(G) = {1,2,3} and E(G) = {{1,2},{2,3}}.
Hence, the state space for the classical continuous—time
random walk on is {1, 2, 3}”. Transitions are allowed
from a vertex x E @ to x±e where is the i-th unit vec
tor and is a d—dimensional vector with components x
i.e., transitions are allowed to all the nearest-neighbours
with equal probability.

If T is the random variable defined as the hitting time
of B, for a random walk starting at A, then

t := Th(T) (36)

where E(T) denotes the expectation value of T. The
random variable T can be written as

N

i=1

where N is a random variable which gives the number of
jumps that the random walker undergoes in going from
A to B, and the Xi’s are the holding times between suc
cessive jumps. We have

IE(T)
=

= IE(N)E(X1)

=

The 0’s occur because in an even number of steps, you
cannot get to a point that is odd. For n = 1, a =

(the probability of returning to the start node) and
0 (the probability of getting to the exit node). The

sum of all the elements in the row must be 1, and hence
a + b = for all n. We find a recursion relation for b,
+b=b+l,andaSn_*00, weflndthatb—* .

Let us return to the general case. The location of
a given node of the hypercube can be represented by
xl,x2.. .xd) wherex E {1,2,3}i.e., x specifies, for the(37) jth dimension, which of the three nodes we are positioned

on. All of the properties of a given node depend only on
r and d, where r is a count of the number of x = 2. For
example, the transition rate from one node at r to an
adjacent node is

(40)

This quantity can be understood because the transition
probabffity is the same for all connected nodes, and all

= 1 or x = 3 are only connected to x = 2 in the jth

(38) dimension, whereas x = 2 has two links.
Given that all properties of a node only depend onwhere we have made use of the fact that the Xi’s are inde- r and d, that must also be true for the eigenvector, a.pendent and identically distributed with mean E(X,)

= Hence, we can denote the elements of a by ar. The ele1. Note that IE(N) is the mean hitting time of the cor- ment of the eigenvector that we are interested in correresponding jump chain, which is a discrete-time Markov sponds to the position 1,1. . 1), i.e., r = 0, so we wantchain. Hence, to estimate the mean hitting time t1 of to find the element a0. We will now find the elements ofthe continuous—time random walk, it suffices to consider a, the eigenvector of P2.the discrete—time random walk given by the jump chain In two steps, there are only five ways to get to a specificof the original Walk.
lattice point at a distance r = 2k.All the information that we need is contained within

the 3d x 3d transition matrix, P. An element PAB is 1. Start at that point, make one step away, and then
the probabifity of transition from A to B, hence after N make the same step in reverse. This happens with

1
Pnearest neighbour =
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a probability

1 1 d—2k 4k
Pretumd+2kd+2k+1+d+2k1

2. Start at a distance 2k —2. There are 4(v) equiva
lent jumps, which each occur with probabffity

3. Start at a distance 2k+2. There are (d_2k) of these
jum, each occuring with probability

2
(d+2k+2)(d+2k+ 1)

4. Start at a distance 2k and go around two edges of
a square (e.g., 1,2) — 11,1) —* 2,1)). There are
4k(d— 2k) points from which this type of move will
get us to the specific node we are interested in, and
this transition happens with a probability

1 / 1 1
+

d+2k\d+2k+1 d+2k—1

5. Start at a distance 2k and travel the length of a
chain (e.g., 1,2) — 2,2) —+ 3,2)). There are d—
2k such jumps, each occuring with probability

1
(d+2k)(d+2k+ 1)

Knowing these, it is possible to write down the ele
ments P2a. so we can solve for the eigenvector.

4(2k)
(d+2k_2d+2k_1)a2k_2 +

,d—2k 2
2 ) (d+2k+2)(d+2k+1)a2k+2 +

i ((4k-i-2(d—2k) 4k(d—2k+1)\
d+2k d+2k+1 + d+2k—1 ) a2k = a2k.

and the general solution

d +2k
a2k

= d + 2k +
2a22

can then be proved by induction. We thus have the re
quired elements, and just need to normalise them, re
membering that there are 2d—2k () identical elements
a2k.

[d/2J

22k) a2k = 1
k=O

2
= 2d-2+—

2
(d+2k—2)(d+2k— 1)

(43)

This gives that

d +2k
(41) a2k = 2d31

(50)

and, in particular

a0 = (51)

(42) We know that, as it —+ oc, —+ ao. Taking this value
for all n, we can evaluate (39) to find that the mean
hitting time is given by

tj=(1’) = E2naoll(1—ao)
n=d m=d

43d (52)

The quantum analogue of this mean hitting time is
given by the time for perfect state transfer between the
antipodal points A and B. We proved in the previous
Section that this time is a constant t0 = 7r/-4/. On

(44) comparing this with (52), we conclude that the graph Gd
provides an example of a graph for which the quantum
case leads to an exponential separation.

VII. PROJECTING A HYPERCUBE ON TO A
SPIN CHAIN

(45)

Encouraged by the ability of the hypercube to allow
perfect state transfer (Section V), we examine the one—
link hypercube from a different angle. Such a graph falls
into a general category of graphs, C, that have the prop

_____________

erty that the vertices can be arranged in columns so that
there are no edges between the vertices within any col

(46) umn, and edges only join vertices in adjacent columns.
Further, each vertex in column i must have the same
number of incoming (from column i — 1) and outgoing
(to column i + 1) edges as all other vertices in that col

Starting with the special case of k = 0, we see that amn. See Figure (1) for an example.

d
Representing the one—link d-dimensional hypercube in

a0 = —a2. (47) such a form, we allow the graph G to consist of Nc
d + 2 columns. The size of each column (the column occu

pation) is given by b := GI = (‘) and the vertices
in each G are labelled j = {1, - .. , b}. The col

(48 umn is i — 1 edges away from a corner (say A) of the
‘ hypercube.

The only edges are between vertices of adjacent
columns. From each column there must be a set of edges
going forwards to the next column, and another set go
ing back to the previous one. These are denoted in the
following manner:

p!or:={(Gjjk):jE{lbj}kE{1,rj}}(53)
(49)
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where r and Si denote the number of forward and back
ward edges respectively for the jth column. Clearly, if all

for backthe edges are to have ends, IP = . Since there
is only a single qubit in the first column (b1 = 1), each
vertex in the second column has only a single edge going
backwards (82 = 1). With this constraint, and that s
and r1 must be integers for all 1 i Nc, we require
that:

br =

Ti = Ne—i

si+i i

The solution that we will choose for this is r = N0 — i,
s = i — 1, which certainly satisfies all conditions. Thus
we have a graph such that for every pair of numbers (i, j)

is connected with N — i vertices in G1 and each
vertex in G11 is connected with i — 1 vertices in G.

Let us define the vectors that span the column space

coli) :=

Farhi et at. [9] note that the evolution with the adja
cency matrix H0 of G for this general class of networks
(not just the hypercube), starting in G11, always remains
in the column space Nc because every vertex in column
i is connected to the same number of vertices in column
i +1 and every vertex in column i +1 is connected to the
same number of vertices in column i.

Thus, we can restrict our attention to the column space
71c for the purpose of perfect state transfer from C11 to
GN1. The matrix elements of the adjacency matrix of
C, restricted to this subspace are given by

J2 := (coliHc(coli+1)=Vi(Nc—i).

oJ100 ._ 0
J1 0 J2 0 ... 0
0J20J3 ... 0

J= 00J30 ... 0

0 0 0 0 1Nc—l 0

This can be seen as follows:

b b+j

(col ii Hc col i + 1)=__E(G,j H0 G÷1,)

= 1

Hence. the above graph exhibits the same behaviour as
the XY chain with “engineered” coupling strengths J:

Nc—i

H= >

FIG. 1: An example of a 5—colunm graph that allows perfect
state transfer between either end.

= Vf \/Tj
. —.

n= 1 2 3 4 5

m=—2 —1 0 1 2

A B

FIG. 2: Couplings J, that admit perfect state transfer from
A to B in a 5-qubit chain. Eigenvalues m of the equivalent
spin-2 particle are also shown. This is the projection of Figure
1 on to a chain.

Such a chain must allow perfect state transfer over any
length Ne (where IA) Icol 1), IB) col N0)) because
the hypercube does. In the next Section we prove that

(58) this is the case using a more physically motivated deriva
tion.

The number of vertices in the graph, C, is given by
Cl = 2Nc—i hence it has communication distance of

(59 log2 CI. The two—link hypercube in contrast has com
munication distance 2 log3 GI. One should note however
that the degree of each vertex is bounded linearly.

Some examples of this graph are provided here for dif
ferent numbers of columns.
N0 = 2: two—qubit chain (d=1 one—link hypercube)
N0 = 3: square (d=2 one—link hypercube)
N0 = 5: for example Figure (1) which reduces to an
engineered chain, as shown in Figure (2).

For the purpose of perfect state transfer, we have
stated that the d—dimensionai, one—link hypercube is
equivalent to the graph, C. The equivalence is obvious

(60) for the case of d = 1 and d = 2. The general proof arises
by considering how the Cartesian product of a graph is
taken when you extend the product from (d — 1) to d
dimensions.

Assume the number of vertices in two adjacent columns
(61) are n and n1 in the (d — 1)—dimensional hypercube.

In the (i + l)th column of the d—dimensional hyper

(55)

(56)

(57)
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which represents a rotation of the fictitious spin J =

(Nc — 1) particle. The matrix elements (i’l Ufj) are
well known. Thus working out [16] or looking up an

(64)

cube, there must stifi be the n+i vertices, plus each appropriate representation of the SU(2) gives
of the vertices in the previous column have one more
edge (from taking the Cartesian product). Hence the to-

N
tal number of vertices is ri.2 + rLj1. Assuming that the / / f A F • ( At’ c—i

. . JAB t) = Utj [1) = I —z sin i —(d — 1)—dimensional hypercube has column occupations [ \ 2
given by a binomial distribution, this specifies that the
d—dimensional hypercube does as well. Since we know Thus we get perfect transfer of the state from 1) to Nc>
that these column occupations hold for d = 2, then by in a constant time to = rr/A. We can select Nc — 1 to be
induction this must hold for any d. divisible by 4 and this eliminates the phase shift caused

What this does not prove is that the edges between by the factor of —i.
vertices are correct. This is because they aren’t neces- Note that the case of N = 2 is just the same as an
sarily correct. While a hypercube must have a specific unmodulated spin chain of the same length, so the calcu
set of edges, the construction of the graph C didn’t spec- lation done previously (23) is expected to give the same
ify which vertices had to be connected to which other result. This it does, provided we remember that in the
ones, we just made sure we got the correct number of current situation the coupling strength is A/2, whereas it
forwards and backwards edges. In that sense, the general was simply set to 1 in the original situation.
graph, C, is a ‘scrambled’ hypercube. No matter what Is there any other inter-qubit interaction in the chain
this scrambling is, C stifi reduces to the same chain, that gives Hamiltonian (59) when restricted to the single

excitation subspace? The first choice is the XY model
with modulated interactions, another one is the Heisen

VIII. STATE TRANSFER OVER ARBITRARY berg model. If we try the Heisenberg model of the form
DISTANCES

Suppose we have N qubits in a chain, with only one
qubit in state Ji) and all others in state ) 0).
We previously labelled these as j), denoting that the sin
gle excitation is on thej qubit. One may associate a fic
titious spin (N—1) particle with this chain and relabel
the basis vectors as rn>, where m = —(N —1) +j D J 0 0 0
as ifiustrated in Figure 2. This is an equivalent identifi- D .j 0 0
cation to that made in [15], when considering population D J 0
transfer between different atomic levels. 0 D 0

The input vertex A) can be labelled as Ii = 1)
or Irn = — (N — 1)) and the output vertex B) as : : : JNc —i

j = Ny) or rn = +(Nc — 1)). Now, consider the 0 0 0 0 3Nc—l DN
Hamiltonian,

Nc—i

> Jjj.o-j+i,

j=i

we obtain

(65)

(66)

Nc —1

H=AJ=A J1(i1+4’1)

which has the same matrix form as (59), with a scaling
constant A.

This corresponds to the flipped spin hopping between
the vertices j and j + 1 with a probabifity amplitude
of J,. Now, let us choose H to be proportional to the
angular momentum operator J or Jr,, for some spin
(N — 1) particle. In this case the matrix elements

J are j(Nc
— j) (these are the same as the elements

derived in the previous Section up to a numerical factor).
The evolution of the excitation in the chain is governed
by the operator

U(t) = exp (—iAt Jr), (63)

where D, = (Ek=i Jk) — J,j_i — J3. In order to get
rid of the diagonal elements in the matrix above we can

(62) apply a magnetic field in the z direction, i.e., we add an
extra term to (65),

Nc—i Nc

(67)
j=i j=i

with B3 = (J1 + J,)
— 2(Nc-2) ‘k

All this means that we can distribute a quantum state
over any distance with fidelity equal to one as long as
we engineer the inter-qubit interactions, e.g., the inter
qubit distances in the chain, and apply a suitable spar
tially varying magnetic field.
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IX. SCALING RELATIONS AND ENERGY
CONSIDERATIONS

In the previous Section we showed that a spin chain
with engineered interactions can be used to transfer a
quantum state in fixed time, t0. To compare the corn
putational complexity of the proposed spin chain, it is
customary to consider what happens to the energy of the
system as the number of spins in the chain increases. One
physical assumption that we might make, for example, is
that the maximum coupling strength is a fixed size. This
maximum occurs at the middle of the chain and is

AJ1N/2j AN

Hence, to keep this coupling a constant strength, A must
scale with i/N and t0 = ir/A must scale with N.

A second concern is what might happen if we tried to
extract our state at a time t0 — St. The fidelity of the
state transfer is easily approximated from eqn (64) so for
small St we get:

fAB(to_St)i_1) (St)2

Finally, we could ask the question about what happens
in the presence of manufacturing errors. In particular, we
shall consider what happens if the errors only affect the
eigenvalues of the system. This is not the entire story
for the spin chain, because we should also consider what
happens to the eigenvectors (and, in particular, how well
they maintain their symmetry about the centre of the
chain since all the eigenvectors are either symmetric or
antisymmetric). However, in the case of a double appli
cation of the chain (which corresponds to nothing hap
pening to the stored state), we learned in Section III,
that it is only the eigenvalues that matter.

Let us assume that we have made some manufacturing
errors when producing our spin chain i.e.. we have some
errors that are time independent. The ideal energies of
the eigenstates are E and the actual energies are E.

fAA = (AIe_20lA)

A) = aIi)

= aje2itnE li)

fAA = lail2e_2it)

We can estimate the worst case for the fidelity of the
identity transformation, by taking the worst error to be

— = S and by assuming that t05 << 1. The error is
then

=

2tS

X. USING THE CHAIN FOR ENTANGLEMENT
TRANSFER

The idea of the rotation of the large spin particle and
subsequent calculation can also tell us more about the
system. For example, in the same time that we get per
fect state transfer from qubit ito N, we also get perfect
state transfer from qubit j to N + 1

—
j. Under the ac

tion of the J rotation, these transfers all have the same
phase. This means that the chain can be used to move
an entangled state from one end of the chain to another.
We can start with the Bell state, i/v’(I0i) + 110>), on
the first two qubits:

1
-(Ii)+l2)).

In time t0 = ir/A this will evolve to the state

(INc) + INc - 1))

(68)

(69)

having thus transferred the Bell state to the other end of
the chain. Note that we can not use the state
ii)) because this contains a term with two spins in it,

and we have restricted ourselves to the subspace of only
a single spin. We point out, however, that the results
of [6] show that we wifi also get perfect state transfer in
higher excitation subspaces and thus, in principle such a
state could be transferred.

The chain can also be used to distribute an entangled
pair between two distant parties. If we create a Bell state

(I°) I0)c + Ii)NI Ii)c) (70)

between a non-interacting qubit (NI) and the first qubit
on the chain (C), then the overall Hamiltonian will be of
the form

H’ =10 H. (71)

Note that the state i> is exactly the same as the state Ii)
that were were talking about before with the engineered
chain, but we have to be careful not to confuse those
states with the states of the non—interacting qubit. The
state (70) then evolves as

(I0)et IO) + Ii)NI e_iHt 1)) (72)

so after the same to, the entangled pair will be the non-
interacting qubit, and the N’ qubit on the chain.

(I0) °)c + e 1)NI jNc)c) (73)

This prescription is sufficient to transfer the entangle
ment of any general two qubit density matrix from being
between the non-interacting qubit and the 1st qubit ati.e., it scales linearly with N.
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FIG. 3: Scheme for transferring an arbitrary 2—qubit density
matrix, p, using two engineered spin chains (C1 and C2). This
example has a chain length of Nc = 6.

T1 1

A

2 3j 4 5 6
waitto B

Another choice is to use the J, rotation (which does
not give the factor of —i in (64)).

J=H= 1 cçNc—l
L.ij=1 — (79)

0—J10 0 ... 0
J1 0 J2 0 ... 0
0 J2 0 —J3 ... 0

=i 0 0 J3 0 0

0 0 0 0 Nc—1 0

t = 0 to being between the non-interacting qubit and the
N qubit on the chain. This can be understood by see
ing how the most general density matrix evolves. What
we require is that

Tr7.0\{A} (p(O)) = Tr-,,\{B} (p(to)). (74)

Such a density matrix can be written as

=
cvi’’ ii) (i’j’j (75)

(i,j,i’,j’)E{O,l}

p(t) = hi) (i’j’j eiH’t (76)
(i,j,i’,j’)E{O,l}

So if a single component of this density matrix evolves,
giving perfect transfer, so will all the components and
therefore so will the density matrix as a whole. This
component evolves as:

—iH’t •\ I-’ / •‘ iH’te 1/NI)/C\ NI\J Ce
— -‘ I —iHt iI (I •‘ iHt
= t,NIe 1Ic)\ NI’\i Ce

After time t0, if j or j’ were 1, then they will have
changed to N, and if they were 0, they remain as 0.
Tracing out the effect of all the spins except for the non-
interacting one and the Nj’ qubit will return precisely
the same two qubit density matrix as was initially set up.
This then allows the density matrix to be split over the
length of the chain..

If we want to transmit the complete density matrix,
we just use two of our engineered chains (C1 and C2)
in parallel (Nc1 = Nc2). The new Hamiltonian can be
written as

H”=HH (78)

and an exactly analogous argument now applies so that if
we create the desired state (which could be the Bell state

11)), for example) across the 1st qubits of C1
and C2, then after time to, the state has been perfectly
transmitted to being on the N,!j1 qubits of the two chains.
For an example, see Figure 3. This scheme will work for
both the engineered spin chain and the hypercubes (since
the density matrix can be created between the corners of
two hypercubes).

XL J AND ARBITRARY PHASE GATES

As previously noted, the J rotation introduces a phase
shift, depending on the length of the chain. There are
several ways in which this can be avoided. The simplest
is just to select the correct length of chain. In the case of
the engineered chain (and also the one—link hypercube),
if (N — 1) is divisible by 4, then there is no phase shift
(since i4 = 1). Similarly with the two—link hypercube, if
the dimension of the hypercube is even, there is no phase
shift.

Using this in conjunction with the J rotation, it is pos
sible, along with the transfer of a state through our spin
chain network, to apply an arbitrary phase gate to it dur
ing transmission, simply by choosing the correct linear
combination of J and Jr,. Assume that we have picked
N such that .J gives a phase shift of i. A combination
of

(80)

will thus yield a phase shift e where

±7
tan(4) = (81)

meaning that the initial state ‘ç&) will have evolved to the
state

a 1°) + e13 Nc). (82)

The final alternative for negating the phase shift, or
applying an arbitrary phase gate during transmission,
would be to apply a uniform global magnetic field in the
z—direction. Applying a field strength B shifts the en
ergy of the single spin excitation by B(N — 2)/2 and
the ground state energy is shifted by BNc/2. Assuming
transmission of the state occurs in a time t0, then B can
be selected to give the desired phase shift, by

B=
4—(Nc—1)

to
(83)
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XII. SUMMARY

We have shown that perfect state transfer is possible
across a network of qubits, allowing only control over the
initial design of the network, and no dynamical control.

When the couplings between adjacent qubits are con
strained to be equal, we showed that examples of such
networks are the one— and two—link d—dimensional hy
percube. Perfect state transfer for three- or more-link
hypercube geometries is shown to be impossible. The
transfer time is independent of the dimension of the hy
percube and for comparative purposes, we calculated the
expected hitting time in the classical continuous time
random walk, which increases exponentially with the di
mension.

We have also proposed a spin chain of N qubits with
non-uniform couplings that allows both state and entan
glement transfer. This chain can be interpreted in two
ways: firstly, as a projection of an N — 1-dimensional
one-link hypercube and secondly, as a rotation in the x
direction of a fictitious spin (N — 1)/2 particle.

Finally, we have shown how to effect entanglement
transfer and how to introduce phases on the transferred
quantum states on-the-fly.
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