48 research outputs found

    Computer Vision and Graphics for Heritage Preservation and Digital Archaeology

    Get PDF
    The goal of this work is to provide attendees with a survey of topics related to Heritage Preservation and Digital Archeology, which are challenging and motivating subjects to both computer vision and graphics community. These issues have been gaining increasing attention and priority within the scientific scenario and among funding agencies and development organizations over the last years. Motivations to this work are the recent efforts in the digital preservation of cultural heritage objects and sites before degradation or damage caused by environmental factors or human development. One of the main focuses of these researches is the development of new techniques for realistic 3D model building from images, preserving as much information as possible. We intend to introduce and discuss several emerging topics in computer vision and graphics related to the proposed theme while highlighting the major contributions and advances in these fields

    Cross-Modality 2D-3D Face Recognition via Multiview Smooth Discriminant Analysis Based on ELM

    Get PDF
    In recent years, 3D face recognition has attracted increasing attention from worldwide researchers. Rather than homogeneous face data, more and more applications require flexible input face data nowadays. In this paper, we propose a new approach for cross-modality 2D-3D face recognition (FR), which is called Multiview Smooth Discriminant Analysis (MSDA) based on Extreme Learning Machines (ELM). Adding the Laplacian penalty constrain for the multiview feature learning, the proposed MSDA is first proposed to extract the cross-modality 2D-3D face features. The MSDA aims at finding a multiview learning based common discriminative feature space and it can then fully utilize the underlying relationship of features from different views. To speed up the learning phase of the classifier, the recent popular algorithm named Extreme Learning Machine (ELM) is adopted to train the single hidden layer feedforward neural networks (SLFNs). To evaluate the effectiveness of our proposed FR framework, experimental results on a benchmark face recognition dataset are presented. Simulations show that our new proposed method generally outperforms several recent approaches with a fast training speed

    GOGMA: Globally-Optimal Gaussian Mixture Alignment

    Full text link
    Gaussian mixture alignment is a family of approaches that are frequently used for robustly solving the point-set registration problem. However, since they use local optimisation, they are susceptible to local minima and can only guarantee local optimality. Consequently, their accuracy is strongly dependent on the quality of the initialisation. This paper presents the first globally-optimal solution to the 3D rigid Gaussian mixture alignment problem under the L2 distance between mixtures. The algorithm, named GOGMA, employs a branch-and-bound approach to search the space of 3D rigid motions SE(3), guaranteeing global optimality regardless of the initialisation. The geometry of SE(3) was used to find novel upper and lower bounds for the objective function and local optimisation was integrated into the scheme to accelerate convergence without voiding the optimality guarantee. The evaluation empirically supported the optimality proof and showed that the method performed much more robustly on two challenging datasets than an existing globally-optimal registration solution.Comment: Manuscript in press 2016 IEEE Conference on Computer Vision and Pattern Recognitio

    Multi-view alignment with database of features for an improved usage of high-end 3D scanners

    Get PDF
    The usability of high-precision and high-resolution 3D scanners is of crucial importance due to the increasing demand of 3D data in both professional and general-purpose applications. Simplified, intuitive and rapid object modeling requires effective and automated alignment pipelines capable to trace back each independently acquired range image of the scanned object into a common reference system. To this end, we propose a reliable and fast feature-based multiple-view alignment pipeline that allows interactive registration of multiple views according to an unchained acquisition procedure. A robust alignment of each new view is estimated with respect to the previously aligned data through fast extraction, representation and matching of feature points detected in overlapping areas from different views. The proposed pipeline guarantees a highly reliable alignment of dense range image datasets on a variety of objects in few seconds per million of points

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Multi-contour initial pose estimation for 3D registration

    Get PDF
    Reliable manipulation of everyday household objects is essential to the success of service robots. In order to accurately manipulate these objects, robots need to know objects’ full 6-DOF pose, which is challenging due to sensor noise, clutters and occlusions. In this paper, we present a new approach for effectively guessing the object pose given an observation of just a small patch of the object, by leveraging the fact that many household objects can only keep stable on a planar surface under a small set of poses. In particular, for each stable pose of an object, we slice the object with horizontal planes and extract multiple cross-section contours. The pose estimation is then reduced to find a stable pose whose contour matches best with that of the sensor data, and this can be solved efficiently by convolution. Experiments on the manipulation tasks in the DARPA Robotics Challenge validate our approach. In addition, we also investigate our method’s performance on object recognition tasks raising in the challenge.postprin
    corecore