146 research outputs found

    Integrating Multiple Data Views for Improved Malware Analysis

    Get PDF
    Malicious software (malware) has become a prominent fixture in computing. There have been many methods developed over the years to combat the spread of malware, but these methods have inevitably been met with countermeasures. For instance, signature-based malware detection gave rise to polymorphic viruses. This arms race\u27 will undoubtedly continue for the foreseeable future as the incentives to develop novel malware continue to outweigh the costs. In this dissertation, I describe analysis frameworks for three important problems related to malware: classification, clustering, and phylogenetic reconstruction. The important component of my methods is that they all take into account multiple views of malware. Typically, analysis has been performed in either the static domain (e.g. the byte information of the executable) or the dynamic domain (e.g. system call traces). This dissertation develops frameworks that can easily incorporate well-studied views from both domains, as well as any new views that may become popular in the future. The only restriction that must be met is that a positive semidefinite similarity (kernel) matrix must be defined on the view, a restriction that is easily met in practice. While the classification problem can be solved with well known multiple kernel learning techniques, the clustering and phylogenetic problems required the development of novel machine learning methods, which I present in this dissertation. It is important to note that although these methods were developed in the context of the malware problem, they are applicable to a wide variety of domains

    Machine Learning based Early Stage Identification of Liver Tumor using Ultrasound Images

    Get PDF
    Liver cancer is one of the most malignant diseases and its diagnosis requires more computational time. It can be minimized by applying a Machine learning algorithm for the diagnosis of cancer. The existing machine learning technique uses only the color-based methods to classify images which are not efficient. So, it is proposed to use texture-based classification for diagnosis. The input image is resized and pre-processed by Gaussian filters. The features are extracted by applying Gray level co-occurrence matrix (GLCM) and Local binary pattern (LBP in the preprocessed image. The Local Binary Pattern (LBP) is an efficient texture operator which labels the pixels of an image by thresholding the neighborhood of each pixel and considers the result as a binary number. The extracted features are classified by multi-support vector machine (Multi SVM) and K-Nearest Neighbor (K-NN) algorithms. The Advantage of combining SVM with KNN is that SVM measures a large number of values whereas KNN accurately measures point values. The results obtained from the proposed techniques achieved high precision, accuracy, sensitivity and specificity than the existing method

    An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression

    Full text link
    Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approache

    A Comparative Review of Recent Kinect-based Action Recognition Algorithms

    Full text link
    Video-based human action recognition is currently one of the most active research areas in computer vision. Various research studies indicate that the performance of action recognition is highly dependent on the type of features being extracted and how the actions are represented. Since the release of the Kinect camera, a large number of Kinect-based human action recognition techniques have been proposed in the literature. However, there still does not exist a thorough comparison of these Kinect-based techniques under the grouping of feature types, such as handcrafted versus deep learning features and depth-based versus skeleton-based features. In this paper, we analyze and compare ten recent Kinect-based algorithms for both cross-subject action recognition and cross-view action recognition using six benchmark datasets. In addition, we have implemented and improved some of these techniques and included their variants in the comparison. Our experiments show that the majority of methods perform better on cross-subject action recognition than cross-view action recognition, that skeleton-based features are more robust for cross-view recognition than depth-based features, and that deep learning features are suitable for large datasets.Comment: Accepted by the IEEE Transactions on Image Processin

    Learning Representations of Social Media Users

    Get PDF
    User representations are routinely used in recommendation systems by platform developers, targeted advertisements by marketers, and by public policy researchers to gauge public opinion across demographic groups. Computer scientists consider the problem of inferring user representations more abstractly; how does one extract a stable user representation - effective for many downstream tasks - from a medium as noisy and complicated as social media? The quality of a user representation is ultimately task-dependent (e.g. does it improve classifier performance, make more accurate recommendations in a recommendation system) but there are proxies that are less sensitive to the specific task. Is the representation predictive of latent properties such as a person's demographic features, socioeconomic class, or mental health state? Is it predictive of the user's future behavior? In this thesis, we begin by showing how user representations can be learned from multiple types of user behavior on social media. We apply several extensions of generalized canonical correlation analysis to learn these representations and evaluate them at three tasks: predicting future hashtag mentions, friending behavior, and demographic features. We then show how user features can be employed as distant supervision to improve topic model fit. Finally, we show how user features can be integrated into and improve existing classifiers in the multitask learning framework. We treat user representations - ground truth gender and mental health features - as auxiliary tasks to improve mental health state prediction. We also use distributed user representations learned in the first chapter to improve tweet-level stance classifiers, showing that distant user information can inform classification tasks at the granularity of a single message.Comment: PhD thesi

    Learning Representations of Social Media Users

    Get PDF
    User representations are routinely used in recommendation systems by platform developers, targeted advertisements by marketers, and by public policy researchers to gauge public opinion across demographic groups. Computer scientists consider the problem of inferring user representations more abstractly; how does one extract a stable user representation - effective for many downstream tasks - from a medium as noisy and complicated as social media? The quality of a user representation is ultimately task-dependent (e.g. does it improve classifier performance, make more accurate recommendations in a recommendation system) but there are proxies that are less sensitive to the specific task. Is the representation predictive of latent properties such as a person's demographic features, socioeconomic class, or mental health state? Is it predictive of the user's future behavior? In this thesis, we begin by showing how user representations can be learned from multiple types of user behavior on social media. We apply several extensions of generalized canonical correlation analysis to learn these representations and evaluate them at three tasks: predicting future hashtag mentions, friending behavior, and demographic features. We then show how user features can be employed as distant supervision to improve topic model fit. Finally, we show how user features can be integrated into and improve existing classifiers in the multitask learning framework. We treat user representations - ground truth gender and mental health features - as auxiliary tasks to improve mental health state prediction. We also use distributed user representations learned in the first chapter to improve tweet-level stance classifiers, showing that distant user information can inform classification tasks at the granularity of a single message.Comment: PhD thesi
    • …
    corecore