200 research outputs found

    Consensus graph and spectral representation for one-step multi-view kernel based clustering

    Get PDF
    Recently, multi-view clustering has received much attention in the fields of machine learning and pattern recognition. Spectral clustering for single and multiple views has been the common solution. Despite its good clustering performance, it has a major limitation: it requires an extra step of clustering. This extra step, which could be the famous k-means clustering, depends heavily on initialization, which may affect the quality of the clustering result. To overcome this problem, a new method called Multiview Clustering via Consensus Graph Learning and Nonnegative Embedding (MVCGE) is presented in this paper. In the proposed approach, the consensus affinity matrix (graph matrix), consensus representation and cluster index matrix (nonnegative embedding) are learned simultaneously in a unified framework. Our proposed method takes as input the different kernel matrices corresponding to the different views. The proposed learning model integrates two interesting constraints: (i) the cluster indices should be as smooth as possible over the consensus graph and (ii) the cluster indices are set to be as close as possible to the graph convolution of the consensus representation. In this approach, no post-processing such as k-means or spectral rotation is required. Our approach is tested with real and synthetic datasets. The experiments performed show that the proposed method performs well compared to many state-of-the-art approaches

    Nonparametric Bayes Modeling of Populations of Networks

    Full text link
    Replicated network data are increasingly available in many research fields. In connectomic applications, inter-connections among brain regions are collected for each patient under study, motivating statistical models which can flexibly characterize the probabilistic generative mechanism underlying these network-valued data. Available models for a single network are not designed specifically for inference on the entire probability mass function of a network-valued random variable and therefore lack flexibility in characterizing the distribution of relevant topological structures. We propose a flexible Bayesian nonparametric approach for modeling the population distribution of network-valued data. The joint distribution of the edges is defined via a mixture model which reduces dimensionality and efficiently incorporates network information within each mixture component by leveraging latent space representations. The formulation leads to an efficient Gibbs sampler and provides simple and coherent strategies for inference and goodness-of-fit assessments. We provide theoretical results on the flexibility of our model and illustrate improved performance --- compared to state-of-the-art models --- in simulations and application to human brain networks

    Non-Negative Discriminative Data Analytics

    Get PDF
    Due to advancements in data acquisition techniques, collecting datasets representing samples from multi-views has become more common recently (Jia et al. 2019). For instance, in genomics, a lymphoma patient’s dataset may include data on gene expression, single nucleotide polymorphism (SNP), and array Comparative genomic hybridization (aCGH) measurements. Learning from multiple views about the same objective, in general, obtains a better understanding of the hidden patterns of the data compared to learning from a single view data. Most of the existing multi-view learning techniques such as canonical correlation analysis (Hotelling et al. 1936) and multi-view support vector machine (Farquhar et al. 2006), multiple kernel learning (Zhang et al. 2016) are focused on extracting the shared information among multiple datasets. However, in some real-world applications, it’s appealing to extract the discriminative knowledge of multiple datasets, namely discriminative data analytics. For example, consider the one dataset as gene-expression measurements of cancer patients, and the other dataset as the gene-expression levels of healthy volunteers and the goal is to cluster cancer patients according to the molecular sub-types. Performing a single view analysis such as principal component analysis (PCA) on any of the dataset yields information related to the common knowledge between the two datasets (Garte et al. 1996). Addressing such challenge, contrastive PCA (Abid et al. 2017) and discriminative (d) PCA in (Jia et al. 2019) are proposed in to extract one dataset-specific information often missed by PCA. Inspired by dPCA, we propose a novel discriminative multi-view learning algorithm, namely Non-negative Discriminative Analysis (DNA), to extract the unique information of one dataset (a.k.a. view) with respect to the other dataset. This boils down to solving a non-negative matrix factorization problem. Furthermore, we apply the proposed DNA framework in various real-world down-stream machine learning applications such as feature selections, dimensionality reduction, classification, and clustering

    Making Laplacians commute

    Full text link
    In this paper, we construct multimodal spectral geometry by finding a pair of closest commuting operators (CCO) to a given pair of Laplacians. The CCOs are jointly diagonalizable and hence have the same eigenbasis. Our construction naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of applications in dimensionality reduction, shape analysis, and clustering, demonstrating that our method better captures the inherent structure of multi-modal data

    Human Motion Analysis for Efficient Action Recognition

    Get PDF
    Automatic understanding of human actions is at the core of several application domains, such as content-based indexing, human-computer interaction, surveillance, and sports video analysis. The recent advances in digital platforms and the exponential growth of video and image data have brought an urgent quest for intelligent frameworks to automatically analyze human motion and predict their corresponding action based on visual data and sensor signals. This thesis presents a collection of methods that targets human action recognition using different action modalities. The first method uses the appearance modality and classifies human actions based on heterogeneous global- and local-based features of scene and humanbody appearances. The second method harnesses 2D and 3D articulated human poses and analyizes the body motion using a discriminative combination of the parts’ velocities, locations, and correlations histograms for action recognition. The third method presents an optimal scheme for combining the probabilistic predictions from different action modalities by solving a constrained quadratic optimization problem. In addition to the action classification task, we present a study that compares the utility of different pose variants in motion analysis for human action recognition. In particular, we compare the recognition performance when 2D and 3D poses are used. Finally, we demonstrate the efficiency of our pose-based method for action recognition in spotting and segmenting motion gestures in real time from a continuous stream of an input video for the recognition of the Italian sign gesture language

    Method for 3D modelling based on structure from motion processing of sparse 2D images

    Get PDF
    A method based on Structure from Motion for processing a plurality of sparse images acquired by one or more acquisition devices to generate a sparse 3D points cloud and of a plurality of internal and external parameters of the acquisition devices includes the steps of collecting the images; extracting keypoints therefrom and generating keypoint descriptors; organizing the images in a proximity graph; pairwise image matching and generating keypoints connecting tracks according maximum proximity between keypoints; performing an autocalibration between image clusters to extract internal and external parameters of the acquisition devices, wherein calibration groups are defined that contain a plurality of image clusters and wherein a clustering algorithm iteratively merges the clusters in a model expressed in a common local reference system starting from clusters belonging to the same calibration group; and performing a Euclidean reconstruction of the object as a sparse 3D point cloud based on the extracted parameters

    Contribution to Graph-based Multi-view Clustering: Algorithms and Applications

    Get PDF
    185 p.In this thesis, we study unsupervised learning, specifically, clustering methods for dividing data into meaningful groups. One major challenge is how to find an efficient algorithm with low computational complexity to deal with different types and sizes of datasets.For this purpose, we propose two approaches. The first approach is named "Multi-view Clustering via Kernelized Graph and Nonnegative Embedding" (MKGNE), and the second approach is called "Multi-view Clustering via Consensus Graph Learning and Nonnegative Embedding" (MVCGE). These two approaches jointly solve four tasks. They jointly estimate the unified similarity matrix over all views using the kernel tricks, the unified spectral projection of the data, the clusterindicator matrix, and the weight of each view without additional parameters. With these two approaches, there is no need for any postprocessing such as k-means clustering.In a further study, we propose a method named "Multi-view Spectral Clustering via Constrained Nonnegative Embedding" (CNESE). This method can overcome the drawbacks of the spectral clustering approaches, since they only provide a nonlinear projection of the data, on which an additional step of clustering is required. This can degrade the quality of the final clustering due to various factors such as the initialization process or outliers. Overcoming these drawbacks can be done by introducing a nonnegative embedding matrix which gives the final clustering assignment. In addition, some constraints are added to the targeted matrix to enhance the clustering performance.In accordance with the above methods, a new method called "Multi-view Spectral Clustering with a self-taught Robust Graph Learning" (MCSRGL) has been developed. Different from other approaches, this method integrates two main paradigms into the one-step multi-view clustering model. First, we construct an additional graph by using the cluster label space in addition to the graphs associated with the data space. Second, a smoothness constraint is exploited to constrain the cluster-label matrix and make it more consistent with the data views and the label view.Moreover, we propose two unified frameworks for multi-view clustering in Chapter 9. In these frameworks, we attempt to determine a view-based graphs, the consensus graph, the consensus spectral representation, and the soft clustering assignments. These methods retain the main advantages of the aforementioned methods and integrate the concepts of consensus and unified matrices. By using the unified matrices, we enforce the matrices of different views to be similar, and thus the problem of noise and inconsistency between different views will be reduced.Extensive experiments were conducted on several public datasets with different types and sizes, varying from face image datasets, to document datasets, handwritten datasets, and synthetics datasets. We provide several analyses of the proposed algorithms, including ablation studies, hyper-parameter sensitivity analyses, and computational costs. The experimental results show that the developed algorithms through this thesis are relevant and outperform several competing methods
    • …
    corecore