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ABSTRACT

In this thesis, we study unsupervised learning, speci�cally, clustering methods for dividing data into

meaningful groups. A major challenge is to �nd an e�cient algorithm with low computational complexity

that can handle di�erent types and sizes of data sets.

For this purpose, we propose two approaches. The �rst approach is named "Multi-view Clustering

via Kernelized Graph and Nonnegative Embedding" (MKGNE), and the second approach is called "Multi-

view Clustering via Consensus Graph Learning and Nonnegative Embedding" (MVCGE). These two

approaches jointly solve four tasks. They jointly estimate the uni�ed similarity matrix over all views

using the kernel tricks, the uni�ed spectral projection of the data, the cluster indicator matrix, and the

weight of each view without additional parameters. With these two approaches, there is no need for

any postprocessing such as k-means clustering.

In a further study, we propose a method named "Multi-view Spectral Clustering via Constrained

Nonnegative Embedding" (CNESE). This method can overcome the drawbacks of the spectral clustering

approaches, since they only provide a nonlinear projection of the data, on which an additional step of

clustering is required. This can degrade the quality of the �nal clustering due to various factors such

as the initialization process or outliers. Overcoming these drawbacks can be done by introducing a

nonnegative embedding matrix which gives the �nal clustering assignment. In addition, some constraints

are added to the targeted matrix to enhance the clustering performance.

In accordance with the above methods, a new method called "Multi-view Spectral Clustering with a

self-taught Robust Graph Learning" (MCSRGL) has been developed. Di�erent from other approaches,

this method integrates two main paradigms into the one-step multi-view clustering model. First, we

construct an additional graph by using the cluster label space in addition to the graphs associated with

the data space. Second, a smoothness constraint is exploited to constrain the cluster-label matrix and

make it more consistent with the data views and the label view.
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Moreover, we propose two uni�ed frameworks for multi-view clustering in Chapter 9. In these

framework, we attempt to determine a view based graphs, the consensus graph, the consensus spectral

representation, and the soft clustering assignments. These methods retain the main advantages of the

aforementioned methods and integrate the concepts of consensus and uni�ed matrices. By using the

uni�ed matrices, we enforce the matrices of di�erent views to be similar, and thus the problem of noise

and inconsistency between di�erent views will be reduced.

Extensive experiments were conducted on several public datasets with di�erent types and sizes,

varying from face image datasets, to document datasets, handwritten datasets, and synthetics datasets.

We provide several analyses of the proposed algorithms, including ablation studies, hyper-parameter

sensitivity analyses, and computational costs. The experimental results show that the developed

algorithms through this thesis are relevant and outperform several competing methods.

Keywords: Machine learning, unsupervised learning, multi-view clustering, graph learning, spectral

projection, nonnegative embedding, auto-weighted strategy, clustering algorithms, similarity graph,

graph construction, soft cluster assignments, cluster label space, consensus matrices, constrained

nonnegative embedding, smoothness constraints.



RESUMEN

En esta tesis, estudiamos el aprendizaje no supervisado, especí�camente, los métodos de agrupamiento

para dividir datos en grupos signi�cativos. Un desafío importante es cómo encontrar un algoritmo

e�ciente con baja complejidad computacional para manejar diferentes tipos y tamaños de conjuntos de

datos.

Para ello, proponemos dos enfoques. El primer enfoque se denomina "Agrupación de múltiples vistas

a través de grá�cos kernelizados e incrustaciones no negativas" (MKGNE), y el segundo enfoque se

denomina "Agrupación de múltiples vistas a través del aprendizaje de grá�cos de consenso e incrusta-

ciones no negativas" (MVCGE). Estos dos enfoques resuelven conjuntamente cuatro tareas. Estiman

conjuntamente la matriz de similitud uni�cada sobre todas las vistas utilizando los trucos del núcleo, la

proyección espectral uni�cada de los datos, la matriz de indicadores de grupo y el peso de cada vista sin

parámetros adicionales. Con estos dos enfoques, no hay necesidad de ningún procesamiento posterior,

como el agrupamiento de k-means.

En un estudio adicional, proponemos un método denominado "Agrupación espectral de vista múltiple

a través de incrustaciones no negativas restringidas" (CNESE). Este método puede superar los inconve-

nientes de los enfoques de agrupamiento espectral, ya que solo proporcionan una proyección no lineal

de los datos, en la que se requiere un paso adicional de agrupamiento. Esto puede degradar la calidad

del agrupamiento �nal debido a varios factores, como el proceso de inicialización o los valores atípicos.

Se pueden superar estos inconvenientes mediante la introducción de una matriz de incrustación no

negativa que proporcione la asignación de agrupación �nal. Además, se agregan algunas restricciones a

la matriz objetivo para mejorar el rendimiento de la agrupación.

De acuerdo con los métodos anteriores, se ha desarrollado un nuevo método denominado "Agrupación

espectral multivista con un aprendizaje grá�co robusto autodidacta" (MCSRGL). A diferencia de otros

enfoques, este método integra dos paradigmas principales en el modelo de agrupamiento de vistas
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múltiples de un solo paso. Primero, construimos un grá�co adicional utilizando el espacio de etiquetas

de clúster además de los grá�cos asociados con el espacio de datos. En segundo lugar, se explota una

restricción de suavidad para restringir la matriz de etiquetas de clúster y hacerla más coherente con las

vistas de datos y la vista de etiquetas.

Además, proponemos dos marcos uni�cados para el agrupamiento de vistas múltiples en el Capítulo 9.

En este marco, intentamos determinar grá�cos basados en vistas, el grá�co de consenso, la representación

espectral de consenso y las asignaciones de agrupamiento suave. Estos métodos conservan las principales

ventajas de los métodos antes mencionados e integran los conceptos de consenso y matrices uni�cadas.

Al usar las matrices uni�cadas, hacemos que las matrices de diferentes vistas sean similares y, por lo

tanto, se reducirá el problema del ruido y la inconsistencia entre diferentes vistas.

Además, muchos otros trabajos y proyectos relacionados con métodos de aprendizaje automático ya

se han completado y se mencionan en esta tesis.

Se realizaron extensos experimentos en varios conjuntos de datos públicos con diferentes tipos

y tamaños, que variaban desde conjuntos de datos de imágenes faciales hasta conjuntos de datos de

documentos, conjuntos de datos escritos a mano y conjuntos de datos sintéticos. Proporcionamos

varios análisis de los algoritmos propuestos, incluidos estudios de ablación, análisis de sensibilidad de

hiperparámetros y costos computacionales. Los resultados experimentales muestran que los algoritmos

desarrollados a través de esta tesis son relevantes y superan a varios métodos de la competencia.

Palabras clave: Aprendizaje automático, aprendizaje no supervisado, agrupamiento de vistas múlti-

ples, aprendizaje de grá�cos, proyección espectral, incrustación no negativa, estrategia ponderada

automáticamente, algoritmos de agrupamiento, grá�co de similitud, construcción de grá�cos, asig-

naciones de clúster �exibles, espacio de etiquetas de clúster, matrices de consenso , incrustación no

negativa restringida, restricciones de suavidad.
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Notations

Xv = (xv1,xv2, ...,xvn) Data matrix of the v-th view ∈ Rdv×n

xvi The i-th column of Xv

‖X‖F or ‖X‖2 Frobenius or `2 norm of the matrix X

Xij Element of i-th row and j-th column of a matrix X

Kv Kernel matrix of the v-th view ∈ Rn×n

Sv Similarity matrix (graph matrix) of the v-th view ∈ Rn×n

S∗ Consensus similarity matrix (graph matrix) ∈ Rn×n

D Degree matrix (diagonal matrix)

Dv Degree matrix of the v-th view

Lv Laplacian matrix of the v-th view ∈ Rn×n

L∗ Consensus Laplacian matrix ∈ Rn×n

Pv Spectral projection matrix of the v-th view ∈ Rn×C

P∗ Consensus spectral projection matrix of the v-th view ∈ Rn×C

H Nonnegative embedding matrix (soft cluster assignments) ∈

Rn×C

I Identity matrix

1 Column vector with all elements equal to one

Tr(.) Trace operator

n Number of samples

C Number of clusters

V Number of views

dv Dimension of the feature vector of the v-th view

K number of nearest neighbors to represent each data

β, µ, γ, α, λ, λ1, λ2, λ3 and λ4 Balance parameters

xvii





Chapter 1

General Introduction to multi-view

learning

1.1 General Introduction

In the past, machine learning faced many challenges for several reasons. First, the lack of training data

was a problem for many researchers. In addition, there was the low computational power of computers,

the weaknesses and limitations of existing learning algorithms, and the di�culties in processing and

handling large data sets. Nowadays, thanks to technological progress, a variety of data of di�erent sizes

and types can be collected from di�erent �elds such as medicine, �nance, banking, etc., so the �eld of

machine learning is experiencing many advances and the machine can achieve high performance.

Therefore, the use of machine learning (ML) has become a mandatory task to process the data and

understand the hidden patterns in the data, which makes the performance of the machine more e�cient.

Basically, three types of learning are used by these machines to process data. These types of learning are

distinguished by the availability of data labels, which can be considered as the speci�c information of

each data set that categorizes each group or cluster. The �rst type concerns supervised learning, where

the labels of the data are known and used during the learning step. The second type is unsupervised

learning, where the model works independently to discover and analyze the data (e.g., to �nd groups

with unknown patterns in the data). During the learning process, there is no further information about

the labels of the data. The third type of learning is semi-supervised learning, where only a small number

of data instances are labeled.

When it comes to categorizing data, the goal of all these types of learning is to divide data into

di�erent groups so that data in the same group are similar to each other and data in di�erent groups are
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1. General Introduction to multi-view learning

dissimilar.

Unsupervised learning is adopted in this thesis. Unsupervised learning approaches can be extremely

useful for the �eld of Big Data analytics. These algorithms process data without knowing information

about its category. A typical and widely used unsupervised learning task is clustering. Clustering divides

data into multiple groups based on the similarity between data points. For example, in biology, clustering

can be used to identify genes with similar functions. In addition, in information retrieval, clustering can

facilitate and organize the result of a query. Thus, the result of a query for "movie" provides several

categories divided into "drama", "love", "romance", "action", "comedy", etc. Fig. 1.1 shows an example of

clustering.

Figure 1.1: Disordered data before clustering (left) and ordered after clustering (right) [1].

Clustering can also be used in various �elds:

• Marketing: Clustering is used in marketing to characterize and discover customer segments for

marketing purposes.

• Biology: It can be used to identify di�erent groups of plants.

• Libraries: It can be used to cluster books by their topics and content.

• Medicine: It can be used to identify di�erent stages of diseases.

• Earthquake Studies: It can be used to divide areas into di�erent zones.

• Also, clustering is used for insurance, urban planning, etc.

Nowadays, it is possible to have multiple representations or views for the same dataset. Therefore,

clustering multiple views has attracted much attention in machine learning. For example, a web page
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can be represented either by its content, by its title, or by its hyperlink. Another example is an article,

which may be written in English, French, Spanish, etc. In addition, a person can be characterized by

multiple images, each taken in a particular position. In other words, multi-view data is a group of

features collected from di�erent sources. They allow better use of the data and provide additional

information about the data to improve clustering results. Although the use of multiple views can make

the approaches more complicated due to the huge amount of additional information, in general, the

use of these views can be considered as a good way to achieve better clustering results, as they provide

additional information, especially when the information of a particular view is not su�cient to achieve

the desired target clustering.

Since the principle of clustering is essentially based on the creation of a similarity matrix between

the di�erent data points, an algorithm capable of creating a precise and consistent similarity matrix

must be developed.

Motivated by the great advances in the methods used for clustering, in this thesis we have proposed

several algorithms capable of overcoming the challenges of the already published methods, in addition to

their mathematical models. The desire to develop suitable and discriminative algorithms for multi-view

clustering is an important task for researchers. A crucial step in multi-view clustering approaches is to

learn appropriate data representations to extract meaningful information from the dataset. Although

signi�cant progress has been made in learning graph-based multi-view clustering, more research is

needed. Indeed, most multi-view clustering approaches have a number of limitations in terms of the

quality of the extracted information from the dataset. This thesis contributes to unsupervised learning

by using di�erent models capable of performing multi-view clustering. Di�erent multi-view learning

algorithms and their applicability to di�erent types and sizes of datasets have been the focus of our

research. Most of the experimental results obtained in testing the proposed methods have shown that

they are superior compared to many powerful competing methods. Matrix factorization is used to create

a soft clustering assignment matrix in most of our presented methods, which allows these methods to

improve their performance.

1.2 Bene�ts of multi-view Learning

The three main advantages of multi-view learning are explained below.

1) Providing complementary information to generate a complete pattern of the data: Multi-

view data contribute to the discovery of a complete "dataset". Single-view data often contain incomplete

information about the dataset, while multi-view data usually contain su�cient detail. By gathering
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complementary information from multi-view data, a full pattern of the dataset could be generated,

especially when the de�ciencies of one view are completed by the information of other views. In other

words, the multi-view methods allow to take advantage of the additional information contained in the

di�erent views to obtain an accurate description of the dataset in order to obtain the best clustering

results.

2) Noise Reduction: Learning from multiple views can reduce the noise in the obtained dataset,

i.e., the multi-view methods can overcome the problem of noise which, once it a�ects the single view, it

requires high cost to avoid poor clustering results.

Fig. 1.2 shows an example of how multi-view data can reduce the e�ects of noise. As shown

in this �gure, an image is examined using four di�erent cameras. Due to the general limitations of

imaging technology, all of these photos look very noisy, which could make further analysis di�cult. By

minimizing the overall noise for each individual view, this example proves how learning from multi-view

data contributes to strong results. In general, the presence of noise in a single view makes it di�cult

to detect a particular pattern, resulting in unsatisfactory analysis of single view data. However, with

multi-view learning, we can avoid the e�ect of noise in each individual view by highlighting the common

pattern among the di�erent views.

Figure 1.2: Reducing the e�ect of noise.

3) Applicable to a large number of applications: All multi-view clustering approaches may,

without any doubt, be applied to single-view data. Unfortunately, single-view clustering methods are
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not able to directly perform multi-view clustering applications due to their limitations. For instance,

multi-view data are becoming more common. These forms of data are best suited for multi-view learning,

while single-view learning approaches cannot adequately resolve them. Overall, the complementary

nature of multi-view data can help reduce the shortcomings of single-view data and increase their

applicability.

1.2.1 Practical problems of multi-view learning approaches

Although multi-view clustering methods have become increasingly important, these methods cannot

fully solve some of the most important research problems in the �eld. Therefore, it is important to

address the challenges of these approaches.

First, multi-view data come from di�erent feature domains. To enable joint analysis, data from

multiple views must be described in a uni�ed way. A fundamental di�culty in learning from multiple

views is how to properly handle multi-view data. Therefore, it is imperative to develop a method that

can take advantage of multiple views by exploring the underlying relationships between them. Although

di�erent single-view data contribute to learning from multiple views in di�erent ways, leveraging

their combined e�ects to improve learning tasks remains a challenging issue. The third challenge is

to highlight the importance and contribution of each view in clustering. Also, multiple views have

the ability to rapidly increase the amount of data. Preprocessing multi-view data by dimensionality

reduction or feature selection seems to be a necessary step for subsequent analysis. In this thesis, we

attempt to develop e�cient methods that can overcome these limitations. Our contributions are listed

below.

1.3 Research outline and manuscript structure

In this thesis report, we have proposed several graph-based multi-view approaches that have produced

remarkable results and outperform many existing methods. We have also provided a brief review of

di�erent types of machine learning. We also present numerous examples to illustrate these concepts

with their advantages, disadvantages, and variants.

This thesis consists mainly of our own and original contributions. All chapters include our individual

contributions to multi-view clustering analysis and algorithmic innovation. We developed and tested

the proposed techniques on the experimental datasets, and analyzed the results. Moreover, our proposed

methods were applied to di�erent types and sizes of datasets, not only images, demonstrating the

superiority of our methods.
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The main contributions of our thesis are presented below.

• DirectMulti-view Spectral ClusteringwithConsistent KernelizedGraph andConvolved

Nonnegative Representation (Chapter 5): In this chapter, a novel approach called Multi-view

Clustering via Kernelized Graph and Nonnegative Embedding (MKGNE) is discussed. It can jointly

provide (i) the uni�ed similarity matrix across all views using the kernel tricks, (ii) the uni�ed

spectral projection of the data, (iii) the nonnegative cluster index matrix, and (iv) the weight

of each view without additional parameters. Our proposed method takes the di�erent kernel

matrices corresponding to the di�erent views as input. By creating a nonnegative embedding

matrix, no post-processing such as k-means or spectral rotation is required. Several experiments

conducted on real datasets demonstrate the e�ectiveness of the proposed method.

• Consensus graph and spectral representation for one-stepmulti-view kernel based clus-

tering (Chapter 6): In this chapter, a new method called Multi-view Clustering via Consensus

Graph Learning and Nonnegative Embedding (MVCGE) is presented. This method is similar

to the MKGNE method presented in Chapter 5. Thus, the consensus a�nity matrix (graph ma-

trix), consensus representation, and cluster index matrix (nonnegative embedding) are learned

simultaneously in a uni�ed framework. Besides, an orthogonality constraint is imposed on the

nonnegative embedding matrix used as the cluster indices matrix, which should also be as close

as possible to the graph convolution of the consensus representation. Another di�erence between

the MKGNE method and our new model is that our proposed approach integrates a smoothness

constraint on the nonnegative embedding matrix H (soft cluster assignments) over the graphs.

Our method is tested on real and synthetic datasets. The experiments performed show that the

proposed method performs well compared to many state-of-the-art approaches.

• Multi-view Spectral Clustering via Constrained Nonnegative Embedding (Chapter 7):

In this chapter, a new multi-view spectral clustering via constrained nonnegative embedding

(CNESE) is presented which can be considered as an improved version of the method "Multi-view

spectral clustering via integrating nonnegative embedding and spectral embedding" (NESE) [11].

Besides retaining the advantages of the NESE method, our proposed model integrates two types

of constraints: (i) a consistent smoothness of the nonnegative embedding over all views, and

(ii) an explicit orthogonality constraint over the columns of the nonnegative embedding matrix.

Experimental results on several real datasets show the superiority of the proposed approach.

• One-stepMulti-view Spectral ClusteringwithCluster Label CorrelationGraph (Chapter

8): In this chapter, a novel approach called Multi-view Spectral Clustering with a Self-taught
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Robust Graph Learning (MCSRGL) is proposed. The main novelty of this method is the use of

two types of graphs to perform multi-view clustering. In the �rst type, the multiple similarity

graphs are constructed considering the similarity in the data space in each view. The second type

of graph, called the cluster label correlation graph, represents the graph of the label space. Second,

a smoothing constraint is used to constrain the cluster-label matrix and make it more consistent

with the original data graphs as well as with the label graphs. Experimental results on several

public datasets show the e�ciency of the proposed approach.

• AUni�ed Framework forMulti-view Clustering via Consensus Graph and Spectral Rep-

resentation Learning (Chapter 9): In this chapter, two novel approaches are proposed. The

�rst approach is called One Step Multi-view Clustering via Consensus Graph Learning and Soft

Clustering Assignments (OSMGSCA). This method involves learning the individual graphs as

well as a consensus graph that are friendly to clustering, and thus can reduce the problem of

merging di�erent graphs that can contain noise. This method can simultaneously provide the

consensus similarity matrix, the similarity matrix of each view, the corresponding spectral projec-

tion matrix of each view, the nonnegative cluster indicator matrix, and the weight of each view

automatically. In addition, we present an improved version of our method that computes and

relies on the consensus graph and consensus spectral projection matrix instead of relying on the

individual matrices for each view. This method is called Uni�ed Multi-view Clustering via Joint

Graph Learning and Nonnegative Matrix Assignments (U-MCJGLNMA). Extensive experiments

conducted on several real-world datasets of di�erent types and sizes show the superiority of our

two methods compared to other state-of-the-art methods.

More details of such contributions are included in their corresponding chapters.

The thesis is organized as follows. It is based on a general introduction, followed by our contributions.

This chapter provides a general overview of the dissertation and discusses the research outline and

the manuscript structure. The second chapter introduces and discusses the basic machine learning

techniques. Related work is presented in Chapter 3. Chapter 4 describes the experimental setup of our

methods. In the remaining chapters of the thesis, each contribution is described in detail in a separate

chapter. Chapter 10 concludes the thesis. Finally, Chapter 11 presents the main papers and publications

produced during the course of the thesis.
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Chapter 2

General Introduction to machine

learning concepts

2.1 Di�erent types of machine learning methods

Machine learning has faced many di�culties in the past due to a number of factors. These include the

lack of training data, the low computational power of computers, the shortcomings and weaknesses of

various learning algorithms, and the complexity of handling and processing large data sets. Thanks

to the increasing computational power of computers and the availability of huge data sets that can be

used for training, the �eld of machine learning has made many advances in recent years that enable

the machine to achieve great performance. The more abundant the data, the better the machine can

learn. To process data, these machines use a variety of learning techniques. There are three di�erent

types of learning. The �rst category is supervised learning, where the data labels are known. The

second category is unsupervised learning, in which the model itself discovers and processes information

(e.g., �nding groups of unknown patterns in the data). Semi-supervised learning is the third method

of learning, in which some data are labeled while others are not. A detailed description of these three

types of learning methods can be found below.

Supervised Learning

Supervised learning, commonly referred to as supervised machine learning, is a subset of arti�cial

intelligence and machine learning. In this type of learning, labeled data sets are used to train various

models that e�ciently classify data or predict outcomes. Once the data is fed into the model, the latter

modi�es its weights and will be properly �tted, which happens in the cross-validation phase. This type

of learning can be used to solve a number of real-world problems. In supervised learning, a training data
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set is used to train the classi�ers to produce the speci�ed output. The loss function is used to evaluate the

computational accuracy, and it is adjusted until the error is satisfactorily reduced. Supervised learning

is divided into two main categories: Classi�cation and Regression.

• Classi�cation: A classi�er is used to classify test data and assign it to a particular group. It identi�es

certain patterns in the data set and makes accurate predictions about how these elements should

be classi�ed or labeled. Support Vector Machines (SVM), linear classi�ers, k-nearest neighbor,

decision tree and random forest are some of the most popular classi�ers.

• Regression: To study the correlation between two variables, regression is often used. The best-

known regression models include logistic regression, linear regression, and polynomial regression.

Some supervised learning methods:

In supervised classi�cation, a variety of methods and processing approaches can be used. The

following includes some of the most commonly used learning algorithms.

• Naive Bayes: The Naive Bayes classi�cation technique is characterized by the application of the

principle of Bayes theorem in terms of conditional independence of class. This means that the

presence of one element does not a�ect the presence of another element in the probability of a

particular event. Then, each prediction has an equivalent e�ect on the outcome. The three main

types of Naive Bayes classi�ers are Bernoulli Naive Bayes, Gaussian Naive Bayes, and Multinomial

Naive Bayes. Text classi�cation, spam detection, and recommendation systems use this approach.

• Linear Regression: Linear regression is a statistical technique for determining the relationship

between a dependent variable and one or more independent variables and is often used to estimate

future outcomes. Simple linear regression is used when there is only one independent variable

and one dependent variable. Multiple linear regression is used when the number of independent

variables is increased. It aims to create a boundary of maximum �t, which is determined by using

the least square method. In a graph, this line is straight, which is di�erent from other regression

models.

• Logistic regression: While the linear regression method is used when the dependent variables are

continuous, logistic regression is used when the dependent variables are categorical, such as "true"

and "false" or "cat" and "dog". Although both regression methods aim to discover correlations

between input data, logistic regression is more commonly used for binary classi�cation tasks such

as spam detection.
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2.1. Di�erent types of machine learning methods

• Support Vector Machine (SVM): The famous Support Vector Machine (SVM) is a common super-

vised learning method developed by Vladimir Vapnik that can be used for both classi�cation and

regression tasks. However, it is most commonly used for classi�cation tasks, where it creates a

hyperplane where the separation between the two categories of data sets is greatest. The decision

boundary is simply a hyperplane that separates the categories of data sets on each side of the

plane.

• K-nearest neighbor (K-nn): The K-nearest neighbor (K-nn) is a nonparametric method that

classi�es data inputs according to their proximity and relationship to other data points. This

technique implies that data points with comparable characteristics could be in close proximity to

each other. Consequently, it attempts to determine the distance between di�erent data points,

usually using Euclidean distance, and then assigns a label based on the most frequent class or

average. This method is characterized by its simplicity and fast computation time, but as the test

data set becomes larger, the computation time increases, making it somewhat less suitable for

classi�cation problems.

• Random Forest (RF): The Random Forest (RF) is another famous supervised machine learning

technique that can be used for regression and classi�cation problems. The "forest" refers to a

group of independent decision trees that are combined to reduce variance and achieve a better

prediction.

Semi-supervised learning methods:

Semi-supervised learning is a type of machine learning that occurs when some of the observations

in the training dataset are not yet labeled, i.e., in this type of learning, a classi�er should learn and

make predictions about new data by learning from a limited number of labeled instances and a large

number of unlabeled instances. Semi-supervised learning is therefore a task that lies somewhere between

supervised and unsupervised learning methods.

Unsupervised learning methods:

"Development of unsupervised pattern recognition methods is the most challenging and promising

area of research today.” Andrew Ng, NIPS Conference, Dec. 2016

Unsupervised learning is a third type of machine learning method in which the model does not

require user supervision. However, it allows the model to work independently to identify previously

undiscovered patterns and information. It deals primarily with unlabeled data. Unsupervised learning

algorithms have great potential in the �eld of data analysis. These algorithms can be very useful because
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they have no knowledge about the labels of the data. Clustering is a common task of unsupervised

learning. This thesis is mainly concerned with unsupervised machine learning approaches.

Characteristics of our multi-view clustering algorithms

Concatenating multiple features of the same data into a single feature vector is a useful concept for

combining data from multiple views. Since the pattern of each view is di�erent, it is not a good idea to

treat numerous views as a single view by simply combining all features into one long feature vector.

When combining data from multiple views into a single feature vector, the di�erent views are processed

in the same way and their di�erences are ignored. Therefore, instead of treating the data from multiple

views as one combined feature vector, we treat these views as a set of di�erent similarity matrices or

kernels. Multiple graphs can be used to represent data with multiple views. Typically, a similarity matrix

is used to describe each graph. We can develop a similarity matrix for each view and derive the sum of

these similarity matrices for clustering multiple views by considering each view as di�erent from the

other views. Although similarity aggregation seems to be a simple and e�cient implementation that

even leads to good clustering results, an automated process that assigns di�erent weight values to each

similarity or kernel matrix is still preferable. Such a weighting approach can contribute to additional

bene�ts, such as removing or reducing the impact of noisy views. We perform multi-view clustering

using di�erent views of the same data. The goal is to properly combine the data from multiple views and

use their intrinsic relationship to simplify the clustering task. The typical k-means clustering algorithm

is explained below.

K-means clustering algorithm

One of the most basic and widely used unsupervised machine learning algorithms is k-means

clustering. The goal of the k-means method is to partition a set of observations into a predetermined

number of k clusters. Its main steps are summarized below.

First, a certain number of clusters k is speci�ed, which corresponds to the number of centroids

needed in the data set. The centroid is a point that represents the center of each de�ned cluster. Each

cluster in k-Means is associated with a centroid. The goal of k-means clustering is to minimize the inter-

cluster sum of squares, i.e., the sum of distances between di�erent data points and their corresponding

cluster centroid. Each data point is then assigned to one of the de�ned clusters.

Steps of the k-means clustering algorithm:

The k-means clustering technique starts by randomly selecting a certain number of centroids (µ)

to serve as starting points for each cluster, and then performs iterative computations to improve the

placement of the centroids. All observations xp are assigned to the nearest centroid µ(t)
i at each iteration

12



2.1. Di�erent types of machine learning methods

t of the algorithm (see Eq. 2.1). If multiple centroids are at the same distance from a given data point,

one centroid is randomly selected.

S(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤
∥∥xp − µ(t)

j

∥∥2 ∀j, 1 ≤ j ≤ k
}
, (2.1)

where |Sti| is the total number of samples xj associated with the centroid µ(t)
i . After that, by computing

the mean of the assigned samples to the corresponding centroids, the centroids are adjusted (see Eq. 2.2).

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈St

i

xj . (2.2)

The algorithm stops creating and updating clusters when:

• The centroids of the newly created clusters remain the same.

• The points remain in the same cluster.

• The speci�ed number of iterations has been completed.

The k-means clustering technique attempts to optimize the objective function described in Eq. (2.3).

The procedure usually ends at a local minimum, since there is a �xed number of iterations to reach the

various assignments for given centroids. Moreover, each step must lead to a better solution.

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (2.3)

with rnk =


1 xn ∈ Sk

0 otherwise

Advantages and disadvantages of the k-means clustering algorithm:

Advantages of the k-means clustering algorithm:

• Its implementation is really simple.

• It can handle a large amount of data and respond quickly to big data.

• It responds quickly to new cases.

• It ensures convergence.

13



2. General Introduction to machine learning concepts

• Cluster adaptation to di�erent sizes and shapes.

Disadvantages of the k-means clustering algorithm:

• It is highly sensitive to noise and outliers.

• It is highly dependent on initial values.

• Manual selection of the number of clusters is a di�cult task.

• Its scalability decreases with increasing dimensionality.

The fundamental problem with k-means is the dependence of the obtained results on the initially

chosen centroids. If one of the de�ned centroids is more attracted to noise or outliers, similar data points

may be clustered into di�erent groups, while other, more distant data points are clustered together. The

simplest solution to this problem is to repeat the clustering procedure, using di�erent starting positions

of the centroids. Then, the clustering result that appears most frequently is considered appropriate.

To overcome the limitations of the classical k-means algorithm, the popular Spectral Clustering (SC)

algorithm can also be used. This algorithm projects the data set into a space where it is linearly separable.

In the rest of this chapter, the famous SC algorithm is described in detail after explaining the concept of

graph-based methods.

Graph-based methods

Recently, graph-based multi-view clustering methods have attracted much attention in the �elds

of pattern recognition and machine learning. Various graphs are used to represent data with multiple

views. These approaches work with a graph in which a node represents a data point and a weighted

edge connects two nodes. Graph-based methods are currently widely used in a number of disciplines,

such as graph-based embedding, semi-supervised learning, feature selection, regression, and clustering,

where the graph represents the pairwise similarities between data points.

Given a collection of n data samples, represented by Xv = (xv1,xv2, ...,xvn) ∈ Rn×dv , where dv is the

dimension of the feature vector in the v-th view of the data. We de�ne the graph G = (V ;E;W), where

V is the total number of nodes or vertices (|V| = n), E is the number of edges, and W is the a�nity matrix,

also called the edge weight matrix. The edge weight between xi and xj , is determined by wij , which

represents the similarity or distance between data points xi and xj . The a�nity matrix W is generally

bound by the following constraints:

• wij = 0 means that there is no edge between data points xi and xj .
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2.1. Di�erent types of machine learning methods

• wii = 0, i = 1, ..., n where n denotes the total number of data points or nodes.

• W is a symmetric matrix: wij = wji.

• All weight edges are nonnegative wij ≥ 0.

Currently, the most common method for creating an a�nity matrix involves two steps: The �rst step is

to create the adjacency matrix and the second step is to assign the edge weight matrix. A given set of

data points can be transformed into a graph using one of the numerous widely used techniques. The

purpose of creating similarity graphs is to describe the neighborhood relationships between di�erent

data points.

Some of the best traditional graph construction methods are the ε-neighborhoods graph, the K-

nearest neighbors graph (K-nn), and the fully connected graph. The description of these methods can be

found below.

• ε-neighborhood graph: The connection between two data points xi and xj is given if the

pairwise distance between them is less than ε. A typical problem that may occur when using this

technique is the probability of obtaining some disconnected nodes, which may occur when the

value of ε is not properly �xed. Therefore, K-nearest neighbor (K-nn) graphs have been used to

circumvent the above limitation.

• K-nearest neighbors graph: Using this graph, one can connect node xi to node xj if xi is one

of the k-nearest neighbors of xj . However, since the neighborhood connection is asymmetric,

this approach leads to a directed graph. This graph can be made undirected in two ways. First, we

can simply ignore the edge direction and connect xi and xj with an undirected edge if xi is one

of the k-nearest neighbors of xj or xj is one of the k-nearest neighbors of xi. The resulting graph

is called the k-nearest neighbor graph. Second, the graph can be made undirected in another

way by connecting xi and xj if both xi and xj were one of the k-nearest neighbors of xj and xi,

respectively. The resulting graph is called a mutual k-nearest neighbor graph. However, when

working with large data sets and thus a large number of neighbors are available to build the graph,

the drawbacks of these graphs become apparent. The graph in this situation requires a signi�cant

amount of computing power. Figure 2.1 depicts four independent nodes connected to their nearest

neighbors via the K-nn graph and the ε-graph. This �gure shows some disconnected components

obtained by using the ε-graph and how the problem was solved using the K-nn method.
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2. General Introduction to machine learning concepts

Figure 2.1: Di�erent similarity graphs [2].

• Fully connected graph: By using this method, the graph is completely connected. Each node

is connected to all other nodes in this graph. After computing the graph, the weight matrix is

calculated to assign weights to the edges. Several methods can be used to construct the similarity

matrix that represents this graph. A simple way to construct this matrix is to consider a binary

weighting scheme.

wij =


1, if there is an edge between the nodes xi and xj

0, otherwise.
(2.4)

However, this method treats all neighbors in the same way, regardless of their closeness or

similarity. As a result, two nodes, no matter how close or far apart, receive the same value of

weight.

Another similarity function can be used to overcome this limitation. As can be seen in Eq. (2.5),

when a similarity function is used, each edge is assigned a weight based on the value of the

similarity between the two nodes. Various functions can be used that serve as similarity measures.

When two nodes are most similar, their edges receive a greater weight than dissimilar nodes.
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2.1. Di�erent types of machine learning methods

Therefore, the in�uence of two nodes that are not close and are detected as neighbors by applying

the K-nn algorithm can be suppressed using this strategy.

wij =


sim(xi, xj), if there is an edge between the nodes xi and xj

0, otherwise.
(2.5)

The Gaussian kernel function, which has the formula in Eq. (2.6) for weight computation, is now

the most commonly used function.

sim(xi,xj) = −exp(−d(xi,xj)
T0

), (2.6)

where T0 is the Gaussian kernel width and d is any distance measure, such as the Euclidean

distance ‖xi − xj‖2. Besides, the cosine function can be used to compute the distance between

xi and xj . A labeled, undirected graph with 6 nodes and its Laplacian matrix are shown in Figure

2.2. In this example, the similarity values are set to binary weights.

Figure 2.2: Undirected graph and its Laplacian matrix.

All of the previously described graphs are commonly used for spectral clustering. Now, we are going

to explain the idea of the Laplacian of the graph, before moving on to explain the spectral clustering

algorithm.

Graph Laplacian

Graph Laplacian matrices are the most commonly used features for spectral clustering today. The

analysis of such matrices is the subject of an entire scienti�c discipline, spectral graph theory. We always

consider that a graph G is usually assumed to be an undirected and weighted graph. Its weight matrix is

represented by W, where wij = wji ≥ 0. Moreover, the spectral projection matrix P is also computed.

This matrix contains the eigenvectors of the Laplacian matrix L. We should not always assume that

the eigenvectors of the matrix are normalized. The eigenvalues must be sorted in ascending order. The

eigenvectors related to the k smallest eigenvalues are called "the �rst k eigenvectors".

The de�nition of the unnormalized Laplacian matrix is given in equation (2.7).
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L = D − W (2.7)

In the following, we describe the main properties of the Laplacian matrix needed for spectral clustering.

• For each vector f ∈Rn, we have: f′ L f == 1
2

n∑
i,j=1

wij (fi − fj)2.

• L is a symmetric matrix and semi de�nite positive.

• The constant vector 1 corresponds to the smallest eigenvalue of the matrix L, which is 0, and the

multiplicity k of the eigenvalue 0 is equal to the number of connected components in the graph.

• L has exactly n positive eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

The Laplacian matrix can be normalized by the following equation.

Lnormalized = D−
1
2 LD−

1
2 = I − D−

1
2 WD−

1
2 . (2.8)

Spectral Clustering

In the following, the concept of popular spectral clustering algorithms is explained in detail. Spectral

clustering (SC) [12], is a famous clustering approach based on spectral graph theory. One of its special

aspects is that the data set is grouped based on connectivity rather than distance, which allows concave

clustering of samples. When processing and grouping this type of data, spectral clustering is among the

most commonly used clustering approaches. Spectral clustering is indeed a matrix trace optimization

problem. In this section, we show how well the spectral clustering algorithm can be used to solve

problems with multiple views. The criteria by which a graph can be partitioned into non-connected

subgraphs are de�ned by spectral graph theory. The spectral clustering algorithm is an example of a

graph clustering algorithm, which is applicable to any kind of data described as a matrix representing

the similarity between all data points.

Single-view spectral clustering algorithm:

We begin by considering the spectral clustering algorithm in a single-view case. Suppose that the

spectral representation matrix is P ∈ Rn×k, where n is the total number of observations and k is the

total number of clusters. The concept of spectral clustering can be described as follows:

min
P

Tr (PT LP) s.t. PT P = I. (2.9)

The dimension is clearly reduced from (n× n) to (n× k) after obtaining the spectral representation

matrix P. Besides, projecting the raw data into another space allows us to cluster non-convex regions.
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2.2. Overview of Kernel methods

We suppose that our data consists of n data points X = [x1,x2, ...,xn], which can be arbitrary

elements. The pairwise similarity between data points is calculated using a symmetric and nonnegative

similarity algorithm, sij = s(xi,xj), and the resulting similarity matrix is denoted by S. The Spectral

Clustering algorithm is summarized in Algorithm 1.

Algorithm 1 Spectral Clustering

Input: Data matrices X ∈ Rn×d.
The similarity matrix S.
The total number of clusters k.

Output: The clustering allocation for n data points in k di�erent clusters.
Construct the weighted similarity matrix W using one of the methods mentioned above.
Compute the corresponding Laplacian matrix L.
Compute the smallest k eigenvectors e1, ..., ek of L.
Create the matrix P ∈ Rn×k containing the vectors e1, ..., ek as columns.
Cluster the rows of the matrix P into k di�erent clusters using any post processing
step such as k-means clustering.

Multi-view spectral clustering algorithm:

Clustering performance on inputs with multiple views could also be improved if the di�erent

views are properly integrated. In the context of spectral clustering analysis, there are several ways

to integrate data from multiple views. Multi-view spectral clustering algorithms should be able to

�nd the complementary information contained in the di�erent views and thus produce better or more

consistent clustering results. One possible solution is to create a uni�ed similarity matrix extracted from

the di�erent views, and then apply traditional single-view spectral clustering to this uni�ed similarity

matrix.

2.2 Overview of Kernel methods

Kernels or kernel techniques (also known as kernel functions) are groups of di�erent types of pattern

analysis techniques. They have been used to solve non-linear problems.
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Figure 2.3: Feature map of the data set to a higher space.

From Figure 2.3, it is clear that using a linear classi�er to accomplish this classi�cation task is

extremely di�cult because there is no strong linear line that can categorize the red and blue points since

the data points are randomly distributed. The kernel function is then used to transfer the data points into

a higher dimensional space and generate the classi�cation result. In other words: In the �gure 2.3, the

red points are inside a circular region and the blue data points are outside this region. So we transform

a two-dimensional plane, previously categorized by a single line, into a three-dimensional space where

our classi�cation algorithm will be the hyperplane, a two-dimensional plane that divides the data set.

The kernel trick, a way of using a linear classi�er to solve a non-linear problem, is commonly referred

to as a "kernel" in machine learning. It involves converting linearly inseparable data points into linearly

separable data points (as shown in Figure 2.3). The special feature of the kernel trick is that the new

space does not have to be explicitly declared. The data points are implicitly explored in another space

by computing their dot products in this new space, as shown in equation (2.10).

K (x, y) =< f(x), f(y) > , (2.10)

where K is the kernel function used to map the data inputs x and y from the lower dimensional space n

to the higher dimensional space m. The dot product between x and y is denoted by <x,y >. To get the

value of the dot product < f(x), f(y) > we usually need to calculate f(x), f(y), and then perform the dot

product. Since these two steps require calculations in m-dimensional space, where m can be a large

number, they can be very expensive. Despite all our e�orts to reach the high-dimensional space m, the
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2.2. Overview of Kernel methods

obtained dot product is a scalar. Therefore, we return to the one-dimensional space. Now the question

arises, do we really need to do all this work just to get the value of this "scalar"? Is it really necessary to

do these manipulations in m-dimensional space? The answer to this question is no, using the kernel

trick. To illustrate this idea, an example is provided below.

Suppose we have two vectors, x = (1, 2, 2) and y = (1, 2, 3).

As mentioned earlier, to calculate the dot product between f(x) and f(y), we must �rst calculate f(x)

and f(y).

Then: f(x) = (x1 ∗ x1,x1 ∗ x2,x1 ∗ x3,x2 ∗ x1,x2 ∗ x2,x2 ∗ x3,x3 ∗ x1,x3 ∗ x2,x3 ∗ x3)=

(1, 2, 2, 2, 4, 4, 2, 4, 4).

f(y) = (1, 2, 3, 2, 4, 6, 3, 6, 9).

<f(x), f(y)> = 1 + 4 + 6 + 4 + 16 + 24 + 6 + 24 + 36 = 121

There are numerous calculations to be done because f is a transformation from a three-dimensional

to a nine-dimensional space.

To solve this problem, the kernel trick can be applied as follows:

K (x,y) = (< x,y >)2 = (1 + 4 + 6)2 = 121.

From the above example, it is clear that the result is the same, but the computation time is much

easier by using the kernel trick.

In most of our methods, we use the kernel trick to represent the similarity between the di�erent data

points in a more appropriate space and to explore the nonlinear relationships between the di�erent data

points. Consider Φ as the mapping function from the original data space RD to the reproducing Hilbert

spaceH. Given the input data matrix for di�erent views v: X(v) = [x(v)
1 ,x(v)

2 , ...,x(v)
n ], the Hilbert space

transformation will be: Φ(X(v)) = [Φ(x(v)
1 ),Φ(x(v)

2 ), ...,Φ(x(v)
n )].

A prede�ned kernel K(xi,xj) =< Φ(xi), (Φ(xj) > is used to represent the similarity between the

two data points xi and xj . The kernel trick eliminates the need to know the exact transformation. As a

result, calculations are greatly simpli�ed. The most commonly used kernel methods are listed below.

• Linear Kernel: Given two input vectors x1 and x2, the linear kernel is described as the dot product

of these two vectors:

K (xi, xj) = xi ∗ xj . (2.11)

• Gaussian kernel: This non-linear kernel is commonly used in machine learning and has proven
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to be a good choice for non-linear data. For a pair of data samples in a given view, the entry

K (xi, xj) is given by:

K (xi, xj) = exp(
−‖xi − xj‖2

2T0 σ2
0

), (2.12)

where σ2
0 is set to the average distance between pairs of samples in the considered view.

• Polynomial kernel: The polynomial kernel enables us to compute the high-dimensional relation-

ship between the two observations. This type of kernel method is de�ned by:

K(xi,xj) = (xTi xj + c)d, (2.13)

where d and c are the degree and the coe�cient of the polynomial respectively.

• Cosine kernel: In this type of kernel method, the normalized dot product between the two data

points is calculated. If xi and xj are the two input vectors, the cosine similarity between them is

calculated as follows:

K(xi,xj) =
xi xTj

||xi|| ||xj ||
. (2.14)

• Sigmoid kernel: The sigmoid kernel between two data points, also known as hyperbolic tangent

or multilayer perceptron, is computed using the sigmoid kernel function. This function can be

used as a neuron activation function in the neural network model. It is speci�ed as follows:

K(xi,xj) = tanh(γ xTi xj + c0), (2.15)

where γ is known as the slope and c0 is de�ned as the intercept.

• RBF kernel: The Radial Base Function (RBF) kernel between two data points is calculated with the

RBF kernel function.

K(xi,xj) = exp(−γ ||xi − xj ||2). (2.16)

If γ = 1
σ2 , the RBF kernel is equivalent to the Gaussian kernel with variance σ2.

• Laplacian kernel: The Laplacian kernel is a type of the RBF kernel given by the following equation:

K(xi,xj) = exp(−γ ||xi − xj ||1), (2.17)

where ||xi − xj ||1 is the Manhattan distance between the two input vectors. This type of kernel

function is useful when the data contains noise.

Many other types of kernel functions can be used to calculate the similarity between data points. In our

thesis, the Gaussian kernel is adopted.
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2.3 Overview of Matrix Factorization

Matrix Factorization techniques are often used to reduce dimensionality. Clustering is performed on

the generated coe�cient matrix. These methods are characterized by their minimal computational

requirements compared to other methods. Matrix factorization can be used to derive latent features

from a data set when two di�erent types of entities (i.e., two di�erent matrices) are multiplied together.

In other words, the given matrix is decomposed into the product of two smaller rectangular matrices

using matrix factorization methods. Nonnegative matrix factorization (NMF or NNMF), also known as

nonnegative matrix approximation, is a set of linear algebra techniques and a special type of matrix

factorization in which a matrix X is factorized into two distinct matrices Y and ZT , all of which have no

negative values.

2.3.1 Background

Given the matrix X ∈ Rn×m, X can be written as the product of two matrices: Y ∈ Rn×k and ZT

∈ Rk×m as shown in Eq. (2.18).

X = Y ∗ Z. (2.18)

The column vectors of X can be computed as linear combinations or multiplications of the column

vectors of the matrix Y using coe�cients provided by the columns of the matrix Z. In other words, each

column of the matrix X can be calculated as follows:

xi,: = Y ∗ zi,:, (2.19)

where xi,: is the i-th column vector of the obtained matrix X and zi,: is the i-th column vector of the

matrix Z. The dimensions of each matrix used to form the matrix X can be much smaller than those of

the resulting matrix X. This is the main feature of the NMF method. The NMF produces matrices with

much fewer dimensions than the original matrix X. For example, if X is an n×m matrix, Y is an n× k

matrix, and ZT is a k ×m, k is smaller than n and m.

The following is an example that illustrates the concept of NMF.

• Consider that X is an input matrix formed by 1000 rows and 50 columns of sentences and papers.

That is, we have 50 papers with 1000 sentences classi�ed. As a result, a paper is represented as a

column vector x in X.

• Suppose we want the method to discover ten distinct features to generate the feature matrix Y

with 1000 rows and 10 columns and the coe�cient matrix Z with 10 rows and 50 columns.
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• So, if we multiply the two matrices Y and Z, we get a matrix with 1000 rows and 50 columns, which

has the same dimension as the matrix X. Moreover, Y and Z are the nonnegative factorization of

the matrix X into two di�erent matrices.

• As shown in the previous discussion of matrix multiplication, each column in the computed

product matrix (Y * Z) is a linear combination of the 10 column vectors in the feature matrix Y

with coe�cients supplied by the coe�cient matrix Z.

Since in our case we can assume that each paper is formed from a �nite number of hidden features, this

last assumption is the basis of NMF. Each component (represented by a column vector) in the feature

matrix Y can be thought of as a paper containing a group of sentences, where each cell value of the

sentence de�nes its rank for a particular feature: The larger the cell value of a sentence, the higher its

rank for that feature. A paper is represented by a column in the coe�cient matrix Z, where a cell value

de�nes the rank of the paper for a particular feature.

As a result, a paper (column vector) can be created from our input matrix by using a linear combi-

nation of the column vectors in the matrix Y with the cell value of the feature from the column of the

matrix Z.

2.3.2 Clustering property of the NMF method

The NMF has an inherent clustering capability, i.e., it automatically groups the columns of input data

X = (x1, ...,x2). More precisely, we look for Y and Z that optimize the objective function:

‖X − YZ‖2, s.t.Y ≥ 0, Z ≥ 0. (2.20)

Furthermore, when an orthogonality condition is added to the objective function in Eq. (2.20) (i.e.,

ZZT = I), the minimization of the above optimization problem is equivalent to the optimization of the

well-known k-means clustering algorithm.

The generated Z, on the other hand, identi�es the members of the cluster; for example, if zkj ≥ zij

for all i 6= k, the data point zj belongs to the k-th cluster. The matrix of cluster centroids is also computed

and called Y. In this matrix, the k-th column indicates the cluster centroid of the k-th cluster.

2.4 Overview of the Singular Value Decomposition algorithm

In linear algebra, the Singular Value Decomposition (SVD) of a matrix is a type of matrix factorization

method that decomposes a given matrix into three lower dimensional matrices. The singular value
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decomposition of a matrix X ∈ Rn×k, denoted by SVD(X), is given by:

UΣVT = SV D (X), (2.21)

where UUT = VVT = I. The k columns of the orthonormal matrices U and V represent the

orthonormal eigenvector of XXT and XT X, respectively. These columns are also called the left and

right singular vectors of X. The diagonal entries of the matrix Σ, which are the nonnegative square

roots of the k eigenvalues of XXT , are the singular values of the matrix X. The singular values can be

interpreted as the signi�cance values of the various features in the matrix. Figure 2.4 illustrates the

concept of the SVD method. As can be seen in Figure 2.4, thanks to the SVD decomposition, our original

matrix can now be expressed as a linear combination of low-rank matrices, which is helpful in large

computations.

2.5 Overview of the t-SNE method

The unsupervised nonlinear method called t-Distributed Stochastic Neighbor Embedding (t-SNE) is

mainly used for data discovery and visualization of high-dimensional data sets. In other words, t-SNE

provides an idea of how the data is distributed in a high-dimensional space. This method was developed

by Laurens van der Maatens and Geo�rey Hinton in 2008. It converts multidimensional data into two or

more dimensional spaces that can be easily processed and analyzed by humans.

The t-SNE method estimates the similarity distance between pairs of samples in high and low

dimensional spaces. Then, using a cost function, it tries to maximize these two similarity measures.

2.6 Overview of the Gradient Descent method

Gradient descent is currently the most widely used optimization approach in machine learning. It can

be used with any machine learning or deep learning algorithm. It is very easy to learn and implement.

Anyone working with machine learning needs to be familiar with gradient descent concepts. Gradient

descent is an optimization technique used in training or optimizing a particular algorithm or model

in machine learning. This optimization method is based on a convex optimization problem where

parameters are iteratively changed to minimize a given cost function to its local minima. First, the

initial parameter values of the model are de�ned and then the algorithm uses mathematics to iteratively

change these values to minimize the speci�c function. Moreover, a gradient is a measure of how the

result of a function changes when the inputs are changed slightly. It also characterize its slope. The

larger the slope and the faster a model can be trained, the larger the gradient will be. However, if the
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Figure 2.4: Illustration of the concept of the SVD method.

slope is zero, the model stops learning. In mathematics, a gradient can also be thought of as a partial

derivative with respect to its inputs. Imagine a person trying to reach the top of a mountain with as few

steps as possible. He could start climbing the mountain by taking very large steps on the shortest path,

which he can do since he is not near the top of the mountain. However, as he approaches the summit,

his steps become smaller over time to prevent him from exceeding the summit. The gradient could be

used to properly characterize this behavior.

Consider Figure 2.6 as the horizontal plane of our mountain, with the blue arrows representing
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Figure 2.5: Illustration of the MNIST data set after applying t-SNE.

the steps of the person. The gradient in this case can be considered as a vector representing both the

direction and the length of the best step the person could take.

Figure 2.6: Illustration of the steps taken to reach the mountain from top to bottom.

It is worth noting that the gradient from X0 to X1 is much longer than that from X2 to X3. This is
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because the slope of the hill, which determines the length of the vector, is smaller. Therefore, a smaller

gradient means a smaller slope and fewer steps for the climber.

2.6.1 How Gradient Descent works

Think of gradient descent as going down to the bottom of a river rather than ascending up a mountain.

Since gradient descent is a minimization method that optimizes a particular function, this example is

more logical.

Gradient descent is described by the Eq. (2.22).

b = a − γ (∆f(a)), (2.22)

where b indicates the next position or location of the person, and a represents its current position.

The negative sign represents the minimization process of the gradient descent. The parameter γ is a

weight parameter, and the gradient term (∆f(a)) simply represents the steepest direction of descent.

This algorithm e�ectively informs us of the next position we should take, which is the direction

of steepest descent. To illustrate this, an example of an optimization problem in machine learning is

explained below.

We consider a supervised learning problem and need to train our optimization scheme (i.e., algorithm)

using gradient descent to optimize the de�ned cost function J(w, b) and reach its local minimum by

changing the values of its parameters: The weight parameter w and the bias parameter b. The gradient

descent method is a well-known convex function. The values of parameters w and b should be optimized

to obtain the minimum cost function. First, their values are initialized randomly. Then, the gradient

descent algorithm starts at this point and proceeds from top to bottom as shown in Figure 2.7 until the

cost function becomes as small as possible. The gradient is multiplied by a factor α, called the learning

rate, and then subtracted from the previous value of the weight parameter, as shown in Eq. (2.23). At

each iteration of the algorithm, the value of the loss is calculated. This procedure is repeated until

convergence is achieved.

w(t+ 1) = w(t) − α (
∂loss

∂w
). (2.23)

It is worth noting that the learning rate α de�nes the steps needed to �nd the target (i.e., the local

minima) along the slope. It also indicates how fast or slow our algorithm will proceed to obtain the

optimal weights. The learning rate should be calibrated so that it is neither extremely low nor too high

to reach the local minimum. If the learning rate is chosen too low, the gradient descent may reach the

local minimum, but the calculation will take a very long time. However, if the learning rate is very high,
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Figure 2.7: The iterative procedure of the gradient descent method [3].

the local minimum will not be reached, as shown in Figure 2.8. This problem is called the overshooting

problem. Consequently, the learning rate must never be either high or low.

2.7 Overview of the Auto-weighted strategies

All our novel methods use the scheme of automatic weighting in computing the weights of each view.

First, a weight parameter is assigned to each view so that the best, most representative and informative

view is given a higher weight and other views have a lower weight value. Thus, the importance of each

view and its contribution to the clustering task is illustrated by this weight parameter. However, most

of the existing methods use an explicit weight parameter that adds an additional hyperparameter to

their objective function. This leads to a high computational cost. To overcome this drawback, all of our

proposed methods use an automatic computation of the weight parameter in their objective function.

Therefore, the weight of each view is automatically computed during the iterations without using any

additional or hyperparameters, which reduces the computation time of the algorithm.
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Figure 2.8: The impact of the learning rate parameter [4].

In other words: In our criterion, the weights of the data views are adaptively set and updated, taking

into account the contribution of each view to the loss terms. In this way, they can reduce the impact of

noisy views. Considering that the weight of each view is inversely proportional to the square root of

the loss was �rst introduced in [13]. Therefore, this iterative trick has been used in many works aimed

at minimizing an objective function consisting of an additive aggregation of several losses or terms.

2.8 Overview of the Cluster Evaluation Metrics

One of the most important aspects of clustering is the evaluation of the results without further informa-

tion. Two di�erent types of evaluation metrics can be used for clustering evaluation: 1) External criteria:

They are used to determine how well the obtained cluster labels externally match the prede�ned class

labels. 2) Internal criteria: Assess the quality of the clustering result based only on information internal

to the data, without regard to external information (e.g., the silhouette coe�cient). If we consider these

two di�erent categories of clustering evaluation indicators to assess the obtained clustering result, one

solution would be to use external validation indicators that require prior knowledge of the ground truth

classes of the data, but it is also di�cult to use these indicators in real-world problems because prior

information about the data set is rarely available in real-world problems. Internal evaluation indicators

are a good solution in these situations. There are several external and internal indicators, each serving a

speci�c purpose. Cluster evaluation indicators usually de�ne the compactness of the structure of the

obtained clusters.
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• Compactness: This evaluates how similar and close the elements of a given cluster are. Variance

is a typical metric for compactness.

• Separability: This refers to how dissimilar two separate clusters are. It determines the distance

between the two clusters.

Since we have access to data sets with their labels, we used the external clustering evaluation metrics

throughout our thesis. To evaluate the performance of our method, we use the four commonly known

cluster evaluation metrics provided in [14], namely the clustering accuracy (ACC), the Normalized

Mutual Information (NMI), the purity indicator, and the Adjusted Rand Index (ARI). These indicators

can quantify the degree of agreement between the estimated clusters and the ground-truth clusters.

Note that for these indicators, the higher the value, the better the result, indicating that the obtained

clusters are close to the ground truth labels.

• Purity: The purity indicator is an external factor for cluster performance analysis. It indicates the

percentage of correct labels. The calculation of purity is quite simple. Each cluster is given a label

that depends on the most common class within the cluster. Purity is then calculated by dividing

the number of successfully matched cluster labels and classes by the total number of observations.

It is given in Eq. (2.24).

Purity(wi, ci) =
1

N

k∑
i=1

max
j

map|wi ∩ cj |, (2.24)

where N is the total number of samples, k is the number of clusters, wi is a cluster label in W ,

and cj is the ground truth label with the highest number for cluster wi.

To better understand the concept of the purity indicator, an example is given below. Consider an

example where our algorithm classi�es the data set into three disjoint clusters. Each cluster in

Figure 2.9 is assigned to the most frequently occurring class in the cluster. The total number of

correct class labels in each cluster is calculated and then divided by the total number of samples.

The purity of the clusters obtained from Figure 2.9 will be equal to: (4+5+4)
18 = 0.722.

Moreover, the purity indicator increases when the number of clusters increases. This is a drawback

of this indicator when the model classi�es each data point in a distinct cluster, for example, the

purity will become equal to one, but the model will be non performant.

Consequently, purity sometimes cannot be used as a tradeo� between the number of clusters and

the e�ciency of clustering.
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Figure 2.9: Clustering example.

• Normalized Mutual Information (NMI): The Normalized Mutual Information and information

theory are closely related. First, the de�nition of entropy is brie�y explained. Entropy is the

degree of uncertainty that exists in a process. It is given by Eq. (2.25).

H(p) = −
∑
i

pi log2(pi), (2.25)

where pi is the probability of the cluster label i. The entropy of the clustering obtained in Figure 2.9,

is computed below. The probability of the cluster label 1 is equal to Number of sampleswith label=1
Total number of samples =

6
18 .

The entropy will be equal to: (− 6
18 log( 6

18))− ( 7
18 log( 7

18))− ( 5
18 log( 5

18)) = 1.089.

Since the labels are equitably spread among the di�erent groups, the entropy is large. Another

metric used to describe the NMI indicator is Mutual Information (MI). This metric, given in Eq.

(2.26) is a measure of the similarity between the cluster labels and the class labels or ground truth.

MI(W, C) =

|W |∑
i=1

|C|∑
j=1

|wi ∩ cj |
N

log
N (|wi ∩ cj |)
|wi| |cj |

= H(W ) −H(W |C), (2.26)

where H(W |C) = −P (C) ∗
∑

i P (Wi|C) log2(P (Wi|C)) is the entropy of the class labels

within each cluster. The MI assesses the extent to which our knowledge of class labels grows after

we have been informed about cluster labels. The NMI is a normalization of the MI, with its values

varying between 0 (there is no mutual information) and 1 (there is perfect correlation).
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The NMI gives us an idea of the reduction in the value of the entropy of the class labels (i.e., the

reduction in the uncertainty of the class labels) when the cluster labels are known. It is given by

Eq. (2.27).

NMI(wi, ci) =
MI(wi, ci)

(H(wi)+H(ci))
2

. (2.27)

• Accuracy (ACC): The accuracy indicator is the unsupervised version of the accuracy indicator

used in classi�cation tasks. It is a statistical measure that indicates the percentage of correct

results out of the total number of cases examined. This indicator shows the extent to which the

algorithm can correctly identify or exclude a condition. The accuracy indicator used in clustering

di�ers from the accuracy indicator used in classi�cation in that it uses a mapping function to

determine the best mapping between the algorithm’s clustering wi and the ground truth or class

labels ci. Since the clustering method could generate a new label that is di�erent from the actual

ground truth label to describe the same cluster, the use of this mapping function is essential. ACC

is given by Eq. (2.28).

ACC(wi, ci) = max
map∈m

N∑
i=1

1 (map(wi), ci)

N
, (2.28)

where m is all possible permutations in [1 : K], 1 is given by Eq. (2.29).

1 (map(W ), C) =


1, if map(W)= C

0, otherwise.
(2.29)

• Adjusted Rand Index (ARI): The Adjusted Rand Index calculates the proportion of correct predic-

tions among all possible predictions. It is an approximation to a measure of similarity between

two di�erent clusters by counting all pairs of observations and identifying the pairs of samples

associated with the same or di�erent clusters in the predicted and true clusters. In other words,

ARI is the division between the number of pairs of data points that are either in the same cluster

or in di�erent clusters in both partitions and the total number of pairs of data points.

First, we should form a group of pairs of data points that are not in any particular sequence. For

example, we consider a group of six distinct data points. The number of unique pairs formed by

these data points is equal to 15. These pairs are often referred to as binomial coe�cients. Consider

the example in Table 2.1.
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Data point Actual label Predicted label
A Blue Blue
B Blue Blue
C Blue Red
D Red Red
E Red Green
F Red Green

Table 2.1: Example of ground truth and the obtained cluster labels.

The total pairs of data points that can be created using the 6 data sets are: {A,B}, {A,C}, {A,D}, {A,E},

{A,F}, {B,C}, {B,D}, {B,E}, {B,F}, {C,D}, {C,E}, {C,F}, {D,E}, {D,F}, {E,F}.

ARI is given by Eq. (2.30).

ARI =
a+ b(
N
2

) . (2.30)

Two computed values, a and b, are important for calculating the adjusted rand index:

1. a= The number of pairs of items that are present in the same cluster for both predicted and

ground truth labels.

2. b= The number of pairs of items that are in di�erent clusters for both predicted and ground

truth labels.

In the mentioned example, the elements of the pairs {A, B} and {E, F} are in the same cluster for

both prediction and ground truth, so the value of a is equal to 2.

The elements in the pairs {A, D}, {A,E}, {A,F}, {B,D}, {B,E}, {B,F}, {C,E} and {C,F} are in di�erent

clusters for both prediction and ground truth clustering. Therefore the value of b is equal to 8.

Moreover,
(
N
2

)
is the total number of pairs that can be generated from our data set, also known as

the binomial coe�cients. In our example, its value is equal to 15. Therefore, ARI = 10
15 = 0.67.

2.9 Overview of Deep Learning

First of all, an Arti�cial Intelligence (AI) is a computer system that can do things that would

normally require human intelligence. Machine Learning (ML) and Deep Learning (DL) are used to

drive these computer systems. The di�erence between AI, ML, and DL is summarized in Figure

2.10. Deep Learning has recently attracted much attention in a variety of �elds. These techniques

have led to signi�cant improvements in several areas, including computer vision and natural

language processing. Deep networks are used to determine complicated patterns in data that

are di�cult for human recognition to detect and process. Deep learning is a concept that allows
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Figure 2.10: Di�erence between AI, ML and DL [5].

software to learn from past examples. As a result, the machine gains amazing logical capabilities

through its self-learning. This is a signi�cant step forward in the �eld of arti�cial intelligence.

The computer system, which depends on a network of arti�cial neurons, can receive and evaluate

input, decode it as information, and analyze it in relation to previously recorded information. The

scope of application is huge, allowing arti�cial intelligence to reach its full growth potential in

this �eld.

2.9.1 Deep Learning work

First, a brief description of the neural network is given. Neural networks, most commonly used

for deep learning algorithms, analyze training samples by mimicking the interconnection of the

human brain through connected layers. Each node contains input and output values, weights, and

a bias (or threshold). When the calculated output value reaches a predetermined threshold, the

node is activated and data is sent to the next layer of the network.

The number of hidden layers of a de�ned arti�cial neural network in a deep learning model can

range from 10 to a hundred, indicating the sophistication of the model. The more layers there are,

the more di�cult the process becomes.

This allows a computer or model to recognise characters, words, and even entire texts. Thanks to

this Deep Learning model, machines can identify a pro�le on a photo and even recognise and

distinguish between di�erent animals.
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To recognize a cat in an image, the algorithm received the image as input and then applied the

following details:

– Each di�erent component of the image is analyzed by a particular layer of the neural

network.

– At each level of manipulation of the data, the model considers one possible response; if it

is "wrong", the software returns to a lower level again until a "correct" response is found.

Once this is found, the next layer of the arti�cial neural network takes over and analyzes

the potential responses.

– Once the algorithm has restructured all the information and classi�ed the image as a cat, it

can automatically classify the cat in new images.

By using Deep Learning, no other programs or codes are needed for the machine to distinguish

between di�erent types of animals. The algorithm will be able to identify the class of each image

based on the training phase using the raw data provided (in this case, several photos of animals).

Therefore, the same model can be applied to di�erent types of applications and data due to its

high adaptability to new situations.

The amount of raw data fed into the algorithm is critical. The more input data is provided to the

model, the faster and more e�ciently it will learn.

2.9.2 The main di�erence between Deep Learning and Machine Learning

Machine learning is a term based on the assumption of automatic learning by a machine. The

result is that the computer adapts to previous data inputs and provides an appropriate solution to

a di�cult situation.

Machine learning has a subset called Deep Learning. Deep Learning, on the other hand, allows

for independent analysis of original data, while machine learning requires prior data processing

to allow a model to classify incoming data. As a result, deep learning opens up a range of new

options and enables more human-like learning.

2.9.3 Convolutional neural networks

Convolutional neural networks (CNN/ConvNets) are a popular class of deep neural networks. In

deep learning, a convolutional neural network is a type of arti�cial neural network (ANN) with

di�erent types of layers used to evaluate visual images. It is also used to classify di�erent objects
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into di�erent classes. Convolutional operation is the basis of all CNNs. The typical structure of a

normal CNN consists of four layers: 1) the input layer, 2) the convolution layer, 3) the pooling

layer, and 4) the fully connected layer.

Convolution layer:

Convolution layers are the basic components of CNN. Input data points, including an image and

�lters, are often found in this layer, and the output vectors are a feature map. After the convolution

operation is applied by the convolution layer, the image is converted into a feature map, also called

an activation map. Convolution means that two matrices are convolved or combined (by applying

a �lter, also known as a kernel or feature detector to the �rst matrix), to create a new matrix. An

example given in Figure 2.11 shows an input matrix convolved with a �lter of dimension (3× 3).

Convolution is achieved by moving the kernel over the input image by one pixel, performing

matrix multiplication element by element. Each element of the image is then converted into a

weighted combination of itself and its neighbors. The result is thus noted in the feature map.

Figure 2.11: An example of the convolution operation.

The way the convolution technique is performed is a�ected by padding and stride. The size

(height and width) of the input and output vectors can be increased or decreased by padding and

stride. When the kernel or �lter is applied to the image, padding speci�es how many "0" fake

pixels should be added to the image to take advantage of pixels at the edges. The stride of the

�lter, on the other hand, speci�es how it convolves across the input matrix, i.e., the number of
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pixels shifted. For an example of the Padding and Stride operations, see Figure 2.12.

Figure 2.12: An example of the Padding and Stride operations.

Pooling layer:

To minimize the spatial complexity of the input image, the pooling layer performs downsampling.

This reduces the complexity of the network and the training time, as well as the risk of over�tting.

Max-pooling, where the highest value of each region in the feature map is chosen, and average-

pooling, where the average of each region in the feature map is taken, are the most commonly

used types of pooling. For an example of the pooling process, see Figure 2.13.

Fully connected layer:

A fully linked layer is the last layer in a CNN. All nodes from the previous layers of the network

are connected together to form the fully connected layer, which is used in classi�cation tasks. For

an example of the architecture of a Convolutional Neural Network, see Figure (2.14).
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Figure 2.13: An example of the Pooling operation.

Figure 2.14: Simple Convolutional Neural Network architecture [6].

2.9.4 De�nition of some descriptors

– Local Binary Patterns (LBP): The LBP is a form of visual feature used in computer vision

for classi�cation. LBP is a subset of the texture spectrum approach introduced in 1990. It
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has been discovered to be an e�ective feature for categorising textures. The purpose of

LBP is to �nd corners, edges, �at areas, and hard shapes in an image so that we can create

a feature vector that represents the image or a collection of images. It also classi�es the

pixels in an image by thresholding the neighbourhood of each pixel and treating the output

as binary. The extracted LBP feature is used in various applications due to its accuracy and

computational e�ciency, enabling image analysis in di�cult real-time scenarios. For an

example showing how the LBP value of a particular pixel is calculated, see Figure 2.15.

Figure 2.15: An example of the Local binary patterns feature computation [7].

– Scale-invariant feature transform (SIFT): This is an approach to feature extraction that

transforms image information into local feature values that appear to be invariant to scaling,

rotation, translation, and other image changes.

– Histogram of Oriented Gradients (HOG): HOG is a technique for extracting features from

an image data set. It is commonly used for object recognition problems in computer vision.

The HOG descriptor deals with the shape or form of an image. This extracted feature di�ers

from edge features extracted from photographs in that the latter only determine whether a

pixel appears to be an edge or not. However, the HOG feature is also able to determine the

gradient and the direction of the edge. This direction is also determined in the "localized"

parts of the image. This means that the overall image is divided into smaller sections, with

the gradient and direction determined for each part. Then, the HOG function would create
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Figure 2.16: An example of the HOG feature extraction [8].

a separate histogram for those parts. The "Histogram of Oriented Gradients" is named since

the histograms are created using the gradients and directions of the pixel values. For an

example of the HOG feature extracted from an image of DOG, see Figure 2.16.

– Gist features: These features are named in accordance with the global image features that

help characterize various signi�cant statistics of a scene. By convolving the �lter with an

image at di�erent scales and directions, these features can be obtained.

– Residual Neural Networks (ResNet50 and ResNet101): ResNets are deep descriptors used

to describe each image and are based on residual connections in the network. These

connections are used to solve the vanishing gradient problem of Deep Convolutional Neural

Networks (DCNN), i.e., with ResNet, the error rate decreases as the number of layers

increases. The concept of the ResNet descriptor is illustrated in Figure 2.17. According to

this �gure, element-wise addition is used. This network can be viewed as a method with a

state that passes from one ResNet module to another. The output of each layer is given by:

xt = Ht (xt−1) + xt−1, (2.31)

where Ht is a composition of operations such as convolutional operations or pooling layers,

a batch normalization, and an activation function. The activation function allows us to

obtain a nonlinear boundary in the network by checking whether the neuron should be
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Figure 2.17: Visualization of the concept of the ResNet descriptor [9].

activated or not if the input satis�es a certain condition. If the neuron is activated, the

information is transferred to the next layer. There are many activation functions that can

be used for a neural network, such as Recti�ed Linear Unit (ReLU) and sigmoid activation

functions, etc.

ResNet sums the transformed output feature and the input feature of the previous layer to

get the value of the input of the next layer.

– Dense convolutional Network (DenseNet): In DenseNet, each layer is connected to all

forward layers. A main advantage of this network is that it reduces the number of parameters

by adding only a small set of feature maps to the other layers of the network. Based on

the architecture of DenseNet, it is clear from Figure 2.18 that in DenseNet each layer is

connected to all other layers. Unlike ResNets, DenseNets concatenate features and do not

sum them. The output of each layer is given by:

xt = Ht ( [x0, x1, ...., xt−1] ). (2.32)

– Visual Geometry Group from Oxford (VGG16): VGG-16 is a deep convolutional neural

network with 16 layers. The "16" in VGG-16 means that it includes 16 layers with di�erent

weights. It is considered one of the best architectures for image processing models developed

so far. One of the most striking features of VGG-16 is that instead of using a large number

of hyperparameters, they focused on the assumption of a (3 × 3) �lter convolution layer

with a stride 1, and also used the same padding and max pool layer of (2 × 2) �lter with

stride 2. Throughout the scheme, the convolution layer and the max pool layer are arranged

in the same way. The architecture has two fully connected layers at the end, preceded by a

softmax function for output.
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Figure 2.18: Visualization of the concept of the DenseNet descriptor [9].
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Chapter 3

Related work

Developing unique unsupervised multi-view learning approaches for clustering applications is the

focus of our thesis. Several multi-view clustering methods have been developed to improve dataset

processing. The obtained results show that our proposed methods outperform the state-of-the-art

methods. In this chapter, the related works to our methods are described in detail.

3.1 Related Work

Recently, several multi-view clustering approaches have been proposed. The current approaches

can be classi�ed into several groups: Spectral clustering algorithms [12], Graph-based clus-

tering algorithms [15], Weighted multi-view clustering approaches [16, 17, 18, 19, 20,

21, 22], Automatically weighted multi-view clustering algorithms [23, 24, 25, 26, 13],

Multi-view subspace based clustering approaches [27, 28], Kernel based Approaches

[24, 29, 10], Matrix factorization approaches [30, 31, 11], Nonnegative matrix factoriza-

tion methods [32, 11], etc. In this section, we present several methods belonging to these

categories.

Recently, the spectral clustering approach (e.g., [33, 34, 35, 20, 36, 37]) has attracted much attention

in the �eld of multi-view clustering due to its simple implementation. The principle of spectral

clustering is based on using the top eigenvectors of the normalized Laplacian matrix, derived from

the similarity matrix between data samples. The eigenvectors of the graph Laplacian are used as a

nonlinear projection of the raw data. Second, each row of the matrix formed from the eigenvectors

of the Laplacian matrix is treated as a data point. Then an arbitrary clustering algorithm is used

to cluster the instances in the obtained nonlinear space. This algorithm can be a post-processing

step such as k-means clustering. Several works are based on the principle of spectral clustering.
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An example of a spectral clustering algorithm is the co-training approach in [34], which is based

on the assumption that the data point should be assigned to the same cluster in di�erent views. To

do this, spectral clustering is solved for each view to obtain the corresponding eigenvectors. Then,

the eigenvectors of the �rst view are used to cluster the points in that view, and this clustering

result is used to modify the graph of the other view. In addition, this method preserves Laplacian

matrices with low rank, which is especially advantageous in clustering with multiple views at

large scale, since large matrices can increase the complexity of the clustering process and take

a lot of computation time. Moreover, this method does not need to specify hyperparameters,

which is very encouraging in unsupervised learning. However, in most cases, the underlying

clustering result is assumed to be the same for all views, which reinforces the idea of compatibility

between di�erent views. Another popular approach for spectral clustering is the co-regularized

spectral clustering approach presented in [38], which adaptively combines multiple graphs from

di�erent views to improve clustering performance. For simplicity, the authors use a common

regularization parameter for all pairwise co-regulators in their objective function. However, it

would be better if di�erent values of the parameter are used for di�erent pairs of views to account

for the best contribution of each view. Moreover, a k-means step is used to obtain the clustering

result, which strongly depends on the initialization. Furthermore, numerous spectral clustering

algorithms have been used for multi-view clustering [39, 40, 41]. These methods construct a graph

for each view that represents the similarity between data points. The nodes of the graph represent

the samples, and the edges represent the similarity between these samples. Then, the spectral

projection matrix of each similarity matrix is constructed and a post-processing step is applied to

obtain the clustering assignment.

Weighted multi-view clustering approaches, such as the methods proposed in [16, 18], are another

multi-view clustering approach in which the authors add a weight for each view such that the

best view has the highest weight and thus contributes the most to the clustering task. However,

these methods require additional parameters to assign a weight to each view.

To overcome these drawbacks, auto-weighted multi-view clustering algorithms were proposed

in [23, 42, 43]. These algorithms eliminate the complexity of using additional parameters by

automatically updating the weights of each view. Moreover, a Multi-view Learning with Adap-

tive Neighbors algorithm (MLAN) is proposed in [44] to jointly estimate the graph matrix and

the clustering task. The main advantage of this method is that there is no explicit weighting

parameter for each view in its objective function. It has the ability to learn the weighting param-

eters automatically. It is almost parameter free, which makes it easier to deal with real world
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situations. Moreover, the proposed method allows clustering multiple views and learning local

structures simultaneously. The approach imposes a constraint on the similarity matrix to contain

c connected components to increase accuracy. However, this method consists of matrix inversion

and eigenvalue decomposition steps, which are time-consuming. In addition, feature selection

methods have attracted much attention to selecting the best and most informative features that

can reduce the e�ects of noise. For example, in [16], the authors developed a new method that

uses two weighting schemes. The �rst is to model the importance of each view, and the second is

to select the best features of each view. These two steps are computed simultaneously with the

k-means post step to obtain clustering results that lead to better performance.

Another approach related to the above categories is presented, which extends the spectral cluster-

ing algorithm with the idea of weighted views. This method is called [20]. This method is called

"Adaptively Weighted Procrustes" (AWP) and is a version of spectral-based clustering that uses

spectral rotation to learn the cluster indicator matrix. This approach features low computational

cost and high precision compared to other graph-based methods.

Another famous category called Multi-view Subspace based Clustering approach (MVSC) was

introduced in [45, 46, 47, 48, 49, 50]. These algorithms project the data into di�erent subspaces

to learn the most consistent representation of the data so that it can be clustered correctly. In

other words, these methods learn a uni�ed representation from multiple subspaces of all views

of the data or learn a latent space and then return the uni�ed representation. In addition, a new

method called Smoothed Multi-View Subspace Clustering (SMVSC) is proposed in [51]. This

approach uses a new technique called graph �ltering to create a smoothed representation for

each view with similar feature values of similar samples. This is done using low-pass �ltering

to preserve the geometric features of the graph. In this way, a "cluster-friendly" structure is

created that greatly simpli�es the subsequent clustering process. In [52], the authors use the

latent representation of the datasets to group them into di�erent clusters and jointly analyze the

underlying complementary information from di�erent views. Unlike other previous approaches

for single view subspace clustering, where the di�erent samples are grouped based on original

features, this method learns the consistent similarity matrix in the latent space, which leads to

better results than using the raw data to build the graph. The work of [27] introduced a subspace

clustering algorithm that constructs the most consistent graph similarity matrix with a large

spectral gap based on the joint shadow p-norm and spectral clustering. Another example of

multi-view subspace clustering methods is the method presented in [53]. In this method, the

a�nity matrices of the di�erent views are merged at the partition level rather than directly,
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reducing the e�ects of noise and outliers in the original data. In addition, this method jointly

estimates the a�nity matrix of each view, the consensus representation, and the �nal cluster

assignment. Performing these three steps jointly can improve the performance compared to other

methods.

The kernel-based approaches (e.g., [24, 54]) are used to overcome the problem of nonlinearity

of the data by mapping them to a space in which they are linearly separable, and then they

solve the problem caused by the multiple shapes of the datasets. In [24], the authors present two

auto-weighted multi-view clustering approaches that exploit kernelized graph learning. The �rst

approach uses a single kernel to map the data into a space where they are linearly separable. The

second approach is characterised by its ability to use a combination of multiple kernel matrices,

where the performance of the method often depends on the input kernel matrix. Using these

two methods, it is possible to simultaneously estimate a consistent similarity graph, a consistent

spectral projection matrix, and the weights of each view without additional parameters. In [55],

the authors propose a method that learns a uni�ed graph by simultaneously estimating the self-

expressing coe�cients and the a�nity matrix from multiple kernels. They perform the �nal

clustering on the obtained graph. The work of [56] is an automatically weighted multi-kernel

approach, which can solve the problem caused by non-linear data and noise by using the mixture

correntropy to measure the similarity between each kernel and the common kernel matrix.

Moreover, matrix factorization approaches (e.g., [30, 31, 11]) are used due to their low compu-

tational cost, which makes them e�cient for dimensionality reduction. They can provide high

clustering performance compared to other methods. For example, the method in [30] called

Integration by Matrix Factorization (IMF) generates di�erent representative clustering matrices

computed independently for each view, in addition to an intermediate matrix for all views, and

then performs a factorization process on this matrix to reconcile the di�erent clustering matrices

generated from the di�erent views. Matrix factorization methods have a low computational cost

compared to other methods. This is because the factorization of a given matrix decomposes it

into its constituent parts, which can also simplify the matrix operations since they are applied to

the obtained matrices and not to the original complex matrix. However, these methods cannot

handle the nonlinearity of the data.

Furthermore, a Nonnegative Embedding and Spectral Embedding (NESE) method is proposed

in [11]. The main idea behind [11] is to directly estimate the nonnegative embedding matrix H

(cluster label matrix) from the individual graph matrices Sv and the individual spectral repre-

sentations Sv using Sv ≈ HPTv , v = 1, ...., V . It provides the clustering result directly without
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any additional parameters or post-processing steps. In addition, this method simultaneously

provides the consensus nonnegative embedding matrix and the spectral representation matrices.

In [32], the authors propose a Nonnegative Matrix Factorization (NMF) approach that uses dual

constraints. This approach exploits the labeling of some images and the sparsity of the repre-

sentations. Nonnegative Rank-Reduced regression (NRRR) is presented in [57]. In this work,

the authors exploit distance metric learning and clustering by introducing a uni�ed framework

for rank-reduced regression. The approach provided some new insights for learning a cluster

partition that takes advantage of distance metric learning. In [58], a multi-view nonnegative

matrix factorization is proposed. The model, which estimates the view-based two nonnegative

matrices, integrates manifold regularization in the low-dimensional subspace and the pairwise

consistencies of interview similarity in these low-dimensional subspaces.

In addition, many graph-based multi-view clustering methods have been developed. The �rst

approach in [59] can jointly learn the similarity graph matrix, the uni�ed graph matrix, and

the �nal clustering assignment by using a novel multi-view fusion technique that automatically

assigns a weight to each graph matrix to obtain the uni�ed graph matrix. This approach imposes

a rank constraint on the Laplacian matrix to obtain exactly K clusters.

Moreover, in [60], the authors propose an Ensemble Clustering by Propagating Cluster-wise

Similarities with Hierarchical Consensus approach (ECPCS-HC) and an Ensemble Clustering by

Propagating Cluster-wise Similarities with Meta-cluster-based Consensus method (ECPCS-MC).

These two methods use random walks based on e�ective propagation of cluster-wise similarities

via random walks. Moreover, these two methods propose two new consensus functions to obtain

the �nal clustering result. The work of [61] proposed a Locality Adaptive Latent MultiView

Clustering (LALMVC) method. It simultaneously learns the latent consensus representation via

linear transformations, the joint spectral representation and the consensus graph. The learned

consensus graph matrix is then used in spectral clustering to obtain a cluster index matrix. In [62],

the authors propose a model where the individual graphs, a fused graph, and a spectral projection

are estimated simultaneously. The self-representativeness of the data was used in estimating the

individual graphs. In [63], the authors propose a framework for graph learning. Their method

learns initial graphs from data instances in di�erent views. These are then optimized using a

low-rank constraint Laplacian matrix. Therefore, these estimated graphs are incorporated into a

global and uni�ed graph estimation. This uni�ed graph integrates the same rank constraints over

its Laplacian matrix. Thus, the clustering result is obtained directly from this graph without any

post-processing step.
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Many existing methods use two separate steps to obtain the clustering result. The �rst step is based

on learning the joint a�nity matrix, and the second step is used to obtain the clustering result

by applying a hard clustering method such as k-means clustering. To eliminate the problem of

inconsistency caused by the fact that the goal of the �rst step is not to obtain an optimal clustering

performance, a new method is presented in [64]. This method, called One-step Multi-view Spectral

Clustering (OMSC), integrates the steps of learning the a�nity matrix of each view and the joint

a�nity matrix learned from the low-dimensional space of the data, as well as the step of k-means

clustering into one framework. The joint a�nity matrix is considered as the �nal clustering

assignment. Moreover, the weight of each view is learned automatically to reduce the impact of

noisy views. In [65], the authors jointly estimate an optimal graph and an adequate consensus

kernel for clustering by forcing the global kernel matrix to be a convex combination of a set of

basis kernels. Their proposed model enforces a regularization of the uni�ed graph and the �nal

kernel matrix.

In [66], the authors propose a new method that solves the inconsistency problem using a one-step

scheme: one-step multi-view spectral clustering by learning Common and Speci�c Nonnega-

tive Embedding (CSNE). This work is an improved version of the NESE method. It divides the

nonnegative embedding matrix used in NESE into two matrices. The �rst matrix denotes the

joint nonnegative embedding matrix H∗, which represents the joint cluster structure, and the

speci�c nonnegative embedding matrix Hv , which represents the speci�c cluster structure for

each view. This method is better at reducing the e�ects of noise and outliers than the method

NESE. In [67], the authors describe a new method called Multi-View Clustering in Latent Em-

bedding Space (MCLES). This method can learn both the latent embedding space of the data

and the cluster indicator matrix simultaneously. Using the latent embedding space, it can learn

the global structure of the data and the complementary information between all views. A main

advantage of this method is that it can limit the e�ects of noise that may be present in the raw

dataset. In [68], the authors use the correntropy-induced metric (CIM) to deal with the noise in

each view. They use a view-speci�c embedding from an information theoretic perspective. In

[69], the authors propose the algorithm Cross-view Matching Clustering (COMIC), which can

cluster data with multiple views. The algorithm can also estimate the number of clusters. COMIC

provides cross-view consensus on view-speci�c similarity graphs instead of view-speci�c data

representations.

Another recent work in [70] addresses clustering of multi-view data, where some data instances

are missing in some views, using spectral perturbation theory. First, the similarity matrix of each
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view is constructed. The average similarity values of the other views containing these missing

samples �ll in the missing values in the similarity matrix. The second step of this method is

learning the consensus matrix. First, the Laplacian matrix of each similarity matrix is calculated.

Then, using perturbation theory, a weight is assigned to each Laplacian matrix to obtain the �nal

consensus Laplacian matrix, which is used for the �nal clustering result.

In [71], the authors present a method called Multi-view Cluster Analysis with incomplete data to

understand treatment e�ects. Indeed, data entries are sometimes missing in several of the views.

Current multi-view co-clustering approaches are not able to successfully deal with incomplete data,

especially when there are many patterns of incomplete data. By using an indicator matrix whose

entries indicate which data items are present and measuring clustering performance based solely

on observed values, this method provides an improved approach for multi-view co-clustering

algorithms to deal with the missing data problem. In addition, this method is less susceptible to

imputation uncertainty than standard methods that substitute missing data to perform regular

clustering of multi-view data. To alleviate the problem of missing data when analyzing data from

multiple sources, a completion scheme for missing data in multiple views based on regularized

nonnegative matrix factorization in multiple manifolds was presented in [72]. This approach was

based on the assumption of consistency of multi-view data, and a multi-manifold regularized

nonnegative matrix factorization algorithm was employed to obtain a homogeneous manifold

and global clustering.

Many other multi-view clustering methods are presented below.

In [73, 74], the authors present a Density-Based clustering technique, namely DBSCAN. This

approach assumes that clusters are dense regions in space separated by less dense regions. It

creates di�erent clusters based on the local density of each data point. The robustness of the

DBSCAN clustering algorithm to outliers is its main feature. Also, unlike the famous k-Means

clustering algorithm, which requires the number of clusters to be �xed, it does not require the

number of clusters to be known in advance. However, a major drawback of the DBSCAN algorithm

is that it cannot cluster data points with large density di�erences.

Furthermore, in [75], the Density Peak Clustering (DPC) technique is presented. This method

assumes that cluster centers are located in the local high-density region and groups other data

points by assuming that they are in the same cluster as their nearest higher density neighbors.

However, this method does not take into account the representation and structure of the data and

therefore cannot accurately identify the noise nodes.
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In [76], the authors present an approach called the Dual Shared-Speci�c Multi-view Subspace

Clustering method (DSS-MSC). This method simultaneously explores the features of each view

in the low-dimensional space to exploit the relevant and speci�c information of each view in

addition to the correlations between the shared information across di�erent views, using a dual

learning framework.

Also, in [77], the authors propose a new method known as Multi-View Spectral Clustering via

Sparse Graph Learning (S-MVSC). This method learns a sparse and common a�nity matrix for

all views to reduce the e�ects of noise and outliers in all views. This technique has the same

computational cost as the popular single-view spectral clustering method, which means that this

method is faster than some multi-view methods.

In [78], the authors presented a Consistency and Inconsistency-aware Graph-based Multi-View

Clustering (CI-GMVC) method that integrates the consistent and inconsistent parts across di�erent

views. This method examines the consistency and inconsistency in the individual similarity

matrices and splits them into two corresponding graphs (consistent and inconsistent graphs) by

using the orthogonality constraints. Therefore, a uni�ed similarity matrix is created from the

consistent parts of the similarity matrices. This matrix is used to directly give the �nal clustering

result.

The canonical correlation analysis (CCA) [79] extracts some of the features from di�erent views

by projecting the dataset into a low-dimensional space and then exploring the correlation between

di�erent views. Thus, it applies any clustering algorithm like k-Means algorithm to learn the

partition.

In [80], the authors propose a method called Fine-grained sImilariTy fuSion for Multi-view Spectral

Clustering (FITS-MSC). This method can overcome the problem of assigning the same weight to

all samples in a view; in incomplete views, some elements may be distorted or absent, while others

remain intact in all views. Moreover, sparse subspace clustering is used to construct the initial

similarity matrices, which yields encouraging results. They also propose a �ne-grained similarity

fusion technique to obtain the �nal consensus a�nity matrix to address the shortcomings of

coarse-grained information fusion. During the procedure, the local inter-view and the global

intra-view weight relationships are explored. FITS-MSC is particularly convenient because it has

only one hyperparameter.

Another method was developed in [81]. This method is called Multi-View clustering based on

Orthonormality-Constrained Nonnegative Matrix Factorization (MVOCNMF). Based on the label
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information, the proposed method �rst learns the low-dimensional space of the dataset using

the constrained NMF method and then clusters the instances with the same label into clustering

prototypes for each view. Then, the authors propose a new orthogonal constraint term to achieve

the desired representations for each view and apply the co-regularisation method to combine the

complementary information from di�erent views.

In [82], the authors propose Robust Self-Tuning Multi-View Clustering (RST-MVC). In this work,

the authors present a method that uses a sum-of-norm loss function to reduce the initialization

sensitivity problem, a sum-of-norms regularization to automatically estimate the number of

clusters, and integrates a strong statistical method to reduce the e�ects of outliers.

Two surveys of multi-view clustering can be found in [83, 84]. These papers summarize a large

number of multi-view clustering algorithms, including generative and discriminative methods. In

addition, the authors classify these algorithms into di�erent categories and give many examples

of how these algorithms are used for multi-view clustering.

Table 3.1 summarizes and presents part of the literature review with year and authors, objective,

variables, and types of datasets.

Table 3.1: Some related multi-view clustering methods.

Author and

year

Method Objective Variables Type of

datasets

[34] A. Kumar

and H. Daumé

(2011)

Co-training The spectral embedding

from one view is used to

constrain the similarity

graph used for the other

view

Input: Similarity matri-

ces of all views

Output: Spectral projec-

tion of each view

Synthetic and

real datasets

(documents and

handwritten

digits)

[38] A. Kumar,

P. Rai, and H.

Daumé (2011)

Co-Regularized Enforces the view pair’s

eigenvectors to have a

strong pairwise similar-

ity by forcing them to

share a common centroid

matrix

Input: Kernel matrices of

all views

Output: Eigenvectors

matrices of view pair

and the common cen-

troid matrix

Synthetic and

real datasets

(documents,

handwritten

digits and

images)
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[44] F. Nie, G.

Cai, J. Li, and X.

Li (2017)

MLAN Performs clustering and

local structure learning

simultaneously

Input: Raw data matrices

of all views

Output: Spectral projec-

tion matrix, and Consis-

tent similarity matrix

Real datasets

(Images and

handwritten

digits)

[20] F. Nie, L.

Tian, and X. Li

(2018)

AWP Weights the views ac-

cording to their cluster-

ing capacities, resulting

in a weighted Procrustes

average problem

Input: Spectral embed-

ding matrices for all

views

Output: Rotation matri-

ces of all views and clus-

ter index matrix

Real datasets

(Images and

handwritten

digits)

[64] X. Zhu, S.

Zhang, W. He, R.

Hu, C. Lei, and P.

Zhu (2018)

OMSC Learns the common a�n-

ity matrix from low-

dimensional data and the

clustering result in one

step

Input: Raw data matrices

of all views

Output: Individual

a�nity matrices of

all views, common

a�nity matrix, common

representation of data

with multiple views and

low-dimensional space

Synthetic and

real datasets

(documents,

handwritten

digits and

images)

[24] S. Huang,

Z. Kang, I. W.

Tsang, and Z. Xu

(2019)

MVCSK Simultaneously per-

forms multi-view

clustering and �nds

the similarity matrix in

kernel spaces

Input: Kernel matrices of

all views

Output: Spectral projec-

tion matrix and consis-

tent similarity matrix

Real and syn-

thetic datasets

(documents,

web pages and

images)

[11] Z. Hu, F.

Nie, R. Wang,

and X. Li (2020)

NESE Estimates the nonnega-

tive embedding matrix to

give the �nal clustering

result

Input: Similarity matri-

ces of all views

Output: Nonnegative

embedding matrix, and

spectral projection matri-

ces of all views

Real datasets

(images)
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[67] M.-S. Chen,

L. Huang, C.-D.

Wang, and D.

Huang (2020)

MCLES Simultaneously es-

timates the global

structure and cluster

membership matrix

in a learned latent

embedding space

Input: Raw data matrices

of all views

Output: Latent embed-

ding space, spectral pro-

jection matrix, mapping

models and consistent

similarity matrix

Real datasets

(documents and

images).

[81] H. Cai, B.

Liu, Y. Xiao, and

L. Lin (2020)

MVOCNMF Learns the low-

dimensional space

of the dataset using

the constrained NMF

method, clusters the

samples into the clus-

tering prototypes,

and applies the co-

regularization approach

to combine all views

Input: Raw data matrices

of all views

Output: Label constraint

matrices of all views,

low-dimensional repre-

sentations of all views,

average value of all low-

dimensional representa-

tions

Real datasets

(documents and

images)

[77] Z. Hua,

F. Niea, W.

Changa, S.

Haoa, R. Wang,

X. Li (2020)

S-MVSC Learns a consensus sim-

ilarity matrix W∗ from

multiple views, and per-

forms Ncut to W∗ to ob-

tain the clustering result

Input: Raw data matri-

ces of all views, Similar-

ity matrices of all views

Output: Consensus simi-

larity matrix W∗

Real datasets

(documents and

images)

[66] H. Yin, W.

Hu, F. Li, and J.

Lou (2021)

CSNE Estimates the common

nonnegative embedding

matrix and the speci�c

nonnegative embedding

matrix to give the �nal

clustering result

Input: Individual similar-

ity matrices of all views

Output: Common non-

negative embedding,

spectral embedding

matrices of all views,

and speci�c nonnegative

embeddings of all views

Real datasets

(documents and

images)
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[78] M. Horie

and H. Kasai

(2021)

CI-GMVC Learns the consistent

and inconsistent parts

of the similarity matrix

across multiple views,

and create a consensus

similarity matrix U from

the consistent parts of

the similarity matrices

Input: Individual similar-

ity matrices Sv

Output: Uni�ed similar-

ity matrix U

Real datasets

(documents and

images)

[80] X. Yu, H.

Liu, Y. Wu, and

C. Zhang (2021)

FITS-MSC Generates the consensus

similarity matrix using

a �ne-grained similarity

fusion strategy, handles

the problem of missing

data, and explores the lo-

cal and global relation-

ships between views

Input: Raw data matrices

of all views

Output: Similarity ma-

trices of all views, aux-

iliary variables of all

views to substitute the

corresponding similarity

matrices, and consensus

similarity matrix

Real datasets

(documents,

handwritten

digits and

images)

3.2 Typical approaches

Multi-graph fusion for multi-view spectral clustering [62]:

This method jointly estimates view-speci�c graphs, a uni�ed graph, and a consistent spectral

embedding. The learning model is based on the use of self-representativeness of the data and is

given by:

min
Sv
, S, P

V∑
v=1

{
‖X(v) − X(v) Sv‖2F + α ‖Sv‖2F + β ‖Sv − S‖F

}
+ γ Tr(PTLP), (3.1)

where Sv is the v-th view’s graph, S is the uni�ed graph, and P ∈ Rn×C is the consistent spectral

embedding. α, β, and γ are three balance parameters.

Graph learning for multi-view clustering (MVGL)[63]:

Using V distinct view graphs Sv (v ∈ {1, ..., V }), the authors estimate a uni�ed consistent graph,
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A ∈ Rn×n, by minimizing the following criterion:

min
A, P, w(v)

j

n∑
i,j=1

(
Aij −

V∑
v=1

w
(v)
j Sv(i,j)

)2

+ γ Tr(PTLa P)

s.t. AT 1 = 1, A ≥ 0, PTP = I,
V∑
v=1

w
(v)
j = 1, ∀j, (3.2)

where La is the Laplacian matrix of the similarity matrix A+AT

2 , P ∈ Rn×C is the uni�ed spectral

projection, and w(v)
j is the weight of column j in view v. There are nV unknown weights. γ is a

regularization parameter.

Multi-view spectral clustering via integrating nonnegative embedding and spectral em-

bedding (NESE)[11]:

The authors in [11] developed a method called ”Multi-view spectral clustering via integrating

Nonnegative Embedding and Spectral Embedding” (NESE) [11]. Inspired by the factorization of

nonnegative matrices, the authors propose in [11] a new approach that can get the clustering result

directly and avoid the need for post-process clustering and using additional parameters by �nding

the nonnegative embedding and the spectral embedding matrix simultaneously. Inspired by the

symmetric nonnegative matrix factorization and the relaxed continuous Ncut (i.e., the spectral

embedding), the authors developed a new objective function in [11] to estimate a consistent

nonnegative embedding matrix H. The objective function of NESE is:

min
H, Pv

V∑
v=1

‖Sv −HPvT ‖2s.t. H ≥ 0, PvT Pv = I. (3.3)

where Sv is the graph matrix associated with view v, Pv is the corresponding spectral projection

matrix, and H is the consistent nonnegative embedding used to obtain the cluster results directly

without additional parameters or a post-processing method such as k-means or spectral rotation,

where the results may depend heavily on the initialization. The input of this approach is the

similarity matrix of each view. Both the spectral projection matrix and the uni�ed nonnegative

embedding matrix are unknown and are estimated by an iterative optimization algorithm.

Auto-weighted multi-view clustering via kernelized graph learning (MVCSK)[24]:

The MVCSK method constructs a uni�ed graph from the kernel matrices using the concept of self-

representation of data in high-dimensional spaces. Therefore, this method can handle nonlinear

data. It estimates the graph matrix and spectral embedding matrix by minimizing the following
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objective function:

min
S,P

V∑
v=1

√
Tr (Kv − 2Kv S + ST Kv S ) + µ ||S|22 + λ1 Tr (PT LP) s.t. S ≥ 0, PT P = I,

(3.4)

where µ and λ1 are two positive regularization parameters. The �rst term is a sum over the views

of the self-reconstruction error of the data in a high-dimensional space. This space is de�ned by

the corresponding kernel matrix. The second term is a simple regularization that promotes graph

matrices with a small `2 norm. This is often used to overcome over�tting problems. The third

term speci�es that the graph should be as close as possible to a graph with exactly C connected

components (clusters). It is worth noting that this term is exactly what is minimized to estimate a

spectral embedding once the graph is known.

Using the square root of the reconstruction error in (3.4) allows the use of automatic weighting

for each view. This means that a view that has a small reconstruction error will receive a large

weight. Unlike other approaches, the above formulation is able to update the weight automatically,

eliminating the complexity of using additional parameters. The weight, wv , of each view is given

by:

wv =
1

2
√
Tr (Kv − 2Kv S + ST KvS )

. (3.5)

Using the above weight, it can be shown that problem (3.4) is equivalent to the following problem:

min
S,P

V∑
v=1

wv Tr (Kv − 2Kv S + ST KvS ) + µ ||S||22 + λ1 Tr (PT LP) s.t. S ≥ 0, PT P = I.

(3.6)
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Chapter 4

Experimental setup and Datasets

4.1 Motivation

Considering multi-view clustering algorithms, six di�erent methods are provided in this thesis.

All of these methods have the same goal: clustering di�erent multi-view data into distinct groups.

We also provide a comprehensive analysis of all the methods discussed.

Numerous experiments with the same experimental setup (type of kernel, initialization of matrices,

etc.) have been performed to demonstrate the superiority of the proposed methods compared to

other state-of-the-art methods.

4.2 Datasets

In this study, we used a variety of real and synthetic datasets. The datasets tested by our methods

include image datasets, documents, UCI Digits datasets, and scene datasets. Although most of our

methods are based on clustering real images, we also used some synthetic datasets.

4.2.1 Description of the datasets used in our methods

– COIL20 [85]: The database is called the Columbia Object Image Library and consists of

1440 grayscale images. These images are grouped into 20 groups, each consisting of 72

data points. We used three feature vectors for each image. The �rst one consists of 1024

features and corresponds to the intensity feature, the second contains 3304 features called

"LBP features", and the last one, called "Gabor features", consists of 6750 features.

– ORL [86]: The ORL database of facial images consists of 400 images. There are 40 people

with 10 di�erent images for each person. Four di�erent feature vectors are used to create
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this dataset. The �rst feature vector corresponds to the GIST feature, which consists of 512

features; the second one contains 59 features called "LBP features", the third one consists

of 864 features called "HOG features", and the last one called "Centrist features" consists

of 254 features. These images were taken at di�erent times, varying the lighting, facial

expression (open/closed eyes, smiling/not smiling), and facial details (glasses/no glasses).

The background used for all images is dark.

– Outdoor Scene [87]: The Outdoor Scene databases consist of 2688 images. These images

are divided into 8 groups. We used four feature vectors for each image. The �rst one consists

of 512 features and corresponds to the feature GIST, the second one contains 432 features

called "color moment features", the third one consists of 256 features called "HOG features",

and the last one called "LBP features" consists of 48 features.

– MSRCv1 [88]: The MSRCv1 dataset consists of 210 instances from Microsoft Research

in Cambridge. It has �ve views with seven groups. We used �ve feature vectors for each

image. The �rst consists of 24 features and corresponds to the color moment feature, the

second consists of 512 features called "GIST features", the third consists of 254 features

called "CENTRIST features", the fourth consists of 256 features called "local binary pattern",

and the last consists of 512 features called "SIFT".

– NUS [89]: The NUS dataset is an image dataset consisting of 12 groups of 2400 images

extracted from NUS-WIDE. Six feature vectors are used for each image. The �rst one

consists of 64 features and corresponds to the color histogram; the second one contains 144

features called "color moment features", the third one consists of 73 features called "direction

histogram features", the fourth one consists of 128 features called "wavelet texture features",

the �fth one consists of 255 features called "block-wise color moments features", and the

last one called "SIFT" consists of 500 features.

– BBCSport [90]: The BBCSport dataset consists of 544 news documents from the BBC

Sports website. It contains 2 views with 5 groups. Each document has two feature vectors.

The �rst view consists of 3183 features, and the second view consists of 3203 features.

– Caltech101 1: Caltech101 is a large image dataset that contains 6 views and 101 di�erent

categories. The �rst view is composed of 48 feature vectors and corresponds to the Gabor

feature. The second contains 40 features called "Wavelet moments features", the third
1http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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consists of 254 features called "CENTRIST features", the fourth consists of 1984 features

called "Histogram of oriented gradients (HOG) features", the �fth consists of 512 features

called "GIST features", and the last one called "LBP features" consists of 928 features.

– Caltech101-72: Caltech101-7 contains 6 views and 7 classes extracted from the Caltech101

dataset, which consists of 101 categories. The feature vectors are the same as those used in

the large Caltech101 dataset.

– UCI Digits3: UCI Digits are datasets with 2000 instances containing 6 views and 9 classes

extracted from a collection of Dutch utility maps. The �rst consists of 240 features and

corresponds to Pixel averages in (2 × 3) windows (Pix), the second contains 76 features

called "Fourier coe�cients of the character shapes (FOU) features", the third consists of 216

features, called "Pro�le correlations (FAC) features", the fourth consists of 47 features called

"Zernike moment (ZER) features", the �fth consists of 64 features called "KAR features", and

the last one, called "MOR features", consists of 6 features.

– Extended Yale B Face Dataset4: Extended Yale B Face [91] are datasets corresponding

to 1774 images of faces for 28 people (groups) with two di�erent views (di�erent poses

and lighting conditions). The �rst view consists of 900 features and corresponds to "LBP

features". The second one contains 45 features called "Covariance ch9 gray features".

– MNIST [92]: MNIST is an abbreviation for the Modi�ed National Institute of Standards

and Technology database, and is a large data set corresponding to handwritten digits. This

large dataset contains 60000 images with 10 classes. In our experiments, we extracted 10000

images with 10 classes. We used two feature vectors for each image. The �rst one consists

of 2048 features and corresponds to the "MNIST small Resnet50 Pooling feature", and the

second one contains 4096 features called "MNIST small VGG16 FC1".

Besides, two samples of 25000 and 1000 data points is extracted from the MNIST datasets

(MNIST-25000) and (MNIST-1000) respectively, and are tested by our algorithm.

– COVIDx5: This large dataset consists of 13892 samples divided into 5458 instances cor-

responding to the pneumonia class, 468 instances corresponding to the COVID19 class,

and 7966 instances corresponding to the normal class. Three di�erent feature vectors are
2http://www.vision.caltech.edu/ImageDatasets/Caltech101/
3https://archive.ics.uci.edu/ml/datasets/Multiple+Features
4http : //vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html
5https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
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used for each image. The �rst and second features correspond to the deep features of

ResNet50 and ResNet101 and consist of 2048 features generated from imagenet pre-trained

weights. The third feature is the DenseNet169 feature vector, which consists of 1664 features

generated from imagenet’s pre-trained weights.

Tables 4.1 and 4.2 provide the particular descriptions of the datasets used in most chapters. Figure

4.1 also illustrates typical images for these datasets, and Figure 4.2 shows examples of lung X-ray

images used for the COVIDx dataset with the corresponding labels.

Table 4.1: Description of the datasets.

View COIL20 ORL Out-Scene BBCSport MSRCv1 NUS

1 Intensity (1024) GIST (512) GIST (512) Intensity (3183) GIST (512) SIFT (255)

2 LBP (3304) LBP (59) LBP (48) LBP (3203) LBP (256) Edge direction histogram (73)

3 Gabor (6750) HOG (864) HOG (256) - Color moment (24) Wavelet texture (128)

4 - Centrist (254) Color moment (432) - Centrist (254) Color moment (144)

5 - - - - SIFT (512) Color histogram (64)

# Samples 1440 400 2688 544 210 2400

# Classes 20 40 8 5 7 12

Table 4.2: Description of the datasets.

View Caltech101 UCI Digits Extended-Yale MNIST COVIDx

1 GIST (512) FOU (76) Covariance ch9 gray(45) Resnet50 Pooling (2048) Resnet50 Pooling (2048)

2 LBP (928) Pix (240) LBP (900) VGG16 FC1 (4096) Resnet101 Pooling (2048)

3 Gabor (48) FAC(216) - - Densenet169 Pooling (1664)

4 Centrist (254) ZER (47) - - -

5 Wavelet moments (40) KAR (64) - - -

6 HOG (1984) MOR (6) - - -

# Samples 9144 2000 1774 10000 13892

# Classes 101 9 28 10 3

We also used three synthetic datasets: Tetra, Hepta, and Chainlink. They were selected from the

Fundamental Clustering Problem Suite (FCPS). Only one view is considered for these datasets.

Tetra contains 400 3D points divided into four groups. Hepta contains 212 3D points grouped

into seven well-de�ned clusters with di�erent variances. Chainlink is formed by two clusters

that are not linearly separable. It consists of 1000 3D points. These datasets are visualized in

Figure 4.3. All these synthetic datasets use 3D data points pi ∈ R3. The 3-dimensional datasets are

transformed into high-dimensional datasets xi ∈ R100 using the following linear and nonlinear

mappings xi = σ (Uσ (Wpi)) where the sigmoid function σ is used to introduce nonlinearity,

W ∈ R10×3 and U ∈ R100×10 are two matrices whose entries follow the Gaussian distribution

with zero-mean unit variance independent identically distributed (i.i.d.).

62



4.2. Datasets

(a) Typical images of the COIL20 dataset. (b) Typical images of the ORL dataset.

(c) Typical images of the NUS dataset. (d) Typical images of the Out-Scene dataset.

(e) Typical images of the Extended Yale Face database-B. (f) Typical images of the MSRCv1 dataset.

(g) Typical images of the Caltch101-7
dataset.

(h) Typical images of the UCI Digits
dataset. (i) Typical images of the MNIST dataset.

Figure 4.1: Typical images in di�erent datasets.
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(a) (b) (c)

Figure 4.2: Lung X-Rays images for the three mentioned classes: (a): Normal, (b) Pneumonia, and (c) Covid-19.

(a) (b)

(c)

Figure 4.3: Visualization of the original synthetic datasets: (a) Tetra, (b) Hepta, and (c) Chainlink [10].

4.3 Experimental Setup

In our criteria, some methods use the kernel function to map the datasets into a space where

they are linearly separable. For this purpose, the Gaussian kernel function was used to construct
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the kernel matrix of each view. This nonlinear kernel is widely used in machine learning and

has proven to be a good choice for nonlinear data. For a pair of data samples in a given view,

the entry Kij is given by Kij = exp
−‖xi−xj‖2

2T0 σ2
0

. σ2
0 is set to the average distance between pairs

of samples in the considered view and T0 varies in the set of {−4,−2, 0, 2, 4}. Note that while

our proposed approaches can also be used in cases where each view can have multiple kernel

matrices (by changing the type and parameters), our experiments are performed with a single

kernel matrix for each view (descriptor). This is to ensure a fair comparison with many methods

using the benchmark datasets. The parameter T0 is used to control the scaling of the Gaussian

kernel by a factor 2T0 . Empirically, we found that its optimal value is 2 in most cases, so we �xed

it for all datasets.

To initialize the similarity and spectral projection matrices in our methods, we use the same

method as in [11, 93], which constructs the similarity matrix of each view according to a smoothing

constraint, an `2 regularization term, and a non-negativity constraint. In this method, xi and xj

have a higher a�nity value when the `2 distance between two data points is small. Moreover,

the obtained similarity matrix has exactly m nonzero values, which makes it a sparse matrix,

resulting in lower computational cost for graph-based learning. In our experiments, we found

that the optimal value is 10 in most cases, so we �xed it for all datasets.

In our experiments, the range for each parameter is chosen to encompass a wide range. This

ensures that the optimal values for these parameters are within this range. We used a grid search

method to select the values within these ranges. Grid search is a method for exhaustively searching

a manually de�ned subset of the parameter space of a given algorithm. The number of parameters

of the algorithm is the spatial dimension of the grid. So, in our case, the grid is in a 3D space. This

method starts with the creation of the grid and the selection of the prede�ned regions. Then, for

each parameter combination (represented by the nodes of the grid), a model is created to �nd the

best parameter combination that gives the best clustering performance. The best clustering result

is indicated by a cluster performance metric.

For a fair comparison, the best performances for all competing methods are presented by using

the authors’ source codes with the default or proposed parameter settings (SC, MVCSK, NESE,

S-MVSC, CI-GMVC, MCLES), or by directly reproducing the best experimental results from the

corresponding published papers (AWP, MLAN, SwMC, AMGL, AASC, MVGL, CorSC, CotSC).

We perform our experiments using Matlab 2018b on a HP PC computer with 4 Intel i-7 8550U

processors. The installed memory (RAM) is 12.0 GB (11.9 GB usable). It is also a 64-bit operating

system and an x64-based processor.
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Chapter 5

Direct Multi-view Spectral Clustering

with Consistent Kernelized Graph

and Convolved Nonnegative

Representation

Recently, multi-view clustering has received much attention in the �elds of machine learning

and pattern recognition. Spectral clustering for single and multiple views has been the common

solution. Despite its good clustering performance, it has a major limitation: it requires an extra

step of clustering. This extra step, which could be the famous k-means clustering, depends heavily

on initialization, which may a�ect the quality of the clustering result. To address this issue, in

this chapter we present a new method called "Multi-view Clustering via Kernelized Graph and

Nonnegative Embedding" (MKGNE).

This method can solve four subtasks simultaneously. It provides the uni�ed similarity matrix

over all views using kernel tricks; the uni�ed spectral representation matrix, the cluster indicator

matrix; and the weight of each view without any other parameters. Moreover, our approach has

two interesting properties that the recent algorithms do not have. The �rst is independence from

a particular clustering algorithm. The second feature is the direct estimation of a uni�ed cluster

index from the di�erent kernel matrices.

Furthermore, our approach maintains two interesting characteristics that the current methods [11]

and [24] do not have simultaneously. The �rst characteristic is the non-dependence on a speci�c

clustering algorithm. The second characteristic of the proposed method is the joint estimation of
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a coherent uni�ed graph, a uni�ed spectral projection, and a uni�ed cluster index matrix. Thus,

the suggested method preserves the bene�ts of both graph-based and matrix factorization-based

techniques. The following are the main contributions of this work.

1. We introduce a new multi-view spectral clustering approach that jointly gives: the consistent

similarity matrix, the consistent spectral projection matrix, the nonnegative embedding

matrix (i.e., the cluster indices of the data), and the weight of each view automatically.

2. Learning of the consistent graph accounts for the underlying correlations from many views

by using a kernel representation of the views. As a result, the suggested model e�ectively

searches for nonlinear interactions.

3. The suggested learning approach incorporates learning the cluster indices matrix, which is

the result of convolution of the consistent spectral projection matrix across the consistent

graph.

4. The presented method avoids any post-process clustering stage, which eliminates the

requirement for clustering to be performed many times.

5.1 Proposed Approach

In this chapter, we proposed a novel approach which combines the advantages of graph learning

methods and matrix factorization methods. MKGNE achieves the clustering results without any

additional step. Figure 5.1 shows an illustration of our proposed multi-view clustering method. As

mentioned before, the proposed method can simultaneously estimate 1) the consensus similarity

matrix, 2) the consensus data representation matrix, and 3) the nonnegative cluster index matrix.

Moreover, the weight of each view is automatically updated without any additional parameters.

Given n samples and V views (feature vectors), the data matrix of each view can be represented as

Xv = [xv1,xv2, ...,xvn] ∈ Rdv×n, where dv represents the number of features in the corresponding

view, where v = 1, ..., V . The corresponding kernel matrices are denoted by Kv . The dataset is to

be grouped intoC clusters based on the V views. The unknown matrices are S∈ Rn×n, P∈ Rn×C ,

and H ∈ Rn×C . Our proposed method estimates these matrices simultaneously by integrating

several properties such as graph construction using self-representation of data, smoothness of

cluster labels, and spectral data convolution. Thus, our proposed criterion has three main terms.

To obtain the �rst term of our proposed criterion, we used the idea of MVCSK method in [24].

To estimate a consistent graph matrix, this method exploits the property of the data to express
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Figure 5.1: Illustration of the MKGNE method.

itself, where the data is mapped nonlinearly. Therefore, the consistent graph matrix S should

satisfy the condition min
∑V

v=1 ‖Φ(Xv) − Φ(Xv) S‖ =
∑V

v=1

√
Tr (Kv − 2Kv S + ST KvS ),

where Kv = Φ(Xv)TΦ(Xv) and Φ() is a given nonlinear mapping, which should not be explicitly

stated, since only the knowledge of the kernel matrix Kv is needed. Moreover, to avoid the trivial

solution of the consistent graph matrix, a regularization term is used to control the values in this

matrix. The �rst term is as follows:

min
S

V∑
v=1

√
Tr (Kv − 2Kv S + ST Kv S ) + α ||S||22 s.t. S ≥ 0. (5.1)

It is also important to assign a weight parameter to each view to represent the contribution of

each view to the clustering process. The square root in Eq. (5.1) is used to automatically update

the weight of each view [24]. The weight of the view wv is given by:

wv =
1

2
√
Tr (Kv − 2Kv S + ST Kv S )

. (5.2)

By using the weight expression in Eq. (5.2), it can be shown that problem (5.1) is equivalent to the

following problem:

min
S

V∑
v=1

wv Tr (Kv − 2Kv S + ST KvS ) + α ||S||22 s.t. S ≥ 0. (5.3)
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Moreover, inspired by the MVCSK method the �rst three terms of our method are given below:

min
S,P

V∑
v=1

wv Tr (Kv − 2Kv S + ST KvS ) + µ ||S||22 + λ1 Tr (PT LP) s.t. S ≥ 0, PT P = I.

(5.4)

In [24], the authors proposed an optimization algorithm to estimate the two unknown matrices.

However, the resulting graph and spectral embedding need an additional step in order to retrieve

the clusters, meaning that the clustering should be possibly carried out using several trials.

In order to overcome this limitation, we propose a model that integrates a nonnegative matrix that

directly gives the clusters’ membership. This matrix should be learned jointly with the uni�ed

graph and the corresponding spectral projection. To this end, we will assume that this embedding

matrix is the result of blending (convolving) the spectral representation of the instances over the

graph. In detail, let hi denote the cluster indices (a row vector) associated with the i-th instance.

We will assume that the row vector is given by the following approximation:

hi ≈ Si,∗ P s.t. hi ≥ 0, (5.5)

where Si,∗ denotes the i-th row of the graph matrix S. Since the cluster index of the i-th instance

corresponds to the largest element in the row vector hi, we can conclude that the cluster index

corresponds to the maximum similarity (scalar product) between the edges linked to that instance

and each column vector in the spectral projection matrix P. Also, Eq. (5.5) stipulates that the

cluster embedding is nothing but the convolution of the spectral features over the consistent

graph [94].

In a matrix form, Eq. (5.5) can be written as:

min
H
||H− SP||2F s.t. H ≥ 0. (5.6)

Since the matrix P is orthogonal, the above equation can be written as:

min
H
||S−HPT ||2F s.t. H ≥ 0. (5.7)
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Finally, our proposed learning model becomes:

min
S, P,H

V∑
v=1

√
Tr (Kv − 2Kv S + ST KvS ) + µ ||S||22 + λ1 Tr (PT LP) + λ2 ||S −HPT ||22

s.t. S ≥ 0 , PT P = I , H ≥ 0, (5.8)

where µ, λ1, and λ2 are positive regularization parameters. By adopting the weight given by

equation (5.2), problem (5.8) is equivalent to the following problem:

min
S, P,H

V∑
v=1

wv Tr (Kv − 2Kv S + ST KvS ) + µ ||S||22 + λ1 Tr (PT LP) + λ2 ||S −HPT ||22

s.t. S ≥ 0 , PT P = I , H ≥ 0. (5.9)

In the proposed model, the uni�ed graph matrix S, is linked to the view-based kernel matrices

(through the �rst term), and at the same time, is linked to the uni�ed spectral representation P,

and the cluster index matrix H through the third and fourth terms.

Once the matrix H is estimated, we assign the i-th sample to the cluster corresponding to the

index of the highest element in the i-th row of H.

5.1.1 Optimization

In this section, we will detail the procedure used to optimize the objective function of MKGNE

over the three unknown matrices: S, H, and P. This optimization is solved iteratively. We adopt

an alternating optimization scheme. In other words, we �x two matrices and update the remaining

matrix. This process is repeated until convergence.

Update H:

To get the matrix H we �x the variables P, S and wv (v = 1, ..., V ), By removing the irrelevant

terms, the resulting problem becomes:

min
H
∥∥S−HPT

∥∥2

2
s.t. H ≥ 0 (5.10)

Since PT P = I, the above problem will be equivalent to:

min
H
‖SP −H‖22 s.t. H ≥ 0 (5.11)

The optimal solution to (5.11) is given by:

H = max(SP,0). (5.12)
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Thus, the matrix H is the element-wise ReLU (Recti�ed Linear Unit) operator applied on the

elements of the matrix SP.

Update P:

To get the matrix P we �x the variables H, S and wv . Thus, problem (5.8) will be equivalent to:

min
P

Tr(PT LP) +
λ2

λ1

∥∥S−HPT
∥∥2

2
s.t. PT P = I. (5.13)

To solve Equation (5.13), the following equation is used:

‖SP −H ‖22 = Tr[(SP −H )T (SP −H )]. (5.14)

The derivative of the functional in (5.13) w.r.t. P is given by: ∂f
∂P = 2LP +2 λ2

λ1
ST SP −2λ2λ1 S

T H.

The optimal P can be obtained by vanishing this derivative. Thus, P will be given by:

P =

(
L +

λ2

λ1
ST S

)−1 λ2

λ1
ST H. (5.15)

In order to satisfy the orthogonality constraint, an orthogonalization step is applied on the ob-

tained P.

Update S:

To get the matrix S we �x the variables P, H and wv . We minimize the resulting functional over

the matrix S. This functional is given by:

g =
V∑
v=1

wv Tr (Kv − 2Kv S + ST Kv S)+µ ||S||22+λ1 Tr (PT LP)+λ2 ||S−HPT ||22 s.t. S ≥ 0.

(5.16)

In the spectral clustering analysis, we have the following well-known identity:

Tr (PT LP) =
1

2

∑
i

∑
j

∥∥∥pi − pj
∥∥∥2

Sij , (5.17)

where pi denotes the i-th row of the matrix P. Let Q ∈ Rn×n denote the symmetric matrix of

pair distances associated the rows of P, i.e. Qij = 1
2

∥∥∥pi − pj
∥∥∥2

. By using the de�nition of the

matrix Q, Eq. (5.17) becomes:

Tr (PT LP) =
1

2

∑
i

∑
j

∥∥∥pi − pj
∥∥∥2

Sij = Tr(QS). (5.18)
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By plugging Eq. (5.18) into Equation (5.16), the latter becomes:

g =

V∑
v=1

wv Tr (Kv − 2Kv S + ST Kv S) + µ ||S||22 + λ1 Tr (QS) + λ2 ||S−HPT ||22 s.t. S ≥ 0.

(5.19)

The graph matrix S can be obtained by vanishing the derivative of g (Eq. (5.19)) w.r.t. S. This

yields the expression of S:

S = ReLU


(

2

V∑
v=1

wvKv + 2 (µ+ λ2) I

)−1 (
2

V∑
v=1

wv Kv + 2λ2 HPT − λ1 Q

) . (5.20)

Update wv: The weights wv are updated using Eq. (5.2).

The main steps of our proposed method are illustrated in Algorithm 1.

Algorithm 1 MKGNE

Input: Data samples in V views Xv ∈ Rn×dv , v = 1, ..., V .
The spectral embedding matrices Pv, v = 1, ..., V .
The similarity matrices Sv, v = 1, ..., V .
Parameters µ, λ1, λ2.

Output: The graph matrix S.
The spectral projection matrix P.
The consistent non negative cluster index matrix H.

Initialization:
The weight of each view wv = 1

V .
Compute the kernel matrix Kv for each view.
Initialize S (P) by taking the average of the matrices Sv (Pv).

Repeat
Step 1. Update H using Eq. (5.12).
Step 2. Update P using Eq. (5.15).
Step 3. Update S using Eq. (5.20).
Step 4. Update wv using Eq. (5.2).
End

From the depicted steps of Algorithm 1, it can be seen that initial values for the matrices S and

P are needed. To initialize these two matrices, the e�cient graph construction method [93] is

invoked on the data of each view. Therefore, the average of the di�erent graphs obtained for

the di�erent views will be used as the initial S. Similarly, the average of the di�erent spectral
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embeddings will be used as the initial P. This initialization scheme is similar to the one adopted

in [11]. However, the latter method does not update each individual graphs nor generate a uni�ed

graph.

5.1.2 Di�erences with state-of-the-art methods

The most related state-of-the-art methods are MVSCK [24] and NESE [11]. The former estimates a

uni�ed graph and a uni�ed spectral projection. However, it does not estimate a clustering matrix,

and needs an extra clustering step. The latter only provides a uni�ed clustering matrix from

view-based graphs and spectral projections. On the other hand, our proposed approach jointly

estimates a uni�ed graph, a uni�ed spectral representation and the corresponding cluster index

matrix.

5.1.3 Convergence analysis

In this section, we will prove that the objective function of Algorithm 1 is a non-increasing over

the iterations. This ensures its convergence.

Let’s begin by introducing an important Lemma.

Lemma 1. For any two positive constants c and t, we have the following inequality:

√
c − c

2
√
t
≤
√
t − t

2
√
t
. (5.21)

Proof of Lemma1:

(
√
c −
√
t)2 ≥ 0 =⇒ (

√
c)2 − 2

√
c
√
t + (

√
t)2 ≥ 0 =⇒ 2

√
c
√
t − (

√
c)2 ≤ 2 (

√
t)2 −

(
√
t)2 =⇒ (5.21).

Let the scalar function f (S) denotes the following entity:

f(S) = µ ||S||22 + λ1 Tr (PT (D − S)P) + λ2 ||S −HPT ||22.

Let Fv (S) = Kv − 2Kv S + ST Kv S.

Using the above de�nitions for f (S) and Fv (S) in problem (5.9), the latter can be written in a

more compact form:

min

V∑
v=1

wv Tr (Fv (S)) + f (S). (5.22)

Suppose that Ŝ is the solution of step 3 in Algorithm 1, and S is the solution obtained at the

previous iteration. We like to prove the following inequality:
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V∑
v=1

√
Tr (Kv (Ŝ)) + f (Ŝ) ≤

V∑
v=1

√
Tr (Kv (S)) + f (S). (5.23)

Obviously, if (5.23) is satis�ed for any two consecutive iterations of Algorithm 1, the objective

function of the original problem (5.8) is non-increasing over the iterations since each one consists

of three minimization steps.

Proof of (5.23):

According to the de�nition of Ŝ, we have:

V∑
v=1

wvTr(Fv (Ŝ)) + f (Ŝ) ≤
V∑
v=1

wvTr (Fv (S)) + f (S) (5.24)

By plugging the expression of wv (i.e., Eq. (5.2)), into Eq. (5.24) this one becomes:

V∑
v=1

Tr (Fv (Ŝ))

2
√
Tr (Fv(S) )

+ f (Ŝ) ≤
V∑
v=1

Tr (Fv (S))

2
√
Tr (Fv(S) )

+ f (S). (5.25)

By using Lemma 1 and setting c = Tr (Fv (S)) and t = Tr (Fv (S)), we get the following:

V∑
v=1

{√
Tr (Fv (Ŝ)) − Tr (Fv (Ŝ))

2
√
Tr (Fv(S) )

}
≤

V∑
v=1

{√
Tr (Fv(S)) − Tr (Fv (S))

2
√
Tr (Fv(S) )

}
. (5.26)

By adding the left and right sides in Equations (5.25) and (5.26), we will obtain:

V∑
v=1

√
Tr (Fv (Ŝ)) + f (Ŝ) ≤

V∑
v=1

√
Tr (Fv (S)) + f (S), (5.27)

which proves the convergence of Algorithm 1.

5.2 Performance Evaluation

5.2.1 Datasets

In order to verify the e�ectiveness of the proposed approach, we use nine datasets with di�erent

data types and sizes: COIL20, ORL, Outdoor Scene, NUS, MSRCv1, BBCSport, Caltech101-7,

Extended Yale B Face, and MNIST.

5.2.2 Experimental Setup

Clustering methods may use di�erent paradigms as well as di�erent objective functions, leading to

di�erent properties. We compare the performance of the proposed multi-view clustering approach

with that of several multi-view clustering methods:
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– Co-training approach for multi-view spectral clustering "CotSC" [35].

– Co-regularized approach for multi-view spectral clustering "CorSC" [34].

– Multi-view clustering and semi-supervised classi�cation with adaptive neighbours "MLAN"

[44].

– Self-weighted multi-view clustering with multiple graphs "SwMC" [95].

– A�nity aggregation for spectral clustering "AASC" [96].

– Graph learning for multi-view clustering "MVGL" [63].

– Parameter-free auto-weighted multiple graph learning "AMGL" [13].

– Multi-view clustering via adaptively weighted Procrustes "AWP" [20].

– Multi-view spectral clustering via integrating nonnegative embedding and spectral embed-

ding "NESE" [11].

– Auto-weighted multi-view clustering via kernelized graph learning "MVCSK" [24].

– Multi-view spectral clustering via sparse graph learning "S-MVSC" [77].

– Consistency-aware and Inconsistency-aware Graph-based Multi-View Clustering "CI-GMVC"[78]

– Multi-view spectral clustering via constrained nonnegative embedding "CNESE" [97].

We also include the classic spectral clustering on a single view. We report the results obtained

by the best single view (SC-best). We present two groups of comparison. In the �rst group, we

provide a comparison based on the above list of clustering methods on the COIL20, ORL, Outdoor

Scene and NUS datasets. In the second group of experiments, we compare our proposed method

with the most related state-of-the-art methods, namely the MVSCK, NESE, S-MVSC, CI-GMVC,

and CNESE methods.

A data normalization step is performed before any computation. For each view, a gaussian kernel

matrix is generated.

The initialization of our method is carried out using the same initialization method employed in

[11]. Once all individual graphs and spectral projections are computed for each view, we compute

an average of them. These average matrices will be used as an initial guess for the matrices S and

P. In our approach, three parameters are used: λ1, λ2, and µ. λ1 and λ2 are searched in the set

{10−7, 10−6, 10−5, 10−4, 10−3}, while µ is chosen from { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.
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5.2.3 Experimental results

In this section, we present the experimental results obtained with our MKGNE method. We

compare the obtained results with di�erent clustering methods. Table 5.1 shows the performance

indicators for fourteen competing clustering methods. The results were obtained using the COIL20,

ORL, Out-Scene, and NUS datasets. The values in bold correspond to the best performance obtained

for each dataset. The experimental results presented in Table 5.1 show that the best clustering

methods include MVSCK, NESE, S-MVSC, CI-GMVC, CNESE and MKGNE (proposed). These

methods will mainly be used for method comparison in the remaining experiments.

Table 5.2 presents a comparison between our method and the �ve competing methods MVSCK,

NESE, S-MVSC, CI-GMVC and CNESE. The datasets used are: BBCSport, MSRCv1, Caltech7,

Extended Yale B face, MNIST and MNIST-1000 datasets.

5.2.4 Parameter sensitivity

In this section, we study the sensitivity of the parameters and their impact on the clustering

performance of the proposed method. The approach has four parameters: λ1, λ2, µ, and T0. The

latter is used to control the scaling of the Gaussian kernel by a factor of 2T0 . Empirically, we

found that its optimal value is 2 in most cases. Therefore, we set it to 2 in the current study. The

values of λ1 and λ2 are chosen from the set {10−7 , 10−6, 10−5 , 10−4 10−3}, while µ is chosen

from {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

Figures 5.2 and 5.3 show the clustering performance as a function of these parameters for the

datasets ORL and MSRCv1, respectively. The sub�gures 5.2(a) and 5.2(b), corresponding to the

ORL dataset, show the indicators ACC and NMI as a function of the parameters λ1 and µ, and

with the �xed parameter λ2. According to these two sub�gures, the best results for ACC and

NMI are 90% and 97%, respectively. These correspond to values of µ = 0.05, λ1 = 10−3 and

λ2 = 10−5. The sub�gures 5.2(c) and 5.2(d) show the indicators ACC and NMI as a function of

the parameter λ2, while the other two parameters λ1 and µ are �xed. According to these two

sub�gures, it is preferable that λ2 is between 10−6 and 10−4 to obtain better results.

According to the two sub�gures 5.3(a) and 5.3(b) corresponding to the MSRCv1 dataset, the best

results for ACC and NMI are 83% and 79%, respectively. These correspond to values of µ = 0.3,

λ1 = 10−3 and λ2 = 10−4. The sub�gures 5.3(c) and 5.3(d) show the ACC and NMI as a function

of the parameter λ2, while the other two parameters λ1 and µ are �xed. According to these

sub�gures, it is preferable that λ2 is between 10−4 and 10−5 to obtain better results.

77



5. Direct Multi-view Spectral Clustering with Consistent Kernelized Graph and Convolved
Nonnegative Representation

Table 5.1: Clustering performance on the COIL20, ORL, Out-Scene, and NUS datasets.

Dataset Method ACC NMI Purity ARI

COIL20 SC-Best [12] 0.73 ( ± 0.01) 0.82 ( ± 0.01) 0.75 ( ± 0.01) 0.68 ( ± 0.02)
AWP [20] 0.68 ( ± 0.00) 0.87 ( ± 0.00) 0.75 ( ± 0.00) 0.71 ( ± 0.00)
MLAN [44] 0.84 ( ± 0.00) 0.92 ( ± 0.00) 0.88 ( ± 0.00) 0.81 ( ± 0.00)
SwMC [95] 0.86 ( ± 0.00) 0.94 ( ± 0.00) 0.90 ( ± 0.00) 0.84 ( ± 0.00)
AMGL [13] 0.80 ( ± 0.04) 0.91 ( ± 0.02) 0.85 ( ± 0.03) 0.74 ( ± 0.07)
AASC [96] 0.79 ( ± 0.00) 0.89 ( ± 0.00) 0.83 ( ± 0.00) 0.76 ( ± 0.00)
MVGL [63] 0.78 ( ± 0.00) 0.88 ( ± 0.00) 0.81 ( ± 0.00) 0.75 ( ± 0.00)
CorSC [34] 0.68 ( ± 0.04) 0.78 ( ± 0.02) 0.70 ( ± 0.03) 0.62 ( ± 0.03)
CotSC [35] 0.70 ( ± 0.03) 0.80 ( ± 0.02) 0.72 ( ± 0.03) 0.65 ( ± 0.03)
NESE [11] 0.77 ( ± 0.00) 0.88 ( ± 0.00) 0.82 ( ± 0.00) 0.69 ( ± 0.00)
MVCSK [24] 0.65 ( ± 0.04) 0.80 ( ± 0.02) 0.70 ( ± 0.03) 0.61 ( ± 0.05)
S-MVSC [77] 0.62 ( ± 0.01) 0.86 ( ± 0.02) 0.77 ( ± 0.02) 0.97 ( ± 0.02)
CI-GMVC [78] 0.86 ( ± 0.00) 0.94 ( ± 0.00) 0.90 ( ± 0.00) 0.83 ( ± 0.00)
CNESE [97] 0.82 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.78 (± 0.00)
MKGNE 0.95 ( ± 0.00) 0.99 ( ± 0.00) 0.95 ( ± 0.00) 0.95 ( ± 0.00)

ORL SC-Best [12] 0.66 ( ± 0.02) 0.76 ( ± 0.02) 0.71 ( ± 0.02) 0.67 ( ± 0.01)
AWP [20] 0.80 ( ± 0.00) 0.91 ( ± 0.00) 0.83 ( ± 0.00) 0.76 ( ± 0.00)
MLAN [44] 0.78 ( ± 0.00) 0.88 ( ± 0.00) 0.82 ( ± 0.00) 0.67 ( ± 0.00)
SwMC [95] 0.77 ( ± 0.00) 0.90 ( ± 0.00) 0.83 ( ± 0.00) 0.62 ( ± 0.00)
AMGL [13] 0.75 ( ± 0.02) 0.90 ( ± 0.02) 0.82 ( ± 0.02) 0.63 ( ± 0.09)
AASC [96] 0.82 ( ± 0.02) 0.91 ( ± 0.01) 0.85 ( ± 0.01) 0.76 ( ± 0.02)
MVGL [63] 0.75 ( ± 0.00) 0.88 ( ± 0.00) 0.80 ( ± 0.00) 0.55 ( ± 0.00)
CorSC [34] 0.77 ( ± 0.03) 0.90 ( ± 0.01) 0.82 ( ± 0.03) 0.72 ( ± 0.04)
CotSC [35] 0.75 ( ± 0.04) 0.87 ( ± 0.01) 0.78 ( ± 0.03) 0.67 ( ± 0.03)
NESE [11] 0.82 ( ± 0.00) 0.91 ( ± 0.00) 0.85 ( ± 0.00) 0.75 ( ± 0.00)
MVCSK [24] 0.85 ( ± 0.02) 0.94 ( ± 0.01) 0.88 ( ± 0.02) 0.81 ( ± 0.02)
S-MVSC [77] 0.80 ( ± 0.02) 0.93 ( ± 0.01) 0.82 ( ± 0.02) 0.89 ( ± 0.01)
CI-GMVC [78] 0.81 ( ± 0.00) 0.92 ( ± 0.00) 0.85 ( ± 0.00) 0.74 ( ± 0.00)
CNESE [97] 0.87 (± 0.00) 0.95 (± 0.00) 0.89 (± 0.00) 0.84 (± 0.00)
MKGNE 0.91 ( ± 0.00) 0.97 ( ± 0.00) 0.93 ( ± 0.00) 0.89 ( ± 0.00)

Out-Scene SC-best [12] 0.47 ( ± 0.01) 0.39 ( ± 0.01) 0.57 ( ± 0.01) 0.34 ( ± 0.01)
AWP [20] 0.65 ( ± 0.00) 0.51 ( ± 0.00) 0.65 ( ± 0.00) 0.42 ( ± 0.00)
MLAN [44] 0.55 ( ± 0.02) 0.47 ( ± 0.01) 0.55 ( ± 0.02) 0.33 ( ± 0.03)
SwMC [95] 0.50 ( ± 0.00) 0.47 ( ± 0.00) 0.50 ( ± 0.00) 0.38 ( ± 0.00)
AMGL [13] 0.51 ( ± 0.05) 0.45 ( ± 0.03) 0.52 ( ± 0.04) 0.34 ( ± 0.05)
AASC [96] 0.60 ( ± 0.00) 0.48 ( ± 0.00) 0.60 ( ± 0.00) 0.35 ( ± 0.00)
MVGL [63] 0.42 ( ± 0.00) 0.31 ( ± 0.00) 0.43 ( ± 0.00) 0.16 ( ± 0.00)
CorSC [34] 0.51 ( ± 0.04) 0.39 ( ± 0.03) 0.52 ( ± 0.03) 0.31 ( ± 0.02)
CotSC [35] 0.38 ( ± 0.02) 0.22 ( ± 0.01) 0.39 ( ± 0.02) 0.16 ( ± 0.01)
NESE [11] 0.63 ( ± 0.00) 0.53 ( ± 0.00) 0.66 ( ± 0.00) 0.46 ( ± 0.00)
MVCSK [24] 0.65 ( ± 0.01) 0.52 ( ± 0.00) 0.65 ( ± 0.01) 0.42 ( ± 0.00)
S-MVSC [77] 0.48 ( ± 0.01) 0.54 ( ± 0.02) 0.65 ( ± 0.01) 0.46 ( ± 0.04)
CI-GMVC [78] 0.35 ( ± 0.01) 0.31 ( ± 0.00) 0.35 ( ± 0.01) 0.19 ( ± 0.00)
CNESE [97] 0.66 (± 0.00) 0.55 (± 0.00) 0.67 (± 0.00) 0.47 (± 0.00)
MKGNE 0.72 ( ± 0.00) 0.57 ( ± 0.00) 0.72 ( ± 0.00) 0.48 ( ± 0.00)

NUS SC-Best [12] 0.21(± 0.01) 0.09(± 0.01) 0.21(± 0.01) 0.07(± 0.02)
AWP [20] 0.28(± 0.00) 0.15(± 0.00) 0.29(± 0.00) 0.09(± 0.00)
MLAN [?] 0.25(± 0.00) 0.15(± 0.00) 0.26(± 0.00) 0.04(± 0.00)
SwMC [95] 0.15(± 0.00) 0.08(± 0.00) 0.17(± 0.00) 0.01(± 0.00)
AMGL [13] 0.25(± 0.01) 0.13(± 0.01) 0.27(± 0.01) 0.07(± 0.01)
AASC [96] 0.25(± 0.00) 0.13(± 0.00) 0.27(± 0.00) 0.06(± 0.00)
MVGL [63] 0.15(± 0.00) 0.07(± 0.00) 0.16(± 0.00) 0.01(± 0.00)
CorSC [34] 0.27(± 0.01) 0.14(± 0.01) 0.29(± 0.01) 0.09(± 0.01)
CotSC [35] 0.29(± 0.01) 0.16(± 0.01) 0.30(± 0.01) 0.09(± 0.01)
NESE [11] 0.30(±0.00) 0.17(± 0.00) 0.32(± 0.00) 0.10(± 0.00)
MVCSK [24] 0.26(± 0.01) 0.15(± 0.00) 0.28(± 0.00) 0.08(± 0.00)
S-MVSC [77] 0.27 ( ± 0.02) 0.13 ( ± 0.01) 0.26 ( ± 0.02) 0.08 ( ± 0.02)
CI-GMVC [78] 0.26 ( ± 0.01) 0.14 ( ± 0.01) 0.25 ( ± 0.01) 0.09 ( ± 0.00)
CNESE [97] 0.28 (±0.00) 0.16 (± 0.00) 0.31 (±0.00) 0.09 (± 0.00)
MKGNE 0.30 (±0.00) 0.15 (±0.00) 0.31 (±0.00) 0.10 (±0.00)
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Table 5.2: Clustering performance on the BBCSport, MSRCv1, Caltech101-7, Extended-Yale, MNIST and MNIST-
1000 datasets.

Dataset Method ACC NMI Purity ARI

MVCSK 0.90 ( ± 0.07) 0.82 ( ± 0.02) 0.90 ( ± 0.02) 0.85 ( ± 0.07)
BBCSport NESE 0.72 ( ± 0.00) 0.69 ( ± 0.00) 0.75 ( ± 0.00) 0.60 ( ± 0.00)

S-MVSC 0.58 ( ± 0.07) 0.67 ( ± 0.01) 0.73 ( ± 0.02) 0.83 ( ± 0.04)
CI-GMVC 0.61 ( ± 0.00) 0.46 ( ± 0.00) 0.63 ( ± 0.00) 0.36 ( ± 0.00)
CNESE 0.72 (± 0.00) 0.68 (± 0.00) 0.76 (± 0.00) 0.60 (± 0.00)
MKGNE 0.98 ( ± 0.00) 0.94 ( ± 0.00) 0.98 ( ± 0.00) 0.95 ( ± 0.00)

MVCSK 0.70 ( ± 0.02) 0.59 ( ± 0.03) 0.70 ( ± 0.02) 0.50 ( ± 0.04)
MSRCv1 NESE 0.77 ( ± 0.00) 0.72 ( ± 0.00) 0.80 ( ± 0.00) 0.64 ( ± 0.00)

S-MVSC 0.60 ( ± 0.00) 0.69 ( ± 0.02) 0.74 ( ± 0.02) 0.79 ( ± 0.01)
CI-GMVC 0.74 ( ± 0.00) 0.72 ( ± 0.00) 0.77 ( ± 0.00) 0.59 ( ± 0.00)
CNESE 0.86 (±0.00) 0.76 (±0.00) 0.86 (±0.00) 0.72 (±0.00)
MKGNE 0.83 ( ± 0.00) 0.79 ( ± 0.00) 0.83 ( ± 0.00) 0.72 ( ± 0.00)

MVCSK 0.57 ( ± 0.02) 0.51 ( ± 0.02) 0.83 ( ± 0.01) 0.45 ( ± 0.03)
Caltech101-7 NESE 0.67 ( ± 0.00) 0.55 ( ± 0.00) 0.87 ( ± 0.00) 0.52 ( ± 0.00)

S-MVSC 0.64 ( ± 0.03) 0.55 ( ± 0.02) 0.72 ( ± 0.01) 0.51 ( ± 0.03)
CI-GMVC 0.74 ( ± 0.00) 0.54 ( ± 0.00) 0.85 ( ± 0.00) 0.48 ( ± 0.00)
CNESE 0.69 (±0.00) 0.58 (±0.00) 0.88 (±0.00) 0.56 (±0.00)
MKGNE 0.69 ( ± 0.00) 0.64 ( ± 0.00) 0.89 ( ± 0.00) 0.57 ( ± 0.00)

MVCSK 0.33 ( ± 0.00) 0.42 ( ± 0.00) 0.34 ( ± 0.00) 0.18 ( ± 0.00)
Extended- NESE 0.43 ( ± 0.00) 0.58 ( ± 0.00) 0.47 ( ± 0.00) 0.25 ( ± 0.00)
Yale S-MVSC 0.48 (± 0.03) 0.61 (± 0.01) 0.60 (± 0.01) 0.36 (± 0.05)

CI-GMVC 0.32 (± 0.00) 0.34 (± 0.00) 0.35 (± 0.00) 0.02 (± 0.00)
CNESE 0.60 (± 0.00) 0.75 (± 0.00) 0.60 (± 0.00) 0.51 (± 0.00)
MKGNE 0.81 ( ± 0.00) 0.85 ( ± 0.00) 0.82 ( ± 0.00) 0.72 ( ± 0.00)

MVCSK 0.49 ( ± 0.00) 0.41 ( ± 0.00) 0.50 ( ± 0.00) 0.29 ( ± 0.00)
MNIST NESE 0.81 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.76 ( ± 0.00)

S-MVSC 0.77 ( ± 0.01) 0.81 ( ± 0.01) 0.81 ( ± 0.02) 0.76 ( ± 0.07)
CI-GMVC 0.66 ( ± 0.00) 0.71 ( ± 0.00) 0.71 ( ± 0.00) 0.51 ( ± 0.00)
CNESE 0.81 (± 0.00) 0.83 (± 0.00) 0.86 (± 0.00) 0.78 (± 0.00)
MKGNE 0.81 ( ± 0.00) 0.84 ( ± 0.00) 0.85 ( ± 0.00) 0.76 ( ± 0.00)

MVCSK 0.70 ( ± 0.00) 0.61 ( ± 0.00) 0.70 ( ± 0.00) 0.52 ( ± 0.00)
MNIST-1000 NESE 0.78 ( ± 0.00) 0.79 ( ± 0.00) 0.83 ( ± 0.00) 0.71 ( ±0.00)

S-MVSC 0.66 ( ± 0.02) 0.76 ( ± 0.01) 0.76 ( ± 0.00) 0.77 ( ± 0.05)
CI-GMVC 0.65 ( ± 0.00) 0.71 ( ± 0.00) 0.73 ( ± 0.00) 0.50 ( ±0.00)
CNESE 0.77 ( ± 0.00) 0.77 ( ± 0.00) 0.81 ( ± 0.00) 0.68 ( ±0.00)
MKGNE 0.84 ( ± 0.00) 0.80 ( ± 0.00) 0.84 ( ± 0.00) 0.74 ( ± 0.00)

5.2.5 Analysis of the results and method comparison

From the above tables and �gures, it can be seen that the performances obtained by all multi-view

clustering methods are superior to those obtained by the �rst algorithm (SC -Best), which refers

to the best single view that performs spectral clustering. This result is normal since the use of

multiple views allows a better use of the data and provides additional information about the data

to improve the clustering results.

Moreover, it is clear from Tables 5.1 and 5.2 that the performance of our method is superior or

similar to that of other methods for most datasets.

Table 5.1 shows that our proposed approach outperforms other competing methods for the COIL20,

ORL, and Out-Scene datasets (except for the ARI indicator in the COIL20 dataset). For the NUS

dataset, the result of our method is slightly lower than that of NESE method, but it is higher than
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Figure 5.2: Clustering performance as a function of the balance parameters using the ORL dataset. (a) and (c)
depict ACC (%). (b) and (d) depict NMI (%).

the MVCSK method. For the MSRCv1 dataset, the result of our method is slightly lower than

that of some other methods, but still higher than that of the two competing methods: NESE and

MVCSK, which demonstrates the good performance of our method.

On the large dataset MNIST, it can be seen from Table 5.2 that the performance obtained by our

method is close to the performance of CNESE and NESE methods and is also superior to MVCSK

method, which shows the e�ciency of our algorithm even on large datasets. Furthermore, our

method is inspired by both: NESE and MVCSK. Therefore, our work is mainly concerned with

outperforming the two mentioned methods.

In addition, the result obtained for the subset of 1000 images from the MNIST dataset (denoted as

MNIST-1000 in Table 5.2) shows the obvious superiority of our method. Thus, Table 5.2 shows

that our approach is better than other approaches for di�erent sizes of datasets.
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Figure 5.3: Clustering performance as a function of the balance parameters using the MSRCv1 dataset. (a) and (c)
depict ACC (%). (b) and (d) depict NMI (%).

Our experimental results show that the proposed method was slightly outperformed by the NESE

and CNESE methods on the MSRCv1, NUS, and MNIST datasets (only for some indicators). A

plausible reason for this is the type of criterion optimized in each method. In NESE and CNESE,

the individual graphs were precomputed and used as is, and the uni�ed cluster-label matrix was

constrained by the graph of each view via automatic weights. In contrast, our proposed criterion

attempts to estimate a uni�ed graph to which cluster assignments are constrained.

One of the reasons for the good performance of our method is that no post-processing step like

k-means is required to obtain the clusters. Moreover, our proposed method can simultaneously

produce the consensus similarity matrix across all views, the spectral projection matrix and the

consistent nonnegative cluster indices of the raw data.

Therefore, from these results, we can conclude that our approach has good performance for

di�erent types and sizes of datasets.
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Figure 5.4: Objective function versus iteration number on four di�erent datasets.

5.2.6 Convergence study

In this section, we examine the convergence of our proposed method. The convergence was

proved theoretically in section 5.1.3. However, here we can show it empirically. To this end,

we evaluate the objective function of our method at each iteration. The objective function we

minimize is given by:
V∑
v=1

√
Tr (Kv − 2Kv S + ST Kv S) + µ ||S||22 + λ1 Tr (PT LP) + λ2 ||S −HPT ||22 (5.28)

Figure 5.4 shows the evolution of the objective function as a function of the iteration number.

This �gure refers to four di�erent datasets. In this �gure, the horizontal axis corresponds to the

number of iterations and the vertical axis corresponds to the objective value of our method.

According to this �gure, the proposed method converges quickly. For the MSRCv1 and ORL

datasets, convergence was achieved in less than 10 iterations. Even for the large datasets, e.g.,

Out-Scene and MNIST, convergence was achieved in 10 iterations.
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5.2.7 Sequential estimation vs. proposed approach

To investigate the utility of the proposed simultaneous estimation of the consistent graph, spectral

projection, and nonnegative cluster index matrix, we compared it to a sequential approach using

the same individual terms shown in Eq. (5.8). In this sequential approach, we follow the order

adopted by classic spectral clustering methods that sequentially run three stages, i.e., similarity

matrix learning from data, spectral representation learning, and k-means clustering on spectral

representation, respectively. In this approach, we �rst estimate the consistent graph matrix S

by minimizing the term
∑V

v=1

√
Tr (Kv − 2Kv S + ST KvS ) + µ ||S||22. We then estimate the

spectral representation, P, from the obtained graph by minimizing Tr(PT LP). Finally, the

clustering matrix H is estimated from both the graph and the spectral projection using Eq. (5.12).

Table 5.3 shows a comparison between our proposed approach and the sequential approach

(denoted by SA) applied to the COIL20 and Out-Scene datasets. It can be seen that the simultaneous

estimation of the matrices gives better results than computing them in a sequential manner that

achieves individual optimization.

Table 5.3: Method comparison on COIL20 and Out-Scene datasets.

Dataset Method ACC NMI Purity ARI

COIL20 SA 0.65 0.81 0.68 0.60
MKGNE 0.95 0.99 0.95 0.95

Out-Scene SA 0.52 0.40 0.53 0.33
MKGNE 0.65 0.54 0.65 0.43

5.2.8 Computational complexity

In this section, we study the computational complexity of the proposed method. Our algorithm

consists of four main steps: updating H, P, S, and wv (see Algorithm 1). The calculation of the

V kernel matrices has a computational cost of O (n2k) where k is the sum of the dimensions of

the instances in the V views. Thus, k = d1 + d2 + ...+ dV .

By inspecting the four steps of Algorithm 1, we can see easily that steps 2 and 3 are the most

expensive ones. Indeed, step 1 consists of matrix multiplication. Moreover, step 4 contains simple

matrix multiplications and additions. Therefore, we can ignore their computation cost.

To get the matrix P (step 2), a matrix inversion of an n× n matrix is needed (or equivalently we

should solve a linear system whose square matrix size is n× n). If the orthogonalization of the

matrix P is invoked, one should add the associated cost which isO (nC2) where C is the number
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of clusters. To estimate the graph matrix S (step 3), one matrix inversion of size n× n is needed.

Thus, the computational cost of the third step is O (n3).

Let τ be the number of iterations of the proposed iterative algorithm. The overall computational

complexity of the proposed method will beO
(
n2k + τ (n3 + nC2 + n3)

)
= O

(
n2k + τ (nC2 + n3)

)
.

Table 5.4 shows the computational time cost of the three main multi-view clustering methods:

MVCSK, NESE, and our proposed method.

Table 5.4: Time cost (s) of MVCSK, NESE and MKGNE algorithms respectively.

Method/DatasetCOIL20 ORL Out-Scene

MVCSK 668.79 45.67 4541.20
NESE 10.36 1.48 25.01
MKGNE 198.93 4.25 450.88

According to Table 5.4, the time required by our algorithm is longer than that required by NESE

and shorter than that required by MVCSK. This can be justi�ed by the steps required by our

algorithm to compute and update the uni�ed graph matrix S ∈ Rn×n and the time required to

update the two matrices P and H ∈ Rn×C . In contrast, in the NESE algorithm, the single-view

graphs Sv are given as input to the algorithm and do not change during optimization. MVCSK

takes more time than other algorithms due to the time required for eigenvalue decomposition.

5.2.9 Clustering visualization

To better understand the behavior of the proposed clustering method, we created a visual represen-

tation of the data using the t-SNE visualization technique [98]. For this purpose, we consider the

ORL dataset. Figure 5.5 shows four estimated clusters. Figure 5.6 represents the t-SNE visualization

of all images located in the four clusters. Each visualization corresponds to a particular individual

view.

The �ve di�erent colors of the dots in Figure 5.6 represent the ground truth identities of the 5

persons that appear in Figure 5.5, which represents the estimated four clusters obtained by our

method. The images associated with the �rst cluster are depicted in the �rst row of Figure 5.5.

These images are shown within black circles in each view. This cluster contains 11 images: 10

images for person 1 and one image for person 2. For presentation clarity, we only visualize ten

images (�rst row in Figure 5.5). It is obvious that this estimated cluster is found correctly except

for one image that corresponds to person 2, showing the high e�ciency of our method.

Our method also provides a consistent spectral projection denoted by the matrix P. In Figure 5.6(f),

we provided the t-SNE visualization of the same 40 images (shown above) in the uni�ed spectral
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Figure 5.5: Four clusters provided by our approach for the ORL dataset.

space. This visualization explains better why the �rst cluster contained one image from person 2.

The �rst cluster contains eleven images presented by 10 red dots (the �rst person) and one image

presented by a lime dot (which refers to the second person). We can also observe that the red dot

(images of the �rst cluster) have better compact distribution in the spectral representation.

5.3 Conclusion

In this chapter, we present a new approach for multi-view clustering. This approach is charac-

terized by its ability to simultaneously estimate the uni�ed graph similarity matrix, the uni�ed

spectral embedding, and the nonnegative cluster index matrix. Moreover, the proposed approach

can automatically estimate the weight of each view without using additional parameters. Ex-

perimental results performed on datasets of di�erent types and sizes show the e�ciency of our

approach compared to other methods.
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(f) t-SNE of the spectral projection obtained by the proposed
method.

Figure 5.6: t-SNE of the original features and the spectral projection of ORL dataset.
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Chapter 6

Consensus graph and spectral

representation for one-step

multi-view kernel based clustering

In this chapter, we present a novel method similar to the method presented in Chapter 5. Same as

the MKGNE method, it can address some of the limitations of previous multi-view clustering meth-

ods. The�rst di�erence between this novel approach and theMKGNEmethod, is the second

term in the objective function. This term was a smoothness constraint of the spectral pro-

jection matrix P over the uni�ed graph in the case of the MKGNE method. However, in

our novel proposed approach, it represents the smoothness constraint of the nonnegative

embedding matrixH (so� clustering assignments) over the graphs. The second di�erence

between the MKGNE method and our novel model is the orthogonality constraint over the

nonnegative embedding matrix H. This approach, called Multi-view Clustering via Consensus

Graph Learning and Nonnegative Embedding (MVCGE), provides a consistent nonnegative em-

bedding matrix to determine the �nal cluster assignment. It estimates the clusters of the data

directly without any additional post-processing and enforces the cluster index matrix to be a

kind of convolution of a uni�ed spectral representation over a consistent graph. This method can

overcome some of the drawbacks of other approaches since it provides simultaneously the consis-

tent similarity matrix, the nonnegative cluster index matrix, and the uni�ed spectral projection

matrix across all views. Moreover, the proposed approach automatically calculates the weight of

each view without using any additional parameters. It takes as input the di�erent kernel matrices

corresponding to the di�erent views. The proposed learning model integrates two interesting
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constraints: (i) the cluster indices should be as smooth as possible over the consensus graph; and

(ii) the cluster indices are set to be as close as possible to the graph convolution of the consensus

representation.

Similar to the MKGNE method, the novel approach presented in this chapter combines the

advantages of graph-based methods and matrix factorization methods, such as MVCSK in [24]

and NESE in [11]. Since our method combines the advantages of NESE and MVCSK, the main

goal of our study is to outperform the previous two methods, as it will be shown in the extensive

experimentation part. The contributions of this chapter are summarized below.

1. Unlike other approaches based on multi-view learning, our method can simultaneously

provide the consensus similarity matrix, the nonnegative index cluster matrix, the spectral

projection matrix, and the weight of each view automatically.

2. It generates the �nal clustering assignment directly without any post-processing step. Our

method inherits the advantages of matrix factorization methods and graph-based methods.

3. The proposed model successfully �nds nonlinear interactions between di�erent views. This

model is able to compute the exact graph considering the underlying correlations from

numerous views by using a kernel representation of each view.

4. The cluster index matrix, which is the consequence of the convolution of the coherent

spectral projection matrix over the coherent graph, is learned as part of the proposed

learning technique.

5. It has been validated on real and synthetic datasets. This validation shows that this approach

can give better results compared to state-of-the-art clustering methods.

6.1 Proposed Approach

We introduce a new approach called Multi-View Clustering via Consensus Graph Learning and

Nonnegative Embedding (MVCGE), which combines the advantages of graph learning methods

and matrix factorization methods. MVCGE achieves the clustering results without any additional

step. Similar to the MKGNE method, and inspired by the MVCSK method the �rst term of our

method is given below:

min
S

V∑
v=1

wv Tr (Kv − 2Kv S + ST KvS ) + α ||S||22 s.t. S ≥ 0. (6.1)
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The clustering result is obtained from the nonnegative embedding matrix H, which provides the

cluster indices by taking the index of the highest element in the row vector Hi∗ ∈ RK . Since the

matrix H is used for the �nal cluster assignment, it is important to use a smoothing term for this

matrix so that it is more coherent with the graph entries. The smoothing term ensures that two

data points xvi and xvj that are similar (i.e., the value of the corresponding value in the similarity

matrix Sij is large) are necessarily in the same cluster (i.e., the corresponding cluster index Hi∗

and Hj∗ are close). Therefore, the second term of our criterion is given by:

min
H

1

2

∑
i

∑
j

||Hi∗ −Hj∗ ||2 Sij = min
H

Tr
(
HT LH

)
, (6.2)

where L = D − S ∈ Rn×n is the Laplacian matrix of the consistent graph matrix, and D

is a diagonal matrix whose elements are given by: Dii =
n∑
j=1

Sij+Sji

2 . The third term of our

proposed method states that the cluster index of the i-th instance (the row vector Hi,∗) is set to

the convolution of the spectral representation P with the i-th row of the graph matrix Si,∗. This

approach has two main advantages. First, the clustering is performed in a single step. Second,

the clustering uses the consolidated spectral representation of the neighbors obtained in the

consensus graph.

Moreover, inspired by the principle of data convolution, the nonnegative embedding matrix used

to obtain the �nal clustering assignment will be equal to "H = max(SP, 0)". This means that

the nonnegative matrix is the result of the convolution of the spectral data representation with

the graph. The third term of our criterion binds the cluster index label to the consensus spectral

representation. Therefore, the cluster index matrix should satisfy the following condition:

min
H≥0 , PT P=I

||H− SP||2F , (6.3)

where the matrix P ∈ Rn×C is a consensus data representation. In our work, it is initialized to a

uni�ed spectral representation of the data.

Since the matrix P is orthogonal, Eq. (6.3) can take another form to illustrate the factorization of

the graph matrix S using the nonnegative embedding matrix H and the spectral projection matrix

P. It can be written as:

min
H,P
||S−HPT ||2F s.t. H ≥ 0 , PT P = I. (6.4)
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Our �nal objective function is obtained by adding the three terms from equations (6.1), (6.2), and

(6.4).

min
S, P,H

V∑
v=1

wv Tr (Kv − 2Kv S + ST KvS ) + α ||S||22 + λ1 Tr (HT LH) + λ2 ||S −HPT ||22

s.t. S ≥ 0 , PT P = I , HT H = I , H ≥ 0, (6.5)

where α, λ1 and λ2 are three regularization parameters.

Optimization:

We use an iterative update procedure to solve our objective function. In MVCGE, three matrices

are unknown: S, H, and P. An alternating optimization scheme is used for the optimization

procedure. We proceed as follows:

Step 1: Fix all, estimate H: The problem (6.5) is:

min
H

Tr (HT LH) +
λ2

λ1
||SP −H||22 s.t.HT H = I , H ≥ 0. (6.6)

Vanishing the derivative of (6.6) w.r.t. H yields:

H =

(
L +

λ2

λ1
I
)−1 λ2

λ1
SP. (6.7)

To satisfy the orthogonality and non-negativity constraints, an orthogonalization step is �rst

applied to the obtained H, then the negative values of H are set to zero.

Step 2: Fix all, estimate P: The problem (6.5) becomes:

min
H
||S −HPT ||22. (6.8)

SinceP is orthogonal, i.e., PT P = I, P is obtained by performing the singular value decomposition

of ST H . Let UΣVT = SVD (ST H), then the solution of (6.8) is given by:

P = UVT with UΣVT = SV D (ST H). (6.9)

Step 3: Fix all, estimate S:

If we �x H and P, we need to solve the following problem:

min
S

V∑
v=1

wv Tr (Kv − 2Kv S + ST Kv S) + α ||S||22 + λ1 Tr (HT LH) + λ2 ||S −HPT ||22 s.t. S ≥ 0.

(6.10)
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After the spectral clustering analysis, we have the known identity:

Tr (HT LH) =
1

2

∑
i

∑
j

‖Hi∗ − Hj∗‖2 Sij = Tr (QS), (6.11)

where Hi∗ is the i-th row of H. The symmetric matrix Q denotes the pairwise distance associated

with the rows of the matrix H. It is given by Qij = 1
2 ‖Hi∗ − Hj∗‖2. Substituting Eq. (6.11 ) into

Eq. (6.10), the latter becomes:

min
S

V∑
v=1

wv Tr (Kv − 2Kv S + ST Kv S) + α ||S||22 + λ1 Tr (QS) + λ2 ||S −HPT ||22 s.t. S ≥ 0.

(6.12)

By making the derivative of Eq. (6.12) w.r.t. S vanish, we obtain S as (ReLU() is the Recti�ed

Linear Unit function):

S = ReLU


(

V∑
v=1

wvKv + (α+ λ2) I

)−1 ( V∑
v=1

wv Kv + λ2 HPT − 1

2
λ1 Q

) . (6.13)

Step 4: Fix H, P, and S, and update wv (v = 1, ..., V ) using Eq. (5.2).

The main steps of the proposed approach “Multi-view Clustering via Consensus Graph Learning

and Nonnegative Embedding" (MVCGE) are summarized in Algorithm 1.

Algorithm 1 MVCGE

Input: Data samples in V views Xv ∈ Rn×dv , v = 1, ..., V .
The graph matrices Sv, v = 1, ..., V .
The spectral embedding matrices Pv, v = 1, ..., V .
Parameters α, λ1, λ2.

Output: The consensus graph matrix S.
The consensus spectral representation matrix P.
The cluster index matrix (nonnegative embedding matrix) H.

Initialization:
The weight of each view wv = 1

V .
Compute the kernel matrix Kv for each view.
Initialize S and P by taking the average of the matrices Sv and Pv .

Repeat
Update H using Eq. (6.7).
Update P using Eq. (6.9).
Update S using Eq. (6.13).
Update wv using Eq. (5.2).
Until convergence
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To initialize the two matrices S and P, the e�cient method used in [93] is used. This method �nds

the similarity matrix and the corresponding spectral projection matrix for each view. To obtain

the initial uni�ed matrix, the average of all the individual matrices is used.

6.2 Performance Evaluation

6.2.1 Datasets

The e�ectiveness of the proposed approach is evaluated using eight real datasets and three

synthetic datasets. The datasets used to test this method are: COIL20, ORL, Out-Scene, BBCSport,

MSRCv1, Extended-Yale, MNIST, MNIST-1000, Tetra, Hepta, and Chainlink.

6.2.2 Experimental setup

Several competing methods are used for comparison: 1) Co-training approach for multi-view

Spectral Clustering (CotSC) [34], 2) Co-regularized approach for multi-view Spectral Clustering

(CorSC) [35], 3) Multi-view Learning Clustering with Adaptive Neighbors (MLAN) [44], 4) Self-

weighted Multi-view Clustering with multiple graphs (SwMC) [95], 5) A�nity Aggregation for

Spectral Clustering (AASC) [96], 6) Graph Learning for Multi-View clustering (MVGL) [15], 7)

Parameter-free Auto-weighted Multiple Graph Learning (AMGL) [13], 8) Multi-view clustering via

Adaptively Weighted Procrustes (AWP) [20], 9) Auto-weighted Multi-View Clustering via Kernel-

ized graph learning (MVCSK) [24], 10) Multi-view spectral clustering via integrating Nonnegative

Embedding and Spectral Embedding (NESE) [11], 11) Sparse Multi-view Spectral Clustering (S-

MVSC) [77], 12) Consistency-aware and Inconsistency-aware Graph-based Multi-View Clustering

(CI-GMVC) [78], 13) Multi-View Clustering in Latent Embedding Space (MCLES) [67] and 14)

multi-view spectral clustering via Constrained Nonnegative Embedding (CNESE) [97]. We also

report the Spectral Clustering best view result (SC) [33].

The clustering performance of the proposed approach is compared with other methods, A Gaussian

kernel function is used to construct the kernel matrix of each view. To initialize our algorithm, we

use the same method as in [11]. First, the similarity matrix of each view is computed. Then, the

corresponding spectral projection matrices are computed, and the �nal uni�ed similarity matrix

and spectral projection matrix are the average of the corresponding matrix of all views. In this

way, we obtain the initial values of the matrices S and P.

In our method, three parameters are used: α, λ1 and λ2. The values of α are in the range [0.005

0.9], the values of the parameter λ1 vary over the set {10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4,
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10−3} and the values of the parameter λ2 vary over the set {10−7, 10−6, 10−5, 10−4 10−3, 10−2,

10−1}.

To compare our method with other methods, we use four clustering performance metrics: Accuracy

(ACC), Normalized Mutual Information (NMI), Purity, and Adjusted Rand Index (ARI).

6.2.3 Experimental results

Our algorithm is tested on real and synthetic datasets. Table 6.1 shows the results obtained by

MVCGE and some other methods on the datasets: ORL, Out-Scene, and Coil20. In this table, the

highest scores are marked in bold. The proposed method MVCGE was superior on these datasets.

For some competing methods listed in Table 6.1, the corresponding method is repeated in multiple

trials, and then a standard deviation for each indicator is given in parentheses. From this table,

we can see that our method and methods MVCSK, NESE S-MVSC, CI-GMVC, MCLES and CNESE

perform best, so we can adopt them to test the other datasets.

Table 6.2 shows a comparison between our method and the aforementioned methods for the

BBCSport, MSRCv1, Extended-Yale, MNIST and MNIST-1000 datasets. For the MNIST dataset,

which is a large image dataset (i.e., the number of samples is equal to 10000), each image has two

deep descriptors, which means that the data already has some nonlinearity. Then, the use of the

large kernel matrices can be skipped. Therefore, the criterion of our method reduces to the last

two terms, where we only update the spectral projection matrix and the nonnegative embedding

matrix.

Our method is applied to the synthetic datasets: Tetra, Chainlink, and Hepta. The results are

presented in Table 6.3.

6.2.4 Ablation study

Our proposed criterion (6.5) contains three main terms: the graph construction and its regulariza-

tion, the smoothness term and the convolution term. To illustrate the relevance of the proposed

criterion and its terms, we generate four di�erent models with di�erent combinations. These

four di�erent variants of MVCGE are: MVCGE-G, MVCGE-S, MVCGE-C and MVCGE-SC. (1) No

graph regularization term in the global objective function (6.5) (i.e., α is set to zero), and we call

the obtained method MVCGE-G, which means that only the smoothness and convolution terms

in MVCGE are used, (2) No smoothness constraint (λ1 is set to zero), and we call the obtained
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Table 6.1: Clustering performance on the ORL, Outdoor-Scene and Coil20 datasets.

Dataset Method ACC NMI Purity ARI

ORL SC-Best [33] 0.66 ( ± 0.02) 0.76 ( ± 0.02) 0.71 ( ± 0.02) 0.67 ( ± 0.01)
AWP [20] 0.80 ( ± 0.00) 0.91 ( ± 0.00) 0.83 ( ± 0.00) 0.76 ( ± 0.00)
MLAN [44] 0.78 ( ± 0.00) 0.88 ( ± 0.00) 0.82 ( ± 0.00) 0.67 ( ± 0.00)
SwMC [95] 0.77 ( ± 0.00) 0.90 ( ± 0.00) 0.83 ( ± 0.00) 0.62 ( ± 0.00)
AMGL [13] 0.75 ( ± 0.02) 0.90 ( ± 0.02) 0.82 ( ± 0.02) 0.63 ( ± 0.09)
AASC [96] 0.82 ( ± 0.02) 0.91 ( ± 0.01) 0.85 ( ± 0.01) 0.76 ( ± 0.02)
MVGL [15] 0.75 ( ± 0.00) 0.88 ( ± 0.00) 0.80 ( ± 0.00) 0.55 ( ± 0.00)
CorSC [35] 0.77 ( ± 0.03) 0.90 ( ± 0.01) 0.82 ( ± 0.03) 0.72 ( ± 0.04)
CotSC [34] 0.75 ( ± 0.04) 0.87 ( ± 0.01) 0.78 ( ± 0.03) 0.67 ( ± 0.03)
NESE [11] 0.82 ( ± 0.00) 0.91 ( ± 0.00) 0.85 ( ± 0.00) 0.75 ( ± 0.00)
MVCSK [24] 0.85 ( ± 0.02) 0.94 ( ± 0.01) 0.88 ( ± 0.02) 0.81 ( ± 0.02)
S-MVSC [77] 0.80 ( ± 0.02) 0.93 ( ± 0.01) 0.82 ( ± 0.02) 0.89 ( ± 0.01)
CI-GMVC [78] 0.81 ( ± 0.00) 0.92 ( ± 0.00) 0.85 ( ± 0.00) 0.74 ( ± 0.00)
MCLES [67] 0.84 ( ± 0.00) 0.94 ( ± 0.00) 0.88 ( ± 0.00) 0.79 ( ± 0.00)
CNESE [97] 0.87 (± 0.00) 0.95 (± 0.00) 0.89 (± 0.00) 0.84 (± 0.00)
MVCGE 0.93 ( ± 0.00) 0.97 ( ± 0.00) 0.95 ( ± 0.00) 0.92 ( ± 0.00)

Out-Scene SC-best [33] 0.47 ( ± 0.01) 0.39 ( ± 0.01) 0.57 ( ± 0.01) 0.34 ( ± 0.01)
AWP [20] 0.65 ( ± 0.00) 0.51 ( ± 0.00) 0.65 ( ± 0.00) 0.42 ( ± 0.00)
MLAN [44] 0.55 ( ± 0.02) 0.47 ( ± 0.01) 0.55 ( ± 0.02) 0.33 ( ± 0.03)
SwMC [95] 0.50 ( ± 0.00) 0.47 ( ± 0.00) 0.50 ( ± 0.00) 0.38 ( ± 0.00)
AMGL [13] 0.51 ( ± 0.05) 0.45 ( ± 0.03) 0.52 ( ± 0.04) 0.34 ( ± 0.05)
AASC [96] 0.60 ( ± 0.00) 0.48 ( ± 0.00) 0.60 ( ± 0.00) 0.35 ( ± 0.00)
MVGL [15] 0.42 ( ± 0.00) 0.31 ( ± 0.00) 0.43 ( ± 0.00) 0.16 ( ± 0.00)
CorSC [35] 0.51 ( ± 0.04) 0.39 ( ± 0.03) 0.52 ( ± 0.03) 0.31 ( ± 0.02)
CotSC [34] 0.38 ( ± 0.02) 0.22 ( ± 0.01) 0.39 ( ± 0.02) 0.16 ( ± 0.01)
NESE [11] 0.63 ( ± 0.00) 0.53 ( ± 0.00) 0.66 ( ± 0.00) 0.46 ( ± 0.00)
MVCSK [24] 0.65 ( ± 0.01) 0.52 ( ± 0.00) 0.65 ( ± 0.01) 0.42 ( ± 0.00)
S-MVSC [77] 0.48 ( ± 0.01) 0.54 ( ± 0.02) 0.65 ( ± 0.01) 0.46 ( ± 0.04)
CI-GMVC [78] 0.35 ( ± 0.01) 0.31 ( ± 0.00) 0.35 ( ± 0.01) 0.19 ( ± 0.00)
MCLES [67] 0.65 ( ± 0.00) 0.53 ( ± 0.00) 0.67 ( ± 0.00) 0.46 ( ± 0.00)
CNESE [97] 0.66 (± 0.00) 0.55 (± 0.00) 0.67 (± 0.00) 0.47 (± 0.00)
MVCGE 0.70 ( ± 0.00) 0.55 ( ± 0.00) 0.70 ( ± 0.00) 0.47 ( ± 0.00)

COIL20 SC-Best [33] 0.73 ( ± 0.01) 0.82 ( ± 0.01) 0.75 ( ± 0.01) 0.68 ( ± 0.02)
AWP [20] 0.68 ( ± 0.00) 0.87 ( ± 0.00) 0.75 ( ± 0.00) 0.71 ( ± 0.00)
MLAN [44] 0.84 ( ± 0.00) 0.92 ( ± 0.00) 0.88 ( ± 0.00) 0.81 ( ± 0.00)
SwMC [95] 0.86 ( ± 0.00) 0.94 ( ± 0.00) 0.90 ( ± 0.00) 0.84 ( ± 0.00)
AMGL [13] 0.80 ( ± 0.04) 0.91 ( ± 0.02) 0.85 ( ± 0.03) 0.74 ( ± 0.07)
AASC [96] 0.79 ( ± 0.00) 0.89 ( ± 0.00) 0.83 ( ± 0.00) 0.76 ( ± 0.00)
MVGL [15] 0.78 ( ± 0.00) 0.88 ( ± 0.00) 0.81 ( ± 0.00) 0.75 ( ± 0.00)
CorSC [35] 0.68 ( ± 0.04) 0.78 ( ± 0.02) 0.70 ( ± 0.03) 0.62 ( ± 0.03)
CotSC [34] 0.70 ( ± 0.03) 0.80 ( ± 0.02) 0.72 ( ± 0.03) 0.65 ( ± 0.03)
NESE [11] 0.77 ( ± 0.00) 0.88 ( ± 0.00) 0.82 ( ± 0.00) 0.69 ( ± 0.00)
MVCSK [24] 0.65 ( ± 0.04) 0.80 ( ± 0.02) 0.70 ( ± 0.03) 0.61 ( ± 0.05)
S-MVSC [77] 0.62 ( ± 0.01) 0.86 ( ± 0.02) 0.77 ( ± 0.02) 0.97 ( ± 0.02)
CI-GMVC [78] 0.86 ( ± 0.00) 0.94 ( ± 0.00) 0.90 ( ± 0.00) 0.83 ( ± 0.00)
MCLES [67] 0.79 ( ± 0.00) 0.88 ( ± 0.00) 0.83 ( ± 0.00) 0.75 ( ± 0.00)
CNESE [97] 0.82 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.78 (± 0.00)
MVCGE 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00) 1.00 ( ± 0.00)
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Table 6.2: Clustering performance on the BBCSport, MSRCv1, Extended-Yale, MNIST and MNIST-1000 datasets.

Dataset Method ACC NMI Purity ARI

MVCSK [24] 0.90 ( ± 0.07) 0.82 ( ± 0.02) 0.90 ( ± 0.02) 0.85 ( ± 0.07)
BBCSport NESE [11] 0.72 ( ± 0.00) 0.69 ( ± 0.00) 0.75 ( ± 0.00) 0.60 ( ± 0.00)

S-MVSC [77] 0.58 ( ± 0.07) 0.67 ( ± 0.01) 0.73 ( ± 0.02) 0.83 ( ± 0.04)
CI-GMVC [78] 0.61 ( ± 0.00) 0.46 ( ± 0.00) 0.63 ( ± 0.00) 0.36 ( ± 0.00)
MCLES [67] 0.88 ( ± 0.00) 0.80 ( ± 0.00) 0.88 ( ± 0.00) 0.83 ( ± 0.00)
CNESE [97] 0.72 (± 0.00) 0.68 (± 0.00) 0.76 (± 0.00) 0.60 (± 0.00)
MVCGE 0.98 ( ± 0.00) 0.94 ( ± 0.00) 0.98 ( ± 0.00) 0.95 ( ± 0.00)

MVCSK [24] 0.70 ( ± 0.02) 0.59 ( ± 0.03) 0.70 ( ± 0.02) 0.50 ( ± 0.04)
MSRCv1 NESE [11] 0.77 ( ± 0.00) 0.72 ( ± 0.00) 0.80 ( ± 0.00) 0.64 ( ± 0.00)

S-MVSC [77] 0.60 ( ± 0.00) 0.69 ( ± 0.02) 0.74 ( ± 0.02) 0.79 ( ± 0.01)
CI-GMVC [78] 0.74 ( ± 0.00) 0.72 ( ± 0.00) 0.77 ( ± 0.00) 0.59 ( ± 0.00)
MCLES [67] 0.90 ( ± 0.01) 0.83 ( ± 0.02) 0.90 ( ± 0.01) 0.77 ( ± 0.00)
CNESE [97] 0.86 (±0.00) 0.76 (±0.00) 0.86 (±0.00) 0.72 (±0.00)
MVCGE 0.93 ( ± 0.00) 0.87 ( ± 0.00) 0.93 ( ± 0.00) 0.85 ( ± 0.00)

MVCSK [24] 0.33 ( ± 0.00) 0.42 ( ± 0.00) 0.34 ( ± 0.00) 0.18 ( ± 0.00)
Extended- NESE [11] 0.43 ( ± 0.00) 0.58 ( ± 0.00) 0.47 ( ± 0.00) 0.25 ( ± 0.00)
Yale S-MVSC [77] 0.48 (± 0.03) 0.61 (± 0.01) 0.60 (± 0.01) 0.36 (± 0.05)

CI-GMVC [78] 0.32 (± 0.00) 0.34 (± 0.00) 0.35 (± 0.00) 0.02 (± 0.00)
MCLES [67] 0.48 (± 0.03) 0.48 (± 0.00) 0.48 (± 0.01) 0.10 (± 0.05)
CNESE [97] 0.60 (± 0.00) 0.75 (± 0.00) 0.60 (± 0.00) 0.51 (± 0.00)
MVCGE 0.88 ( ± 0.00) 0.86 ( ± 0.00) 0.88 ( ± 0.00) 0.77 ( ± 0.00)

MVCSK [24] 0.49 ( ± 0.00) 0.41 ( ± 0.00) 0.50 ( ± 0.00) 0.29 ( ± 0.00)
MNIST NESE [11] 0.81 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.76 ( ± 0.00)

S-MVSC [77] 0.77 ( ± 0.01) 0.81 ( ± 0.01) 0.81 ( ± 0.02) 0.76 ( ± 0.07)
CI-GMVC [78] 0.66 ( ± 0.00) 0.71 ( ± 0.00) 0.71 ( ± 0.00) 0.51 ( ± 0.00)
MCLES [67] 0.80 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.77 ( ± 0.00)
CNESE [97] 0.81 (± 0.00) 0.83 (± 0.00) 0.86 (± 0.00) 0.78 (± 0.00)
MVCGE 0.81 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.77 ( ± 0.00)

MVCSK [24] 0.70 ( ± 0.00) 0.61 ( ± 0.00) 0.70 ( ± 0.00) 0.52 ( ± 0.00)
MNIST-1000 NESE [11] 0.78 ( ± 0.00) 0.79 ( ± 0.00) 0.83 ( ± 0.00) 0.71 ( ±0.00)

S-MVSC [77] 0.66 ( ± 0.02) 0.76 ( ± 0.01) 0.76 ( ± 0.00) 0.77 ( ± 0.05)
CI-GMVC [78] 0.65 ( ± 0.00) 0.71 ( ± 0.00) 0.73 ( ± 0.00) 0.50 ( ±0.00)
MCLES [67] 0.73 ( ± 0.02) 0.72 ( ± 0.01) 0.77 ( ± 0.02) 0.58 ( ±0.04)
CNESE [97] 0.77 ( ± 0.00) 0.77 ( ± 0.00) 0.81 ( ± 0.00) 0.68 ( ±0.00)
MVCGE 0.86 ( ± 0.00) 0.83 ( ± 0.00) 0.86 ( ± 0.00) 0.78 ( ± 0.00)

method MVCGE-S, (3) No convolution term (λ2 is set to zero), and we call the obtained method

MVCGE-C, and (4) No smoothness and no convolution terms (λ1 and λ2 are set to zero). This

method is called MVCGE-SC because it is reduced to a consistent graph construction followed by a

spectral clustering step. The results obtained with MVCGE-G, MVCGE-S, MVCGE-C, MVCGE-SC

and MVCGE are summarized in Table 6.4. We used three datasets: ORL, MSRCv1 and Tetra. From

the results in Table 6.4, we can see that the regularization of the graph is indeed crucial, since the

last two terms depend on this graph. For the ORL and Tetra datasets, it can be seen from the table

that the smoothness term has a larger impact on the clustering results. However, for the MSRCv1

dataset, the convolution term is more important than the smoothness term. This is normal and is

due to the di�erent types of datasets used in this work. The results obtained with MVCGE-SC

show the importance of the last two terms in the objective function for all datasets. All these
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Table 6.3: Clustering performance on the three synthetic datasets.

Dataset Method ACC NMI Purity ARI

NESE [11] 0.64 0.75 0.75 0.63
Tetra MVCSK [24] 0.97 0.93 0.97 0.92

S-MVSC [77] 0.70 0.50 0.44 0.70
CI-GMVC [78] 0.63 0.52 0.67 0.43
MCLES [67] 0.85 0.88 0.89 0.80
CNESE [97] 0.66 0.62 0.75 0.54
MVCGE 1.00 1.00 1.00 1.00

NESE [11] 0.81 0.79 0.85 0.73
Hepta MVCSK [24] 0.89 0.85 0.89 0.80

S-MVSC [77] 0.66 0.63 0.47 0.70
CI-GMVC [78] 0.77 0.76 0.81 0.68
MCLES [67] 0.87 0.82 0.84 0.80
CNESE [97] 0.78 0.70 0.79 0.63
MVCGE 0.92 0.85 0.92 0.83

NESE [11] 0.93 0.69 0.93 0.73
Chainlink MVCSK [24] 0.63 0.05 0.63 0.07

S-MVSC [77] 0.67 0.14 0.78 0.12
CI-GMVC [78] 0.55 0.01 0.55 0.01
MCLES [67] 0.90 0.72 0.86 0.76
CNESE [97] 0.95 0.70 0.95 0.78
MVCGE 0.96 0.78 0.96 0.85

results indicate that the inclusion of all terms in the objective function contributed to the good

clustering performance of our proposed method.

Table 6.4: Ablation study with di�erent models.

Dataset Variant ACC NMI Purity ARI

MVCGE-G 0.46 0.66 0.48 0.27
ORL MVCGE-S 0.75 0.88 0.76 0.72

MVCGE-C 0.86 0.94 0.88 0.81
MVCGE-SC 0.69 0.86 0.75 0.57
MVCGE 0.93 0.97 0.95 0.92

MVCGE-G 0.68 0.57 0.68 0.45
MSRCv1 MVCGE-S 0.72 0.63 0.74 0.54

MVCGE-C 0.70 0.60 0.70 0.50
MVCGE-SC 0.59 0.54 0.61 0.37
MVCGE 0.93 0.87 0.93 0.85

MVCGE-G 0.70 0.59 0.72 0.55
Tetra MVCGE-S 0.91 0.79 0.91 0.77

MVCGE-C 0.97 0.93 0.97 0.92
MVCGE-SC 0.56 0.35 0.57 0.33
MVCGE 1.00 1.00 1.00 1.00

6.2.5 Analysis of results and method comparison

According to Table 6.1, the performance of all multi-view clustering methods is better than that

of SC -Best, which corresponds to the spectral clustering method applied to the best single view.

In fact, the presence of multiple views brings additional information to the clustering method so

that it can process the datasets better. The proposed method gives the best performance followed
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by NESE, MVCSK, S-MVSC, CI-GMVC, MCLES and CNESE methods. With respect to the large

MNIST dataset shown in Table 6.2, MVCGE shows similar results to CNESE for most cluster

indicators. Moreover, the performance of our method is better than most competing methods for

the same dataset, which shows that we are able to handle large datasets with this new approach

and achieve good results. The results we obtained on the MNIST-1000 dataset (see Table 6.2)

demonstrate the superiority of the proposed method. From Table 6.3, MVCGE achieves the best

results for the synthetic datasets even when applied to the single view datasets.

6.2.6 Clustering visualization

In this section, we visualize the clustering obtained by the proposed MVCGE method on four

datasets using the t-SNE technique [98]. In all sub�gures of Figure 6.1, the spectral projection

matrix P and the nonnegative embedding matrix H are shown for ORL, Tetra, Hepta and Chainlink.

In these sub�gures, each point corresponds to an image (ORL) or a 3D point (synthetic datasets).

We emphasize that the color corresponds to the ground-truth classes.

For ORL we present �ve clusters. From Figures 6.1(a) and 6.1(b), it can be seen that Cluster 1

and Cluster 5 are not pure, as they each contain images associated with two di�erent individuals,

which explains the result obtained in Table 6.1. The clustering of the synthetic datasets of Tetra

and Chainlink is shown in Figures 6.1(e), 6.1(f), 6.1(g) and 6.1(h). Some clustering errors are

observed, which explain the results obtained in Table 6.3. Moreover, the visualization of the

spectral representation and cluster index matrices (nonnegative embedding) associated with the

Tetra dataset shows well-separated clusters in Figures 6.1(c) and 6.1(d). This con�rms the perfect

performance of 100 % in Table 6.3. Figure 6.2 shows the estimated two clusters obtained by MVCSK,

NESE and MVCGE methods for the Chainlink dataset. According to this �gure, the worst result

is that of MVCSK and the best is that of our method. It is clear that the two clusters are well

separated by using MVCGE and Figure 6.2(c) has few clustering errors.

6.3 Conclusion

A novel approach for multi-view clustering is proposed. Unlike existing methods, it simultaneously

learns the uni�ed similarity matrix, the uniform spectral projection matrix, the nonnegative

embedding matrix (cluster index matrix) and the weight of each view. Thus, the �nal clustering

result can be obtained directly from the nonnegative embedding matrix, which is a convolution of

the consensus data representation over the graph. The proposed method combines the advantages
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Figure 6.1: t-SNE of the spectral projection and nonnegative embedding matrices obtained by the proposed
clustering method MVCGE for di�erent datasets.
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Figure 6.2: Visualization of the two clusters obtained by three di�erent methods for the Chainlink dataset.
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of graph-based approaches and matrix factorization-based methods. Experimental results on real

and synthetic datasets have shown that MVCGE outperforms many state-of-the-art methods.
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Chapter 7

Multi-view Spectral Clustering via

Constrained Nonnegative Embedding

This chapter presents a new multi-view spectral clustering via Constrained Nonnegative Embed-

ding (CNESE) that can be considered as an improved version of the method "Multi-view spectral

clustering via integrating nonnegative embedding and spectral embedding" (NESE) [11]. This

method di�ers from the aforementioned methods (MKGNE and MVCGE), by the fact that

each view is represented by a similarity matrix provided beforehand and used as input.

Thus, the kernel matrices are not used in this method. Moreover, instead of arti�cially

applying the orthogonality constraint to the nonnegative embedding matrixH, two addi-

tional terms are added to the objective function of our new model. These terms introduce

two types of constraints on the nonnegative embedding matrix H: the �rst type of con-

straints is given by the smoothness of the cluster indices over the graphs; the second type

of constraints is related to the orthogonality of the columns of the nonnegative embedding,

which contributes to be�er cluster separation. In addition, similar to the �rst two methods,

our proposed method inherits the advantages of the NESE method, namely the simultaneous

implementation of nonnegative embedding and spectral embedding matrices, which makes it

possible to obtain clustering results directly without the need for a post-processing clustering

method, such as k-means, or additional parameters.

The main contributions of this chapter are summarized as follows.

1. The proposed method retains the advantages of graph-based methods and matrix factorization-

based methods.
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2. Our method introduces a cluster indices smoothness term and an orthogonality constraint

on the nonnegative embedding matrix. This constrained version of the method NESE can

provide better clustering results than the original NESE.

3. It provides an e�cient optimization scheme of the proposed criterion.

4. The proposed method provides the clustering results directly without any post processing

procedures like k-means.

7.1 Proposed Approach

Inspired by NESE, in this chapter we develop a new method that can be considered as a constrained

version of NESE and called "Multi-view spectral clustering via integrating a Constrained Nonneg-

ative Embedding and Spectral Embedding" (CNESE). This method imposes a constraint on the

nonnegative embedding matrix so that the clustering performance obtained can be better. It di�ers

from the method NESE by adding a view-based label-like smoothness term and an orthogonality

constraint on the nonnegative embedding matrix.

Given n data points with V feature vectors, the data matrix of each view can be denoted as:

Xv = (xv1,xv2, ...,xvn). Let Sv ∈ Rn×n be the similarity matrix of the view v. As in NESE, we want

to estimate the spectral projection matrix Pv ∈ Rn×C of view v and the consistent nonnegative

embedding matrix H ∈ Rn×C , where C is the number of clusters. As we mentioned earlier, the

objective function of NESE, is given by:

min
H, Pv

V∑
v=1

‖Sv −HPvT ‖2 s.t. H ≥ 0, PvT Pv = I. (7.1)

In NESE, only the nonnegativity of the matrix H is imposed. However, since the similarity graph

of each view is available, we propose to use a set of additional constraints on the matrix H. This is

given by the cluster label smoothness over all views. Thus, by satisfying this smoothness condition

two similar data points xvi and xvj in view v are forced to have similar cluster indices (i.e., if Svij is

large, then Hi∗ should be close to Hj∗). For the view v, the term of cluster label smoothness to be

minimized in the spectral analysis is given by the following equation:

1

2

∑
i

∑
j

||Hi∗ −Hj∗ ||22 Svij = Tr
(
HT LvH

)
, (7.2)

where Lv ∈ Rn×n is the Laplacian matrix of the similarity matrix Sv given by Dv − Sv , where Dv

is a diagonal matrix whose i-th diagonal element in the v-th view is given by: Dv
ii =

n∑
j=1

Sv
ij+Sv

ji

2 .
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In [99], the authors showed that imposing an orthogonality constraint on the soft label matrix

can improve the results of semi-supervised classi�cation. Inspired by [99], we enforce that the

nonnegative embedding matrix H has orthogonal columns. For simplicity, this orthogonality can

be enforced by minimizing the following term:

||HT H − I ||22 = Tr
(
(HT H − I)T (HT H − I)

)
. (7.3)

Finally, the objective function of our proposed learning model will be:

min
Pv

,H

V∑
v=1

||Sv −HPvT ||2 + λ
V∑
v=1

√
Tr
(
HT LvH

)
+ αTr

(
(HT H − I)T (HT H − I)

)
s.t. H ≥ 0, PvT Pv = I. (7.4)

where λ is a regularization parameter, and α is a large positive value ensuring the orthogonality

of the matrix H.

Similar to methods that use view-based auto-weights [24, 95, 13, 100], we use two sets of view

weights. These two sets correspond to the �rst and second terms in the objective function (7.4),

respectively. The �rst set of weights is given by:

δv =
1

2 ∗ ||Sv −HPvT ||2
v = 1, ...., V. (7.5)

The second set of weights associated with the smoothness terms of the views is given by:

wv =
1

2 ∗
√
Tr
(
HT LvH

) v = 1, ...., V. (7.6)

Finally, by adopting these two sets of weights, it can be easily shown that the minimization

problem presented in Eq. (7.4) is equivalent to minimizing the following objective function:

min
Pv

,H

V∑
v=1

δv ||Sv −HPvT ||22 + λ

V∑
v=1

wv Tr
(
HT LvH

)
+ αTr

(
(HT H − I)T (HT H − I )

)
s.t. H ≥ 0, PvT Pv = I. (7.7)

Once we obtain the nonnegative embedding matrix H, each instance is assigned to the cluster

corresponding to the highest element in the row of that instance.

7.1.1 Optimization

In this section we describe an e�cient optimization of the objective function in (7.7). We use an

alternating minimization scheme to update the matrices H and Pv . It consists of �xing one matrix

and updating the other. We repeat this process until convergence.
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To initialize the matrix H, we set both parameters λ and α to zero, so that we get the objective

function of NESE. We use the e�cient algorithm presented in [93] to compute an initial value for

the matrix H. We use the same schemes described in [93] to compute Sv and to initialize Pv .

Update Pv: If we �x H, wv , and δv , the objective function of our method is equivalent to:

min
Pv

V∑
v=1

δv ||Sv −HPvT ||22. (7.8)

Since PvT Pv = I, this problem is the famous orthogonal Procrustes problem, and its solution

can be obtained by using the singular value decomposition of SvT H . Let UΣVT = SVD (SvT H).

The solution of equation (7.8) is given by:

Pv = UVT with UΣVT = SV D (SvT H). (7.9)

Update H:

Fixing Pv , wv , and δv , we compute the derivative of the functional in (7.7) w.r.t. H:

∂f

∂H
= 2

V∑
v=1

δv (H − Sv Pv ) + 2λ

V∑
v=1

wv LvH + 4αH (HT H − I).

Note that any real matrix A can be written as the di�erence of two nonnegative matrices, i.e.,

A = A+−A− whereA+ = 1
2 (|A|+ A) andA− = 1

2 (|A| − A). LetMv = SvPv = Mv+−Mv− ,

and Lv = Lv+ − Lv− .

After some algebraic manipulations, the gradient matrix can be written as: ∂f
∂H = 2 ( ∆− −

∆+ ) where:

∆− =
∑V

v=1 δvH +
∑V

v=1 δvMv− + λ
∑V

v=1 wv Lv+ H + 2αHHT H .

∆+ =
∑V

v=1 δvMv+ + λ
∑V

v=1 wv Lv−H + 2αH .

Using the gradient descent update rule, the nonnegative embedding matrix H is updated as

follows:

Hij ← Hij − µij
∂f

∂Hij
= Hij −

1

2 ∆−ij
Hij ∗ 2 ∗ ( ∆−ij − ∆+

ij ) = Hij ∗
∆+
ij

∆−ij
. (7.10)

The learning parameter µij is set to 1
2 ∆−ij

Hij . Thus, the matrix H can be updated with:

Hij ← Hij ∗
∆+
ij

∆−ij
i = 1, ...., n; j = 1, ...,K. (7.11)

Update wv and δv :

After updating Pv and H, wv and δv are updated using Equations (7.6) and (7.5), respectively.

The proposed CNESE method is summarized in Algorithm1.
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Algorithm 1 (CNESE)

Input: Data samples Xv ∈ Rn×dv , v = 1, ..., V.
The similarity matrix Sv for each view.
Parameters α and λ.

Output: The consistent non negative embedding matrix H.
The spectral embedding matrix Pv for each view.

Initialization: The weights wv = 1
v and δv = 1.

Initialize Pv and H as mentioned in section 3.1.
Repeat
Update Pv, v = 1, ..., V using (7.9).
Update H using (7.11).
Update wv, v = 1, ..., V using (7.6).
Update δv, v = 1, ..., V using (7.5).
End

7.2 Performance Evaluation

7.2.1 Experimental Setup

To test the e�ectiveness of our method, eight image datasets were used. We compare our proposed

method with several state-of-the-art methods, namely, the Co-training approach for multi-view

Spectral Clustering (CotSC) [34], the Co-regularized approach for multi-view Spectral Clustering

(CorSC) [35]. Also, some graph-based approaches are used such as: Multi-view Learning clustering

with Adaptive Neighbors (MLAN) [44], Self-weighted Multi-view Clustering with multiple graphs

(SwMC) [95], A�nity Aggregation for Spectral Clustering (AASC) [96], Graph Learning for Multi-

View clustering (MVGL) [15], Parameter-free Auto-weighted Multiple Graph Learning (AMGL)

[13], Multi-view clustering via Adaptively Weighted Procrustes (AWP) [20], Auto-weighted Multi-

View Clustering via Kernelized graph learning (MVCSK) [24], and the method Multi-view spectral

clustering via integrating Nonnegative Embedding and Spectral Embedding (NESE) [11]. The

spectral clustering result of the best single view is also included and is denoted as "SC -best".

Also, for some datasets, the average of the a�nity matrices of all views is computed and then the

Spectral Clustering algorithm is applied to this fused a�nity matrix and denoted as "SC Fused".

In our method, the computation of the input matrices Sv follows the same computational scheme

as in [11]. H is initialized as mentioned before.

Two parameters are used in our method: α and λ. The value of α and λ is chosen in the set {10,

10+2, 10+3, 10+4, 10+5, 10+6, 10+7, and 10+8}. It was shown that the best value of α is 10+6

(any other value larger than 10+6 does not improve the results).
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7.2.2 Experimental results

Table 7.1 shows the results obtained by our method and several other methods on the COIL20,

ORL, and Out-Scene datasets. The highest values are marked in bold. The number in parentheses

shows the standard deviation of the indicator value calculated over several trials. These results

show that the best clustering methods are MVSCK, NESE and CNESE (proposed). Therefore, we

use these methods for comparison in the following. Table 7.2 shows a comparison between our

methods and the state-of-the-art methods: NESE and MVCSK. The datasets used are: BBCSport,

MSRCv1, MNIST-10000, and Extended Yale B Face. Table 7.3 shows a comparison between our

method and some state-of-the-art methods on the Caltech101 dataset.

Table 7.1: Clustering performance on the COIL20, ORL, and Out-Scene datasets. The best performance for each
indicator is in bold.

Dataset Method ACC NMI Purity ARI

COIL20 SC-Best 0.73 (± 0.01) 0.82 (± 0.01) 0.75 (± 0.01) 0.68 (± 0.02)
AWP 0.68 (± 0.00) 0.87 (± 0.00) 0.75 (± 0.00) 0.71 (± 0.00)
MLAN 0.84 (± 0.00) 0.92 (± 0.00) 0.88 (± 0.00) 0.81 (± 0.00)
SwMC 0.86 (± 0.00) 0.94 (± 0.00) 0.90 (± 0.00) 0.84 (± 0.00)
AMGL 0.80 (± 0.04) 0.91 (± 0.02) 0.85 (± 0.03) 0.74 (± 0.07)
AASC 0.79 (± 0.00) 0.89 (± 0.00) 0.83 (± 0.00) 0.76 (± 0.00)
MVGL 0.78 (± 0.00) 0.88 (± 0.00) 0.81 (± 0.00) 0.75 (± 0.00)
CorSC 0.68 (± 0.04) 0.78 (± 0.02) 0.70 (± 0.03) 0.62 (± 0.03)
CotSC 0.70 (± 0.03) 0.80 (± 0.02) 0.72 (± 0.03) 0.65 (± 0.03)
MVCSK 0.65 (± 0.04) 0.80 (± 0.02) 0.70 (± 0.03) 0.61 (± 0.05)
NESE 0.77 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.69 (± 0.00)
CNESE 0.82 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.78 (± 0.00)

ORL SC-Best 0.66 (± 0.02) 0.76 (± 0.02) 0.71 (± 0.02) 0.67 (± 0.01)
AWP 0.80 (± 0.00) 0.91 (± 0.00) 0.83 (± 0.00) 0.76 (± 0.00)
MLAN 0.78 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.67 (± 0.00)
SwMC 0.77 (± 0.00) 0.90 (± 0.00) 0.83 (± 0.00) 0.62 (± 0.00)
AMGL 0.75 (± 0.02) 0.90 (± 0.02) 0.82 (± 0.02) 0.63 (± 0.09)
AASC 0.82 (± 0.02) 0.91 (± 0.01) 0.85 (± 0.01) 0.76 (± 0.02)
MVGL 0.75 (± 0.00) 0.88 (± 0.00) 0.80 (± 0.00) 0.55 (± 0.00)
CorSC 0.77 (± 0.03) 0.90 (± 0.01) 0.82 (± 0.03) 0.72 (± 0.04)
CotSC 0.75 (± 0.04) 0.87 (± 0.01) 0.78 (± 0.03) 0.67 (± 0.03)
MVCSK 0.85 (± 0.02) 0.94 (± 0.01) 0.88 (± 0.02) 0.81 (± 0.02)
NESE 0.82 (± 0.00) 0.91 (± 0.00) 0.85 (± 0.00) 0.75 (± 0.00)
CNESE 0.87 (± 0.00) 0.95 (± 0.00) 0.89 (± 0.00) 0.84 (± 0.00)

Out-Scene SC-best 0.47 (± 0.01) 0.39 (± 0.01) 0.57 (± 0.01) 0.34 (± 0.01)
AWP 0.65 (± 0.00) 0.51 (± 0.00) 0.65 (± 0.00) 0.42 (± 0.00)
MLAN 0.55 (± 0.02) 0.47 (± 0.01) 0.55 (± 0.02) 0.33 (± 0.03)
SwMC 0.50 (± 0.00) 0.47 (± 0.00) 0.50 (± 0.00) 0.38 (± 0.00)
AMGL 0.51 (± 0.05) 0.45 (± 0.03) 0.52 (± 0.04) 0.34 (± 0.05)
AASC 0.60 (± 0.00) 0.48 (± 0.00) 0.60 (± 0.00) 0.35 (± 0.00)
MVGL 0.42 (± 0.00) 0.31 (± 0.00) 0.43 (± 0.00) 0.16 (± 0.00)
CorSC 0.51 (± 0.04) 0.39 (± 0.03) 0.52 (± 0.03) 0.31 (± 0.02)
CotSC 0.38 (± 0.02) 0.22 (± 0.01) 0.39 (± 0.02) 0.16 (± 0.01)
MVCSK 0.65 (± 0.01) 0.52 (± 0.00) 0.65 (± 0.01) 0.42 (± 0.00)
NESE 0.63 (± 0.00) 0.53 (± 0.00) 0.66 (± 0.00) 0.46 (± 0.00)
CNESE 0.66 (± 0.00) 0.55 (± 0.00) 0.67 (± 0.00) 0.47 (± 0.00)
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Table 7.2: Clustering performance on the MSRCv1, BBCSport, Extended-Yale, and MNIST-10000 datasets.

Dataset Method ACC NMI Purity ARI

SC Fused 0.77 (± 0.00) 0.70 (± 0.00) 0.79 (± 0.00) 0.61 (± 0.00)
MVCSK 0.70 (± 0.02) 0.59 (± 0.03) 0.70 (± 0.02) 0.50 (± 0.04)

MSRCv1 NESE 0.77 (± 0.00) 0.72 (± 0.00) 0.80 (± 0.00) 0.64 (± 0.00)
CNESE 0.86 (±0.00) 0.76 (±0.00) 0.86 (±0.00) 0.72 (±0.00)

SC Fused 0.72 (± 0.06) 0.60 (± 0.04) 0.72 (± 0.04) 0.48 (± 0.00)
MVCSK 0.90 ( ± 0.07) 0.82 ( ± 0.02) 0.90 ( ± 0.02) 0.85 ( ± 0.07)

BBCSport NESE 0.72 (± 0.00) 0.69 (± 0.00) 0.75 (± 0.00) 0.60 (± 0.00)
CNESE 0.72 (± 0.00) 0.68 (± 0.00) 0.76 (± 0.00) 0.60 (± 0.00)

SC Fused 0.36 ( ± 0.01) 0.49 ( ± 0.02) 0.40 ( ± 0.01) 0.14 ( ± 0.02)
MVCSK 0.33 ( ± 0.00) 0.42 ( ± 0.00) 0.34 ( ± 0.00) 0.18 ( ± 0.00)

Ext-Yale NESE 0.43 (± 0.00) 0.58 (± 0.00) 0.47 (± 0.00) 0.25 (± 0.00)
CNESE 0.60 (± 0.00) 0.75 (± 0.00) 0.60 (± 0.00) 0.51 (± 0.00)

SC Fused 0.20 (± 0.00) 0.13 (± 0.00) 0.20 ( ± 0.00) 0.05 (± 0.00)
MVCSK 0.49 (± 0.00) 0.41 (± 0.00) 0.50 ( ± 0.00) 0.29 (± 0.00)

MNIST NESE 0.81 (± 0.00) 0.83 (± 0.00) 0.85 (± 0.00) 0.76 (± 0.00)
-10000 CNESE 0.81 (± 0.00) 0.83 (± 0.00) 0.86 (± 0.00) 0.78 (± 0.00)

Table 7.3: Clustering performance on the Caltech101 dataset. The best performance for each indicator is bolded.
The "-" symbol indicates that the ARI indicator was not provided by the corresponding published paper.

Dataset Method ACC NMI Purity ARI

SC Best 0.10 ( ± 0.00) 0.32 ( ± 0.01) 0.22 ( ± 0.00) -
AMGL 0.22 ( ± 0.00) 0.38 ( ± 0.01) 0.40 ( ± 0.00) -

Caltech101 MLAN 0.22 ( ± 0.00) 0.31 ( ± 0.01) 0.37 ( ± 0.00) -
MVCSK 0.17 ( ± 0.00) 0.20 ( ± 0.01) 0.18 ( ± 0.00) 0.03 ( ± 0.01)
NESE 0.30 ( ± 0.00) 0.47 ( ± 0.00) 0.46 ( ± 0.00) 0.19 ( ± 0.00)
CNESE 0.32 ( ± 0.00) 0.49 ( ± 0.00) 0.48 ( ± 0.00) 0.21 ( ± 0.00)

7.2.3 Parameter sensitivity and ablation study

As mentioned earlier, two parameters are used in our approach: α, and λ. In theory, a large value

of α is preferred. In our experiments, the value of α and the value of λ vary within the set {10,

10+2, 10+3, 10+4, 10+5, 10+6, 10+7, and 10+8}. Figure 7.1 plots the ACC and NMI indicators

as a function of α and λ. The plots shown correspond to four datasets: COIL20, ORL, MSRCv1,

and BBCSport. From this �gure, it can be seen that for most datasets, any value of α less than

10+6 leads to low clustering performance; moreover, any value greater than 10+6 leads to results

almost equal to those obtained considering α equal to 10+6, for which the clustering performance

is high. In this setting, we did not observe any performance improvement by further increasing α.

Therefore, a value of α equal to 10+6 will be the best choice.

If we assume that α is �xed at 10+6, according to this �gure, the best values of ACC and NMI

are obtained for a value of λ equal to 10+3, 10+7, 10+5 and 10+6, respectively, for the COIL20,

ORL, MSRCv1 and BBCSport datasets. In this setting (α is �xed at 10+6), it can be seen that the

clustering performance is relatively stable when λ varies.

We also perform an ablation study using the proposed CNESE method. Speci�cally, we de�ne
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.1: Clustering performance ACC (%) (left column) and NMI (%) (right column) as a function of α and λ
on the COIL20, ORL, MSRCv1, and BBCSport datasets.

108



7.2. Performance Evaluation

two di�erent variants of CNESE: (1) No smoothness term in the global objective function (7.7)

(i.e., λ is set to zero), and we call the resulting method CNESE-O, which means that only the

orthogonality constraint is used in CNESE. (2) No orthogonality constraint (α is set to zero),

and we call the resulting method CNESE-R. The results obtained with CNESE-O, CNESE-R, and

CNESE are summarized in Table 7.4. We used seven di�erent datasets. As shown in this table,

both the smoothness term and the orthogonality constraint contributed to the good clustering

performance of the proposed method.

Table 7.4: Ablation study with di�erent conditions. The best performance for each indicator is in bold.

Dataset Variant ACC NMI Purity ARI

NESE 0.82 0.91 0.85 0.75
CNESE-O 0.82 0.91 0.85 0.76

ORL CNESE-R 0.83 0.91 0.86 0.76
CNESE 0.87 0.95 0.89 0.84

NESE 0.77 0.72 0.80 0.64
CNESE-O 0.77 0.72 0.80 0.64

MSRCv1 CNESE-R 0.77 0.72 0.80 0.64
CNESE 0.86 0.76 0.86 0.72

NESE 0.63 0.53 0.66 0.46
CNESE-O 0.62 0.51 0.65 0.45

Out-scene CNESE-R 0.63 0.53 0.66 0.47
CNESE 0.66 0.55 0.67 0.47

NESE 0.72 0.69 0.75 0.60
CNESE-O 0.72 0.69 0.75 0.60

BBCSport CNESE-R 0.72 0.69 0.75 0.60
CNESE 0.72 0.68 0.76 0.60

NESE 0.43 0.58 0.47 0.25
CNESE-O 0.43 0.57 0.46 0.24

Exended- CNESE-R 0.45 0.59 0.47 0.25
Yale CNESE 0.60 0.75 0.60 0.51

NESE 0.81 0.83 0.85 0.76
CNESE-O 0.81 0.83 0.85 0.76

MNIST CNESE-R 0.81 0.83 0.85 0.76
-10000 CNESE 0.81 0.83 0.86 0.78

NESE 0.30 0.47 0.46 0.19
CNESE-O 0.30 0.47 0.46 0.19

Caltech101 CNESE-R 0.30 0.47 0.46 0.19
CNESE 0.32 0.49 0.48 0.21

7.2.4 Analysis of results and method comparison

The previously mentioned tables and �gures summarize the experimental results of our method.

According to Table 7.1, the performance of the spectral clustering algorithm applied to a single

view, referred to as SC Best, is always lower than the performance of other algorithms applied

to multi-view datasets. This is due to the fact that using multiple views provides additional

information that can improve the results. From Tables 7.1, 7.2, and 7.3, we can infer that the

results obtained by our method are superior to those obtained by other methods for most datasets.

In particular, the performance indicators, namely ACC, NMI, purity and ARI, obtained by our
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proposed method are greater than those obtained by the NESE method for all datasets. For the

COIL20 dataset, although the indicators obtained by CNESE are lower than those obtained by

SwMC, they are greater than those obtained by NESE, which shows that our method, which is the

constrained version of NESE, has improved the result. Although the performance of CNESE for

the BBCSport dataset is worse than that of MVCSK for all clustering indicators, it is still equal or

close to the performance obtained by NESE for the four indicators.

Regarding the Extended Yale dataset, the high results of CNESE can be interpreted as follows:

This dataset consists of face images with large illumination variations. When we compare the

results of NESE, MVCSK and SC Fused with those of CNESE, we can �nd that our method achieves

better clustering results than other multi-view clustering methods. Therefore, the competing

methods, SC Fused, MVCSK and NESE could not take advantage of the two views (two types

of descriptors). On the other hand, the proposed CNESE enforces an automatically weighted

view-based smoothness on the cluster index matrix as well as an orthogonality constraint, which

justi�es its high performance. This is also con�rmed in the ablation study presented in Table 7.4

(Extended Yale dataset). For SC Fused, the use of a uni�ed graph created by fusing the individual

graphs of the Extended Yale dataset resulted in low performance. For example, the ACC indicator

changes from 36% to 60% when switching from SC Fused to CNESE.

The proposed method was tested on two large datasets MNIST-10000 and Caltech101. For the

large MNIST-10000 dataset, Table 7.2 shows that the performance obtained for CNESE is very

close to or even exceeds that of NESE, but is still signi�cantly better than the MVCSK and SC

methods. Moreover, Table 7.3 shows that our method gave better performance compared to other

approaches for the large dataset Caltech101 .

The obtained results show that the smoothness of the cluster indices over the graphs and the

orthogonality of the cluster index matrix contributed to better cluster separation.

7.2.5 Convergence study

In this section, the convergence of CNESE is studied. The number of iterations is �xed at 40. For

each iteration, the value of the objective function is computed. Our objective function is given by:
V∑
v=1

||Sv −HPvT ||2 + λ
V∑
v=1

√
Tr
(
HT LvH

)
+ αTr

(
(HT H − I)T (HT H − I)

)
.

Figure 7.2 shows the convergence of our method on the MSRCv1 dataset. The "x" axis in this

�gure represents the number of iterations and the "y" axis represents the value of the objective

function computed at each iteration. Figure 7.2(a) represents the convergence of CNESE on the
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Figure 7.2: Convergence of CNESE on the MSRCv1 dataset.

MSRCv1 dataset, and Figure 7.2(b) shows the convergence of the individual terms of the objective

function of CNESE. As can be seen from Figure 7.2, our method converges quickly. The solution

was obtained in only 10 iterations.

7.2.6 Computational complexity analysis and time cost

In this section, we study the computational complexity of the proposed method. Our algorithm

is based on four main steps: Updating H, P, wv and δv (see Algorithm 1). Looking at the four

steps of Algorithm 1 from a computational point of view, it is easy to see that step 1 is the most

expensive one. In fact, Step 2, Step 3 and Step 4 are based on simple matrix multiplications and

additions. Therefore, we can ignore their contribution to the computational cost of Algorithm 1

in favor of the �rst step.

To estimate the matrix P (Step 1), we should compute the SVD of the matrix (SvT H). The

computational cost of this is O (nC2), where C is the total number of clusters. Since C << n,

the computational complexity of our algorithm is lower than that of most graph-based algorithms

which is equal to O (n3). It should be noted that the computational complexities of the main

competing methods MVSCK and NESE are O (n3) and O (nC2) respectively, while that of many

competing graph-based methods is O (n3).

In Table 7.5, we compare the time cost of MVCSK, NESE, and CNESE. For these three methods,

we set the number of iterations to 60.

From Table 7.5, we can observe that the time cost of our method is slightly higher than that of

NESE for all datasets. In fact, the CNESE method computes the cluster index matrix di�erently
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Table 7.5: The time cost (seconds) of MVCSK, NESE, and CNESE.

Dataset ORL COIL20 MSRCv1 BBCSport

MVCSK 80.33 2667.30 8.34 168.29
NESE 3.37 24.26 0.79 49.41
CNESE (ours) 4.34 26.98 1.07 52.60

in each iteration. Moreover, it has some additional processes related to the estimation of the

additional automatic weights. In [11], it was shown that the NESE method is one of the fastest

clustering algorithms. In many datasets, it was even ranked as the second or third fastest algorithm

among the baselines CotSC, CorSC, MLAN, SwMC, AASC, MVGL, AMGL and AWP.

On the other hand, it can be seen from Table 7.5 that the time cost of our method is lower than that

of MVCSK for all datasets. This result can be explained by the fact that MVCSK is a graph-based

method with computational complexity equal toO(n3). Moreover, it has additional cost associated

with the k-means clustering step.

7.3 Conclusion

In this chapter, we presented a constrained version of a recent graph-based clustering approach

called Nonnegative Embedding and Spectral Embedding. To improve the multi-view clustering

performance of this approach, we introduced a new criterion that uses two constraints on the

nonnegative embedding matrix (cluster index matrix). The �rst constraint is given by the smooth-

ness of the cluster indices over the graphs. The second constraint is given by the orthogonality of

the cluster index matrix.

We have studied the e�ect of these two constraints on the �nal clustering performance. Extensive

experimental results show the e�ectiveness of the proposed method. Experiments on real image

datasets have shown that adopting the proposed constraints in the model improves the clustering

results. The proposed approach can be applied to di�erent types and sizes of datasets.
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Chapter 8

One-step Multi-view Spectral

Clustering with Cluster Label

Correlation Graph

In this chapter, we present a novel approach to one-step graph-based multi-view clustering.

This method is called Multi-view Spectral Clustering with a Self-Taught Robust Graph Learning

(MCSRGL). In contrast to the three aforementionedmulti-view clusteringmethods, our pro-

posed method introduces a novel innovation, inspired by semi-supervised learning. This

key innovation consists of creating an additional graph by using the cluster label correla-

tion to the graphs associated with the data space. Second, similar to the CNESE method, a

smoothing constraint is exploited to constrain the cluster-label matrix and make it more

consistent with the original data graphs as well as with the label graph. Moreover, this

method considers the same input data graphs adopted by CNESE to represent each view.

Thus, the kernel representation is not adopted in our model. Experimental results on several

public datasets show the e�ciency of the proposed approach. All cluster evaluation metrics show

signi�cant improvement by applying our method to di�erent types and sizes of datasets. The

average improvement (across all datasets) is the di�erence between the indicator obtained by our

approach and the indicator obtained by the most competitive method. The average improvement

is approximately 4 %, 2 %, 3 %, and 2 % for the Accuracy indicator, the Normalized Mutual Infor-

mation indicator, the Purity indicator, and the Adjusted Rand index, respectively. Therefore, our

new method brings two main improvements to the NESE method presented in [11]. The �rst

improvement is provided by a smoothness constraint on the cluster label matrix, and the second
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improvement is achieved by an additional graph built upon the estimated soft cluster labels. The

smoothness is imposed by the multiple-view graphs as well as by the adaptive label graph.

The contributions of this chapter are as follows.

1. Unlike other multi-view clustering approaches, we proposed a new approach that can

provide an additional graph-based on the soft cluster labels.

2. This method introduces cluster label smoothness which improves the performance.

3. This approach provides the �nal clustering assignment without a post-processing step such

as k-means or spectral rotation.

4. An e�cient optimization scheme is introduced to solve the proposed criterion.

5. Several experiments are conducted on di�erent types and sizes of datasets and show the

superiority of the proposed approach.

8.1 Proposed Approach

This chapter develops a novel approach inspired by NESE. This method is called Multi-view

Spectral Clustering with a self-taught Robust Graph Learning (MCSRGL). First, this method

introduces a label-like smoothness constraint on the nonnegative embedding matrix (cluster

label matrix). Second, an additional graph built from the space of labels is added in the form

of an additional view to add richness to the data and improve the results. Given a data matrix

Xv = (xv1,xv2, ...,xvn), n is the number of samples, and V is the total number of views. For a given

view v, Sv ∈ Rn×n is the similarity matrix, Pv ∈ Rn×C is the spectral representation matrix

associated with the similarity matrix Sv , and H ∈ Rn×C is the consensus cluster label matrix used

for clustering. Note that C is the number of clusters. As we mentioned earlier, our new method is

an improvement of the method in [11], so the �rst term of our method is the same as that of the

method NESE and is given by:

min
H, Pv

V∑
v=1

‖Sv −HPvT ‖2 s.t. H ≥ 0, PvT Pv = I. (8.1)

Unlike NESE, which imposes only a non-negativity constraint on the matrix H, our method adds

a cluster label smoothness term over all views. This smoothness constraint can be interpreted as

follows: Given two data samples xvi and xvj in view v, if xvi and xvj are similar (i.e., the value of

the element Svij is large), they are forced to have similar cluster labels (i.e., hi should be very close
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to hj). Here, hi (a C-vector) denotes the i-th row of H and is the cluster label vector of the i-th

sample. Moreover, the second term of our method will be given by:

1

2

∑
i

∑
j

||hi − hj ||22 Svij = Tr
(
HT LvH

)
, (8.2)

where Lv = Dv − Sv ∈ Rn×n is the Laplacian matrix of the associated similarity matrix Sv , Dv is

the diagonal matrix of view v with i-th element given by: Dv
ii =

n∑
j=1

Sv
ij+Sv

ji

2 .

The objective function of our proposed model will be:

min
Pv

,H

V∑
v=1

||Sv −HPvT ||2 + λ

V∑
v=1

√
Tr
(
HT LvH

)
s.t. H ≥ 0, PvT Pv = I, (8.3)

where λ is a regularization parameter.

To control the importance of each view in global optimization, we use the automatic weighting

of views described in the literature [24, 44, 13, 43, 23]. In our criterion, the weights of the data

views as well as the additional view (based on the estimated labels) are adaptively set and updated,

taking into account the contribution of each view to the loss terms. Thus, they can reduce the

impact of noisy views.

Making the weight inversely proportional to the square root of the loss was �rst introduced in

[13]. Since then, this iterative trick has been used in many works aimed at minimizing an objective

function consisting of an additive aggregation of multiple losses or terms.

As we have already mentioned, this idea of using an automatically weighted strategy to minimize

an additive function of multiple losses was inspired by previous works to avoid the use of extra

prede�ned parameters and reduce the complexity of the proposed method, making the optimization

scheme simpler and more e�cient. The square root of the Frobenius norm and the trace term in

(8.3) allows us to derive these automatic weights by taking the derivatives of the objective function.

For this purpose, two sets of weights are added. The �rst set of weights is assigned to the �rst

term of our objective function, and the second set of weights is assigned to the smoothness term.

These weights are automatically updated during the iterative process of the proposed method.

The �rst set of weights is given by the following equation:

δv =
1

2 ∗ ||Sv −HPvT ||2
v = 1, ..., V. (8.4)

The second set of weights is given by:

wv =
1

2 ∗
√
Tr
(
HT LvH

) v = 1, ..., V. (8.5)
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Thus, the objective function of MCSRGL is given by:

min
Pv

,H

V∑
v=1

δv ||Sv −HPvT ||22 + λ
V∑
v=1

wv Tr
(
HT LvH

)
s.t. H ≥ 0, PvT Pv = I. (8.6)

8.1.1 Incorporating cluster label space

Most multi-view clustering algorithms extract information from the data space and ignore the

cluster labels. The data space, also known as a feature descriptor, extracts data information.

Relying only on the graphs derived from the features, without using the cluster memberships (in

the form of predictions), may not be the best option for a clustering task. Most current graph-based

algorithms produce graphs from the original feature space, which may be sensitive to noise or

outliers. We introduce a new similarity metric based on the cluster label space. We consider the

cluster label space as a new way of looking at data that can be characterized by a new similarity

metric. Indeed, the labeling information can be used to create an additional graph that can be

integrated into the multi-view clustering criterion. In our proposed approach, this additional

graph is constructed using the correlation of the predicted labels. Therefore, if two samples that

have low similarity in the data space may have high similarity in the cluster label space. The

cluster label space can a�ect the similarity between data points. The basic problem is to �gure

out how to combine the cluster label space and the data space.

However, the methods in [101, 102, 103] show that the label space contains hidden information

that can improve the classi�cation performance. Therefore, using the label space can provide an

additional similarity matrix representing the data. Thus, this extra graph can be use as an extra

view in the model (8.3).

The principle of this new method is to create a label graph and assign it to an additional view. We

will have a number of views equal to V + 1. Let SV+1 denotes this additional graph. The nodes of

this graph are the data points and the weight of each edge is the Pearson correlation coe�cient,

as shown in Eq. (8.7). Given two data points xi and xj with corresponding label vectors hi and

hj , the similarity between these data points is given by Eq. (8.7).

SV+1(i, j) = correlation (hi ,hj) =

C∑
k=1

(hik −mi) (hjk −mj)√
C∑
k=1

(hik −mi)2

√
C∑
k=1

(hjk −mj)2

, (8.7)
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Figure 8.1: Illustration of the MCSRGL method.

where mi and mj are the mean values of row vectors hi and hj , respectively. The value of this

correlation coe�cient varies between−1 and +1. If the two vectors hi and hj are equal, this value

is +1. A value of +1 means a positive perfect correlation and a value of −1 means a negative

perfect correlation. If the two vectors hi and hj are completely uncorrelated, the correlation

coe�cient is zero.

Once the n2 correlation coe�cients are estimated, we eliminate the negative values. The obtained

matrix is too dense to reveal the cluster structure, so we further build a p-nearest neighbor graph

matrix. Speci�cally, we only retain the �rst p largest similarities for each sample, and set the

others to zero. This graph forms an additional view V + 1 that is integrated with the graphs of

the other views.

The illustration of the proposed method is shown in Figure 8.1. From this �gure, it can be seen

that after estimating the matrix H, the label graph is computed and an additional view related to

the label space is added during the iterations of the algorithm. Then the �nal objective function

of the learning model is given below.

min
Pv

,H

V+1∑
v=1

δv ||Sv −HPvT ||22 + λ
V+1∑
v=1

wv Tr
(
HT LvH

)
s.t. H ≥ 0, PvT Pv = I. (8.8)

In addition, the equations of the weights will be given again by Eqs. (8.4) and (8.5) where
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v = 1, ..., V + 1.

8.1.2 Optimization

In this section, we present the procedure for optimizing the objective function in (8.8). We use

an e�ective algorithm based on an alternating minimization scheme to solve the �nal objective

function and update the matrices H and Pv .

To initialize the matrices Sv and their corresponding spectral representations Pv , the same method

as in [93] is used. Moreover, as mentioned earlier, to initialize the matrix SV+1, the H step (see

Eq. (8.9)) of our algorithm is used with a number of views equal to V , then SV+1 is computed

using the correlation coe�cients of the rows of H as explained in the previous section. The initial

spectral representation, PV+1, is set to the C eigenvectors of SV+1 associated with the C largest

eigenvalues.

Then, the algorithm iteratively performs the following two steps alternately.

Update H: Fixing Pv , wv and δv , we compute the derivative of the functional in (8.8) with respect

to H:
∂f

∂H
=

V+1∑
v=1

2 δv (H − Sv Pv ) + 2λ
V+1∑
v=1

wv LvH .

The optimal solution H is obtained by vanishing this derivative. Consequently, H is given by:

H =

(
V+1∑
v=1

(δv I + λwv Lv)

)−1 (V+1∑
v=1

δv Sv Pv
)
. (8.9)

Thus, to obtain the matrix H, we apply the element-wise ReLU (Recti�ed Linear Unit) operator to

the elements of the matrix H obtained by Equation (8.9).

Update Pv: Fixing H, wv and δv , the objective function of our method is equivalent to:

min
Pv

V+1∑
v=1

δv ||Sv −HPvT ||22. (8.10)

Given that PvT Pv = I, the above problem is the famous orthogonal Procrustes problem. The

solution of this problem can be obtained using the singular value decomposition of SvT H . Let

YΣTT = SVD (SvT H). Thus, the solution of the equation (8.10) is given by:

Pv = YTT with YΣTT = SV D (SvT H). (8.11)

Update wv and δv :
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After updating the two matrices Pv and H, the weights δv and wv of each view are updated using

Eqs. (8.4) and (8.5), respectively with v = 1, ..., V + 1.

The proposed MCSRGL method is shown in Algorithm1. After H is estimated, the cluster index

of the sample xi is given by the column index corresponding to the maximum value in the i-th

row of H.

Algorithm 1 MCSRGL

Input: Data matrix Xv ∈ Rn×dv , v = 1, ..., V.
The similarity matrix Sv for each view, v = 1, ..., V .
Parameters p and λ.

Output: The consensus cluster label matrix H.
The spectral representation matrix Pv for each view.

Initialization: The weights wv = 1
V and δv = 1.

Initialize Sv and Pv as mentioned in section 3.2., v=1,..., V.

Initialize SV+1 and PV+1:
Update H using Eq. (8.9).
Estimate SV+1 using Eq. (8.7).
Set PV+1 to the C eigenvectors of SV+1.

Repeat
1- Update Pv, v = 1, ..., V + 1 using Eq. (8.11).
2- Update H using Eq. (8.9).
3- Update SV+1 using Eq. (8.7).
4- Update δv, v = 1, ..., V + 1 using Eq. (8.4).
5- Update wv, v = 1, ..., V + 1 using Eq. (8.5).
End

8.1.3 Convergence analysis

In this section, we present the convergence proof of the objective function of Algorithm 1

according to the weight parameter wv .

The same procedure can be considered for the weight parameter δv . An important Lemna, used to

prove the convergence, is introduced below.

Lemma 1. Given two positive constants a and b, we have the following inequality:
√
a − a

2
√
b
≤
√
b − b

2
√
b
. (8.12)

Proof of Lemma1:

(
√
a −

√
b)2 ≥ 0 =⇒ (

√
a)2 − 2

√
a
√
b + (

√
b)2 ≥ 0 =⇒ 2

√
a
√
b − (

√
a)2 ≤

2 (
√
b)2 − (

√
b)2 =⇒ (8.12).

Considering the following equation:

f(H) =
V+1∑
v=1

δv ||Sv −HPvT ||22.
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8. One-step Multi-view Spectral Clustering with Cluster Label Correlation Graph

Without loss of any generality, we assume that λ is equal to one in (8.8). By plugging the above

de�nitions for f (H) in problem (8.8), the latter will become:

min
V+1∑
v=1

wv Tr
(
HT LvH

)
+ f (H). (8.13)

Suppose that Ĥ is the solution of the second step in Algorithm 1, and H is the solution of the

objective function, obtained at the previous iteration. We have to prove the following inequality:

V+1∑
v=1

√
Tr
(
ĤT Lv Ĥ

)
+ f (Ĥ) ≤

V+1∑
v=1

√
Tr
(
HT LvH

)
+ f (H). (8.14)

It is clear that if we prove the inequality (8.14) for any two consecutive iterations of the Algorithm

1, the convergence of the objective function of the original problem (8.3) will be therefore satis-

�ed, since it is non-increasing over the iterations because each iteration is based on successive

minimization steps.

Proof of (8.14):

Ĥ is the solution of the second step in Algorithm 1 (current iteration), and H is the solution

of the objective function, obtained at the previous iteration of Algorithm 1. This yields the

following:

V+1∑
v=1

wv Tr
(
ĤT Lv Ĥ

)
+ f (Ĥ) ≤

V+1∑
v=1

wv Tr
(
HT LvH

)
+ f (H). (8.15)

By plugging the expression of wv (i.e., Eq. (8.5)), into Eq. (8.15), we get the following inequality:

V+1∑
v=1

Tr
(
ĤT Lv Ĥ

)
2 ∗

√
Tr
(
HT LvH

) + f (Ĥ) ≤
V+1∑
v=1

Tr
(
HT LvH

)
2 ∗

√
Tr
(
HT LvH

) + f (H). (8.16)

Let a = Tr
(
ĤT Lv Ĥ

)
and b = Tr

(
HT LvH

)
. According to Lemma 1, we have the following

inequality:

V+1∑
v=1


√
Tr
(
ĤT Lv Ĥ

)
−

Tr
(
ĤT Lv Ĥ

)
2 ∗

√
Tr
(
HT LvH

)
 ≤

V+1∑
v=1

√Tr (HT LvH
)
−

Tr
(
HT LvH

)
2 ∗

√
Tr
(
HT LvH

)
 .

(8.17)

Finally, we add the left and right sides in Equations (8.16) and (8.17), and we get:

V+1∑
v=1

√
Tr
(
ĤT Lv Ĥ

)
+ f (Ĥ) ≤

V+1∑
v=1

√
Tr
(
HT LvH

)
+ f (H),

which proves the convergence of Algorithm 1.
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8.2 Performance Evaluation

8.2.1 Experimental setup

In this section, we study the clustering performance of the proposed method on six real datasets.

We also used the MNIST-10000 and the MNIST-25000 datasets, which can be considered as large

datasets. The clustering performance of our method is compared with that of several state-of-the-

art methods, including: AWP [20], MLAN [44], SwMC [95], AMGL [13], AASC [96], MVGL [15],

CorSC [38], CotSC [34], MVCSK [24], NESE [11], MCLES [67], and SC-Best which is the spectral

clustering algorithm of the best view of the data. In our proposed method, two parameters are

used: p, which represents the number of most similar sample in the label space for a given sample

(used to build the label graph), and λ, the regularization parameter. The value of p varies in the

range [5, 25]. Also, the parameter λ varies in the range [10−10, 10+2].

8.2.2 Experimental results

Table 8.1 shows the results obtained using our proposed clustering method and several state-of-

the-art methods with the COIL20, ORL, Out-Scene, and NUS datasets. The number in parentheses

represents the standard deviation of the indicator value obtained in multiple trials. These results

show that for most of these datasets, the best clustering methods are MVSCK, NESE, MCLES,

and MCGRCL (proposed method). Therefore, we use these methods for comparison for the large

datasets, namely MNIST-10000 and MNIST-25000. Table 8.2 shows the comparison between our

method and the state-of-the-art methods: MVCSK, NESE, and MCLES applied to the MNIST-10000

and MNIST-25000 datasets.

8.2.3 Ablation study and parameter sensitivity

In the proposed approach, two parameters are used: λ and p. Since p is used to select the most

similar instances in the label space, our conducted experiments show that the best choice of this

parameter is 8 for the ORL, Out-Scene, NUS, MNIST-10000, and MNIST-25000 datasets, and it

is 25 for the COIL20 dataset. The two sub�gures of Figure 8.2 show the clustering performance

indicators ACC and NMI as a function of parameter λ for COIL20 and ORL datasets. According to

Figure 8.2, the best values of ACC and NMI are obtained for a value of λ equal to 10 for COIL20

and for a value of λ less than 10−2 for the ORL dataset.

An ablation study is performed in Table 8.3. Two di�erent variants of MCSRGL are de�ned:

MCSRGL-S and MCSRGL-L. The �rst variant studies the e�ect of adding only the term representing
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Table 8.1: Clustering performance on the COIL20, ORL, Out-Scene, and NUS datasets.

Dataset Method ACC NMI Purity ARI

COIL20 SC-Best 0.73 (± 0.01) 0.82 (± 0.01) 0.75 (± 0.01) 0.68 (± 0.02)
AWP 0.68 (± 0.00) 0.87 (± 0.00) 0.75 (± 0.00) 0.71 (± 0.00)
MLAN 0.84 (± 0.00) 0.92 (± 0.00) 0.88 (± 0.00) 0.81 (± 0.00)
SwMC 0.86 (± 0.00) 0.94 (± 0.00) 0.90 (± 0.00) 0.84 (± 0.00)
AMGL 0.80 (± 0.04) 0.91 (± 0.02) 0.85 (± 0.03) 0.74 (± 0.07)
AASC 0.79 (± 0.00) 0.89 (± 0.00) 0.83 (± 0.00) 0.76 (± 0.00)
MVGL 0.78 (± 0.00) 0.88 (± 0.00) 0.81 (± 0.00) 0.75 (± 0.00)
CorSC 0.68 (± 0.04) 0.78 (± 0.02) 0.70 (± 0.03) 0.62 (± 0.03)
CotSC 0.70 (± 0.03) 0.80 (± 0.02) 0.72 (± 0.03) 0.65 (± 0.03)
MVCSK 0.65 (± 0.04) 0.80 (± 0.02) 0.70 (± 0.03) 0.61 (± 0.05)
NESE 0.77 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.69 (± 0.00)
MCLES 0.79 ( ± 0.00) 0.88 ( ± 0.00) 0.83 ( ± 0.00) 0.75 ( ± 0.00)
MCSRGL 0.89 (± 0.00) 0.94 (± 0.00) 0.89 (± 0.00) 0.84 (± 0.00)

ORL SC-Best 0.66 (± 0.02) 0.76 (± 0.02) 0.71 (± 0.02) 0.67 (± 0.01)
AWP 0.80 (± 0.00) 0.91 (± 0.00) 0.83 (± 0.00) 0.76 (± 0.00)
MLAN 0.78 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.67 (± 0.00)
SwMC 0.77 (± 0.00) 0.90 (± 0.00) 0.83 (± 0.00) 0.62 (± 0.00)
AMGL 0.75 (± 0.02) 0.90 (± 0.02) 0.82 (± 0.02) 0.63 (± 0.09)
AASC 0.82 (± 0.02) 0.91 (± 0.01) 0.85 (± 0.01) 0.76 (± 0.02)
MVGL 0.75 (± 0.00) 0.88 (± 0.00) 0.80 (± 0.00) 0.55 (± 0.00)
CorSC 0.77 (± 0.03) 0.90 (± 0.01) 0.82 (± 0.03) 0.72 (± 0.04)
CotSC 0.75 (± 0.04) 0.87 (± 0.01) 0.78 (± 0.03) 0.67 (± 0.03)
MVCSK 0.85 (± 0.02) 0.94 (± 0.01) 0.88 (± 0.02) 0.81 (± 0.02)
NESE 0.82 (± 0.00) 0.91 (± 0.00) 0.85 (± 0.00) 0.75 (± 0.00)
MCLES 0.84 ( ± 0.00) 0.94 ( ± 0.00) 0.88 ( ± 0.00) 0.79 ( ± 0.00)
MCSRGL 0.92 (± 0.00) 0.96 (± 0.00) 0.93 (± 0.00) 0.88 (± 0.00)

Out-Scene SC-best 0.47 (± 0.01) 0.39 (± 0.01) 0.57 (± 0.01) 0.34 (± 0.01)
AWP 0.65 (± 0.00) 0.51 (± 0.00) 0.65 (± 0.00) 0.42 (± 0.00)
MLAN 0.55 (± 0.02) 0.47 (± 0.01) 0.55 (± 0.02) 0.33 (± 0.03)
SwMC 0.50 (± 0.00) 0.47 (± 0.00) 0.50 (± 0.00) 0.38 (± 0.00)
AMGL 0.51 (± 0.05) 0.45 (± 0.03) 0.52 (± 0.04) 0.34 (± 0.05)
AASC 0.60 (± 0.00) 0.48 (± 0.00) 0.60 (± 0.00) 0.35 (± 0.00)
MVGL 0.42 (± 0.00) 0.31 (± 0.00) 0.43 (± 0.00) 0.16 (± 0.00)
CorSC 0.51 (± 0.04) 0.39 (± 0.03) 0.52 (± 0.03) 0.31 (± 0.02)
CotSC 0.38 (± 0.02) 0.22 (± 0.01) 0.39 (± 0.02) 0.16 (± 0.01)
MVCSK 0.65 (± 0.01) 0.52 (± 0.00) 0.65 (± 0.01) 0.42 (± 0.00)
NESE 0.63 (± 0.00) 0.53 (± 0.00) 0.66 (± 0.00) 0.46 (± 0.00)
MCLES 0.65 ( ± 0.00) 0.53 ( ± 0.00) 0.67 ( ± 0.00) 0.46 ( ± 0.00)
MCSRGL 0.70 (± 0.00) 0.55 (± 0.00) 0.70 (± 0.00) 0.47 (± 0.00)

NUS SC-Best 0.21(± 0.01) 0.09(± 0.01) 0.21(± 0.01) 0.07(± 0.02)
AWP 0.28(± 0.00) 0.15(± 0.00) 0.29(± 0.00) 0.09(± 0.00)
MLAN 0.25(± 0.00) 0.15(± 0.00) 0.26(± 0.00) 0.04(± 0.00)
SwMC 0.15(± 0.00) 0.08(± 0.00) 0.17(± 0.00) 0.01(± 0.00)
AMGL 0.25(± 0.01) 0.13(± 0.01) 0.27(± 0.01) 0.07(± 0.01)
AASC 0.25(± 0.00) 0.13(± 0.00) 0.27(± 0.00) 0.06(± 0.00)
MVGL 0.15(± 0.00) 0.07(± 0.00) 0.16(± 0.00) 0.01(± 0.00)
CorSC 0.27(± 0.01) 0.14(± 0.01) 0.29(± 0.01) 0.09(± 0.01)
CotSC 0.29(± 0.01) 0.16(± 0.01) 0.30(± 0.01) 0.09(± 0.01)
MVCSK 0.26(± 0.01) 0.15(± 0.00) 0.28(± 0.00) 0.08(± 0.00)
NESE 0.30(±0.00) 0.17(± 0.00) 0.32(± 0.00) 0.10(± 0.00)
MCLES 0.30(±0.00) 0.16(± 0.00) 0.32(± 0.00) 0.10(± 0.00)
MCSRGL 0.33(±0.00) 0.18(± 0.00) 0.35(± 0.00) 0.11(± 0.00)

the smoothness of the cluster labels over all graphs with the objective function of NESE. The

resulting method is called MCSRGL-S. The second variant considers the e�ect of including the

label graph as an additional view in the objective function of NESE. The resulting method is

called MCSRGL-L. The results obtained with NESE, MCSRGL-S, MCSRGL-L and MCSRGL are

summarized in Table 8.3. We used two datasets: ORL and Out-Scene. From the results in Table
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Table 8.2: Clustering performance on the MNIST-10000 and the MNIST-25000 datasets.

Dataset Method ACC NMI Purity ARI

MVCSK 0.49 ( ± 0.00) 0.41 ( ± 0.00) 0.50 ( ± 0.00) 0.29 ( ± 0.00)
MNIST- NESE 0.81 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.76 ( ± 0.00)
10000 MCLES 0.80 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.77 ( ± 0.00)

MCSRGL 0.81 ( ± 0.00) 0.84 ( ± 0.00) 0.86 ( ± 0.00) 0.78 ( ± 0.00)

MVCSK 0.47 ( ± 0.00) 0.38 ( ± 0.00) 0.52 ( ± 0.00) 0.25 ( ± 0.00)
MNIST- NESE 0.72 ( ± 0.00) 0.75 ( ± 0.00) 0.77 ( ± 0.00) 0.65 ( ± 0.00)
25000 MCLES 0.73 ( ± 0.00) 0.76 ( ± 0.00) 0.78 ( ± 0.00) 0.64 ( ± 0.00)

MCSRGL 0.77 ( ± 0.00) 0.80 ( ± 0.00) 0.82 ( ± 0.00) 0.69 ( ± 0.00)
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Figure 8.2: Clustering performance ACC (%) and NMI (%) as a function of λ on the COIL20 and ORL datasets.

8.3, we can see that both the inclusion of the label space and the smoothness term contributed to

the good clustering performance of our method. We can also see that the label graph contributed

more than the smoothness term.

Table 8.3: Ablation study with di�erent conditions.

Dataset Variant ACC NMI Purity ARI

NESE 0.82 0.91 0.85 0.75
ORL MCSRGL-S 0.83 0.91 0.86 0.76

MCSRGL-L 0.92 0.96 0.93 0.88
MCSRGL 0.92 0.96 0.93 0.88

NESE 0.63 0.53 0.66 0.46
Out-Scene MCSRGL-S 0.63 0.53 0.66 0.47

MCSRGL-L 0.69 0.54 0.69 0.46
MCSRGL 0.70 0.55 0.70 0.47

8.2.4 Analysis of results and method comparison

The performance of some state-of-the-art methods and our proposed method are shown in Tables

8.1 and 8.2. First, it is noticeable that in Table 8.1, the result of "SC-Best", which represents the
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8. One-step Multi-view Spectral Clustering with Cluster Label Correlation Graph

best result obtained by applying the spectral clustering algorithm to each view, is lower than the

results obtained by most multi-view clustering algorithms in most cases.

From Table 8.1, it can be seen that our algorithm achieves high performance on all datasets. More

speci�cally, MCSRGL achieves high clustering results compared to the NESE method. For the

COIL20 dataset, when we compare the result of our method with the SwMC method, we �nd that

the result for the ACC indicator is higher than that of SwMC, for the NMI and ARI indicators

it is the same as that of SwMC, and for the purity indicator the result of our method is only 1%

lower than that obtained by SwMC. However, when we compare this result with the method

NESE method (our method is an improved version of this last method) and with all other methods

in Table 8.1, we �nd that MCSRGL is the most superior, which justi�es the superiority of this

method on the COIL20 dataset. Moreover, Table 8.1 shows that both methods NESE and MVCSK

are more e�cient than the other methods, which leads us to use them as comparison methods on

the large MNIST-10000 dataset.

Table 8.2 shows the result of MCSRGL on the MNIST-10000 and MNIST-25000 datasets. This result

is similar to that of NESE for the indicator ACC, and higher than that of NESE for the indicators

NMI, purity, and ARI, for the MNIST-10000 dataset, however, according to the MNIST-25000, our

algorithm gives higher performance than the other three methods, indicating that our method

performs well once applied to large datasets.

All these results show that the added constraint on the cluster label matrix and the use of the

additional label graph contribute to better performance.

With only one parameter, our proposed method is very practical. It achieves a good improvement

of all cluster evaluation metrics. The average of the improvement of each cluster evaluation

metric is calculated by taking the average of the di�erence between our method and the most

competitive method across all datasets. The maximum improvement of each cluster indicator

metric is also recorded. For the Accuracy indicator, the average improvement is about 4 % and

the maximum improvement obtained for the ORL dataset is 7 %. For the Normalized Mutual

Information indicator, the average improvement is 2 % and the maximum improvement is 4 % for

the MNIST-25000 dataset. In addition, the Purity indicator has been improved by 3 % on average

and the maximum improvement is 5 % for the ORL dataset. The average improvement of the

adjusted rand index is about 2 % and the maximum improvement of this indicator is 7 % for the

dataset ORL.
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Figure 8.3: Convergence of MCSRGL on the COIL20, ORL, Out-Scene, and NUS datasets.

8.2.5 Convergence study

In this section, the convergence of MCSRGL on four datasets is shown in Figure 8.3. In our method,

the number of iterations is set to 100. For each iteration, the value of the objective function is

calculated using the objective function given by Eq. (8.8). Figure 8.3 shows the convergence of our

method for the COIL20, ORL, Out-Scene, and NUS datasets. As can be seen from Figure 8.3, the

convergence of our proposed method is fast. The solution was obtained in less than 40 iterations.

8.2.6 Clustering visualization

To make it more intuitive, we visualize the clustering obtained by MVCSK, NESE and MCSRGL

methods on two datasets: COIL20, and ORL using the t-Distributed Stochastic Neighbor Embedding

(t-SNE) technique [98]. The features of a given sample (used as input for t-SNE) are set to the

corresponding row in the spectral representation matrix P for the MVCSK method, and to the
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corresponding row in the cluster label matrix H for both NESE and MCSRG methods. The color

in these subimages corresponds to the estimated clusters, and each point represents one image.

It can be clearly seen that the performances in Figure 8.4 are consistent with the quantitative

results in Table 8.1. The results from Figure 8.4 also show that our method MCSRGL is able to

obtain better separated clusters than the other two methods: NESE and MVCSK, for the two

datasets COIL20 and ORL. It also shows that MVCSK has more clustering errors compared to NESE

and MCSRGL, which also justi�es the result obtained in Table 8.1. This shows that incorporating

the label space via an additional graph and adding a cluster label smoothness term improve the

performance of MCSRGL compared to the other two methods NESE and MVCSK.

8.3 Conclusion

In this chapter, a novel multi-view graph-based clustering method is proposed. This method is an

improvement of the graph-based clustering method presented in [11], and called Nonnegative

Embedding and Spectral Embedding (NESE). We introduced a new criterion that uses and exploits

two concepts. The �rst concept is based on adding a constraint on the cluster label matrix given

by the smoothness of the cluster labels over all graphs. The second concept is based on integrating

the label space via an additional graph into the estimation framework. The impact of these

two concepts on the �nal clustering performance is investigated. Experimental results on real

image datasets of di�erent types and sizes show the e�ectiveness and superiority of the proposed

approach.
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Figure 8.4: t-SNE visualization of the spectral projection, and cluster label matrices on the COIL20, and ORL
datasets.
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Chapter 9

A Unified Framework for Multi-view

Clustering via Consensus Graph and

Spectral Representation Learning

Despite the high performance of the aforementioned multi-view clustering methods,

they directly fuse all similarity matrices of all views. The performance of these algo-

rithms can be a�ected by noisy a�nity matrices. To overcome this drawback, in this

chapter we propose a novel method called One Step Multi-view Clustering via Consen-

sus Graph Learning and Soft Clustering Assignments (OSMGSCA). Instead of directly

merging the similarity matrices of di�erent views, which may contain noise, a step of

learning the individual graphs and the consensus graph is integrated in the new pro-

posed model. In this model, we force the similarity matrices of di�erent views to be too

similar, which eliminates the problem of noisy views. Also, similar to the MKGNE and

MVCGE methods presented in Chapter 5 and Chapter 6, this novel approach considers

learning of the consistent graphs using a kernel representation of the views. Moreover,

our model makes it possible to obtain the �nal clustering assignment directly without another

step by using a nonnegative embedding matrix. This approach can solve �ve subtasks simultane-

ously. It jointly estimates the joint similarity matrix of all views, the similarity matrix of each

view, the corresponding spectral projection matrix, the uni�ed clustering indicator matrix, and

automatically gives the weight of each view without using additional parameters. In addition,

another version of our method is also studied in this chapter. This method di�ers from

the �rst one by using a consensus spectral projection matrix and a consensus Laplacian
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matrix over all views. An iterative algorithm is proposed to solve the optimization problem

of these two methods. Our methods are tested on several real datasets, in order to prove their

usefulness and their superiority to the state of the art methods. The main contributions of this

chapter are given below.

1. We propose an end-to-end solution starting from the data or their kernel representations.

The proposed approach can jointly estimate the graph of each view, the consensus graph,

the spectral projection matrices for all views, the nonnegative embedding matrix (soft

clustering assignments), and the weights of each view. This joint estimation results in

friendly clustering entities, namely the graphs and the spectral representations.

2. By using the nonnegative embedding matrix representing the soft clustering assignments,

the �nal clustering assignment is determined directly without any post-processing step.

3. Our method inherits the advantages of consensus multi-view learning methods, matrix

factorization methods, and graph-based learning methods.

4. We use an iterative algorithm to solve the resulting optimization problem. Several real-world

multi-view datasets of di�erent types and sizes are used to validate the e�ectiveness of our

algorithm against other competing methods.

5. Another variant of our proposed method is also proposed and tested. In this variant, the

soft clustering assignments are associated with the consensus graph and spectral projection,

while in the �rst variant they are associated with the view-based graphs and spectral

projections.

9.1 Proposed Approach

Inspired by the method in [104], which simultaneously computes the similarity matrix (graph

matrix) of each view, the consensus similarity and the �nal clustering assignment, we develop

a new method, namely One Step Multi-view Clustering via Consensus Graph Learning and

Soft Clustering Assignments (OSMGSCA). Unlike the method presented in [104], our proposed

method ensures that the cluster assignments satisfy graph-based smoothing as well as graph-based

convolution of the di�erent spectral representations.

This method can learn the similarity matrices of all views and their corresponding spectral

projection matrices, consensus similarity matrix, and �nal clustering assignment jointly by using
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the nonnegative embedding matrix to obtain the cluster assignments of each sample directly

without a post-processing step, and it gives the weight of each view automatically without

using additional parameters. Moreover, we propose a variant of the proposed method called

Uni�ed Multi-view Clustering via Joint Graph Learning and Nonnegative Matrix Assignments

(U-MCJGLNMA). In this variant the constraints smoothing and convolution are built on the

consensus graph and the consensus spectral representation.

These two methods are investigated in this chapter. We �rst explain the approach OSMGSCA.

Then, we present another variant of our method, which consists in using some uni�ed graph

and spectral representation instead of using the matrices of the individual views. This method is

referred to as U-MCJGLNMA.

OSMGSCA can estimate four types of entities together: 1) the consensus similarity matrix, 2) the

similarity matrix of each view, 3) the corresponding spectral projection matrix of each similarity

matrix, and 4) the consensus nonnegative embedding matrix. This method automatically updates

the weights of each view without any additional parameter. We will explain the main concepts

of our method and then present the global objective function. We will start by presenting the

main modules and terms used by OSMGSCA. Finally, we will give the global objection function

allowing to estimate the unknowns.

Let n denote the total number of samples. These are represented by V di�erent views or feature

vectors. These should be grouped into C disjoint clusters. Given the data matrix of each view,

this matrix can be denoted as Xv = (xv1,xv2, ...,xvn) ∈ Rdv×n, where dv is the dimension of the

feature vector in the view v, where v = 1, ..., V . The kernel trick is used to map our data into a

space where they will be better represented. Thus, the kernel matrix of each view is represented

by Kv . Without loss of generality, we will assume that the kernel matrices are obtained using the

Gaussian kernel with adaptive scales.

We aim to jointly estimate the following unknown matrices: S∗ ∈ Rn×n, Sv ∈ Rn×n, Pv ∈ Rn×C ,

and H ∈ Rn×C . Our proposed criterion is composed by �ve terms. First, the self expressive

property and the kernel matrices are used to estimate the similarity graph of each view

The �rst and second terms will be given by the equation below.

min
Sv
,v=1,...,V

V∑
v=1

Tr (Kv − 2Kv Sv + Sv T Kv Sv )+ ||Sv||22 s.t. 0 ≤ Sv ≤ 1, Sv1 = 1, diag(Sv) = 0.

(9.1)

The second term is a simple regularization that provides stable solutions. As it is known, multi-view

clustering consists of assigning each sample to the same group in di�erent views, i.e. the similarity
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between two points must be roughly the same in di�erent views. So each similarity matrix Sv

will be enforced to align with a consensus similarity matrix S∗ to learn di�erent information from

multiple views. This matrix explores the complementary of di�erent views by the additional

information given by each similarity matrix. Besides, the e�ect of noise and outliers present in a

certain view will be reduced. Therefore, instead of doing similarity fusion, we impose that the

individual similarities matrices Sv are close to a consensus similarity matrix S∗. Thus, the third

term of our objective function will be given by:

min
S∗

V∑
v=1

‖S∗ − Sv ‖2F . (9.2)

As we have mentioned before, we aim to directly obtain the cluster assignments represented

by a nonnegative embedding matrix H. In our work, we impose that this matrix is a kind of

convolution of each view spectral representation Pv over its corresponding graph Sv . The index

of the highest value in the row vector Hi∗ indicates the cluster to which the data sample belongs.

Then the fourth term of our objective function, which is inspired by NESE [11], is given by:

min
H,Pv

V∑
v=1

||Sv −HPvT ||F s.t. , HT H = I , PvT Pv = I. (9.3)

To get more accurate nonnegative embedding matrix, a view-based cluster label smoothness term

over the matrix H is added in the objective function of our method, and it is given by:

min
H

V∑
v=1

1

2

∑
i

∑
j

||Hi∗ −Hj∗ ||2 Svij

1/2

= min
H

V∑
v=1

√
Tr
(
HT LvH

)
, (9.4)

where Lv = Dv − Sv ∈ Rn×n is the Laplacian matrix of the similarity matrix of each view

v, and Dv is the diagonal matrix of the v-th similarity matrix with its elements are given by:

Dv
ii =

n∑
j=1

Sv
ij+Sv

ji

2 . This term indicates that if the value of the similarity matrix corresponding to

the similarity between two data points xvi and xvj is large, the value of Hi∗ will be very close to

Hj∗ , and thus xvi and xvj will be forced to be in the same cluster.

Two view’s weights wv and δv are used by our method to automatically allocate the weights of all

views. They are given by:

wv =
1

2
√
Tr (HT LvH )

. (9.5)

δv =
1

2 ∗ ||Sv −HPvT ||2
. (9.6)
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Therefore, our learning model is obtained by combining all terms. Thus, the �nal objective

function will be given by Eq. (9.7).

min
Sv
,Pv

,S∗,H

V∑
v=1

{
Tr (Kv − 2Kv Sv + SvT Kv Sv) + ||Sv||22 + λ1 ||S∗ − Sv||22 + λ2 δv ||Sv −HPvT ||22

+λ3wv Tr (HT LvH),

(9.7)

where λ1, λ2, and λ3 are regularization parameters.

In Eq.(9.7), we used the following two facts: (1) minimizing
∑V

v=1 ||Sv −HPvT ||F is equivalent to

minimizing
∑V

v=1 δv ||Sv −HPvT ||22, and (2) minimizing
∑V

v=1

√
Tr
(
HT LvH

)
is equivalent

to minimizing
∑V

v=1wv Tr
(
HT LvH

)
.

The illustration of the proposed method is shown in Figure 9.1.

Figure 9.1: Illustration of the OSMGSCA method.

In the above criterion, the convolution and smoothness of H is performed on the individual graphs

Sv , and spectral representations Pv .

Therefore, a variant of the proposed approach can perform these tasks on the consensus graph

S∗ and a consensus spectral representation P∗. This gives rise to the version of our method

U-MCJGLNMA. The di�erence between OSMGSCA and U-MCJGLNMA is that the latest consists

of using the uni�ed matrices in the last two terms instead of using the matrices of all views. The
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objective function of this method will be given in Eq. (9.8).

min
Sv
,S∗,P∗,H

V∑
v=1

{
Tr (Kv − 2Kv Sv + SvT Kv Sv) + ||Sv||22 + λ1 ||S∗ − Sv||22

}
+λ2 ||S∗ −HP∗T ||22 + λ3 Tr (HT L∗H). (9.8)

The illustration of the proposed U-MCJGLNMA method is shown in Figure 9.2.

Figure 9.2: Illustration of the U-MCJGLNMA method.

9.2 Optimization of the model

9.2.1 Optimization of OSMGSCA (Eq. (9.7))

In this section, the optimization scheme of the objective function in (9.7) is introduced. Eq. (9.7)

is not jointly convex with respect to the unknown matrices. However, it is convex with respect

to each of them while holding the other �xed. Therefore, (9.7) can be e�ectively solved with an

alternating optimization algorithm. First, the optimization procedure of OSMGSCA is introduced

to update the matrices Sv , S∗, Pv , and H.

Besides, we initialize the matrices Sv and Pv by using the same method as in [93], and the matrix

S∗ is initialized by taking the average of the matrices Sv .

Then, by using the iterative procedure, the algorithm performs the updating steps as follows.
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Update H: Fixing S∗, Sv , Pv , wv and δv , the nonnegative embedding matrix H is updated by

computing the derivative of the functional in (9.7) with respect to H:

∂f

∂H
=

V∑
v=1

2 δv λ2 (H − Sv Pv ) + 2λ3

V∑
v=1

wv LvH .

To get the optimal solution H, this derivative is vanished. After some simple algebraic manipula-

tions, we can get the H:

H =

(
V∑
v=1

(δv λ2 I + λ3wv Lv)

)−1 ( V∑
v=1

δv λ2 Sv Pv
)
. (9.9)

Thus, to satisfy the orthogonality constraint imposed on the matrix H, we carry out an orthog-

onalization for the matrix H obtained by Equation (9.9). In addition, to satisfy the constraint

of positivity imposed on the matrix H, we use the element-wise ReLU (Recti�ed Linear Unit)

operator to the elements of the matrix H.

Update Pv: Fixing S∗, Sv , H, wv and δv , the objective function of our method will be equal to:

min
Pv

V∑
v=1

δv ||Sv −HPvT ||22. (9.10)

We update Pv, v = 1, ..., V separately. Knowing that PvT Pv = I, the above problem is the

famous orthogonal Procrustes problem. To get the solution of this problem, we use the singular

value decomposition of SvT H . Let Uv Σv VvT = SVD (SvT H). Thus, the solution of Equation

(9.10) is given by:

Pv = Uv VvT with UvΣvVvT = SV D (SvT H). (9.11)

Update Sv: Fixing S∗, Pv , H, wv and δv , we have to solve the following problem.

min
Sv

V∑
v=1

Tr (Kv − 2Kv Sv + SvT Kv Sv) + ||Sv||22 + λ1 ||S∗ − Sv||22 + λ2 δv ||Sv −HPvT ||22

+λ3 wv Tr (HT LvH).

(9.12)

The following identity is a well-known identity derived from the spectral clustering analysis:

Tr (HT LvH) =
1

2

∑
i

∑
j

‖Hi∗ − Hj∗‖2 Svij = Tr (QSv), (9.13)

where Hi∗ and Hj∗ are the i-th and j-th rows of the matrix H. The matrix Q is given by:

Qij = 1
2 ‖Hi∗ − Hj∗‖2. If we replace Q by its expression in Eq. (9.12), we obtain:
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min
Sv

V∑
v=1

Tr (Kv − 2Kv Sv + SvT Kv Sv) + ||Sv||22 + λ1 ||S∗ − Sv||22 + λ2 δv ||Sv −HPvT ||22

+λ3 wv Tr (QSv)s.t. 0 ≤ Sv ≤ 1, SvT1 = 1, diag(Sv) = 0.

(9.14)

We update Sv, v = 1, ..., V separately. For each view, we �rst calculate Sv without the constraints.

Then, the obtained solution is projected in the constrained space.

By setting the derivative of this objective function to zero, we obtain the expression of Ŝv , which

represents the similarity matrix for each view without taking into account the constraints:

Ŝv = (Kv + (1 + λ1 + λ2 δv) I )−1 (Kv + λ1 S∗ + λ2 δv HPvT − 1

2
wv λ3 Q) (9.15)

Then, to satisfy the constraints over each similarity matrix, we project it into a constrained space.

Moreover, for a �xed v, the optimization of every row Svi,: is independent on the optimization of

the other rows.

Therefore, the following problem will be the solution of Sv : For each view v and for each row of

the similarity matrix, we get the following minimization problem:

min
0≤Sv

i,:≤1,Sv
i,:

T 1=1, Sv
i,i=0
||Svi,: − Ŝvi,:||22.

The Lagrange function of the above minimization problem can be written as:

L(Svi,:, αvi , βi) = ||Svi,: − Ŝvi,:||22 − αvi (Svi,:T1− 1) − βTi Svi,: , (9.16)

where αvi and βvi ≥ 0 are Lagrangian multipliers. Therefore, the i-th row of the similarity matrix

for each view Sv is equal to [105, 55]:

Svi,: = max(Ŝvi,: + αvi 1
T , 0), Svi,i = 0. (9.17)

The elements of Ŝvi,: are rearranged in decreasing order. We obtain S′vi,: = [S
′v
i,1, ..., S

′v
i,n]T . By

considering the constraint Svi,:T1 = 1, and the assumption of using K nearest neighbors to

represent each data (i.e., the Svi,: vector contains only K non-zero elements), we can get αi =

1
K −

1
K

∑K
l=1 S

′v
i,l. The closed-form solution for Svi,: is given by:

Svi,j = S
′v
i,m +

1

K
− 1

K

K∑
l=1

S
′v
i,l ifj ∈ Nk(i); otherwise Svi,j = 0, (9.18)

where m ∈ {1, 2, ....,K} is the corresponding index of the j-th element in the rearranged vector

S′vi,:.
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Update S∗: Fixing Sv , Pv , H, wv and δv , we have to solve the following problem.

min
S∗

V∑
v=1

‖S∗ − Sv ‖2F . (9.19)

It is clear that the consensus similarity matrix S∗ is equal to the average of all similarity matrices

Sv . Same as before, after obtaining the matrix S∗, the K-NN algorithm is applied on each row of

the matrix S∗, to get the K most similar samples to each given data point.

Update wv and δv :

After updating the matrices Sv , S∗, Pv , and H, the weights wv and δv of each view are updated

respectively by using Eqs. (9.5) and (9.6). The proposed OSMGSCA method is summarized in

Algorithm1.

Algorithm 1 OSMGSCA

Input: Data matrices Xv ∈ Rn×dv , v = 1, ..., V , and their corresponding kernel matrices Kv .
Parameters λ1, λ2, and λ3.

Output: The consensus nonnegative embedding matrix H.
The similarity graph of each view Sv .
The consensus similarity matrix S∗.
The spectral projection matrices Pv .

Initialization: The weights of all views: wv = 1
V and δv = 1.

Initialize the similarity matrices of all views Sv as mentioned in section 3.2
Initialize their corresponding spectral projection matrices Pv as mentioned in section 3.2.
Repeat
Update H using Eq. (9.9).
Update Pv, v = 1, ..., V using Eq. (9.11).
Update Sv v = 1, ..., V using Eq. (9.18).
Update S∗ by doing the average of all matrices Sv .
Update δv, v = 1, ..., V and wv, v = 1, ..., V using Eqs. (9.6) and (9.5) respectively.
End

9.2.2 Optimization of U-MCJGLNMA (Eq. (9.8))

In this section, the optimization scheme of the objective function in (9.8) is introduced. According

to the second variant of our algorithm U-MCJGLNMA, the main di�erence between this version

and OSMGSCA is in computing the matrices Sv , S∗, and P∗. In addition, in this approach there are

no weights to update due to the use of consensus matrices in the last two terms. First, we initialize

the matrices Sv and Pv by using the same method as in [93]. Then, the matrices S∗ and P∗ are

initialized by taking the average of the matrices Sv and Pv respectively. Therefore, by using an

iterative procedure, the algorithm performs the updating steps as follows.

Update H: Fixing S∗, Sv , and P∗, the nonnegative embedding matrix H is updated by computing
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the derivative of the functional in (9.8) with respect to H:

∂f

∂H
= 2λ2 (H − S∗ P∗ ) + 2λ3 L∗H .

To get the optimal solution H, we vanish this derivative. Therefore, H will be given by:

H = (λ2 I + λ3 L∗)−1 (λ2 S∗ P∗) . (9.20)

Same as the OSMGSCA method, to satisfy the orthogonality constraint imposed on the matrix H,

we carry out an orthogonalization step for the matrix H obtained by Equation (9.20). In addition,

to satisfy the constraint of positivity imposed on the matrix H, we use the element-wise ReLU

(Recti�ed Linear Unit) operator to the elements of the matrix H.

Update P∗: Fixing S∗, Sv , and H, the objective function of our method will be equal to:

min
P∗
||S∗ −HP∗T ||22. (9.21)

In a similar way to our �rst approach, the solution of Equation (9.21) is given by:

P∗ = FTT with FΣTT = SV D (S∗T H). (9.22)

Update Sv: Fixing S∗, P∗, H, we have to solve the following problem.

min
Sv

V∑
v=1

(
Tr (Kv − 2Kv + ST Kv Sv) + ||Sv||22 + λ1 ||S∗ − Sv||22

)
s.t. 0 ≤ Sv ≤ 1, (Sv)T1 = 1, diag(Sv) = 0.

(9.23)

By setting the derivative of this equation to zero, the expression of Ŝv , which represents the

similarity matrix for each view without taking into account the constraints, can be obtain by the

equation below.

Ŝv = (Kv + (1 + λ1) I)−1 (Kv + λ1 S∗)

(9.24)

Then, to satisfy the constraints over each similarity matrix, the same procedure mentioned for the

�rst algorithm on Eq. (9.18) is applied on each similarity matrix.

Update S∗:
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Fixing Sv , Pv , and H, we have to solve the following problem.

min
S∗

V∑
v=1

λ1 ||S∗ − Sv||22 + λ2 ||S∗ −HP∗T ||22 + λ3 Tr (HT L∗H). (9.25)

By vanishing the derivative of Eq. (9.25) with respect to S∗, the latter can have the following

solution:

ReLU


(

(
V∑
v=1

λ1 + λ2) I

)−1 ( V∑
v=1

λ1 Sv + λ2 HP∗T − 1

2
λ3 Q

) , (9.26)

where the matrix Q is the distance matrix de�ned in Eq. (9.13).

Finally, the cluster labels are obtained by taking the maximum of each row of the matrix H. The

proposed U-MCJGLNMA method is summarized in Algorithm 2.

Algorithm 2 U-MCJGLNMA

Input: Data matrices Xv ∈ Rn×dv , v = 1, ..., V , and their corresponding kernel matrices Kv .
Parameters λ1, λ2, and λ3.

Output: The consensus nonnegative embedding matrix H.
The similarity graph for each view Sv .
The consensus similarity matrix S∗.
The spectral projection matrices Pv .
The consensus spectral projection matrix P∗.

Initialization: Initialize the similarity matrices of all views Sv and their corresponding spectral projection matrices Pv .
Initialize S∗ and its corresponding P∗ as mentioned before.
Repeat
Update H using Eq. (9.20).
Update P∗ using Eq. (9.22).
Update Sv v = 1, ..., V using Eq. (9.2.2).
Update S∗ using Eq. (9.26).
End

9.3 Performance Evaluation

9.3.1 Experimental Setup

The superiority of our two approaches is demonstrated by using eight real-world multi-view

datasets. These datasets are image datasets, with the exception of the BBCSport dataset which is

textual dataset.

Compared methods. Our methods are compared with several related state-of-the-art methods

including the Co-training multi-view Spectral Clustering method (CotSC) [34], the Co-regularized

multi-view Spectral Clustering method (CorSC) in [35]. Besides, some graph-based methods are

used for comparison such as: Multi-view Learning clustering with Adaptive Neighbors approach

(MLAN) [44], the Self-weighted Multi-view Clustering with multiple graphs method (SwMC) [95],
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the A�nity Aggregation for Spectral Clustering method (AASC) [96], the Graph Learning for

Multi-View clustering approach (MVGL) [15], the Parameter-free Auto-weighted Multiple Graph

Learning method (AMGL) [13], the Multi-view clustering via Adaptively Weighted Procrustes

method (AWP) [20]. Other recent methods are used for the comparison and are adopted for some

datasets: the Auto-weighted Multi-View Clustering via Kernelized graph learning method (MVCSK)

described on [24], the Multi-view spectral clustering via integrating Nonnegative Embedding and

Spectral Embedding method (NESE) [11], the Sparse Multi-View Spectral Clustering via graph

learning method (S-MVSC) [77], the Consistency-aware and Inconsistency-aware Graph-based

Multi-View Clustering (CI-GMVC) introduced in [78], the novel approach called Multi-View

Clustering in Latent Embedding Space (MCLES) in [67], and the multi-view spectral clustering via

Constrained Nonnegative Embedding (CNESE) presented in [97]. In addition, Spectral Clustering

Best (SC-Best) [12], which implements the spectral clustering algorithm on each view separately,

and then report the best result obtained for the best view, is also used as a competitive method.

In our two approaches, the initialization of the matrices Sv and Pv follows the same computational

scheme as in [11], and the matrices S∗ and P∗ are initialized as mentioned before.

Parameter settings. According to our algorithm, there are three main parameters to be deter-

mined: λ1, λ2 and λ3. The value of λ1 is chosen in the set {0.0005, 0.005, 0.05, 0.03, 1, 10, and

10+2}, the value of λ2 is chosen in the set {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7}, and the value of λ3 is chosen in the set { 0.005, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1,

10, 10+2, 10+3}. Besides, we use a Gaussian kernel. Moreover, the two proposed methods needs

to set the K nearest samples of a given data point. Its value indicates the number of non-zero

elements in each row of the similarity matrices for all views, and the consensus similarity matrix.

This value is chosen from 10 to 20. The detailed study of this parameter sensitivity is presented

in Section 4.3.

There are four well-known evaluation metrics used in this chapter: Clustering Accuracy (ACC),

Normalized Mutual Information (NMI), Purity, and Adjusted Rand Index (ARI) [106, 107]. For the

above indicators, the higher value means the result is better.

9.3.2 Experimental results

The comparison results in terms of ACC, NMI, Purity, and ARI obtained by the proposed methods

OSMGSCA and U-MCJGLNMA and all competing methods on the eight datasets, are reported

in Tables 9.1 and 9.2. In these tables, the highest values (best performances) are marked in bold,
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and the standard deviations are presented in parentheses to indicate the variation of the value

over several trials. Note that the methods that provide a direct clustering solution this standard

deviation was set to zero. According to Table 9.1, which reports the experimental results of the

ORL, COIL20 and Out-Scene datasets, the best results are obtained by using the recent methods

which are: MVSCK, NESE, S-MVSC, CI-GMVC, MCLES, CNESE, and our proposed methods:

OSMGSCA and U-MCJGLNMA. Then, these methods are adopted for comparison for the rest of

the datasets. Table 9.2 shows a comparison between our two methods and the mentioned state-of-

the-art methods on the BBCSport, MSRCv1, UCI Digits, Caltech101-7, and MNIST-10000 datasets.

From these two tables, we can see the two proposed methods OSMGSCA and U-MCJGLNMA

outperformed the other competing methods in all eight datasets. Furthermore, we found that the

U-MCJGLNMA method was better than the OSMGSCA method for all datasets with the exception

of the Caltech101-7 dataset.

9.3.3 Ablation study

The proposed criterion (9.8) consists of three main terms: the consensus graph construction, the

convolution term, and the cluster label smoothness term. We create three di�erent variants of our

method with di�erent con�gurations to demonstrate the importance of the suggested criterion

and its components. These three distinct models are: UMCJGLNMA-SC, UMCJGLNMA-C, and

UMCJGLNMA-S. (1) No convolution and smoothness term in the objective function (9.8) (i.e.,

λ2 and λ3 are set to zero), and we call the obtained method UMCJGLNMA-SC because it is

simpli�ed to a coherent graph construction accompanied by a spectral clustering stage, (2) No

convolution term (λ2 is set to zero), and the obtained approach is called UMCJGLNMA-S, and

(3) No smoothness term (λ3 is set to zero), and the obtained approach is called UMCJGLNMA-C.

The results obtained by adopting UMCJGLNMA-SC, UMCJGLNMA-S, and UMCJGLNMA-C are

presented in Table 9.3. Two datasets are used: ORL and MSRCv1.

From Table 9.3, the results obtained with UMCJGLNMA-SC indicate that the use of the consensus

similarity matrix without the last two terms can lead to bad performance, which indicates the

importance of the last two terms in our objective function. For the ORL dataset, it can be seen from

the table that the convolution term has a signi�cant impact on the clustering results. However,

for the MSRCv1 dataset, the smoothness term is more relevant than the convolution term. This is

normal and it is related to the various datasets employed in this study.

All of these results indicated that including all terms in the objective function led to the high

clustering e�ciency of our suggested method.
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Table 9.1: Clustering performance on the COIL20, ORL, and Out-Scene datasets.

Dataset Method ACC NMI Purity ARI

ORL SC-Best [33] 0.66 ( ± 0.02) 0.76 ( ± 0.02) 0.71 ( ± 0.02) 0.67 ( ± 0.01)
AWP [20] 0.80 ( ± 0.00) 0.91 ( ± 0.00) 0.83 ( ± 0.00) 0.76 ( ± 0.00)
MLAN [44] 0.78 ( ± 0.00) 0.88 ( ± 0.00) 0.82 ( ± 0.00) 0.67 ( ± 0.00)
SwMC [95] 0.77 ( ± 0.00) 0.90 ( ± 0.00) 0.83 ( ± 0.00) 0.62 ( ± 0.00)
AMGL [13] 0.75 ( ± 0.02) 0.90 ( ± 0.02) 0.82 ( ± 0.02) 0.63 ( ± 0.09)
AASC [96] 0.82 ( ± 0.02) 0.91 ( ± 0.01) 0.85 ( ± 0.01) 0.76 ( ± 0.02)
MVGL [15] 0.75 ( ± 0.00) 0.88 ( ± 0.00) 0.80 ( ± 0.00) 0.55 ( ± 0.00)
CorSC [35] 0.77 ( ± 0.03) 0.90 ( ± 0.01) 0.82 ( ± 0.03) 0.72 ( ± 0.04)
CotSC [34] 0.75 ( ± 0.04) 0.87 ( ± 0.01) 0.78 ( ± 0.03) 0.67 ( ± 0.03)
MVCSK [24] 0.85 ( ± 0.02) 0.94 ( ± 0.01) 0.88 ( ± 0.02) 0.81 ( ± 0.02)
NESE [11] 0.82 ( ± 0.00) 0.91 ( ± 0.00) 0.85 ( ± 0.00) 0.75 ( ± 0.00)
S-MVSC [77] 0.80 ( ± 0.02) 0.93 ( ± 0.01) 0.82 ( ± 0.02) 0.89 ( ± 0.01)
CI-GMVC [78] 0.81 ( ± 0.00) 0.92 ( ± 0.00) 0.85 ( ± 0.00) 0.74 ( ± 0.00)
MCLES [67] 0.84 ( ± 0.00) 0.94 ( ± 0.00) 0.88 ( ± 0.00) 0.79 ( ± 0.00)
CNESE [97] 0.87 (± 0.00) 0.95 (± 0.00) 0.89 (± 0.00) 0.84 (± 0.00)
OSMGSCA 0.90 (± 0.00) 0.96 (± 0.00) 0.93 (± 0.00) 0.88 (± 0.00)
U-MCJGLNMA 0.93 (± 0.00) 0.97 (± 0.00) 0.93 (± 0.00) 0.90 (± 0.00)

COIL20 SC-Best [33] 0.73 ( ± 0.01) 0.82 ( ± 0.01) 0.75 ( ± 0.01) 0.68 ( ± 0.02)
AWP [20] 0.68 ( ± 0.00) 0.87 ( ± 0.00) 0.75 ( ± 0.00) 0.71 ( ± 0.00)
MLAN [44] 0.84 ( ± 0.00) 0.92 ( ± 0.00) 0.88 ( ± 0.00) 0.81 ( ± 0.00)
SwMC [95] 0.86 ( ± 0.00) 0.94 ( ± 0.00) 0.90 ( ± 0.00) 0.84 ( ± 0.00)
AMGL [13] 0.80 ( ± 0.04) 0.91 ( ± 0.02) 0.85 ( ± 0.03) 0.74 ( ± 0.07)
AASC [96] 0.79 ( ± 0.00) 0.89 ( ± 0.00) 0.83 ( ± 0.00) 0.76 ( ± 0.00)
MVGL [15] 0.78 ( ± 0.00) 0.88 ( ± 0.00) 0.81 ( ± 0.00) 0.75 ( ± 0.00)
CorSC [35] 0.68 ( ± 0.04) 0.78 ( ± 0.02) 0.70 ( ± 0.03) 0.62 ( ± 0.03)
CotSC [34] 0.70 ( ± 0.03) 0.80 ( ± 0.02) 0.72 ( ± 0.03) 0.65 ( ± 0.03)
MVCSK [24] 0.65 ( ± 0.04) 0.80 ( ± 0.02) 0.70 ( ± 0.03) 0.61 ( ± 0.05)
NESE [11] 0.77 ( ± 0.00) 0.88 ( ± 0.00) 0.82 ( ± 0.00) 0.69 ( ± 0.00)
S-MVSC [77] 0.62 ( ± 0.01) 0.86 ( ± 0.02) 0.77 ( ± 0.02) 0.97 ( ± 0.02)
CI-GMVC [78] 0.86 ( ± 0.00) 0.94 ( ± 0.00) 0.90 ( ± 0.00) 0.83 ( ± 0.00)
MCLES [67] 0.79 ( ± 0.00) 0.88 ( ± 0.00) 0.83 ( ± 0.00) 0.75 ( ± 0.00)
CNESE [97] 0.82 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.78 (± 0.00)
OSMGSCA 0.92 (± 0.00) 0.97 (± 0.00) 0.95 (± 0.00) 0.93 (± 0.00)
U-MCJGLNMA 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

Out-Scene SC-best [33] 0.47 ( ± 0.01) 0.39 ( ± 0.01) 0.57 ( ± 0.01) 0.34 ( ± 0.01)
AWP [20] 0.65 ( ± 0.00) 0.51 ( ± 0.00) 0.65 ( ± 0.00) 0.42 ( ± 0.00)
MLAN [44] 0.55 ( ± 0.02) 0.47 ( ± 0.01) 0.55 ( ± 0.02) 0.33 ( ± 0.03)
SwMC [95] 0.50 ( ± 0.00) 0.47 ( ± 0.00) 0.50 ( ± 0.00) 0.38 ( ± 0.00)
AMGL [13] 0.51 ( ± 0.05) 0.45 ( ± 0.03) 0.52 ( ± 0.04) 0.34 ( ± 0.05)
AASC [96] 0.60 ( ± 0.00) 0.48 ( ± 0.00) 0.60 ( ± 0.00) 0.35 ( ± 0.00)
MVGL [15] 0.42 ( ± 0.00) 0.31 ( ± 0.00) 0.43 ( ± 0.00) 0.16 ( ± 0.00)
CorSC [35] 0.51 ( ± 0.04) 0.39 ( ± 0.03) 0.52 ( ± 0.03) 0.31 ( ± 0.02)
CotSC [34] 0.38 ( ± 0.02) 0.22 ( ± 0.01) 0.39 ( ± 0.02) 0.16 ( ± 0.01)
MVCSK [24] 0.65 ( ± 0.01) 0.52 ( ± 0.00) 0.65 ( ± 0.01) 0.42 ( ± 0.00)
NESE [11] 0.63 ( ± 0.00) 0.53 ( ± 0.00) 0.66 ( ± 0.00) 0.46 ( ± 0.00)
S-MVSC [77] 0.48 ( ± 0.01) 0.54 ( ± 0.02) 0.65 ( ± 0.01) 0.46 ( ± 0.04)
CI-GMVC [78] 0.35 ( ± 0.01) 0.31 ( ± 0.00) 0.35 ( ± 0.01) 0.19 ( ± 0.00)
MCLES [67] 0.65 ( ± 0.00) 0.53 ( ± 0.00) 0.67 ( ± 0.00) 0.46 ( ± 0.00)
CNESE [97] 0.66 (± 0.00) 0.55 (± 0.00) 0.67 (± 0.00) 0.47 (± 0.00)
OSMGSCA 0.69 ( ± 0.00) 0.54 ( ± 0.00) 0.69 ( ± 0.00) 0.45 ( ± 0.00)
U-MCJGLNMA 0.70 ( ± 0.00) 0.59 ( ± 0.00) 0.70 ( ± 0.00) 0.50 ( ± 0.00)

9.3.4 Parameter sensitivity

According to Algorithm 1, there are three explicit parameters to be analysed: λ1, λ2, and λ3.

In addition the parameter K , which is used through the iterations of our algorithms, should be

tuned. Besides, according to T0, which represents the parameter used to control the scaling of the

Gaussian kernel, the experiments show that its best value is equal to 2. Then, we �xed T0 to 2.

We analysed the sensitivity of these parameters on the two datasets ORL and MSRCv1 for our

two methods OSMGSCA and U-MCJGLNMA.

Figure 9.3 shows the clustering performance indicators ACC and NMI, obtained by the OSMGSCA

method, as a function of the parameters λ1 and λ2, for the ORL dataset (upper row) and the
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Table 9.2: Clustering performance on the BBCSport, MSRCv1, Handwritten, Extended-Yale and MNIST-10000
datasets.

Dataset Method ACC NMI Purity ARI

MVCSK 0.90 ( ± 0.07) 0.82 ( ± 0.02) 0.90 ( ± 0.02) 0.85 ( ± 0.07)
BBCSport NESE 0.72 ( ± 0.00) 0.69 ( ± 0.00) 0.75 ( ± 0.00) 0.60 ( ± 0.00)

S-MVSC 0.58 ( ± 0.07) 0.67 ( ± 0.01) 0.73 ( ± 0.02) 0.83 ( ± 0.04)
CI-GMVC 0.61 ( ± 0.00) 0.46 ( ± 0.00) 0.63 ( ± 0.00) 0.36 ( ± 0.00)
MCLES 0.88 ( ± 0.00) 0.80 ( ± 0.00) 0.88 ( ± 0.00) 0.83 ( ± 0.00)
CNESE 0.72 (± 0.00) 0.68 (± 0.00) 0.76 (± 0.00) 0.60 (± 0.00)
OSMGSCA 0.90 ( ± 0.00) 0.84 ( ± 0.00) 0.90 ( ± 0.00) 0.88 ( ± 0.00)
U-MCJGLNMA 0.98 ( ± 0.00) 0.94 ( ± 0.00) 0.98 ( ± 0.00) 0.95 ( ± 0.00)

MVCSK 0.70 ( ± 0.02) 0.59 ( ± 0.03) 0.70 ( ± 0.02) 0.50 ( ± 0.04)
MSRCv1 NESE 0.77 ( ± 0.00) 0.72 ( ± 0.00) 0.80 ( ± 0.00) 0.64 ( ± 0.00)

S-MVSC 0.60 ( ± 0.00) 0.69 ( ± 0.02) 0.74 ( ± 0.02) 0.79 ( ± 0.01)
CI-GMVC 0.74 ( ± 0.00) 0.72 ( ± 0.00) 0.77 ( ± 0.00) 0.59 ( ± 0.00)
MCLES 0.90 ( ± 0.01) 0.83 ( ± 0.02) 0.90 ( ± 0.01) 0.77 ( ± 0.00)
CNESE 0.86 (±0.00) 0.76 (±0.00) 0.86 (±0.00) 0.72 (±0.00)
OSMGSCA 0.92 (± 0.00) 0.85 (± 0.00) 0.92 (± 0.00) 0.82 (± 0.00)
U-MCJGLNMA 0.96 (± 0.00) 0.91 (± 0.00) 0.96 (± 0.00) 0.90 (± 0.00)

MVCSK 0.81 ( ± 0.00) 0.79 ( ± 0.01) 0.81 ( ± 0.00) 0.71 ( ± 0.01)
UCI Digits NESE 0.78 ( ± 0.00) 0.83 ( ± 0.00) 0.78 ( ± 0.00) 0.75 ( ± 0.00)

S-MVSC 0.71 ( ± 0.00) 0.79 ( ± 0.01) 0.75 ( ± 0.00) 0.77 ( ± 0.01)
CI-GMVC 0.88 ( ± 0.00) 0.89 ( ± 0.00) 0.88 ( ± 0.00) 0.85 ( ± 0.00)
MCLES 0.82 ( ± 0.01) 0.83 ( ± 0.05) 0.85 ( ± 0.00) 0.80 ( ± 0.01)
CNESE 0.79 (± 0.00) 0.83 (± 0.00) 0.79 (± 0.00) 0.76 (±0.00)
OSMGSCA 0.88 ( ± 0.00) 0.89 ( ± 0.00) 0.88 ( ± 0.00) 0.85 ( ± 0.00)
U-MCJGLNMA 0.89 ( ± 0.00) 0.90 ( ± 0.00) 0.89 ( ± 0.00) 0.85 ( ± 0.00)

MVCSK 0.57 ( ± 0.02) 0.51 ( ± 0.02) 0.83 ( ± 0.01) 0.45 ( ± 0.03)
Caltech101-7 NESE 0.67 ( ± 0.00) 0.55 ( ± 0.00) 0.87 ( ± 0.00) 0.52 ( ± 0.00)

S-MVSC 0.64 ( ± 0.03) 0.55 ( ± 0.02) 0.72 ( ± 0.01) 0.51 ( ± 0.03)
CI-GMVC 0.74 ( ± 0.00) 0.54 ( ± 0.00) 0.85 ( ± 0.00) 0.48 ( ± 0.00)
MCLES 0.74 ( ± 0.00) 0.64 ( ± 0.00) 0.92 ( ± 0.00) 0.62 ( ± 0.00)
CNESE 0.69 (±0.00) 0.58 (±0.00) 0.88 (±0.00) 0.56 (±0.00)
OSMGSCA 0.86 ( ± 0.00) 0.70 ( ± 0.00) 0.90 ( ± 0.00) 0.74 ( ± 0.00)
U-MCJGLNMA 0.75 ( ± 0.00) 0.65 ( ± 0.00) 0.93 ( ± 0.00) 0.63 ( ± 0.00)

MVCSK 0.49 ( ± 0.00) 0.41 ( ± 0.00) 0.50 ( ± 0.00) 0.29 ( ± 0.00)
MNIST- NESE 0.81 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.76 ( ± 0.00)
10000 S-MVSC 0.77 ( ± 0.01) 0.81 ( ± 0.01) 0.81 ( ± 0.02) 0.76 ( ± 0.07)

CI-GMVC 0.66 ( ± 0.00) 0.71 ( ± 0.00) 0.71 ( ± 0.00) 0.51 ( ± 0.00)
MCLES 0.80 ( ± 0.00) 0.83 ( ± 0.00) 0.85 ( ± 0.00) 0.77 ( ± 0.00)
CNESE 0.81 (± 0.00) 0.83 (± 0.00) 0.86 (± 0.00) 0.78 (± 0.00)
OSMGSCA 0.82 ( ± 0.00) 0.86 ( ± 0.00) 0.86 ( ± 0.00) 0.79 ( ± 0.00)
U-MCJGLNMA 0.82 ( ± 0.00) 0.87 ( ± 0.00) 0.87 ( ± 0.00) 0.81 ( ± 0.00)

Table 9.3: Ablation study with di�erent models. The best performance for each indicator is in bold.

Dataset Variant Consensus graph
construction

Convolution
term

Smoothness
term

ACC NMI Purity ARI

UMCJGLNMA-SC 3 7 7 0.80 0.85 0.71 0.77
ORL UMCJGLNMA-S 7 7 3 0.83 0.91 0.85 0.77

UMCJGLNMA-C 7 3 7 0.89 0.94 0.89 0.84
U-MCJGLNMA 3 3 3 0.93 0.97 0.93 0.90

UMCJGLNMA-SC 3 7 7 0.70 0.59 0.70 0.51
MSRCv1 UMCJGLNMA-S 7 7 3 0.75 0.63 0.72 0.55

UMCJGLNMA-C 7 3 7 0.62 0.57 0.69 0.50
U-MCJGLNMA 3 3 3 0.96 0.91 0.96 0.90

MSRCv1 dataset (lower row). The four sub-�gures (a), (b), (c) and (d) of this �gure depict the

variation of the indicators as a function of parameters λ1 and λ2 when the parameters λ3 and K

are �xed. For the ORL dataset, according to Figure 9.3, the best ACC and NMI are obtained when

λ1 and λ2 are equal to 0.05 and 0.5. Concerning the MSRCv1 dataset,it is clear from Figure 9.3

that the best values of ACC and NMI are obtained for a value of λ1 and λ2 equal to 10 and 0.3 for
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the OSMGSCA method.

Besides, the same parameter study is repeated for the U-MCJGLNMA method. Figure 9.4 shows

the clustering performance indicators ACC and NMI, obtained by the U-MCJGLNMA method, as

a function of the parameters λ1 and λ2, for the ORL dataset and the MSRCv1 dataset. For the ORL

dataset, according to Figure 9.4, the best ACC and NMI are obtained when λ1 and λ2 are equal to

1 and 0.5. Concerning the MSRCv1 dataset,it is clear from Figure 9.4 that the best values of ACC

and NMI are obtained for a value of λ1 and λ2 equal to 1 and 10−4 for the U-MCJGLNMA method.

In addition, Figure 9.5 analyzed the e�ect of parameter λ3 on clustering results, whereas the other

three parameters are set to their optimal values for the ORL and MSRCv1 datasets. According to

these sub-�gures, the best values of ACC and NMI for the OSMGSCA method are obtained for a

parameter λ3 equal to 0.005 for the ORL dataset, and equal to 0.03 for the MSRCv1 dataset.

Also, concerning the U-MCJGLNMA method, it is clear from Figure 9.5 that the best values of

ACC and NMI are obtained for a parameter λ3 equal to 0.05 for the ORL dataset, and equal to 0.5

for the MSRCv1 dataset.

The e�ect of the parameter K on the clustering results is analysed in Figure 9.6, while the other

three parameters are �xed to their best values for each dataset. According to this �gure, the best

values of ACC and NMI, for the OSMGSCA method used on the ORL dataset, are obtained for

a K equal to 18 and 19, respectively. For the MSRCv1 dataset, these values for K are equal to

16. Concerning the U-MCJGLNMA method, the best values of ACC and NMI are obtained for a

parameter K equal to 11 for the ORL dataset, and equal to 16 and 17 for the MSRCv1 dataset.

9.3.5 Analysis of results and method comparison

Several competing methods are used to test the e�ectiveness of our proposed methods. First, the

result of "SC -Best", which is the best result achieved by applying the spectral clustering method

to each view, is, in most cases, worse than the results of most multi-view clustering techniques.

From the overall results presented on Tables 9.1 and 9.2, our two proposed methods outperform

all other competing methods on all datasets. Besides, the U-MCJGLNMA method presents better

performance than the OSMGSCA method except for the Caltech101-7 dataset presented in Table 9.2.

However, it achieves better performance than that of all other competing methods. Furthermore,

Table 9.2 (lower part) reports the result of our two proposed methods on the MNIST-10000 dataset.

These two methods outperform all other methods, showing that they perform well on large

datasets. All these results indicate that using uni�ed matrices and enforcing the single view
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(a) (b)

(c) (d)

Figure 9.3: Clustering performance ACC (%) and NMI (%) of the OSMGSCA method as a function of λ1, λ2 on
the ORL and MSRCv1 datasets.

matrices to be similar to each other can, without any doubt, enhance the clustering results.

9.3.6 Computational complexity

In this section, the computational complexity of the proposed OSMGSCA method is studied. Our

algorithm consists of six main steps: updating H, Pv , Sv , S∗, δv and wv (see Algorithm 1). The

calculation of the V kernel matrices has a computational cost of O (n2k) where k is the sum of

the dimensions of the instances in the V views. Thus, k = d1 + d2 + ...+ dV .

By inspecting the six steps of Algorithm 1, we can see easily that steps 1, 2 and 3 are the most

expensive ones. Indeed, step 4 consists of matrix addition and division ( Doing the average of the

similarity matrices of all views). Moreover, steps 5 and 6 contain simple matrix multiplications

and additions. Therefore, we can ignore their computation cost.

To get the matrix H (step 1), a matrix inversion of an n × n matrix is needed (or equivalently

we should solve a linear system whose square matrix size is n× n). If the orthogonalization of
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(a) (b)

(c) (d)

Figure 9.4: Clustering performance ACC (%) and NMI (%) of the U-MCJGLNMA method as a function of λ1, λ2
on the ORL and MSRCv1 datasets.

the matrix H is invoked, one should add the associated cost which is O (nC2) where C is the

number of clusters. To estimate the matrix Pv (step 2), we should compute the SVD of the matrix

(SvT H). The computational cost of this is O (nC2), where C is the total number of clusters. To

estimate the graph matrix of each view Sv (step 3), one matrix inversion of size n× n is needed.

Thus, the computational cost of the third step is O (n3).

Let τ be the number of iterations of the proposed iterative algorithm. The overall computational

complexity of the proposed method will be O
(
n2k + τ (2nC2 + n3)

)
.

9.3.7 Convergence Study

In this section, the convergence of the two proposed methods OSMGSCA and U-MCJGLNMA is

investigated. For a case study, we consider the two datasets: ORL and MSRCv1. The maximum
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Figure 9.5: Clustering performance ACC (%) and NMI (%) as a function of λ3 on the ORL and MSRCv1 datasets:
(a): OSMGSCA, (b) U-MCJGLNMA.

number of iterations in our two methods is �xed to 100 iterations. Figure 9.7 depicts the value

of the objective function given by Eqs. (9.7) and (9.8) for the two methods OSMGSCA and U-

MCJGLNMA, respectively. From this Figure, it can be seen that our methods have strong and

stable convergence properties. The objective function decreases rapidly with increasing number

of iterations. Convergence is reached in less than 30 iterations for the OSMGSCA method and in

less than 20 iterations for U-MCJGLNMA method.

9.4 Clustering visualization

In this section, we provide the visualization of the clustering obtained by di�erent methods when

applied on the ORL dataset. This is illustrated in Figure 9.8.

This visualization is achieved by using the t-Distributed Stochastic Neighbor Embedding method

147



9. A Unified Framework for Multi-view Clustering via Consensus Graph and Spectral
Representation Learning

10 11 12 13 14 15 16171819

"K" nearest elements

0.85

0.9

0.95

ORL

ACC

NMI

10 11 12 13 14 1516171819

"K" nearest elements

0.75

0.8

0.85

0.9
0.92

MSRCv1

ACC

NMI

(a)

10 11 12 13 14 1516171819

"K" nearest elements

0.9

0.92

0.94

0.96

0.97
ORL

ACC

NMI

10 11 12 13 14 1516171819

"K" nearest elements

0.75

0.8

0.85

0.9

0.96

MSRCv1

ACC

NMI

(b)

Figure 9.6: Clustering performance ACC (%) and NMI (%) as a function of K on the ORL and MSRCv1 datasets:
(a): OSMGSCA, (b): U-MCJGLNMA.

(t-SNE) [98] which maps the di�erent matrices (data representation or soft clustering assign-

ments) obtained by the MVCSK, NESE, S-MVSC, CI-GMVC, MCLES, CNESE, OSMGSCA and

U-MCJGLNMA methods for the ORL dataset, into points in a 2D space where they are visualized.

The corresponding rows of each matrix are set as input for t-SNE.

The colors in all sub-images correspond to the estimated clusters, and each point represents a

sample. The results from Figure 9.8 indicate that our OSMGSCA method gives more separated

clusters than other methods, and it is worse than those obtained by our U-MCJGLNMA method.

These results are consistent with the experimental results depicted in Table 9.1.

9.5 Conclusion

In this chapter, we proposed two new multi-view clustering approaches. The �rst one is a novel

one-step multi-view clustering algorithm that uses a consensus similarity matrix extracted from
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Figure 9.7: Convergence of our two proposed methods: (a) OSMGSCA and (b) U-MCJGLNMA on the ORL and
MSRCv1 datasets.

di�erent views and a nonnegative embedding matrix to give the �nal clustering assignment.

Besides, an improvement over the objective function of this new method gives another version

of our proposed method, based on uni�ed matrices, and reaches better performance. Di�erent

from most existing methods, our methods borrow the idea of multi-view consensus clustering and

perform the consensus representation of all views and the clustering assignment into a uni�ed

framework. In addition, these two methods use many constraints on the cluster index matrix,

such as the cluster label smoothness constraint to improve the overall performance. Extensive

experiments carried out on eight multi-view real-world datasets with di�erent sizes and types show

that both, OSMGSCA and U-MCJGLNMA, outperform the competing state-of-the-art multi-view

clustering methods.
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(a) MVCSK (b) NESE

(c) S-MVSC (d) CI-GMVC

(e) MCLES (f) CNESE

(g) OSMGSCA (h) U-MCJGLNMA

Figure 9.8: t-SNE visualization of the clustering obtained by four di�erent methods on the ORL dataset.
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Chapter 10

Conclusion and future work

10.1 Conclusion

In this thesis, di�erent multi-view clustering methods are presented. The �rst method is called

Multi-view Clustering via Kernelized Graph and Nonnegative Embedding (MKGNE) and is pre-

sented in Chapter 5. Unlike other multi-view clustering methods, this method integrates the

ideas of nonnegative matrix factorization methods and graph-based methods. It provides the

�nal cluster assignment directly from the nonnegative embedding matrix, which is used as a soft

cluster assignment matrix. Moreover, this matrix is a kind of convolution of the consensus spectral

data representation over the graph. Moreover, this method can calculate all unknown variables

together, namely: 1) the uni�ed similarity matrix, 2) the uni�ed spectral projection matrix, 3) the

nonnegative embedding matrix, and 4) the weight of each view automatically.

A variant of the previous idea is presented in Chapter 6. Like the MKGNE technique, the new

variant can overcome some of the shortcomings of existing multi-view clustering methods. More-

over, it can compute the four subtasks mentioned above simultaneously. The method is called

Multi-view Clustering via Consensus Graph Learning and Nonnegative Embedding (MVCGE) and

di�ers from the previous method by the third term in the objective function and the orthogonality

constraint over the matrix H.

The method presented in Chapter 7 is called Constrained Nonnegative Embedding and Spectral

Embedding (CNESE) and is an improved version of a recent method called Nonnegative Embedding

and Spectral Embedding (NESE) [11]. It inherits the advantages of the NESE method and integrates

two di�erent constraints (i.e., an orthogonality constraint and a smoothing constraint) over the

nonnegative embedding matrix obtained by NESE, making it more precise.

In Chapter 8, a new method called Multi-view Spectral Clustering with a Self-Taught Robust Graph
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Learning (MCSRGL) was introduced. The main innovation of this method is the integration of an

additional view formed by the label space. By using the cluster-label correlation, an additional

graph is created in addition to the graphs associated with the data space. Moreover, this method

imposes a smoothing constraint on the nonnegative embedding matrix H in its criterion.

Finally, two new methods are proposed in Chapter 9. The �rst method is called One Step Multi-

view Clustering via Consensus Graph Learning and Soft Clustering Assignments (OSMGSCA). It

computes the consensus similarity matrix, the similarity matrices of all views, the corresponding

spectral projection matrices, and a nonnegative embedding matrix that is used for the �nal

clustering result. By using this paradigm, the e�ects of noisy a�nity matrices can be reduced.

In addition, an improvement in the objective function of the OSMGSCA method leads to a new

version based on uni�ed matrices that achieves higher performance. This new version is called

Uni�ed Multi-view Clustering via Joint Graph Learning and Nonnegative Matrix Assignments

(U-MCJGLNMA). Unlike most previous approaches, our methods are based on the idea of multi-

view consensus clustering and integrate the representation of all views with cluster assignment

into a single framework. To improve the overall performance, these two approaches also apply a

number of constraints on the cluster index matrix, such as the cluster label smoothing constraint.

Extensive experiments on real and synthetic datasets of di�erent sizes and types show that all

of our proposed methods outperform many competing state-of-the-art multi-view clustering

methods.

10.2 Perspectives

As an outlook, we envision the development of a scalable variant of the proposed approaches

capable of handling large datasets with reasonable computational cost. Moreover, following the

CSNE method in [66], our methods can be extended to estimate two nonnegative embedding

matrices: the joint and the speci�c nonnegative embedding matrices, instead of estimating only

a single nonnegative matrix. Moreover, following the CNESE method in [97], our approaches

can be tested by adding multiple constraints to the nonnegative embedding matrix to make it

more precise. By applying multiple constraints to the nonnegative embedding matrix generated

by our methods, we can improve the results. We also propose to adapt the proposed methods to

other areas of machine learning, including semi-supervised learning and classi�cation problems.

Moreover, all our approaches are classical machine learning methods. We can adapt some of these

methods to deep variants.
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10.2. Perspectives

Finally, our methods can be extended to cases where some views have missing data, i.e., the

corresponding value in some similarity matrices is missing.
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Chapter 11

Publications

During this thesis, we were able to publish or submit several papers to international journals and

conferences. This chapter contains a list of the accepted papers completed during this thesis.

11.1 International Journals:

1. El Hajjar, S., Dornaika, F., Abdallah, F., and Barrena, N., "Consensus graph and

spectral representation for one-stepmulti-viewkernel based clustering." Knowledge-

Based Systems, 241:108250, 2022.

2. El Hajjar, S., Dornaika, F., and Abdallah, F., "Multi-view Spectral Clustering via

Constrained Nonnegative Embedding." Information Fusion, 78:209–217, 2022.

3. El Hajjar, S., Dornaika, F., and Abdallah, F., "One-step Multi-view Spectral Clus-

tering with Cluster Label Correlation Graph." Information Sciences, 592:97–111,

2022.

4. Dornaika, F., El Hajjar, S., and Abdallah, F., "DirectMulti-view Spectral Clustering

with Consistent Kernelized Graph and Convolved Nonnegative Representation."

Currently submitted to Arti�cial Intelligence Review.

11.2 International Conferences:

1. El Hajjar, S., Dornaika, F., and Abdallah, F., "Multi-view Spectral Clustering via In-

tegrating Label and Data Graph Learning". In International Conference on Image

Analysis and Processing, pages 109–120. Springer, 2022.
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11. Publications

2. El Hajjar, S., Dornaika, F., and Abdallah, F., "Detection of COVID-19 in X-Ray Im-

ages Using ConstrainedMulti-view Spectral Clustering". SADASC2022 conference.
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