261 research outputs found

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    A markovian approach to unsupervised change detection with multiresolution and multimodality SAR data

    Get PDF
    In the framework of synthetic aperture radar (SAR) systems, current satellite missions make it possible to acquire images at very high and multiple spatial resolutions with short revisit times. This scenario conveys a remarkable potential in applications to, for instance, environmental monitoring and natural disaster recovery. In this context, data fusion and change detection methodologies play major roles. This paper proposes an unsupervised change detection algorithmfor the challenging case of multimodal SAR data collected by sensors operating atmultiple spatial resolutions. The method is based on Markovian probabilistic graphical models, graph cuts, linear mixtures, generalized Gaussian distributions, Gram-Charlier approximations, maximum likelihood and minimum mean squared error estimation. It benefits from the SAR images acquired at multiple spatial resolutions and with possibly different modalities on the considered acquisition times to generate an output change map at the finest observed resolution. This is accomplished by modeling the statistics of the data at the various spatial scales through appropriate generalized Gaussian distributions and by iteratively estimating a set of virtual images that are defined on the pixel grid at the finest resolution and would be collected if all the sensors could work at that resolution. A Markov random field framework is adopted to address the detection problem by defining an appropriate multimodal energy function that is minimized using graph cuts

    Novel pattern recognition methods for classification and detection in remote sensing and power generation applications

    Get PDF
    Novel pattern recognition methods for classification and detection in remote sensing and power generation application

    Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs

    Get PDF
    This thesis is an outcome of the project “Flood and damage assessment using very high resolution SAR data” (SAR-HQ), which is embedded in the interdisciplinary oriented RIMAX (Risk Management of Extreme Flood Events) programme, funded by the Federal Ministry of Education and Research (BMBF). It comprises the results of three scientific papers on automatic near real-time flood detection in high resolution X-band synthetic aperture radar (SAR) satellite data for operational rapid mapping activities in terms of disaster and crisis-management support. Flood situations seem to become more frequent and destructive in many regions of the world. A rising awareness of the availability of satellite based cartographic information has led to an increase in requests to corresponding mapping services to support civil-protection and relief organizations with disaster-related mapping and analysis activities. Due to the rising number of satellite systems with high revisit frequencies, a strengthened pool of SAR data is available during operational flood mapping activities. This offers the possibility to observe the whole extent of even large-scale flood events and their spatio-temporal evolution, but also calls for computationally efficient and automatic flood detection methods, which should drastically reduce the user input required by an active image interpreter. This thesis provides solutions for the near real-time derivation of detailed flood parameters such as flood extent, flood-related backscatter changes as well as flood classification probabilities from the new generation of high resolution X-band SAR satellite imagery in a completely unsupervised way. These data are, in comparison to images from conventional medium-resolution SAR sensors, characterized by an increased intra-class and decreased inter-class variability due to the reduced mixed pixel phenomenon. This problem is addressed by utilizing multi-contextual models on irregular hierarchical graphs, which consider that semantic image information is less represented in single pixels but in homogeneous image objects and their mutual relation. A hybrid Markov random field (MRF) model is developed, which integrates scale-dependent as well as spatio-temporal contextual information into the classification process by combining hierarchical causal Markov image modeling on automatically generated irregular hierarchical graphs with noncausal Markov modeling related to planar MRFs. This model is initialized in an unsupervised manner by an automatic tile-based thresholding approach, which solves the flood detection problem in large-size SAR data with small a priori class probabilities by statistical parameterization of local bi-modal class-conditional density functions in a time efficient manner. Experiments performed on TerraSAR-X StripMap data of Southwest England and ScanSAR data of north-eastern Namibia during large-scale flooding show the effectiveness of the proposed methods in terms of classification accuracy, computational performance, and transferability. It is further demonstrated that hierarchical causal Markov models such as hierarchical maximum a posteriori (HMAP) and hierarchical marginal posterior mode (HMPM) estimation can be effectively used for modeling the inter-spatial context of X-band SAR data in terms of flood and change detection purposes. Although the HMPM estimator is computationally more demanding than the HMAP estimator, it is found to be more suitable in terms of classification accuracy. Further, it offers the possibility to compute marginal posterior entropy-based confidence maps, which are used for the generation of flood possibility maps that express that the uncertainty in labeling of each image element. The supplementary integration of intra-spatial and, optionally, temporal contextual information into the Markov model results in a reduction of classification errors. It is observed that the application of the hybrid multi-contextual Markov model on irregular graphs is able to enhance classification results in comparison to modeling on regular structures of quadtrees, which is the hierarchical representation of images usually used in MRF-based image analysis. X-band SAR systems are generally not suited for detecting flooding under dense vegetation canopies such as forests due to the low capability of the X-band signal to penetrate into media. Within this thesis a method is proposed for the automatic derivation of flood areas beneath shrubs and grasses from TerraSAR-X data. Furthermore, an approach is developed, which combines high resolution topographic information with multi-scale image segmentation to enhance the mapping accuracy in areas consisting of flooded vegetation and anthropogenic objects as well as to remove non-water look-alike areas

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    High-Resolution Remote Sensing Image Classification Using Associative Hierarchical CRF Considering Segmentation Quality

    Get PDF
    This letter proposes an associative hierarchical conditional random field (AHCRF) model to improve the classification accuracy of high-resolution remote sensing images. It considers segmentation quality of superpixels, avoids a time-consuming selection of optimal scale parameters, and alleviates the problem of classification accuracy sensitive to undersegmentation errors that is present in traditional object-oriented classification methods. The model is built on a graph hierarchy, including the pixel layer as a base layer and multiple superpixel layers derived from a mean shift presegmentation. It extracts clustered features of pixels for superpixels at each layer and then defines the potentials of the AHCRF model. We suggest a weighted version of the interlayer potential using the size of a superpixel as a measure to reflect segmentation quality. In this way, erroneously labeled pixels of a superpixel are penalized. Experiments are presented using a part of the downsampled Vaihingen data from the ISPRS benchmark data set. Results confirm that our model shows more than 80% overall classification accuracy and is superior to the original AHCRF model and comparable to other models. It also alleviates the choosing of suitable segmentation parameters
    • …
    corecore