7 research outputs found

    Multigraph decomposition into stars and into multistars

    Get PDF
    AbstractWe study the decomposition of multigraphs with a constant edge multiplicity into copies of a fixed star H=K1,t: We present necessary and sufficient conditions for such a decomposition to exist where t=2 and prove NP-completeness of the corresponding decision problem for any t⩾3. We also prove NP-completeness when the edge multiplicity function is not restricted either on the input G or on the fixed multistar H

    Multigraph decomposition into multigraphs with two underlying edges

    Get PDF
    Due to some intractability considerations, reasonable formulation of necessary and sufficient conditions for decomposability of a general multigraph G into a fixed connected multigraph H, is probably not feasible if the underlying simple graph of H has three or more edges. We study the case where H consists of two underlying edges. We present necessary and sufficient conditions for H-decomposability of G, which hold when certain size parameters of G lies within some bounds which depends on the multiplicities of the two edges of H. We also show this result to be "tight" in the sense that even a slight deviation of these size parameters from the given bounds results intractability of the corresponding decision problem

    A Linear Kernel for Planar Total Dominating Set

    Full text link
    A total dominating set of a graph G=(V,E)G=(V,E) is a subset D⊆VD \subseteq V such that every vertex in VV is adjacent to some vertex in DD. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most 410k410k vertices, where kk is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set.Comment: 33 pages, 13 figure

    EUROCOMB 21 Book of extended abstracts

    Get PDF
    corecore