132 research outputs found

    AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Significant resources have been spent in collecting and storing large and heterogeneous radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative to the labeling process is the use of synthetically generated data with artificial intelligence. Instead of labeling real images, we can generate synthetic data based on arbitrary labels. In this way, training data can be quickly augmented with additional images. In this research, we evaluated the performance of synthetically generated radar images based on modified cycle-consistent adversarial networks. We conducted several experiments to test the quality of the generated radar imagery. We also tested the quality of a state-of-the-art contour detection algorithm on synthetic data and different combinations of real and synthetic data. Our experiments show that synthetic radar images generated by generative adversarial network (GAN) can be used in combination with real images for data augmentation and training of deep neural networks. However, the synthetic images generated by GANs cannot be used solely for training a neural network (training on synthetic and testing on real) as they cannot simulate all of the radar characteristics such as noise or Doppler effects. To the best of our knowledge, this is the first work in creating radar sounder imagery based on generative adversarial network

    Efficient Data Driven Multi Source Fusion

    Get PDF
    Data/information fusion is an integral component of many existing and emerging applications; e.g., remote sensing, smart cars, Internet of Things (IoT), and Big Data, to name a few. While fusion aims to achieve better results than what any one individual input can provide, often the challenge is to determine the underlying mathematics for aggregation suitable for an application. In this dissertation, I focus on the following three aspects of aggregation: (i) efficient data-driven learning and optimization, (ii) extensions and new aggregation methods, and (iii) feature and decision level fusion for machine learning with applications to signal and image processing. The Choquet integral (ChI), a powerful nonlinear aggregation operator, is a parametric way (with respect to the fuzzy measure (FM)) to generate a wealth of aggregation operators. The FM has 2N variables and N(2N − 1) constraints for N inputs. As a result, learning the ChI parameters from data quickly becomes impractical for most applications. Herein, I propose a scalable learning procedure (which is linear with respect to training sample size) for the ChI that identifies and optimizes only data-supported variables. As such, the computational complexity of the learning algorithm is proportional to the complexity of the solver used. This method also includes an imputation framework to obtain scalar values for data-unsupported (aka missing) variables and a compression algorithm (lossy or losselss) of the learned variables. I also propose a genetic algorithm (GA) to optimize the ChI for non-convex, multi-modal, and/or analytical objective functions. This algorithm introduces two operators that automatically preserve the constraints; therefore there is no need to explicitly enforce the constraints as is required by traditional GA algorithms. In addition, this algorithm provides an efficient representation of the search space with the minimal set of vertices. Furthermore, I study different strategies for extending the fuzzy integral for missing data and I propose a GOAL programming framework to aggregate inputs from heterogeneous sources for the ChI learning. Last, my work in remote sensing involves visual clustering based band group selection and Lp-norm multiple kernel learning based feature level fusion in hyperspectral image processing to enhance pixel level classification

    Multimodal Adversarial Learning

    Get PDF
    Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models are susceptible to adversarial attacks. In the case of generative models, facial sketches drawn by artists mostly used by law enforcement agencies depend on the ability of the artist to clearly replicate all the key facial features that aid in capturing the true identity of a subject. Recent works have attempted to synthesize these sketches into plausible visual images to improve visual recognition and identification. However, synthesizing photo-realistic images from sketches proves to be an even more challenging task, especially for sensitive applications such as suspect identification. However, the incorporation of hybrid discriminators, which perform attribute classification of multiple target attributes, a quality guided encoder that minimizes the perceptual dissimilarity of the latent space embedding of the synthesized and real image at different layers in the network have shown to be powerful tools towards better multi modal learning techniques. In general, our overall approach was aimed at improving target detection systems and the visual appeal of synthesized images while incorporating multiple attribute assignment to the generator without compromising the identity of the synthesized image. We synthesized sketches using XDOG filter for the CelebA, Multi-modal and CelebA-HQ datasets and from an auxiliary generator trained on sketches from CUHK, IIT-D and FERET datasets. Our results overall for different model applications are impressive compared to current state of the art

    SC-Fuse: A Feature Fusion Approach for Unpaved Road Detection from Remotely Sensed Images

    Get PDF
    Road network extraction from remote sensing imagery is crucial for numerous applications, ranging from autonomous navigation to urban and rural planning. A particularly challenging aspect is the detection of unpaved roads, often underrepresented in research and data. These roads display variability in texture, width, shape, and surroundings, making their detection quite complex. This thesis addresses these challenges by creating a specialized dataset and introducing the SC-Fuse model. Our custom dataset comprises high resolution remote sensing imagery which primarily targets unpaved roads of the American Midwest. To capture the diverse seasonal variation and their impact, the dataset includes images from different times of the year, capturing various weather conditions and offering a comprehensive view of these changing conditions. To detect roads from our custom dataset we developed SC-Fuse model, a novel deep learning architecture designed to extract unpaved road networks from satellite imagery. This model leverages the strengths of dual feature extractors: the Swin Transformer and a Residual CNN. By combining features from these, SC-fuse captures the local as well as the global context of the images. The fusion of these features is done by a Feature Fusion Module which uses Linear Attention Mechanism, to optimize the computational efficiency. A LinkNet based decoder is used to ensure precise road network reconstruction. The evaluation of SC-Fuse model is done using various metrics, including qualitative visual assessments, to test its effectiveness in unpaved road detection. Advisors: Ashok Samal and Cody Stoll

    Physics Infused LSTM Network for Track Association Based on Marine Vessel Automatic Identification System Data

    Get PDF
    In marine surveillance, a crucial task is distinguishing between normal and abnormal vessel movements to timely identify potential threats. Subsequently, the vessels need to be monitored and tracked until necessary action can be taken. To achieve this, a track association problem is formulated where multiple vessels\u27 unlabeled geographic and motion parameters are associated with their true labels. These parameters are typically obtained from the Automatic Identification System (AIS) database, which enables real-time tracking of marine vessels equipped with AIS. The parameters are time-stamped and collected over a long period, and therefore, modeling the inherent temporal patterns in the data is crucial for successful track association. The problem is further complicated by infrequent data collection (time gap) and track overlaps. Traditionally, physics-based models and Kalman-filtering algorithms are used for tracking problems. However, the performance of Kalman filtering is limited in the presence of time-gap and overlapping tracks, while physics-based models are unable to model temporal patterns. To address these limitations, this work employs LSTM, a special neural network architecture, for marine vessel track association. LSTM is capable of modeling long-term temporal patterns and associating a data point with its true track. The performance of LSTM is investigated, and its strengths and limitations are identified. To further improve the performance of LSTM, an integration of the physics-based model and LSTM is proposed. The performance of the joint model is evaluated on multiple AIS datasets with varying characteristics. According to the findings, the physics-based model performs better when there is very little or no time gap in the dataset. However, when there are time gaps and multiple overlapping tracks, LSTM outperforms the physics-based model. Additionally, LSTM is more effective with larger datasets as it can learn the historical patterns of the features. Nevertheless, the joint model consistently outperforms the individual models by leveraging the strengths of both approaches. Given that the AIS dataset commonly provides a long stretch of historical information with frequent time gaps, the combined model should improve the accuracy of vessel tracking

    Remaining Useful Life Prediction for Lithium-ion Batteries Based on Capacity Estimation and Box-Cox Transformation

    Get PDF
    IEEE Remaining useful life (RUL) prediction of lithium-ion batteries plays an important role in intelligent battery management systems (BMSs). The current RUL prediction methods are mainly developed based on offline training, which are limited by sufficiency and reliability of available data. To address this problem, this paper presents a method for RUL prediction based on the capacity estimation and the Box-Cox transformation (BCT). Firstly, the effective aging features (AFs) are extracted from electrical and thermal characteristics of lithium-ion batteries and the variation in terms of the cyclic discharging voltage profiles. The random forest regression (RFR) is then employed to achieve dependable capacity estimation based on only one cells degradation data for model training. Secondly, the BCT is exploited to transform the estimated capacity data and to construct a linear model between the transformed capacities and cycles. Next, the ridge regression algorithm (RRA) is adopted to identify the parameters of the linear model. Finally, the identified linear model based on the BCT is employed to predict the battery RUL, and the prediction uncertainties are investigated and the probability density function (PDF) is calculated through the Monte Carlo (MC) simulation. The experimental results demonstrate that the proposed method can not only estimate capacity with errors of less than 2%, but also accurately predict the battery RUL with the maximum error of 127 cycles and the maximum spans of 95% confidence of 37 cycles in the whole cycle life

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications
    • …
    corecore