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Data/information fusion is an integral component of many existing and emerging appli-

cations; e.g., remote sensing, smart cars, Internet of Things (IoT), and Big Data, to name

a few. While fusion aims to achieve better results than what any one individual input can

provide, often the challenge is to determine the underlying mathematics for aggregation

suitable for an application. In this dissertation, I focus on the following three aspects of

aggregation: (i) efficient data-driven learning and optimization, (ii) extensions and new

aggregation methods, and (iii) feature and decision level fusion for machine learning with

applications to signal and image processing.

The Choquet integral (ChI), a powerful nonlinear aggregation operator, is a parametric

way (with respect to the fuzzy measure (FM)) to generate a wealth of aggregation operators.

The FM has 2N variables and N(2N � 1) constraints for N inputs. As a result, learning

the ChI parameters from data quickly becomes impractical for most applications. Herein,

I propose a scalable learning procedure (which is linear with respect to training sample



size) for the ChI that identifies and optimizes only data-supported variables. As such, the

computational complexity of the learning algorithm is proportional to the complexity of the

solver used. This method also includes an imputation framework to obtain scalar values for

data-unsupported (aka missing) variables and a compression algorithm (lossy or losselss)

of the learned variables. I also propose a genetic algorithm (GA) to optimize the ChI for

non-convex, multi-modal, and/or analytical objective functions. This algorithm introduces

two operators that automatically preserve the constraints; therefore there is no need to

explicitly enforce the constraints as is required by traditional GA algorithms. In addition,

this algorithm provides an efficient representation of the search space with the minimal

set of vertices. Furthermore, I study different strategies for extending the fuzzy integral

for missing data and I propose a GOAL programming framework to aggregate inputs from

heterogeneous sources for the ChI learning. Last, my work in remote sensing involves

visual clustering based band group selection and Lp-norm multiple kernel learning based

feature level fusion in hyperspectral image processing to enhance pixel level classification.

Key words: data/information fusion, multiple kernel learning, Choquet integral, genetic
algorithm, support vector machine, classification, clustering, remote sensing, missing data,
band grouping, data-driven learning, goal programming, fuzzy measure, fuzzy integral,
optimization
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CHAPTER I

INTRODUCTION

1.1 Motivation

Countless existing and emerging technologies require the intelligent fusion of data or

information–referred to hereafter as just data unless there is a specific reason to differentiate–

arising from different sources. The most prevalent sources to date include humans, sensors

and algorithms/machines. For example, unmanned aerial vehicles (UAVs) are being de-

ployed for tasks like earth observations, precision agriculture and security and defense,

to name a few. These systems typically engage in remote sensing using a multitude of

sensors; e.g., thermal, visual, hyperspectral, SAR, LiDAR and/or structure from motion

(SfM), etc. Our modern smart car thrust is also built on the basis of sensors to identify

the roadway and obstacles in a variety of dynamic and complex environments. In areas

like the internet-of-things (IoT), BigData and cyber-security, spatial, spectral and temporal

data is arising from experts (humans), sensors and machines (algorithms processing data

from humans and/or sensors). These are just a few examples of “multi-source” systems.

The point is, fusion is at the heart of a great variety of our current technological advance-

ments. However, fusion is a rather vague concept. If you ask two experts in two fields,

or often within the same field, you will not get the same explanation for what constitutes

fusion. Fusion is a variety of tasks that covers the most basics of making appropriate data
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associations (e.g., which pixel in sensor X relates to what pixel in sensory Y) to underlying

semantics (e.g., what do “values” on one domain mean relative to the other and how can

we condition them so they can be combined) to aggregation functions (e.g., what laws do

we use to transform our multiple inputs into an appropriate output?).

Due to the widespread interest in data fusion, several attempts have been made to de-

fine it. However, all have ultimately fallen short as they are too general or overly specific.

For example, the Joint Directors Laboratory (JDL), which was a pioneer in formalizing

the fusion process for the sake of eliminating redundancies and sharing knowledge across

different branches of the DoD, gave the following definition of fusion in 1987; “a process

dealing with the association, correlation, and combination of data and information from

single and multiple sources to achieve refined position and identity estimates, and com-

plete the timely assessments of situations and threats, and their significance. The process

is characterized by continuous refinements of its estimates and assessments, and the eval-

uation of the need for additional sources, or modification of the process itself, to achieve

improved results [197].” Picking on the definition for a moment, what do the following

really mean; data versus information, why is correlation a necessary component, what is a

state and why is it critical to fusion, why are situations and threats a part of fusion, what is

a result, etc. The JDL even recognized that their definition was too restrictive and they re-

vised it in 1998 with “Data fusion is the process of combining data to refine state estimates

and predictions [174].” In the years following the JDL, different definitions were put forth,

e.g., omnibus model (or the process model) [25], JDL model [174], the intelligence cycle

[165], the Boyd Control loop [34], the waterfall model [24, 132], the Dasarathy model
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[52], the omnibus model. However, the challenge remains, fusion means many things to

different people in different contexts and no adequate unifying definition has emerged to

date.

Herein, I investigate a focused part of “fusion”, aggregation. The aim of this thesis is

to investigate mathematical and algorithmic questions related to the laws that govern the

transformation of multiple (potentially heterogeneous) inputs into an output. In general,

the idea of aggregation is to obtain a “better” result than if we only used the individual

inputs. However, better is not a well defined concept. In some applications, better might

mean taking a set of inputs and reducing them into a single result that can be more ef-

ficiently or effectively used for visualization. Better could also refer to obtaining more

desirable properties such as higher information content or lower conflict. In areas like

machine learning and pattern recognition, theories that power the majority of engineering

applications mentioned above, better often refers to some desirable property like more ro-

bust and generalizable solutions (e.g., classifiers). Herein, my focus is fusion as it relates

to the combining of human information and also sensor data in the context of machine

learning and signal processing. Specifically, this thesis is focused on novel (H1) efficient

and scalable aggregation functions, (H2) their robust data-driven optimization and (H3)

hyperspectral signal processing applications.

1.2 Contributions

Numerous approaches exist for aggregation. In this thesis, I focus on capacity theory

and Choquet integration (ChI). The primary reason is that the ChI is a well-grounded and

3



powerful parametric aggregation framework that emerged out of Calculus. Depending on

the conditions of the capacity, the ChI is capable of producing numerous common and

exotic functions, such as the well known family of linear combinations of order statistics

(LCOS). Furthermore, the ChI is a powerful framework because it has two parts, the mod-

eling of interactions between inputs (the capacity) and a combination law for producing

an output given a set of inputs (the integral). Whereas the ChI is a well-studied branch

of mathematics, there are numerous challenges that remain unsolved. For example: what

is the ChI on heterogenous data (e.g., non real-valued domains); what is the ChI for un-

certainty capacities; how do we specify and/or learn the capacity and therefore the ChI;

how do we efficiently store and compute the ChI; can the ChI combine heterogeneous data

(e.g., probabilities and possibilities) and what does the result mean; how can the ChI fuse

multi-spatial/spectral/temporal sensor data; among numerous other challenges. In order to

support the identified H1, H2 and H3 tasks, I have published the following work.

1. (Binary Fuzzy Measures and Choquet Integration for Multi-Source Fusion [9])(H1,

H2) In Chapter II, I discuss the binary fuzzy measure (aka normal and monotone capac-

ity) and binary ChI. Specifically, I discuss its different properties and simple and efficient

storage representations.

D. T. Anderson, M. Islam, R. King, N. H. Younan, J. Fairley, S. Howington, F. Petry, P.

Elmore, and A. Zare, ”Binary Fuzzy Measures and Choquet Integration for Multi-Source

Fusion,” ICMT, 2017
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2. (The Fuzzy Integral for Missing Data [110])(H1) In Chapter III, I discuss different

strategies for extending and adapting the fuzzy measure and ChI for missing data problems.

M. Islam, D. T. Anderson, F. Petry, D. Smith, P. Elmore, ”The Fuzzy Integral for Miss-

ing Data,” FUZZ-IEEE, 2017

3. (Visualization and Learning of the Choquet Integral With Limited Training Data

[151])(H1,H2) In Chapter IV, I provide ways to visualize and learn the ChI in light of

limited training data.

A. Pinar, T. Havens, M. Islam, D. T. Anderson, ”Visualization and Learning of the

Choquet Integral With Limited Training Data,” FUZZ-IEEE 2017

4. (CLODD based band group selection [105]) (H3) Chapter V is focused on the

visual clustering tendency analysis of hyperspectral signal data for contiguous and non-

continuous band group selection.

M. Islam, D. T. Anderson, J. E. Ball, N. Younan, ”CLODD based band group selec-

tion,” IGARSS, 2016

5. (Fusion of Diverse Features and Kernels Using Lp-Norm Based Multiple Kernel

Learning in Hyperspectral Image Processing [106])(H1,H3) Chapter VI focuses on feature

level fusion of different band group segmentation’s for pixel-level object detection in hy-

perspectral image processing. Focus is on how higher lp-norm MKL can help fuse and

demonstrate variety across the band groupings.

M. Islam, D. T. Anderson, J. E. Ball, N. Younan, ”Fusion of diverse features and kernels

using lp-norm multiple kernel learning in hyperspectral image processing,” WHISPERS,

2016
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6. (Multi-Criteria Based Learning of the Choquet Integral using Goal Programming

[108]) (H1,H2) In Chapter VII, I discuss a flexible GOAL programming framework that

allows for constrained optimization of the ChI in light of multiple sets of varying priority

data and high-level expert knowledge.

M. Islam, D. T. Anderson, T. Havens, ”Multi-Criteria Based Learning of the Choquet

Integral using Goal Programming,” submitted to North American Fuzzy Information Pro-

cessing Society, pp. 1-6, Aug, 2015

7. (Data-Driven Compression and Efficient Learning of the Choquet Integral [111])

(H1,H2) In Chapter VIII, I discuss a way to identify data supported variables in fusion

and therefore data unsupported variables. Data supported variables can be individually

optimized and strategies are identified for controlling (imputing) values for those variables

that have never been encountered). I also provide lossly and lossless variable compression

techniques.

M. Islam, D. T. Anderson, A. Pinar, T. Havens, ”Data-Driven Compression and Ef-

ficient Learning of the Choquet Integral,” IEEE Transactions of Fuzzy Systems, accepted

Sept, 2017
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8. (Efficient Binary Fuzzy Measure Representation and Choquet Integral Learning

[107]) In Chapter IX(H1, H2), I discuss an additional and improved way to think about,

represent, compute, learn and store the binary capacity and subsequent ChI.

M. Islam, D. T. Anderson, X. Du, C. Wagner, T. C. Havens, Efficient Binary Fuzzy Mea-

sure Representation and Choquet Integral Learning, 2018 17th International Conference

on Information Processing and Management of Uncertainty in Knowledge-Based Systems,

accepted.

9. (Explainable AI for Understanding Decisions and Data-Driven Optimization of the

Choquet Integral [144]) Chapter X (H1) introduces new data-centric explainable AI tools

for introspection of the ChI.

B. Murray, M. Islam, A. J. Pinar, T. C. Havens, D. T. Anderson and G. Scott, Ex-

plainable AI for Understanding Decisions and Data-Driven Optimization of the Choquet

Integral, FUZZ-IEEE 2018, accepted.

10. (Fuzzy Choquet Integration of Deep Convolutional Neural Networks for Remote

Sensing [13]) Chapter XI (H1) presents algorithms for fusing heterogeneous deep learning

architectures using the ChI.

D. T. Anderson and G. Scott, M. Islam, B. Murray, R. Marcum, Fuzzy Choquet Inte-

gration of Deep Convolutional Neural Networks for Remote Sensing, Computational Intel-

ligence in Pattern Recognition, Springer-Verlag, accepted.

7



In addition to the above published work, I have the following paper under review.

11. (An Efficient Evolutionary Algorithm for Optimization of the Choquet Integral

[109]) In Chapter XII (H1, H2), I propose a Genetic algorithm with monotonicity and

boundary preserving operations that facilitates an efficient optimization of the highly con-

strained ChI problems, both convex and non-convex.

M. Islam, D. T. Anderson, F. Petry, P. Elmore, An Efficient Evolutionary Algorithm for

Optimization of the Choquet Integral, International Journal of Intelligent Systems, under

review.
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CHAPTER II

BINARY FUZZY MEASURES AND CHOQUET INTEGRATION FOR

MULTI-SOURCE FUSION

2.1 Introduction

Engineering applications like Big Data, remote sensing, unmanned vehicles, robotics,

signal and image processing, and machine learning, to name a few, all have something

in common. They all typically require the intelligent combining (aka fusion) of multiple

sources. Here, the term source is used to refer to the “generator” of data or information,

e.g., sensors, humans and/or algorithms. In general, the idea of fusion is to obtain a “better”

result than if we only used the individual inputs. However, better is not a well defined

concept. In some applications, better might mean taking a set of inputs and reducing

them into a single result that can be more efficiently or effectively used for visualization.

Better could also refer to obtaining more desirable properties such as higher information

content or lower conflict. In areas like machine learning and pattern recognition, theories

that power the majority of engineering applications mentioned above, better often refers

to some desirable property like more robust and generalizable solutions (e.g., classifiers).

Regardless of the task at hand or the particular application, fusion is a core tool at the heart

of numerous modern scientific thrusts.
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Whereas the implications of this article are far reaching, we narrow its vision and scope,

without loss of generality, to the particular problem of multi-sensor fusion. It is practically

impossible nowadays to provide an unbiased and comprehensive review of multi-sensor

fusion as there have been a massive number of publications on this topic ranging from

correspondence to aggregation mathematics, various types of uncertainty, missing data,

tracking, and numerous other factors. A recent review is [122]. Multi-sensor fusion is

also challenging to summarize because when multiple sensors are operating in different

portions of the electromagnetic spectrum important domain information is relevant related

to the physics of the sensors, phenomena (e.g., objects), environments and environmental

conditions that they are operating in. Herein, we focus on the underlying set of mathemat-

ics that enable fusion across this broad spectrum of challenges. In general, an aggregation

operator f is a mapping that can take different forms (branches of mathematics). Usually,

its a mapping of data (e.g., sensor measurements) from N inputs, X = {x1, ..., xN}, to a

single result, i.e., f(h(x1), ..., h(xi), ..., h(xN)) 2 <, where h(xi) is the data provided by

input xi. An introductory aggregation function text and guide for practitioners is [28].

Herein, we focus on the Choquet integral (ChI) [176, 44, 76, 8], a well-known and

demonstrated parametric function for data and information fusion. The ChI is a generator

function that is parametrized by the so-called fuzzy measure (FM), a monotone and normal

capacity. Once the FM has been determined, either by an expert or learned from data, the

ChI turns into a specific aggregation operator, e.g., a linear combination of order statistics

(LCOS) [181]. The ChI has been used for numerous applications, to name a few; human-

itarian demining [155], computer vision [181], pattern recognition [77, 80, 137, 118, 62],

10



multi-criteria decision making [70, 127], control theory [187], and multiple kernel learn-

ing [152, 150, 155, 98, 97]. Different approaches exist to learn the FM from data, e.g.,

[12, 121, 120, 136, 11, 26, 152].

In this article, we have two primary motives. The first is an application driven one.

In [55], we studied the task of learning a ChI fusion for binary decision making problems,

e.g., target versus non-target classification, relative to uncertainty in the labeling of training

data. Our approach was to extend the ChI via multiple instance learning (MIL). Results

were demonstrated for the fusion of multiple classifiers from one or more sensors relative

to explosive hazard detection (EHD) for humanitarian demining and the fusion of RX de-

tectors for hyperspectral image processing. In particular, we observed that the data learned

ChI solutions almost always preferred answers that had FM variables in (or approximately)

{0, 1} versus a more arbitrary expected number on the standard [0, 1] FM interval. An ad-

vantage is that learning the 2N FM variables on {0, 1} is a drastically simpler problem than

learning on [0, 1]. This leads us to our second motivation. It is not only difficult to learn on

[0, 1]2
N versus {0, 1}2N , but it is also a naturally intractable problem. Meaning, even for

relatively small N it can be a game stopper. Therefore, we are interested in multi-source

problems that utilize a {0, 1} versus [0, 1] variable range since it is efficient to store only

the one-valued terms and the ChI can easily be computed via a look up table on the fly.

Herein, we put forth the following contributions. First, we investigate a binary FM

(BFM). Second, we define and study a BFM ChI (BChI). Third, we prove that for a BFM,

two well-known fuzzy integrals (FIs), the Sugeno integral (SI) and ChI, are equivalent and

therefore selection of integral is irrelevant. Fourth, we explain the underlying aggregation
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philosophy for a BChI, a procedure we call the “best pessimistic agreement”. Last, we

show that only a small subset of one-valued variables need be stored, which leads to an

efficient to store, learn and simple to compute via a look up table version of the ChI.

The remainder of this article is organized as such. In Section 2.2 we summarize the

FM and ChI, Section 2.3 is an alternative way to think about the ChI, Section 2.4 describes

a BFM and Section 2.5 outlines the BChI. Next, a semantic description of the BChI is

provided (Section 2.6), followed by BChI memory savings (Section 2.7) and a fast way to

calculate the BChI (Section 2.8).

2.2 Choquet Integral (ChI)

The reader can refer to [8] for a recent survey and description of theory, applications

and important extensions of the fuzzy integral (FI) [176]. Let X = {x1, x2, ..., xN} be

a set of N inputs, e.g., two radar systems and an infrared sensor. A FM is a monotonic

function defined on the power set of X , 2X , as µ : 2X ! <+ that satisfies the following

two properties: (i) boundary condition, µ(;) = 0 and µ(X) > 0 and (ii) monotonicity

property, if A,B ✓ X and A ✓ B, then µ(A)  µ(B). Often an additional constraint

is imposed on the FM to limit the upper bound to 1, i.e., µ(X) = 1. Figure (2.1) is an

illustration of the FM. FM variables of different cardinality are displayed with different

colors.

Let h(xi) be the data/information, e.g., sensor measurement, from input i. The discrete

ChI (finite X) is

Z

C

h � µ = Cµ(h) =
NX

i=1

h(x⇡(i)) [µ(Ai)� µ(Ai�1)] , (2.1)
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where ⇡ is a permutation of X , such that h(x⇡(1)) � h(x⇡(2)) � . . . � h(x⇡(N)), Ai =

{x⇡(1), . . . , x⇡(i)}, and µ(A0) = 0. Based on selection of µ, the ChI turns into a specific

aggregation operator. For example, when µ(A) = 0, 8A 2 2X \X , the ChI is equivalent to

the minimum operator. When µ(A) = 1, 8A 2 2X \ ;, we obtain the maximum operator.

When µ(A) = |A|
N
, 8A we obtain the arithmetic mean. More generally, when µ(A) = µ(B)

8A,B 2 2X such that |A| = |B|, we recover the familiar class of LCOS, e.g., min, max,

soft min and max, mean, median, trimmed statistics, etc.

{x1} {x2} {x3} {x4}

{x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3}

X

{}

{x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

{x1,x2}

Figure 2.1
Illustration of variables and monotonicity constraints in the FM. Higher cardinality sets

are shaded darker and arrows denote subsethood.

2.3 Lattice Representation

The first step in the discrete (finite X) ChI is to sort the inputs (h values). In total, there

are N ! possible sorts. An alternative way to think about the ChI is in terms of its underlying

lattice, shown in Figure (2.1). The lattice is a way to relate the FM variables with respect

to monotonicity, of which there are N(2N�1 � 1) monotonicity constraints. An important
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concept is a “walk” through the lattice. Figure (2.2) illustrates two different walks. Per

a given input sorting, the ChI (Equation (2.1)) induces a walk, meaning it visits or uses

N + 1 variables, i.e., µ(Ai) � µ(Ai�1). Formally, this is exactly one variable from each

“level” in the FM, where level refers to all variables that have the same cardinality. This

provides another convenient way to think about the ChI. The ChI is actually N ! different

aggregation operators wrapped into one function—one for each walk through the lattice. In

the case of operators like the minimum, maximum, average, and other LCOSs, each layer

in the FM has constant measure value and therefore the operator is fixed and independent

of which walk is observed. However, there are countless custom FMs (and therefore ChIs)

that do not have this behavior, e.g., most cases of a BFM which we investigate later, and

walks result in different aggregations per input value sort.

{x1} {x2} {x3} {x4}

{x1,x2} {x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3}

X

{}

{x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

Figure 2.2
Example of two “walks” through the FM lattice with respect to the ChI. Variables visited
in the first walk, i.e., for an input sorting of h(x1) � h(x3) � h(x2) � h(x4), are shown
in light gray and their order visited is indicated by green arrows. Variables visited in the

second walk, i.e., h(x4) � h(x3) � h(x1) � h(x2), are shown in dark gray and their order
visited is indicated by dashed red lines. Note, the empty set and X are both shaded in

black and visited by both walks. Each walk is the set of weights used in the respective ChI
calculation.
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2.4 Binary Fuzzy Measure (BFM)

A BFM is trivial, it is a restriction of µ 2 {0, 1} instead of µ 2 [0, 1]. While simple,

a BFM has big implications. As already discussed, it simplifies the space for data-driven

optimization, {0, 1}2N versus [0, 1]2N , and it often leads to more compact solutions. When

the FM is allowed to take any value in [0, 1], we must generally store all variables. How-

ever, if we work with a BFM then naturally a number of these values, the exact number of

depends on the target FM, are zero. Instead of storing all 2N � 2 variables (since µ(;) = 0

and µ(X) = 1), we can instead record just one-valued variables (which leads to savings in

terms of storage). Figure (2.3) shows an example BFM.

0 0 1 1

1 1 1 1 1 1

1

1

0

1 1 1

Figure 2.3
Example BFM—white cells have value zero, gray cells have value one (but one or more

subsets, if we remove a single element, are zero) and black cells have value one (all direct
subsets have value one).
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2.5 BFM Choquet Integral (BChI)

Mathematically speaking, a binary ChI (BChI) is Equation (2.1). There is nothing new.

However, what is interesting is what happens as a result of using a BFM. We can expand

Equation (2.1) and observe the following (due to the monotonicity property of the FM).

Z

C

h � µ =
NX

i=1

h(x⇡(i)) [µ(Ai)� µ(Ai�1)] ,

=

 
n1X

i=1

h(x⇡(i)) [0� 0]

!
+ h(x⇡(n1+1)) [1� 0]

+

 
NX

i=n1+2

h(x⇡(i)) [1� 1]

!
,

where n1 is the number of inputs whose corresponding µ(Ai) terms are zero, h(x⇡(n1+1))

is the first term with µ(An1+1) = 1 and the remaining set are all one-valued as well. Note,

without loss of generality, we partitioned the sum up as such, however we are more than

aware that the first term may have an empty number of terms if µ(A1) = 1. What is

important to note here is that due to monotonicity, a BFM will result in zero to N � 1

(0� 0) terms, a single (1� 0) weight and anywhere from zero to N � 1 (1� 1) weights.

Thus, only one weight is one and all other weights are zero, resulting in the selection of a

single input value, h(x⇡(n1+1)).

This leads us to Proposition 1. However, we first review the definition of the Sugeno

integral (SI) [176],

Z

S

h � µ = Sµ(h) =
N_

i=1

�
h(x⇡(i)) ^ µ(Ai)

�
, (2.2)

where _ is the maximum operator and ^ is the minimum operator. However, these two

operators, a t-conorm and t-norm can, and have, been extended beyond the scope of min-
16



imum and maximum. The SI and ChI are both FIs. We will not go into full depth here

about similarities and differences between the two integrals. The reader can see [76] for

more details. In general, the ChI is desirable because of factors such as; it does not use

the minimum and maximum operators and is differentiable (a property that has been ex-

ploited before in data-driven learning), for an additive (probability) measure one recovers

the classical Lebesgue integral, etc.

Proposition 1 The ChI and SI are equal for a BFM.

Proof: This proof is trivial. As already noted, the BChI has a single non-zero weight and

we get h(x⇡(n1+1)). When it comes to the SI, we take the minimum of each h(x⇡(i)) with

their µ(Ai). The SI can be expanded as such,

Z

S

h � µ =
N_

i=1

�
h(x⇡(i)) ^ µ(Ai)

�
,

=
�
(h(x⇡(1)) ^ 0) _ (h(x⇡(2)) ^ 0) _ ...

�

_ (h(x⇡(n1+1)) ^ 1)

_
�
(h(x⇡(n1+2)) ^ 1) _ ... _ (h(x⇡(N)) ^ 1)

�
,

where once again, without loss of generality, we denote a partitioning of the integral into

parts, specifically two, where the first have zero-valued FM values and the second has one-

valued FM values. However, if the first A1 has value one then there are of course no zero

terms. Note, h(x⇡(n1+1)) is the largest of the set h(x⇡(n1+1)) to h(x⇡(N)). Therefore, it is

selected as the result of the SI. This means that both the ChI and the SI both select the same

input with respect to a BFM and are therefore equal, completing the proof.
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What is interesting about Proposition 1 is it informs us that whereas there are numerous

mathematical differences in general between the SI and ChI, many of which often impact

a domain and dictate which integral is selected, they do not matter for the case of a BFM.

The SI and the ChI are completely equal under this restriction.

2.6 What is the BChI Really Doing?

In this section, we explore what the BChI is doing in terms of underlying data/information

aggregation philosophy. The BChI breaks down into the following steps.

1. Sort the input values from largest to smallest, i.e., h(x⇡(1)) � ... � h(x⇡(N)).

2. Find the smallest i such that µ(Ai) = 1.

3. Return h(x⇡(i)).

Figure (2.4) is an illustration of the BChI. Note, the h values are sorted in decreasing

order and g is monotonic. In addition, we can describe what the BChI is doing in a few (be

it equivalent) ways.

Interpretation 1: The BChI is looking for the first Ai (i.e., smallest i), relative to the h

sort, that has non-zero “worth” (FM value). The result is the “best pessimistic agreement”

with respect to h and µ.

Interpretation 2: Another way to think about the BChI is the following. Each BFM

variable that is equal to zero indicates a more-or-less do not care condition. Meaning,

the input by itself should not be considered, more input (evidence) is needed before we

are willing to make a decision. However, BFM variables equal to one indicate a group of
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inputs is worth considering. Specifically, they all agree at least as much as their minimum

value.

Interpretation 3: We can also talk about the BChI in terms of a lattice walk. The N+1

variables in a walk (the constants, i.e., non-h terms, in the BChI) are a monotonic sequence

of zeros followed by ones. Once we reach the first one value we take the minimum input

for that set. Conversely, it is the maximum of all the inputs with corresponding BFM value

one.

Example 1: As already stated, the focus of this article is the underlying mathematics

of aggregation that are used by applications like multi-sensor fusion. For conceptual sake,

consider a problem that requires interrogation in three different parts of the electromagnetic

(EM) spectrum. For example, assume we have a task where x1 is Radar, x2 is infrared (IR)

and x3 is EM induction (EMI) for the handheld detection of buried explosive hazards in

humanitarian demining [129, 196]. However, the following applies to any N different

spectral bands in a hyperspectral sensor or combination of single spectral band sensors in

different parts of EM. Next, let there be one, for simplicity sake, respective algorithm on

each of the above three sensors (GPR, IR and EMI) and let each sensor produce an output

indicating target (value one) or non-target (value zero). The algorithms can be a binary de-

cision, {0, 1}, or a [0, 1] value generated by a probabilistic support vector machine, Bayes

decision theoretic classifier, or any other number of countless pattern recognition or ma-

chine learning algorithms. Assume we already have our BFM—i.e., it was specified by an

expert or learned from data (using any of the methods referenced in Section I). Let the BFM

be µ(x1)=µ(x2)=µ(x3)=0 (no source is fully trustworthy by itself) and µ({x2, x3})=0. Let
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all other variables be value one. Now, consider a particular set of inputs be h(x1) = 0.8,

h(x2) = 0.5 and h(x3) = 0.01. The BChI assigns a value of 0.5 because when Radar is the

highest value we require input and confirmation from IR (and disregard EMI). However,

for an input of h(x3) = 1, h(x2) = 0.9 and h(x1) = 0.01, the BChI gives us a value of

0.01 because our BFM (relative to the ChI) informs us that when EMI has the strongest

detection and IR is next, we need confirmation from all three sensors. The point is, the

BFM, relative to the BChI, encodes a wealth of aggregation information across different

walks about a particular task at hand.

sorted X

h

0

1

FM µ (on subsets)

BFM µ (on subsets)

Figure 2.4
“Best pessimistic agreement” behavior of the BChI. Green dashed curve is the sorted h

values, red is the respective FM µ relative to sorted sets of increasing size and purple is a
BFM µ relative to sorted sets of increasing size. The blue circle is the output of the BChI.

2.7 Compression of BFM for BChI

In Section 2.5, we discussed that for a BFM only one-valued terms need be stored. This

can lead to big memory savings as there are otherwise 2N � 2 non-constant variables. For

a relatively small problem with 10 inputs we already have 1, 022 variables. For 20 inputs,
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we have 1, 048, 574 variables. However, if a problem has a good number of one values

in the lower layers of the lattice then savings diminish. This cannot be predicted, the

exact amount of savings, in general. Each problem likely requires a different aggregation

operator and therefore measure. Thus, the amount of savings depends on the problem at

hand.

However, Figure (2.3) reveals a further savings. Variables shown in white (call it set

W 2 2X) are all zero-valued BFM terms. Values in gray (call it set G 2 2X) are one-

valued BFM terms that have at least input (all subsets if we remove one element) with

value zero. Values in black (set B 2 2X) are one-valued BFM terms whose entire input

set are one-valued. It is trivial to show that 2X = W [ G [ B and W \ G = W \ B

= G \ B = ;. Furthermore, G creates a partitioning between otherwise uninformative

zero and one valued variables. What this means is, we have redundancy and given G

we can perfectly reconstruct the entire BFM. Furthermore, G will often in practice be

|G| ⌧ |B [G [W |. The take away is, one can identify and just store G and perform the

BChI.

2.8 BChI Data Structure

The ChI is typically calculated with respect to Equation (2.1), which has N subtrac-

tions and N multiplications and N � 1 additions. Alternatively, we can pre-compute all

differences in µ variables (if storage is not an issue), which leads to only N multiplications

and N � 1 additions.

21



For the BChI, one option is to store the reduced set G and on the fly, post sorting of our

inputs, identify the corresponding term in G and take the minimum of that set. There are a

number of algorithms that can be employed. A computationally efficient, but possibly not

the most memory efficient, scheme is to use a link list data structure. At most, we would

take N “steps” (traversals) in such a data structure (but likely far less on average). Figure

(2.5) is an example for the BFM in Figure (2.3).

{x1}
{x2} {x3} {x4}

{x2} {x3} {x4}

{x3}
{x4}

{x1}

Figure 2.5
Example BChI link list data structure corresponding to Figure (2.3). The first step is to

sort the inputs. Next, we start at the black node and move the direction of the largest input
variable. If we ever encounter a “gray cell” (terminal node) then we take the minimum of
the set of numbers up to that point. Otherwise, we keep following edges with respect to

our sorting order until we hit a terminal node.

2.9 Conclusion and Future Work

In summary, the focus of this article is the underlying mathematics of data and in-

formation fusion. The tool selected is the Choquet integral (ChI), a flexible parametric

aggregation function that morphs into a class of aggregation operators based on specifica-

tion of the fuzzy measure (FM), a normal and monotone capacity. In practice, the FM is

specified by an expert or learned by data. However, tractability (both in learning but also
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memory storage) of the FM, and therefore the ChI, is of concern. In addition, applications

like our discussed multiple instance learning ChI for binary target detection in multi-sensor

systems (e.g., humanitarian demining and hyperspectral image processing) often learns or

naturally prefers what we call a binary FM (BFM). Herein, we studied a BFM ChI (BChI).

We discovered that a BFM renders the Sugeno integral (SI) and ChI equal, which is not

often the case, and the underlying aggregation philosophy is the “best pessimistic agree-

ment”. We also observed that drastically fewer BFM variables need be stored and the

BChI is nothing more than a simple look up strategy via some scheme like a link list data

structure. Overall, we encounter both memory and computational savings. Last, learning

a BFM is a much simpler task as the space is {0, 1}2N versus [0, 1]2N .

Whereas the ChI is already a well-demonstrated theory for fusion, in future work we

will explore the empirical benefits of using the proposed BChI for data-driven learning,

ChI compression and efficient calculation in the context of specific applications for multi-

sensor fusion.
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CHAPTER III

THE FUZZY INTEGRAL FOR MISSING DATA

3.1 Introduction

Incomplete data and information–otherwise referred to hereafter as data unless there is

a specific reason to differentiate–is intrinsic to some applications and external to others.

For example, in geo-spatial systems, Big Data and the Internet of Things, to name a few,

it is common that one or more sensors malfunction or become non-operational and yield

no value or noisy data. In a medical context, all data for a diagnosis may not be available,

especially expensive and invasive tests. In skeletal age-at-death estimation, remains may

not be available due to natural or active intervention (unnatural death) causes. Similarly,

companies often rely on incomplete consumer data to develop marketing strategies as con-

sumers may not have enough knowledge–or decline to provide data–for parts of a survey.

The point is, we are often faced with fusing and making intelligent robust decisions from

incomplete data.

In rare cases missing data can be reacquired. However, often the cost of reacquir-

ing outweighs/diminishes the net utility of that data. In [130], Little and Rubin created

a taxonomy for missing data. They identified three classes; missing at random (MAR),

missing completely at random (MCAR) and missing not at random (MNR). The complex-

ity of missing data is further exacerbated by Donald Rumsfeld’s quote–“There are known
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knowns. These are things we know that we know. There are known unknowns. That is

to say, there are things that we now know we don’t know. But there are also unknown

unknowns. There are things we do not know we don’t know.[160]” The point is, missing

data is not a trivial problem.

Before we dive into detail, it is important to review assumptions and resources that may

or may not be available. These factors impact which procedure is selected. In some situa-

tions, no external knowledge is available and we are forced to use just what is observed. In

other cases, historic data may be present. Other applications have access to other current

observations where the present missing data is observed (similar to or the same as historic

since data is available). Last, in some cases high-level a priori knowledge is available, e.g.,

a model (simulation or theoretical).

The bulk of missing data in machine learning (ML) literature is focused on topics like

probabilistic graphical models (e.g., Bayesian nets), support vector machines (SVMs), re-

gression or decision tree classifiers [159, 158, 141, 169, 65, 54, 156]. In [156], a decision

tree classifier was extended by creating multiple test instances, where each took multi-

ple paths along different splits of the missing attributes. A probability per leaf node was

estimated based on the frequency of occurrence of training instances along the associated

branch and the output was the class with the highest probability. In [161], Saar-Tsechansky

and Provost learned multiple models for classification, where each model corresponds to

an observed set of inputs encountered during training. Since the estimated model for a

given set of observed input is optimal, it is expected to perform better than value based

imputation but come at the cost of additional computation and storage. In soft-computing,
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Zhong et al. constructed information granules around imputed data [214]–which can be

interpreted as fuzzification of imputed scalars. Effectiveness was measured in two aspects,

cover and specificity. Cover ensures that all the available information is utilized whereas

specificity measures the extent of uncertainty, i.e., the range of the interval. In [214, 20],

the fuzzy-c means (FCM) clustering algorithm was used for imputation. Data is partitioned

using just observed data. The grade of membership of a missing sample is determined by

substituting the membership of the nearest observed sample.

observed

missing

missing

observed

Data-Driven

Historic Current

Step 1
Model/Impute

External

Default

Step 2
Fuzzy Integral

discard
missing

A priori Predict

Inputs

Capacity

Specify LearnPredict Impute

Figure 3.1
High-level illustration of main concepts (elaborated on in Section 3.3). The fuzzy integral

uses observed data or observed and modeled/imputed data.

The Choquet integral (ChI), a type of fuzzy integral (FI), is a powerful parametric

nonlinear aggregation function that has been used in numerous applications like machine

learning, multi-sensor fusion and decision theory (e.g., multi-criteria decision making). To
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the best of our knowledge, no attempt has been made to investigate missing data for the FI.

Herein, we focus on two ways to extend the ChI to missing data (illustrated in Figure (3.1)).

First, three normalizations are discussed relative to using just observed data. Second, a two

step process, modeling/imputation and ChI extension, is discussed relative to computing

with respect to missing data. In addition, an algorithm is put forth for learning the ChI

relative to missing training data. Last, we explore the impact of these choices relative to

different aggregation philosophies–selections of underlying fuzzy measure (FM).

3.2 ChI for Complete Data

In this section, necessary definitions are provided for the ChI and its data-driven learn-

ing relative to complete data. Let X = {x1, . . . , xN} be a set of finite elements, e.g.,

sensors, experts, criteria or attributes in decision making, or algorithms in pattern recog-

nition. A FM is a monotonic set-valued function defined on the power set of X , 2X , as

µ : 2X ! R+ that satisfies two properties; (i) boundary condition, µ(;) = 0, and (ii)

monotonicity, if A,B ✓ X and A ✓ B, µ(A)  µ(B). Often an additional constraint

is imposed to limit the upper bound, i.e., µ(X) = 1. Herein, without loss of generality

we consider this condition for simplicity and convenience, which is useful in contexts like

decision-level fusion.

Consider a training set with M observations and labels, O = {(oj, yj)} , j = 1, 2 . . . ,M ,

where oj 2 RN is the jth observation, yj 2 R is the associated label, and oj(xk) corre-

sponds to the observed value for jth instance and kth input. Let u = [µ({x1}), µ({x2}),
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. . . , µ(X)]T be the 2N � 1 dimensional vector containing all FM variables except µ(;).

The discrete ChI on oj with respect to µ is

Cµ(oj) =
NX

i=1

[oj(x⇡j(i))� oj(x⇡j(i�1))]µ(S⇡j(i)), (3.1)

where ⇡j is a permutation function for observation oj on the indices, {1, 2, . . . , N}, that

satisfies 0  oj(x⇡(1))  . . .  oj(x⇡(N)), where S⇡j(i) =
�
x⇡j(i), x⇡j(i+1), . . . , x⇡j(N)

 

and oj(x⇡j(0)) = 0 [30]. Equation (3.1) can be written as

Cµ(oj) = c
T

j
u, (3.2)

where cj is a column vector containing the (2N � 1) coefficients for observation oj . Let k

be the index of variable µ(B 2 2X) in u. Then the k-th element of cj is cjk = oj(x⇡j(l))�

oj(x⇡j(l�1)) if 9S⇡j
(l) = B for l 2 {1, . . . , N} , and 0 otherwise. The monotonicity

constraints can be written as µ(A)  µ(A [ q), 8A ⇢ X and 8q 2 X, q /2 A. The sum of

squared error (SSE) between the ChI for all the observations in the training data, O, and

corresponding labels is

E1(O,u) =
MX

j=1

(Cµ(oj)� yj)
2 =

MX

j=1

(cT
j
u� yj)

2

=
MX

j=1

(uT
cjc

T

j
u� 2yjc

T

j
u+ y2

j
). (3.3)

Based on this, the least square minimization problem can be expressed as the quadratic

programming (QP)

(OP1) min
u

fO(u) = u
THu+ d

T
u,
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µ(A)  µ(A [ q), 8A ⇢ X and 8q 2 X, q /2 A,

(monotonicity conditions) (3.4a)

µ(;) = 0, (boundary conditions) (3.4b)

µ(X) = 1, (normality conditions) (3.4c)

where H =
P

M

j=1 cjc
T

j
and d = �2

P
M

j=1 yjcj . This can be minimized by standard QP

solvers. Herein, OP1 is used for the training while Equation (3.2) is used for prediction.

3.3 ChI for Missing Data

First, we establish some notation for the following subsections. For instance oj , inputs

(data) are available for the set Xw

j
✓ X such that xi 2 Xw

j
, i 2 Iw

j
, Iw

j
✓ {1, 2, . . . , N}

and data is not available for Xh

j
= X \Xw

j
. Last, let the cardinality of Xw

j
and Xh

j
be Nw

j

and Nh

j
respectively.

Remark 1. We start by exploring if it is acceptable to calculate just the subset of Equation

(3.1) associated with observed data. It turns out that doing so is equivalent to imputing

zeros for the missing data. While it does not mathematically break the ChI, relative to

imputed data, these zeros (or other constants at that) semantically impact aggregation and

properties like idempotency (namely our expectations on it). There are better philosophies

(following sections) that do not force us to inject potentially misleading/uninformed data

and allows us to model and compute with respect to our uncertainty.
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3.3.1 Method 1: ChI for Observed Data Only

In this subsection we restrict the ChI to only using available data and therefore the

subset of the FM associated with our observed data. However, since the FM is defined

on N , adding or removing inputs can (it is trivial to show) numerically and semantically

alter the ChI and result in a measure that violates the properties of a FM, namely the upper

boundary condition. We discuss three approaches to overcome this.

First, we define a “sub-ChI/FM” on instance oj , Cµw

j
(oj), with respect to all available

data (Xw

j
),

Cµw

j
(oj) =

N
w

jX

i=1

[oj(x⇡w

j
(i))� oj(x⇡w

j
(i�1))]µ

w

j
(S⇡w

j
(i)), (3.5)

where ⇡w

j
is the permutation operation for oj performed on observed sources. A first idea

is to let µw

j
(A) = µ(A), 8A ✓ Xw

j
. However, µ(Xw

j
) may not be equal to 1. Thus, we

have a boundary condition difference of

�µw

j
(Xw

j
) = 1� µ(Xw

j
). (3.6)

Whereas monotonicity is obviously preserved, important properties like boundedness and

idempotency are not guaranteed for Cµw

j
(oj). The problem resides in directly taking FM

values from µ. In order to realize a legitimate (property preserving) Cµw

j
(oj) we need to

calculate µw

j
as a monotonic and boundary condition preserving function of µ. By defini-

tion, µ(S⇡w

j
(i�1)) � µ(S⇡w

j
(i)), which gives the condition �µw

j
(S⇡w

j
(i�1)) � �µw

j
(S⇡w

j
(i))

on relative change in the FM. This condition along with Equation (3.6) sets the boundary

for �µw

j
(S⇡w

j
(i�1)) as 0  �µw

j
(S⇡w

j
(i�1))  1 � µ(Xw

j
). The question is, how do we

determine the �µw

j
values?
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Upper boundary fix: The first and simplest way to remedy the problem is to fix what

is broken; µw

j
(Xw

j
) = 1 and all other variables are µw

j
(A) = µ(A). This method satis-

fies the boundary conditions and monotonicity. However, an unwanted side effect, when

�µw

j
(Xw

j
) > 0, is the introduction of a larger than previously modeled difference between

the normalized µw

j
(Xw

j
) (now inflated) and µw

j
(Xw

j
\ xk) (8xk 2 Xw

j
) terms.

Additive normalization: Another idea is to add �µw

j
(Xw

j
) to each FM variable, except

for µw

j
(;). This ensures boundary conditions and monotonicity. This procedure preserves

the relative differences between consecutive (increasing cardinality) normalized µw

j
vari-

ables, except for the difference between the µw

j
({xk}) (8xk 2 X) and µw

j
(;). Furthermore,

if µ(A) = 0, 8A ⇢ X \ ;, then µw

j
(A) � 0 when �µw

j
(Xw

j
) � 0. That is, a subset that

was previously given no weight/importance/utility is no longer zero valued.

Uniform normalization: The last fix considered is to divide each term by µw

j
(Xw

j
)

(when µw

j
(Xw

j
) 6= 0). This ensures boundary conditions, is monotonic and does not have

the inflation side effects of upper boundary fix nor additive normalization. This scaling is

semantically more justifiable.

Remark 2. (Limitations of the observation-valued ChI) An advantage of using just ob-

served data is we are computing with respect to what we know and the result is bounded

between the minimum and maximum observations, i.e., we will not infer values higher

or lower that we were informed. However, this advantage is also its shortcoming. If the

unobserved data is critical to the task at hand then it will obviously fall short as no attempt

was made to model/impute the missing data and our associated uncertainty.
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3.3.2 Method 2: Modeling and Imputing Missing Data

In this subsection, we highlight various approaches for modeling and imputing missing

data. This is not a task unique to our paper nor is it a primary contribution of our work.

This is actually a strong example of how the field of fuzzy set theory can or already does

contribute to missing data problems. In general, we have the following categories.

1. Discard; inputs for missing data are ignored.

2. Default; a user/system/etc. defined value is used.

3. Historic data; prior complete or missing data is used.

4. Current data; data from other present instances where the missing data inputs are

observed is used.

5. A priori; use high-level knowledge external to the data.

6. Prediction; use any of the above in combination with the current observed instance

data to predict missing data.

Options three to six are research topics. Obviously, discarding and default are trivial.

The task of prediction is beyond the scope of this work (see [63] for a recent review).

Furthermore, a priori knowledge is task dependent and not explored herein. We touch on

historic and/or current data (categories 3 and 4).

Example 1. (Fitting a distribution to historic and/or current data) When historic and/or

other current instances are available we can fit a distribution to that data. However, what
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distribution do we use? There are a number of distributions (e.g., normal, trapezoidal, etc.)

and distribution fitting methods (e.g., construction of a type-2 fuzzy set [194], Gaussian

mixture model, etc.). In general, the selection of theory depends on the nature of the un-

derlying uncertainty. For example, often we follow the central limit theorem and model

data via a normal distribution, which is fully determined by its mean and variance. The

point is, there are numerous ways (beyond the ChI scope of this work) to derive distribu-

tions from historic and/or current observations.

Example 2. (Interval modeling) Another option is to model missing data as an interval,

i.e., ōj(xk) = [o�
j
(xk), o

+
j
(xk)], o�j (xk)  o+

j
(xk). However, as before, where does this

interval come from? For observed data there is no uncertainty, i.e., o�
j
(xk) = o+

j
(xk). For

missing data, there are a number of possibilities. If uncertainty is modeled as a distribution

then we can calculate ��xk
, i.e., ōj(xk) = [mxk

� ��xk
,mxk

+ ��xk
], where mxk

is the

mean and �xk
is the variance of xk, and � is an arbitrary constant. Alternatively, if nothing

is known about the missing data and no assumptions are applicable, then minimum and

maximum values can be used. In the extreme case, we can associate each missing input

with ōj(xk) = [0, 1], aka total ignorance.

3.3.3 Method 2: Using Modeled or Imputed Data

In subsection 3.3.2 we touched on different ways to model uncertainty. Note, we do not

care about the underlying meaning (e.g., probability, possibility, etc.). In this subsection we

tackle how to use such interval or set-valued data in the ChI. We start with the <-valued

ChI, followed by the interval-valued ChI then type-1 and type-2 integrand-valued ChIs.
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Figure (3.2) shows different options (pathways) between modeling/imputation choices and

FI extensions. In general, there is no “winner”. Ideally, in the theme of David Marr’s

Principle of Least Commitment and Principle of Graceful Degradation, we advocate the

modeling of computation with respect to full (set-valued) data. However, some applications

may impose restrictions (eliminate options). Furthermore, different applications might

require type reduction if lower order uncertainty is desired or scalar-valued outputs are

needed.

Step 1: Modeling/Imputation

real-valued

interval-valued

fuzzy set (type 1, 2, …) valued Step 2: Fuzzy Integral

Real-valued integrand

Interval-valued 
integrand

Type-1 or 2 fuzzy set-
valued integrand

Figure 3.2
Illustration of connections (pathways) between modeling/imputation choices and FI

extensions. Dashed lines indicate type reduction.

Scalar-valued ChI: Equation (3.1) is the simplest and most naive approach consid-

ered. The scalar-valued ChI does not take into account uncertainty about missing data. As

expected, this action has consequences (elaborated on in Example 3).
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Example 3. (Tendency of modeled/imputed data to dictate the ChI) For sake of analy-

sis and without loss of generality, we consider that all observed values lie within [0, 1], i.e.,

oj(xi) 2 [0, 1], 8i, j. Let the default imputed value be c, i.e., oj(xi) = c, 8j, xi 2 Xh, c 2

[0, 1]. It is trivial to show that this method runs the risk of controlling/determining the ChI.

For example, consider a maximum ChI, i.e., µ1(A) = 1, 8A ✓ X \ ; and a minimum ChI,

i.e., µ2(A) = 0, 8A ⇢ X . If c = 1 then Cµ1(oj) = 1 regardless of what is observed.

Conversely, if c = 0 then Cµ2(oj) = 0. While these are extreme cases, they illustrate the

fact that imputed data is important. If the value c is a default constant with little-to-no

meaning, then the output of the ChI is questionable, to say the least. For example, if we

let c = 0.5 to express “ignorance” and all observed values are higher than 0.5 then µ2 will

always yield 0.5 (same argument holds for all observed values less than 0.5 and µ1). In

reality, we have uncertainty and our result does not show that.

Distribution-to-scalar ChI: A logical next step is to type reduce uncertain data for

use in Equation (3.1). For example, if a normal distribution is modeling historic and/or

current data then the first moment, the mean, can be used. Semantically, our fusion result

now reflects a combination of what we observed and the expected value of missing data.

Whereas we improved the modeling of missing data we still sadly loose information when

we type reduced for the ChI.

Interval-valued ChI: Next, we outline how to use interval-valued uncertainty about

missing data in the ChI. Regardless of how the uncertainty is obtained, e.g., type-reduction

35



of a normal distribution into a second moment interval, ōj(xk) = [mxk
���xk

,mxk
+��xk

],

the interval-valued ChI [8],

C̄µ(oj) = [Cµ(o
�
j
), Cµ(o

+
j
)], (3.7)

is two <-valued ChIs, one integral on the interval left endpoints and a different integral on

the interval right endpoints.

Remark 3. (Trapezoidal Membership Functions) Consider the trapezoidal membership

function, specified by four <-valued numbers, a  b  c  d. It is well-known that a

trapezoidal membership function is fully characterized by two level (alpha) cuts, one at 0,

associated with [a, d] and one at 1 associated with [b, c]. First, we level cut each set. Next,

we compute the ChI at each level. Last, we type increase the ChI intervals back into a

trapezoidal membership function. Note, there was no information loss. It is trivial to prove

this as the ChI is monotonic and the trapezoidal values at each level cut between 0 and 1

are linear equations.

Type-1 and type-2 fuzzy set-valued ChIs: In [194], we put forth two ChI exten-

sions, the gFI and NDFI, for unrestricted (potentially subnormal and non-convex) fuzzy

set-valued integrands. In [85], we put forth a ChI extension for type-2 fuzzy sets. There

is not sufficient space to review these extensions. The reader can see [194, 85] for mathe-

matical and algorithmic details. The point is, if missing data is modeled by fuzzy sets then

there are ChI extensions that can handle this task.

Remark 4. (Amount of missing data) The previous sections are focused on modeling,

imputation and ChI computation. In Example 3 it was observed that the answer can be
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drastically skewed by modeled or imputed data. The question investigated here is, what

is the impact of different amounts of missing data? It turns out that this is difficult-to-

impossible to solve as the answer depends on the missing data, but more importantly the

selection of aggregation operator (underlying capacity). Meaning, if an extreme operator

such as maximum or minimum (t-conorm (union) and t-norm (intersection) respectively) is

selected then one poorly modeled or imputed data can have a catastrophic impact, regard-

less of how much data is missing. On the other hand, a robust operator like the expected

value (e.g., mean, median, etc.) can be expected to perform better–of course degrading

with respect to amount of missing data. This holds regardless of modeling/imputation and

subsequent ChI computation method. For example, Example 3 naturally extends to the

interval-valued ChI (two <-valued ChIs) and fuzzy set-valued ChI (which is decompos-

able to interval ChIs and then <-valued ChIs). The point of this remark is not mathematical

characterization but observation that we need to select our aggregation operator with care

for missing data.

3.4 Missing Data-Driven ChI Learning

In this section, a data-driven method is put forth for observed data only ChI learning.

In [12], we put forth a data-driven QP and regularization (for minimal model complexity)

approach to ChI learning. However, like all other ChI learning algorithms to date it was

assumed that no data is missing. Here, we outline a way to learn the ChI with respect to a

set of training data with missing inputs.
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Since OP1 is expressed in terms of the full lexicographically encoded µ, one possibility

is to represent µw

j
in terms of µ to facilitate optimization of a common set of variables. First,

we represent each � as a factor of 1� µ(Xw

j
),

�µw

j
(S⇡w

j
(i)) = ↵(S⇡w

j
(i))(1� µ(Xw

j
)),

where ↵(S⇡w

j
(1)) = 1 and 0  ↵(S⇡w

j
(i))  1, i = 2, . . . , Nw

j
. The parameter ↵(S⇡w

j
(i)) is

user defined and it can be selected per layer or node in the FM1. Note, we already discussed

three applicable strategies; e.g., upper boundary fix, ↵(S⇡w

j
(1)) = 1 and ↵(S⇡w

j
(i)) = 0 for

i = 2, . . . , Nw

j
. The ChI with respect to µw

j
, in terms of µ, is

Cµw

j
(oj) =

N
w

jX

i=1

[oj(x⇡w

j
(i))� oj(x⇡w

j
(i�1))][µ(S⇡w

j
(i))

+ ↵(S⇡w

j
(i))(1� µ(Xw

j
))]

=

N
w

jX

i=2

[oj(x⇡w

j
(i))� oj(x⇡w

j
(i�1))]µ(S⇡w

j
(i))+

N
w

jX

i=1

[oj(x⇡w

j
(i))� oj(x⇡w

j
(i�1))]↵(S⇡w

j
(i))�

N
w

jX

i=2

[oj(x⇡w

j
(i))

� µ(Xw

j
)oj(x⇡w

j
(i�1))]↵(S⇡w

j
(i)),

which can be expressed in matrix form as

Cµw

j
(oj) = c

wT

j
u+ b, (3.8)

1Alternatively, the scaling function ↵ can be learned in conjunction with the FM, possibly via alternating
optimization (subject of future work).
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where the coefficient cw
jk

for the kth variable, µ(B), is oj(x⇡w

j
(l))�oj(x⇡w

j
(l�1)) if 9S⇡w

j
(l) =

B, l 2
�
2, . . . , Nw

j

 
, �

PN
w

j

i=2[oj(x⇡w

j
(i))� oj(x⇡w

j
(i�1))]↵(S⇡w

j
(i)), if S⇡w

j
(1) = B, 0 other-

wise and b =
PN

w

j

i=1[oj(x⇡w

j
(i))� oj(x⇡w

j
(i�1))]↵(S⇡w

j
(i)). The SSE for the data is therefore

E2(O,u) =
MX

j=1

(cwT

j
u+ b� yj)

2 =
MX

j=1

(cwT

j
u� yw

j
)2,

where yw
j
= yj � b. This SSE equation has the same form as Equation (3.3) and therefore

OP1 can be used to learn the FM – cj and yj need to be replaced by c
w

j
and yw

j
respec-

tively. Equation (3.8) can be used to compute the ChI of data with respect to µ and scaling

coefficients ↵(S⇡w

j
(i)).

3.5 Case Study and Synthetic Experiment

The previous sections are focused on concepts and methods for fusing missing data

with the FI. This section explores these ideas via a case study and synthetic experiment.

Energy is not expended on proving that the FI is a useful tool for any one application, e.g.,

sensor data fusion, computer vision, multi-criteria decision making, etc., this has already

been well-established by the field.

3.5.1 Case Study from Forensic Anthropology

In this subsection, we discuss fusion for skeletal-age-at-death estimation in forensic an-

thropology. In [14, 8, 7, 10, 6], the task is to determine the age that an individual died, via

natural or by active intervention (unnatural death), based on recovered skeletal remains and

established aging methods. Different bones are usually present–making it a missing data

problem. Sadly, this was not recognized, at a minimum appreciated, until now. For each

39



bone and aging method, we obtain an input fuzzy set defined on the “age domain” (e.g.,

[0, 120]) where the membership degree is the support in age-at-death. For example, we

might have evidence of age-at-death based on the Pubic Symphysis, Auricular Surface and

Ectocranial Valt Suture Closure (three inputs from three different bones and aging meth-

ods, e.g., Todd 1920, Lovejoy et al. 1985b and Meindl and Lovejoy 1985). Input one might

tell us [25, 26], input two might say [25, 29] while input three says [24, 60]. Along with

each input we have a bone quality. We assign a score of {1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.0}

based on the weathering of the bone (corresponding to Stages 0 to 6 for a modified ver-

sion of Behrensmeyer weathering stages provided in Standards). The result is typically

a subnormal-valued convex fuzzy set. In addition, we use known accuracies (correlation

coefficients) for each aging method. These values are the FM singleton variables (aka den-

sities). As we did not have access to the full FM, the Sugeno � FM [175] (a well-known

imputation method) was used to assign the remaining FM variables relative to the densities

for observed data.

This forensic application is discussed herein because it’s an interesting example of

the observation only FI. In our current article, one idea is to sample the relevant subset

of the FM and normalize it. However, in our forensic application we only have access

to the densities–which could be seen as a missing “data” challenge for µ. As the two

and above tuples are unknown, an imputation algorithm (the Sugeno � formula) is used

to assign FM variable values. If we had privilege to the full FM then we would follow

the procedure outlined in this article. In [146] Nguyen et al. showed that the Sugeno �

FM is, from a purely mathematical standpoint, equivalent to a probability (i.e., additive)
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measure. There is a computational advantage to using the Sugeno � FM versus reducing it

into its equivalent probability measure. Specifically, they showed that we can perceive the

Sugeno � FM as a re-scaling of the underlying probability measure. The point is, our prior

forensic work addressed missing data for both h (observation only FI) and µ (an additive

measure-based imputation formula that is monotonic and normality preserving).

Last, in many cases a remain (e.g., skull) is missing. Previously, we discarded such

inputs. Based on the current article, we plan to next explore the use of interval and fuzzy

set-valued modeling and imputation forensic algorithms for missing data. Whereas com-

plete ignorance, e.g., [0, 120], might prove to be too extreme, if recovered remains allow us

to narrow the range of other missing data then we would like to explore the benefits of com-

puting with respect to uncertainty. At the moment, our current approach is the observation

only FI, which is subject to the limitation discussed in Remark 2.

(a) SSE of learned FM and ground
truth FM

(b) SSE for training data (c) SSE for test data

Figure 3.3
Results for soft-max aggregation operator.
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(a) SSE of learned FM and ground
truth FM

(b) SSE for training data (c) SSE for test data

Figure 3.4
Results for mean aggregation operator.

(a) SSE of learned FM and ground
truth FM

(b) SSE for training data (c) SSE for test data

Figure 3.5
Results for soft-min aggregation operator.

3.5.2 Synthetic Example: Data-Driven ChI Learning

In this subsection, we conduct a synthetic experiment for data-driven ChI learning. A

controlled experiments is preferred to “real data” because we can better investigate benefits

and drawbacks related to missing data versus limiting ourself to the “scope” of available

data or accuracy results for a process that we do not truly know the underlying answer for.

We consider three ordered weighted averages (OWAs)[201], which are just linear combi-

nations of order statistics (LCOS) when the inputs and weights are <-valued, which the

ChI can generate. The three OWAs are soft-max (t-conorm, union like operator), mean

(expected value operator) and soft-min (t-norm, intersection like operator). These three
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operators are helpful because they cover the “spectrum” of commonly encountered aggre-

gation philosophies (optimistic, expected value and pessimistic). We let N = 5, M = 150

and the OWA weights are (0.71, 0.155, 0.077, 0.039, 0.0019) for soft-max, 1
5 for mean and

(0.0019, 0.039, 0.077, 0.155, 0.71) for soft-max,. The data was (pseudo)randomly gener-

ated from a truncated normal distribution in [0, 1] with means [0.50 0.17 0.33 0.67 0.83]

and standard deviation 0.45. The performance of the different proposed methods are eval-

uated for different percentages of missing data, [1% 5% 10% 20% 30% 40% 50%]. One

input was removed from each sample marked as missing. Three-fold cross-validation is

used. The average SSE for the FM to the ground truth FM and also the SSE on the training

and test data are used as performance metrics.

A value of 0.5 is selected for scalar-valued imputation–as it debatably best represents

ignorance, 0 being no support and 1 being full support. For distribution-to-scalar, we

modeled data using a normal distribution and it is type reduced to the mean. Last, both

uniform normalization and upper boundary fix are explored for the observation value only

FI. Figures (3.3), (3.4), and (3.5) are experiment results. Before we delve into specifics, we

highlight that different aggregation philosophies (i.e., selections of FM) result in different

trends and no global pattern is present (as expected). This is further elaborated on at the

end of the subsection.

Figure (3.3) are the results for soft-max (optimistic aggregation). Overall, the observed-

value method (the “safe approach”) with uniform normalization leads in each performance

criteria. While distribution-to-scalar does well with respect to modeling the true underlying

FM, its training and prediction SEE is the worst. Observed-value with upper boundary fix
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has relatively poor performance for soft-max as imputation depends on the minimum of

the observed values. On the other hand, uniform scaling puts more weight on the higher

observed values, yielding lower error for soft-max.

Results for the mean aggregation operator are reported in Figure (3.4). Overall, ob-

served data only with uniform normalization is best again. However, distribution-to-scalar

is now second best (versus worst). This is expected as we are using the means of the miss-

ing data distributions. Note, observed-value with uniform normalization considers only the

observed inputs. As such, its scaling of the FM terms is equivalent to imputing missing

values proportional to the FM of the observed sources. Therefore, the imputed value in

mean FM is proportional to the sum (or mean) of the observed values.

Figure (3.5) are the results for soft-min (pessimistic operator). Whereas observed data

with uniform normalization was best before, it is by far the worst here. The reason is,

in soft-min the top node of the sub-lattice is relatively small and therefore the FM values

are scaled by a larger factor than in soft-max–making the normalized sub-FM closer to a

FM of all ones (which is the maximum operator for the ChI). Distribution-to-scalar and

observed data with upper boundary fix provide better results, where the imputation of the

latter depends on the minimum of the observed values, which partially helps to preserve

the aggregation behavior.

Overall, as stated in the start of this subsection, the most interesting takeaway is the per-

formance variation across aggregation philosophies (minimum, average and maximum).

There is no global winner across percentages of missing data and aggregations, which is

expected based on the theory and remarks in previous sections. This is interpreted as fol-
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lows. Missing data is not a simple problem. Care should be given with respect to studying

all that is possible for for a task at hand. The next step is to explore the different options,

compute with respect to just observed data or model/impute, and it all should be done

relative to underlying aggregation operator (selection of FM).

3.6 Conclusion and Future Work

Herein, the question of how to extend the FI to problems involving missing data was

investigated. We identified two paths, use just observed data or fuse modeled/imputed data

with observed data. Three strategies were put forth to make the ChI work with respect

to observed data and a complete FM. Furthermore, different modeling and FI extensions

were discussed for the inclusion and fusion with respect to missing data. It was shown that

there is no “winning method”. Instead, the different choices are dictated by the properties

of an application (context). It was shown that whereas the observation-valued ChI is a safe

route, it runs the risk of not including uncertainty about our missing data. However, while

modeled/imputed data leads to a more informed result, if we are not careful about what

aggregation operator we use then missing data often dictates, in a potentially destructive

fashion, the result. Last, a data-driven algorithm was presented for historic and/or other

current observed data.

This article is just a first step towards missing data and the FI. In future work, we will

expand our scope to include both missing integrand (h) and missing FM (µ), the latter only

slightly touched on in our case study. We will also attempt to simultaneously solve for the

FM in conjunction with how to normalize it (versus specify the normalization). We will
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also explore pathways involving “up sampling” (type increasing). We also want to provide

a field guide for practitioners so a user can connect their applications properties to the best

set of modeling, imputation and FI extension choices. Next, we put forth an extension

for data driven learning. In future work we will study interval and fuzzy set valued label

driven learning, or learning of such data in light of scalar-valued inputs. Last, we observed

that selection of aggregation operator has a big impact, to say the least. In future work a

goal will be to connect different missing data choices to the most appropriate aggregation

operator (i.e., underlying FM).
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CHAPTER IV

VISUALIZATION AND LEARNING OF THE CHOQUET INTEGRAL WITH

LIMITED TRAINING DATA

4.1 Introduction

In many fields, we are often faced with the task of making decisions based on a set of

feature-vector data X = {x1,x2, ...,xn} ⇢ Rd. This data is typically accompanied by a set

of training labels for each feature-vector, giving the pair (y, X), where y = (y1, y2, ..., yn)T

is a vector of labels such that yi is the label of feature-vector xi. This problem can be

considered a classification task, and is typically tackled by training a classifier such that it

can accurately predict the class label of a new sample of data where the label is not known.

More concretely, the data (y, X) are used to learn some prediction function f such that we

can accurately predict the label of feature vectors as y = f(x).

Linear classifiers are typically nothing more than a hyperplane in the feature-space

representing the decision boundary, and training these classifiers involves finding the hy-

perplane’s parameters in some optimal way. A very popular hyperplane classifier is the

support vector machine (SVM) because it is easy to train and computationally efficient.

The drawback to linear SVMs (and other linear classifiers), however, is that they require

the data to be linearly separable—a distribution very rarely encountered with real data.

One way around this is to instead use their kernel-based variants where the data are non-
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linearly projected to a high-dimensional space where a suitable hyperplane is more likely

to be found. While this appears to solve the problem of non-separable data, it has its own

baggage: what kernel function should be used?

Multiple kernel learning (MKL) typically answers this question by learning a new ker-

nel through the combination of predetermined kernels while maintaining symmetry and

positive-semidefiniteness, an approach discussed in many works [124, 200, 49, 97, 98,

152, 150]. These approaches fall under the roof of feature-level fusion in that they com-

bine different “looks” at the data (each represented by an individual kernel) and use a sin-

gle classifier to determine the predicted class label. Another MKL technique uses multiple

kernel-based classifiers, each utilizing a different kernel. The outputs of these classifiers

is then combined at the decision-level using some aggregation function. This approach

to decision-level fusion is the premise for the decision-level fuzzy integral multiple kernel

learning (DeFIMKL) classifier discussed in Section 4.3, where aggregation is performed

via the Choquet fuzzy integral (FI) with respect to a fuzzy measure (FM). Once again though

we have a roadblock: how do we specify the FM?

The task we investigate in this work is learning a FM. Many previous works [75, 11, 26]

have shown that an underlying FM can be learned from training data, though here we show

that only a subset of the FM is accurately learned from the training data and the remaining

FM terms simply follow the constraints from the learning process. In other words, only a

subset of the FM is learned in a data-driven manner. Thus when asked to classify a new

sample of data using the Choquet FI, we risk utilizing terms from the FM that were not

learned accurately from the training data, leading to an erroneous prediction. In this work,
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we propose a method to more accurately learn the FM terms that are not data-driven. The

method assumes that some knowledge of the underlying FM structure is known and thus

can be encoded in the learning process as discussed in Section 4.4.

The remainder of this paper is organized as follows. Section 4.2 discusses fuzzy mea-

sures and the Choquet fuzzy integral; it also introduces our strategy of simultaneously

visualizing the FM and behavior of the Choquet integral. Section 4.3 reviews learning

a fuzzy measure through minimizing the sum-of-squared error (SSE) via quadratic pro-

gramming (QP)—the backbone of the DeFIMKL algorithm—as well as its behavior with

insufficient training data. Section 4.4 proposes an extension to the DeFIMKL algorithm,

allowing knowledge of the underlying FM to be encoded into the QP, and Section 4.5 sum-

marizes experiments with real-world and contrived datasets. Finally, Section 4.6 concludes

the paper and discusses our future work.

4.2 Fuzzy Measures and Fuzzy Integrals

FIs and FMs are used for many applications and for many types of data, from simple

numeric data to intervals and type-2 fuzzy sets [8, 192, 76, 7]. While manual specifi-

cation of the FM works for small sets of sources, manually specifying the values of the

FM for large collections of sources is virtually impossible. Thus, automatic methods have

been proposed, such as the Sugeno �-measure [73] and the S-decomposable measure [56],

which build the measure from the densities1, and genetic algorithm [14, 98], Gibbs sam-

pling [136] and other learning methods, which build the measure by using training data.
1The FM values of the singletons, g({xi}) = g

i are commonly called the densities.
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Other works [193, 87, 86] have proposed learning FMs that reflect trends in the data and

have been specifically applied to crowd-sourcing, where the worth of individuals is not

known, and is thus extracted from the data.

4.2.1 Fuzzy measures

A measurable space is the tuple (X,⌦), where X is a set and ⌦ is an ⌦-algebra or set

of subsets of X such that

P1. X 2 ⌦;

P2. For A ✓ X , if A 2 ⌦, then Ac 2 ⌦;

P3. If 8Ai 2 ⌦, then
S1

i=1 Ai 2 ⌦.

A FM is a set-valued function, g : ⌦! [0, 1], with the following properties:

P4. (Boundary conditions) g(;) = 0 and g(X) = 1;

P5. (Monotonicity) If A,B 2 ⌦ and A ✓ B, g(A)  g(B).

If ⌦ is an infinite set, then there is also a third property to guarantee continuity; however,

in practice and in this paper, ⌦ is finite and thus this property is unnecessary. While

fuzzy measures provide a way for quantifying the worth of combinations of sources, fuzzy

integrals can be used to aggregate the information from these sources.

4.2.2 Fuzzy integrals

There are many forms of the FI; see [73] for detailed discussion. In practice, FIs are

frequently used for evidence fusion [72, 117, 18, 14]. They combine sources of information
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by accounting for both the support of the question (the evidence) and the expected worth

of each subset of sources (as supplied by the FM g). Here, we focus on the fuzzy Choquet

integral, proposed by Murofushi and Sugeno [44, 143]. Let h : X ! R be a real-valued

function that represents the evidence or support of a particular hypothesis.2 The discrete

(finite ⌦) fuzzy Choquet integral is defined as

Z

C

h � g = Cg(h) =
nX

i=1

h(x⇡(i)) [g(Ai)� g(Ai�1)] , (4.1)

where ⇡ is a permutation of X , such that h(x⇡(1)) � h(x⇡(2)) � . . . � h(x⇡(n)), Ai =

{x⇡(1), . . . , x⇡(i)}, and g(A0) = 0 [76, 176]. Detailed treatments of the properties of FIs

can be found in [76, 69, 176].

4.2.3 Common Aggregations via the Choquet Integral

It is well known that the Choquet integral is a powerful aggregation operator parametrized

by a FM, and thus can represent many aggregation functions [181]. For example, the Cho-

quet integral acts as the maximum operator when the FM is all 1s (except g{;} = 0, due

to boundary constraints), the minimum operator when the FM is all 0s (except g{X} = 1,

due to boundary constraints), and the mean operator when g(Ai) = |Ai|/n, 8Ai ⇢ X .

4.2.4 Visualizing the Fuzzy Integral

The FM lattice (Hasse diagram) is a convenient method to visualize a FM; Figure 4.1

illustrates the lattice of a FM for the case of n = 3. Note that the size of the individual
2Generally, when dealing with information fusion problems it is convenient to have h : X ! [0, 1],

where each source is normalized to the unit-interval.
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nodes in the lattice indicates their relative magnitude, and monotonicity is apparent since

nodes at higher levels in the lattice are larger—or at least as large—than those below.

g(1)

g(Ο)

g(1,2) g(1,3)

g(1,2,3)

g(2,3)

g(2) g(3)

Figure 4.1
Lattice of FM elements for n = 3. Monotonicity (P5) is illustrated by the size of each
node, i.e., g({x1})  g({x1, x2}) as {x1} ⇢ {x1, x2}. Note that shorthand notation is

used where g(1, 3) is equivalent to g({x1, x3}).

The FM lattice alone, while useful for showing a FM, does not give insight into how

the Choquet integral at (4.1) utilizes the lattice due to the ⇡-permutation. Therefore, for a

particular input we also show the path through the lattice followed by the Choquet integral.

For example, suppose that a particular data sample x and hypothesis h gives rise to the

permutation ⇡ = {2, 1, 3}. Then, for an arbitrary FM, the lattice visualization includes the

path shown in Figure 4.2(a). This visualization strategy allows us to summarize the FM as

well as the Choquet integral’s paths.
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0

0.1 0.4 0.25

0.6 0.4 0.85

1

(a) The path taken by the Choquet integral due
to a single input inducing the permutation ⇡ =
{2, 1, 3}. Note that the FM was arbitrarily defined
in this example, and their distribution (ordering)
follows that of Figure 4.1.

(b) Lattice of learned FM and paths for random
training data from the Ionosphere data set using
m = 10. Note there are numerous untouched
nodes and their learned values are driven by the
constraints in (4.9).

Figure 4.2
Lattice visualization examples.
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4.3 The DeFIMKL Algorithm

The DeFIMKL algorithm was introduced in [150] as a method of decision-level fusion

in the context of classification, where a set of decisions from an ensemble of classifiers are

non-linearly fused via the Choquet FI. To mathematically describe the algorithm, let the

decision-value for feature-vector xi from the kth classifier in an ensemble be fk(xi); the

set of decisions from the ensemble comprise the evidence h for the Choquet integral. The

evidence is then integrated with respect to the FM g, which encodes the relative worth of

each classifier in the ensemble. This results in the ensemble decision fg(xi) for feature-

vector xi with respect to the FM g,

fg(xi) =
mX

k=1

f⇡(k)(xi) [g(Ak)� g(Ak�1)] , (4.2)

where Ak = {f⇡(1)(xi), . . . , f⇡(k)(xi)}, such that f⇡(1)(xi) � f⇡(2)(xi) � . . . � f⇡(m)(xi).

This method has been explored in many previous works as a generalized classifier fusion

method [18, 181, 195, 212].

The FM completely specifies the behavior of the Choquet integral. Thus, the next step

in understanding the DeFIMKL algorithm is assigning a FM for the Choquet integral in

(4.2), of which there are many methods. For example, the Sugeno �-measure [73] may

be naively used after specifying the FM values of the singletons; however, there is no

guarantee that this choice of FM will yield acceptable results when used with (4.2) since

it does not take training data into account. To address this, we suggested a data-driven

method to learn the FM g through regularized sum-of-squared error (SSE) optimization in

[12]. This method is summarized next.
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Let the SSE be defined as

E2 =
nX

i=1

(fg(xi)� yi)
2 . (4.3)

It can be shown that (4.2), as a Choquet integral, can be reformulated as

fg(xi) =
mX

k=1

⇥
f⇡(k)(xi)� f⇡(k+1)(xi)

⇤
g(Ak), (4.4)

where f⇡(m+1) = 0 [176]. We can then expand the SSE as

E2 =
nX

i=1

�
HT

xi
u� yi

�2
, (4.5a)

where u is the lexicographically ordered FM g, i.e., u = (g({x1}), g({x2}), . . . , g({x1, x2}),

g({x1, x3}), . . . , g({x1, x2, . . . , xm})), and

Hxi
=

0

BBBBBBBBBBBBBBBBBB@

...

f⇡(1)(xi)� f⇡(2)(xi)

...

0

...

f⇡(m)(xi)� 0

1

CCCCCCCCCCCCCCCCCCA

, (4.5b)

where Hxi
is of size (2m�1)⇥1 and contains all the difference terms f⇡(k)(xi)�f⇡(k+1)(xi)

at the corresponding locations of Ak in u. Finally, folding out the squared term in (4.5a)

produces

E2 =
nX

i=1

�
u
THxi

HT

xi
u� 2yiH

T

xi
u+ y2

i

�

= u
TDu+ f

T
u+

nX

i=1

y2
i
, (4.6)

D =
nX

i=1

Hxi
HT

xi
, f = �

nX

i=1

2yiHxi
.
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Since (4.6) is a quadratic function, we can add constraints on u such that it represents a

FM, leading to a constrained QP. We can write the boundary and monotonicity constraints

on u (see properties P4 and P5) as Cu  0, where

C =

0

BBBBBBBBBBBBBBBBBB@

 T

1

 T

2

...

 T

n+1

...

 T

m(2m�1�1)

1

CCCCCCCCCCCCCCCCCCA

(4.7)

and  T

1 is a vector representation of the monotonicity constraint, g{x1} � g{x1, x2}  0.

Hence, C is simply a matrix of {0, 1,�1} values of size (m(2m�1 � 1)) ⇥ (2m � 1) with

the form

C =

2

66666666664

1 0 · · · �1 0 · · · · · · 0

1 0 · · · 0 �1 · · · · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 1 �1

3

77777777775

. (4.8)

Thus, the full QP to learn the FM u is

min
u

0.5uT D̂u+ f
T
u, Cu  0, (0, 1)T  u  1, (4.9)

where D̂ = 2D. Note that an additional regularization term can be included in the QP as

min
u

0.5uT D̂u+ f
T
u+ �v⇤(u), (4.10)
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where � is the regularization weight and v⇤(·) is some regularization function. For example,

`p-norm regularization is applied when v⇤(u) = kukp. `1 and `2 regularization of this QP

are discussed in [12, 150].

The QPs at (4.9) and (4.10) provide a method to learn the FM u (i.e., g) from training

data, thus completing the requirements for calculating the Choquet integral at (4.2). We

now review how to use a kernel classifier to determine the decision-value fk(xi). Specifi-

cally, we will show how to use the SVM with this algorithm.

Suppose that each learner fk(xi) is a kernel SVM, each trained on a separate kernel

Kk. The SVM classifier decision value is

⌘k(x) =
nX

i=1

↵ikyik(xi,x)� bk, (4.11)

which is interpreted as the distance of x from the hyperplane defined by the learned

SVM model parameters, ↵ik and bk [50, 32]. The class label is typically computed as

sgn{⌘k(x)},3 which could be used as the training input to the FM learning at (4.6), how-

ever, we remap ⌘k(x) onto the interval [�1,+1] via the sigmoid function to create inputs

for learning as

fk(x) =
⌘k(x)p
1 + ⌘2

k
(x)

. (4.12)

Thus, the training data for DeFIMKL are ({Kk = [k(xi,xj)], fk(X)},y), k = 1, . . . ,m,

where Kk are the kernel matrices for each kernel function k, fk(X) = (fk(x1), . . . , fk(xn))T

are the remapped SVM decision values, and y = (y1, . . . , yn) are the ground-truth labels

of X = (x1, . . . ,xn), respectively; the output of the QP learner is the FM g. Algorithm 4
3Note that the sgn(·) function discards information about how well the kernel separates the classes of

data.
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summarizes the training process. After training, a new feature vector x—from a test data

set—can be classified by via the procedure summarized in Algorithm 3.

Algorithm 1: DeFIMKL Classifier Training
Data: (xi, yi) - feature vector and label pairs; Kk - kernel matrices

Result: u - Lexicographically ordered fuzzy measure vector

1 for each kernel matrix do

2 Compute the kernel SVM classifier decision values, ⌘k, as in (4.11).

3 Remap the decision values onto the interval [�1,+1] as fk using (4.12).

4 Solve the minimization problem in (4.9) for the FM u.

Algorithm 2: DeFIMKL Classifier Prediction
Data: x - feature vector; Kk - kernel matrices; u - learned fuzzy measure vector

Result: y - Predicted class label

1 Compute the SVM decision values fk(x) by using (4.11) and (4.12).

2 Apply the Choquet integral at (4.2) with respect to the learned FM u.

3 Compute the class label as y = sgn{fg(x)}.

4.3.1 FM Learning Behavior with Insufficient Training Data

Learning the entire FM for a DeFIMKL classifier utilizing m classifiers requires at least

2m (or 2m�2, observing the boundary conditions in property P4) rank-independent obser-

vations. Therefore, since so many rank-independent observations are rarely encountered
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in training data sets, there will likely be values of the FM that are not data-driven. Fig-

ure 4.2(b) shows an example of this in the wild, where the Ionosphere dataset 4 was used

to train DeFIMKL with 10 classifiers. Note that there are many nodes in the lattice that

are never “touched” by the training data; the learned values for these nodes is completely

driven by the monotonicity constraints in the QP, the choice of regularization used, and the

initialization used in the QP solver. It is therefore highly unlikely that the learned values

at these nodes accurately represent the underlying FM, and if Algorithm 3 is applied to a

new data point that utilizes one or more of the untouched nodes, prediction accuracy will

suffer. The following contrived example demonstrates the behavior of the `2-regularized

DeFIMKL algorithm with insufficient training data.

Example 4. Learning an Underdetermined FM via `2-regularized DeFIMKL. A three-

SVM `2-regularized DeFIMKL algorithm (i.e., m = 3, however these results are also

indicative of the behavior when m > 3) is trained with a synthetic dataset that purpose-

fully avoids two nodes in the fuzzy lattice and was generated using the underlying FM

shown in Table 4.1; the underlying FM was arbitrarily assigned. The FM learned by the

DeFIMKL algorithm is also shown in Table 4.1. Note that two nodes in the lattice, cor-

responding to g({x2}) and g({x1, x2}) were not driven by the training data, and thus are

essentially driven by the monotonicity constraints.

What we see is that all nodes touched by the training data (i.e., nodes traversed by the

Choquet integral) are learned successfully with minimal error (well within 5%). However,

the two nodes untouched by the training data are assigned values based on monotonic-
4Retrieved from UCI Machine Learning Repository. Available online at http://archive.ics.uci.edu/ml
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ity constraints. The node corresponding to g({x2}) gets a value of essentially 0, satisfy-

ing the monotonicity constraint that g({;})  g({x2})  min(g({x1, x2}), g({x2, x3})),

and the node corresponding to g({x1, x2}) gets a value of 0.14 to satisfy the constraint

max(g({x1}), g({x2}))  g({x1, x2})  g({X}). Note that in both of these cases, the

learned FM value is essentially the minimum value permitted by the monotonicity con-

straints. This, as will be shown in the following section, is due to the `2-regularization of

the DeFIMKL algorithm.

Table 4.1
Underlying and learned FMs (excluding g({;}) and g(X) whose values are 0 and 1,

respectively, due to the boundary conditions).

Regularization
FM Term Underlying `2 (min) max mean
g({x1}) 0.14 0.14 0.19 0.14

g({x2})* 0.29 0.00017 0.93 0.33

g({x3}) 0.43 0.43 0.44 0.43

g({x1, x2})* 0.57 0.14 1 0.67

g({x1, x3}) 0.71 0.69 0.71 0.71

g({x2, x3}) 0.86 0.83 0.93 0.86

*FM terms marked with an asterisk are not addressed by the training data.

4.4 FM Learning with a Goal

The standard DeFIMKL algorithm discussed in the previous section assumes that the

structure of the underlying FM is not known, thus no information regarding the underlying

60



FM is encoded in the QP. If, however, the FM is partially known, the QP at (4.10) should

include that information. To this end, we propose the regularization function

v⇤(u) = �ku� gk2
p
, (4.13)

where g represents a goal of what we expect the FM to look like. Including this regular-

ization function in the QP (with p = 2) gives

min
u

0.5uT D̂u+ f
T
u+ �ku� gk22, (4.14)

and the QP then also simultaneously minimizes the Euclidean distance between the learned

FM u and the goal g. Expanding the regularization term in (4.14) leads to

min
u

0.5uT

⇣
D̂ + �I

⌘
u+ (f � 2�g)T u, (4.15)

showing that the inclusion of this regularization function still results in a valid QP, though

this comes as no surprise since the regularization function in (4.13) is quadratic in u.

Table 4.2
Classification Accuracy of Various Regularization Functions*

Data Set
Regularization Sonar Derm Ecoli Glass Toy 3 Toy 5 Toy 8

None 80.5 (5.63) 94.3 (2.61) 97.3 (1.90) 91.2 (4.39) 84.7 (6.48) 95.0 (3.39) 98.4 (1.76)

`1
78.4 (7.23) 89.6 (4.35) 91.8 (2.79) 82.7 (6.77) 64.4 (7.23) 91.0 (4.87) 96.9 (2.74)
� = 0.5 � = 0.5 � = 5 � = 0.5 � = 2.5 � = 0.5 � = 5

`2 (min)
80.0 (6.72) 91.9 (3.09) 91.8 (2.79) 85.9 (5.79) 64.2 (7.05) 92.4 (3.88) 91.4 (4.36)
� = 0.5 � = 0.5 � = 0.5 � = 0.5 � = 2.5 � = 0.5 � = 5

max
72.0 (7.58) 97.4 (1.88) 97.9 (1.91) 94.2 (3.97) 88.5 (6.35) 94.3 (2.84) 98.9 (1.61)
� = 0.5 � = 1.5 � = 4.5 � = 4.5 � = 1.5 � = 2 � = 2.5

mean
76.6 (7.17) 97.7 (1.49) 97.1 (2.14) 95.2 (3.07) 94.8 (4.50) 96.7 (2.30) 98.4 (1.89)
� = 0.5 � = 3 � = 1.5 � = 1 � = 1.5 � = 5 � = 1

*Bold indicates best result according to a two-valued t-test at a 5% significance level.

61



4.4.1 `2-regularization: Minimum Aggregation

It is interesting to note that when g = 0, the regularization function in (4.13) reduces

to that of `p-norm regularization of the FM vector. This is precisely why the learned FM’s

untouched nodes of last section’s example “default” to lie at the lowest end of their allow-

able range as shown in Table 4.1—we are essentially forcing the untouched FM values to

be as close to zero as possible through our choice of `2-norm regularization. Tying this

with the aggregation operators discussed in Section 4.2.3, we recognize that when g = 0

we are forcing the Choquet integral to aggregate like the minimum function.

4.4.2 Maximum Aggregation

Defining the goal as all 1s causes the untouched nodes to default to the maximum

end of their allowable range, tuning the Choquet integral’s behavior to that of maximum

aggregation (see Section 4.2.3). Rerunning the example in Section 4.3.1 with this goal

yields the FM summarized in Table 4.1, where it is obvious that the untouched nodes are

assigned the maximum possible value permitted by the monotonicity constraints. Note

that in this example the learned FM values for g({x1}) and g({x2, x3}) have been pushed

farther from the underlying FM, though they still lie fairly close. This discrepancy is due to

the choice of �, which essentially “tunes” where the error is incurred in the QP at (4.14)–a

larger value of � will force the learned FM to look like the goal g despite perturbing the

data-driven nodes away from their underlying values. � was arbitrarily set to 1 in these

experiments.
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4.4.3 Mean Aggregation

As a final example, we define the goal of the FM to be that of mean aggregation as

explained in Section 4.2.3. Doing so leads to the learned FM shown in Table 4.1. Interest-

ingly, the learned FM at the data-driven nodes is more accurate than that of the previous

case of maximum aggregation. We attribute this to the fact that the goal of mean aggrega-

tion is more similar to the underlying FM than the goal of maximum aggregation.

4.5 Experiments

Experiments were performed using no regularization, `p�norm regularization, and

the goal-based regularization function in (4.13) with the DeFIMKL algorithm on various

datasets from the UCI Machine Learning repository as well as toy datasets generated to

purposefully exclude 80% of the training of nodes in an arbitrarily generated fuzzy lattice

(three toy datasets were generated using 3, 5, and 8 densities, respectively). Each exper-

iment consists of 100 trials, where in each trial a random partition of 80% of the data is

used for training and the remaining data is sequestered for testing; the results we report

comprise the mean and standard deviation of classification accuracies. Finally, we vary

the regularization parameter, �, to explore its effect on classification accuracy and the re-

sults with the best �s are reported; so, essentially we are comparing the best from each

algorithm.

4.5.1 Results

Table 4.2 summarizes the results of these experiments. The best algorithms for each

dataset are shown in bold font; a two-sample t-test at a 5% significance level is used to

63



determine the statistically best results—hence, more than one algorithm can be considered

as best. In all experiments at least one goal-based regularization function emerges as a top

performer. We also find that the max and mean goal-based regularization functions achieve

superior results on the Dermatology and Glass datasets, suggesting that the data define an

underlying FM that is most similar to mean or max aggregation. There is no clear trend in

the results versus the regularization parameter �, and not surprisingly the best selection of

� varies based on the dataset used.

4.6 Conclusion

This paper first introduced a visualization technique that shows both the FM as well

as the Choquet integral’s path through the lattice. We also proposed and applied a new

regularization function to our previously developed decision-level aggregation algorithm

known as DeFIMKL. Including this new regularization function in the DeFIMKL algo-

rithm allows knowledge of an underlying FM to be encoded into the algorithm’s training

procedure; thus, the user can define a particular goal for the FM before learning. We dis-

cussed the application of the new regularization function and demonstrated its behavior

using synthetic and real-world datasets where we found that tuning the Choquet integral’s

behavior to that of max or mean aggregation tended to do best across all datasets.

4.6.1 Future Work

The regularization extension proposed in this paper allows knowledge of an underlying

FM to be encoded into the learning process of DeFIMKL, though we acknowledge the

fact that the underlying FM is typically not known. We also previously demonstrated,
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however, that much of the underlying FM can be learned with very little error as long as

the learning is data-driven, i.e., cases where there is sufficient training data [150]. Thus,

future work is focused on extending the proposed idea of goal-based regularization to goal-

based learning of the underlying FM at nodes not utilized by the Choquet integral during

training, i.e., values of the underlying FM not attainable from the training data.
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CHAPTER V

CLODD BASED BAND GROUP SELECTION

5.1 Introduction

Hyperspectral imaging is a demonstrated technology for numerous earth and space-

borne applications involving tasks such as target detection, invasive species monitoring

and precision agriculture. However, hyperspectral imaging suffers from the “curse of di-

mensionality”. Of particular interest is new theory for dimensionality reduction or identi-

fication of fewer spectral bands for multispectral versus hyperspectral imaging, typically

relative to some specific task, which aids efficient computation, improves classification and

lowers system cost. Most techniques can be divided into two broad categories—projection

or clustering. Projection techniques require all bands initially (versus feature selection) and

they are focused on reducing dimensionality. Approaches include principal component

analysis (PCA), Fishers linear discriminant analysis (FLDA) and generalized discrimi-

nant analysis (GDA), random projections (RP), and kernel extensions. Some methods are

unsupervised, e.g., PCA and RP, while others are supervised, e.g., FLDA and GDA. Clus-

tering is unsupervised learning and it can be applied to hyperspectral imagery in a number

of ways. While it does not automatically do dimensionality reduction, it helps to iden-

tify structure and one can take that information and use it for dimensionality reduction or

band group selection. For example, in [133] Martinez et al. used an information measure
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to compute dissimilarity between bands and they used hierarchical clustering with Ward’s

single linkage to produce a minimum variance partitioning of the bands. In [102], Imani

and Ghassemain used (hard) c-means for supervised band grouping. Martinez’s method

suffers from the limitations of vanilla hierarchical clustering, e.g., how to pick clusters

from the dendogram. Imani and Ghassemain’s approach suffers from the limitations of the

c-means clustering algorithm, e.g., initialization, selection of c, and lack of ability com-

pared to “soft” clustering (probabilistic, fuzzy or possibilistic).

Herein, we explore a new band grouping approach based on the improved visual as-

sessment of clustering tendency (iVAT) [88]. This approach is well-grounded theoretically,

and it produces visual results that an expert or additional clustering algorithm, e.g., clus-

tering on ordered dissimilarity data (CLODD) [89], can exploit. Our goal was to identify

an algorithm that could reproduce the structure that an expert currently finds and also be

useful in the context of classification, which might demand different structure than an ex-

pert “sees”. A common practice is to use a proximity metric like correlation to measure

the similarity between bands. Often, contiguous bands are highly similar and this structure

“shows up” if one produces an image of the similarity matrix. The CLODD algorithm

analyzes a dissimilarity matrix, e.g., distances between vectors in a data set or bands in

hyperspectral imaging, and it automatically finds “block-like” structure. Structure is often

found in a proximity matrix according to squares of high-contrast along the matrix diago-

nal. The CLODD algorithm exploits two properties, “edginess” and “contrast”. CLODD

obtains contiguous band groups. However, we can automatically identify non-contiguous

clusters (band groups) if we re-order the bands according to a method like iVAT. Herein,
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we explore both contiguous and non-contiguous band groups and compare their relative

performances. On one hand, contiguous is useful if we wish to identify a simpler sensor,

however it could very likely be the case that non-contiguous bands share similarity and

should be grouped and lead to more of a dimensionality reduction approach. Overall, the

“answer” to this question is very task specific. While CLODD and iVAT are naturally un-

supervised techniques, we also explore a supervised CLODD and iVAT approach based

on the construction of a dissimilarity matrix using the data labels. The following sections

describe the proposed approach and results.

5.2 Methods

First, the hyperspectral data cube (image) is re-arranged to form a 2D data set (so

spatial context is lost) where each row represents a pixel in the image and each column

is a band. Let the data set be X = {x1,x2, · · · ,xn} 2 Rn⇥b, where n is the number of

pixels in the image and b is the number of bands. The label for each pixel, xi is yi 2

{1, 2, · · · , L}, where L is the number of classes. Figure 5.1 shows the major steps in the

proposed approach.

Figure 5.1
Block diagram for the proposed method
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Table 5.1
Classification accuracy (percentages) for unsupervised band grouping.

Bandgrouping method
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CLODD(contiguous) Mean 71.84 55.62 89.92 95.98 98.72 68.09 81.56 52.14 98.74 79.30
CLODD(contiguous) Weight 66.43 47.98 87.41 94.97 98.72 64.86 78.98 43.18 98.65 75.95
CLODD(non-contiguous) Mean 71.05 53.37 88.16 95.81 98.47 66.41 80.34 39.51 98.84 77.55
CLODD(non-contiguous) Weight 66.78 47.98 87.66 96.31 98.72 65.50 78.93 41.96 98.74 76.12
Hierarchical Mean 66.87 49.48 87.91 93.13 97.70 67.05 78.88 31.57 98.45 75.39
Hierarchical Weight 65.30 51.42 90.68 95.14 97.95 68.60 78.52 47.66 98.55 76.78

5.2.1 Calculation of dissimilarity matrix

The computation of the dissimilarity matrix (DM) differs for unsupervised and super-

vised band grouping. Note, there are numerous proximity measures and their aggregation

that can, and have, been used for each, e.g., correlation, Bhattacharyya distance, Kullback-

Liebler divergence, etc [22].

Herein, for supervised band grouping we compute the mean of the training samples in

each class and a matrix, M , is formed such that ith row is the mean vector for the ith class.

The square of the Euclidean distance between two bands, i and j is computed according

to d1(i, j) = ||Mi � Mj||2, where Mi (and Mj) is the ith (jth respectively) mean vector.

For unsupervised band grouping, we compute the square of the l2 norm of the differences

between pixel values for those two bands, d2(i, j) = ||X.,i�X.,j||2, where X.,i is a column

vector of all pixel values for band i. The resultant pairwise dissimilarity matrix is sized

b⇥ b. Figure 5.2 is an example for the Indian Pines data set.
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Table 5.2
Classification accuracy (percentages) for supervised band grouping.

Bandgrouping method
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CLODD(contiguous) Mean 71.40 55.62 89.67 95.64 98.72 70.41 82.02 52.14 98.65 79.54
CLODD(contiguous) Weight 65.30 48.73 89.67 95.48 98.72 63.57 77.86 43.38 98.65 75.59
CLODD(non-contiguous) Mean 69.40 52.32 88.92 96.15 98.47 68.99 80.04 43.79 98.65 77.71
CLODD(non-contiguous) Weight 65.74 47.23 88.92 95.81 98.47 64.60 78.42 43.58 98.84 75.79
Hierarchical Mean 67.31 49.03 88.16 92.63 97.70 64.21 78.37 31.16 98.45 74.94
Hierarchical Weight 65.48 50.67 89.92 95.14 97.95 68.73 79.28 47.45 98.55 76.90
c-means Mean 66.78 53.97 86.15 93.13 97.19 67.96 77.66 33.20 97.78 75.45
c-means Weight 63.73 49.63 83.88 93.13 97.19 68.60 77.10 44.81 95.65 74.86

5.2.2 Reordering of DM using iVAT

Figure 5.2(a) shows that some non-contiguous bands are similar. We can group those

similar bands together in the matrix if we re-arrange the indicies (bands) using VAT [31].

VAT re-orders bands (data points in standard clustering) based on Prim’s modified minimal

single linkage. In [88], Havens et al. proposed an improved VAT (iVAT) that uses the graph

theoretic distance to transform VAT to enhance our visualization and the effectiveness of

the VAT algorithm. Figure 5.2(b) is the iVAT enhancement step on (a) without re-ordering

and (c) is the enhanced iVAT on the re-ordered DM (b).

5.2.3 Clustering of a DM

CLODD, a “visual” clustering algorithm, which is more of an image processing tech-

nique than standard feature space clustering, exploits the “blockiness” in the raw DM or

a reordered DM. Initially, VAT was created as a tool to help a user ‘see” if there is any

potential structure in the data. CLODD goes the next step and clusters the data. Its goal is

to find a hard partitioning (aka clusters) via dark blocks along the matrix diagonal. While
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searching for the partition boundaries, it considers contrast between the on-diagonal dark

block and off-diagonal lighter blocks known as ”squareness” and visually apparent edges

between the blocks, termed as ”edginess”.

Let D be the DM, U is a c partitioning and bi is the number of (contiguous) bands in

cluster i. Squareness is

Esq(U ;D) =

P
c

i=1

P
s2i,t/2i dstP

c

i=1(b� bi)bi
�
P

c

i=1

P
s,t2i,s 6=t

dstP
c

i=1(b
2
i
� bi)

.

The first part is the average between dark and non-dark regions. The second is just for dark

regions. Edginess is

Eedge(U ;D) =
1

c� 1

 
c�1X

j=1

Pmj

i=mj�1 |di,mj
� di,mj+1|

bj + bj+1

+

Pmj+1

i=mj+1 |di,mj
� di,mj+1|

bj + bj+1

!
,

where mj =
P

j

k=1 bk and m0 = 1.

The objective function has two controlling parameters: mixing coefficient, ↵ to trade-

off between squareness and edginess; and � to impose minimum cluster size,

E(U,D) = s( min
1ic

bi, �b)(↵Esq(U,D) + (1 � ↵)Eedge(U,D)),

where s(.) is a spline function and is maximized with respect to U to obtain the optimum

partition, U⇤.

5.2.4 Feature extraction

Herein, we explore two feature extraction methods, mean and weight. In the ’mean’

method, the resultant feature in each band group is the mean value of all bands in that
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group. In ’weight’, the weight of each band is determined as Wi =
1
R

P
j2Ci,j 6=i

1
✏+d(i,j)2 .

The band with the highest weight, i.e., minimum average distance from all other bands in

that group, is selected as the representative [133]. While we could have performed more

advanced feature-level fusion or dimensionality reduction methods, the (simple) mean and

weight were used as they are more easily translated into a physical sensor when designing

a multispectral sensor.

5.2.5 Classification

Herein, we use a soft margin support vector machine (SVM) with RBF kernel for

classification [50]. While we could have used a more sophisticated classifier, e.g., multiple

kernel learning [150], we desired to reduce the number of “free parameters” to study just

the proposed band grouping technique relative to related work.

5.3 Preliminary Findings

The publicly available benchmark data set Indian Pines is used to validate our method.

The image has 145 ⇥ 145 pixels with a spatial resolution of 20 meters and 220 spectral

channels (bands). We removed 20 water absorption bands, 104 � 108, 150 � 163 and

220; we consider only those classes with more than 5% of the total samples— Corn-notill,

Corn-mint, Grass-pasture, Grass-trees, Hay-windowed, Soybean-notill, Soybean-mintill,

Soybean-clean and woods.

We used a random jack-knife partitioning of the data, where 20% are for training and

the remainder is testing. We modified CLODD and instead of letting it pick c we varied c 2

{3, 4, ..., 35} and ↵. We keep � fixed to minimum cluster size of 2. Whereas CLODD will
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pick the “best visual clustering”, we wanted to generate multiple candidate partitions and

pick the “winner” based on classification accuracy. Next, the training data is standardized

for each feature to have zero mean and unit variance. The testing data is standardized with

the mean and standard deviation of the training data. We varied the RBF and adopted a

one-vs-all strategy for multi-class classification. The best classification accuracy for each

scenario is reported and used for comparison.

Table 5.1 is the classification accuracy for unsupervised band grouping. Non-contiguous

CLODD-mean has the best overall performance. For soybean clean, it shows great im-

provement of approximately 5% over the Hierarchical based method. Note that wood has

almost the same accuracy for different methods because its characteristics are distinctly

different from all other classes which makes it easily classifiable by any of the methods.

On the other hand, corn(min) and corn(notill) have very similar characteristics and are

difficult to differentiate. For these two classes, contiguous CLODD-mean is the best.

Supervised band grouping is reported in Table 5.2. Contiguous CLODD-mean is still

the top performer and it has a slightly better overall accuracy than unsupervised. For this

data set, we see that unsupervised or supervised (how to construct the DM) does not make

a significant difference in performance. Another point is performance appears to greatly

depends on the band group feature extraction method. For example, CLODD and c-means

favor the mean whereas Hierarchical likes weight.
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5.4 Conclusion and Future Work

Herein, we explored a visual clustering algorithm, CLODD, and re-ordering technique,

iVAT, for contiguous and non-contiguous band group selection in hyperspectral imaging.

Previously, these clustering techniques were used for feature space clustering instead of

band group selection. Experimental results indicate that contiguous CLODD is the top

performer. However, in future work we will explore the proposed algorithms on additional

data sets, compare to more band selection and band group selection algorithms, explore ad-

ditional DM functions for supervised and unsupervised, feature extraction methods, fusion

strategies and more sophisticated classifiers.
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(a) (b)

(c) (c)

Figure 5.2
Supervised DM for Indian Pines data set; (a) “raw” DM, (c) VAT re-ordered, (b) iVAT

enhanced minus the re-ordering step, and (d) iVAT enhanced with re-ordering.
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CHAPTER VI

FUSION OF DIVERSE FEATURES AND KERNELS USING LP-NORM BASED

MULTIPLE KERNEL LEARNING IN HYPERSPECTRAL IMAGE PROCESSING

6.1 Introduction

Hyperspectral imaging has a wide range of applications from mineralogy to weather

forecasting, agriculture, surveillance, etc. A hyperspectral image can be described as a

high dimensional data cube. Each sub-image in this data cube (usually on the order of

hundreds) informs us about the radiance (or reflectance) properties of a scene at different

narrowly spaced bands in the electromagnetic (EM) spectrum. However, automated anal-

ysis of some geographical area might require several remote sensing systems with sensors

in different regions of the EM, e.g., visible, near IR and SWIR hyperspectral imagery, lidar

and synthetic aperture radar (SAR). The point is, numerous sensors are often involved in

remote sensing and new theory is needed to fuse them. Herein, we focus on the production

and fusion of disparate features in hyperspectral imagery for robust classification. How-

ever, without loss of generality, the underlying approach discussed in this article is equally

applicable to multi-sensor fusion.

The last decade has seen a surge of interest in the development and use of multiple

kernel learning (MKL) for tasks like heterogeneous data fusion, classification and in-

put/feature selection in areas like machine learning, pattern recognition, signal processing,
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computer vision, etc. A good recent review of MKL mathematics and algorithms is [67].

In the context of support vector machine (SVM) based classification, it is often the case

that a single kernel is not enough. In practice, a challenge is finding a quality kernel. This

is where MK helps. Instead of being restricted to a limited set of known kernels, which

may not solve a task, MK provides a solid foundation to combine (fuse) a set of known

base kernels (those satisfying Mercer’s conditions) to produce a new and more powerful

tailored kernel. MK is both a homogenization transformation for different input spaces and

it ultimately provides important flexibility for classification in terms of searching for qual-

ity linearly separable solutions in the reproducing kernel Hilbert space (RKHS). There are

number of outstanding MKL problems, for example: how do we generate diverse inputs

for MKL; what linear or nonlinear aggregation operators are needed to combine the base

kernels; how are multiple kernels normalized; how do we mitigate overfitting in MKL;

and what search algorithms are needed for fusion algorithm parameter estimation. To date,

numerous algorithms have been put forth, e.g., MKLGL [200], `p-norm MKL [125], FIGA

[98], GAMKLp [150], DeFIMKL [150], etc.

In terms of hyperspectral image processing, MKL has been used for tasks like clas-

sification [82], feature selection [189] and nonlinear unmixing [39]. In [213], Zhang et

al. presents a multi-sensor fusion technique, where `1-norm MKL is used to fuse several

multi-scale RBF kernels applied to each sensor data set. Majority voting is used to aggre-

gate the MKL classification results. The main contribution was the use of active learning

(AL) for the selection of training samples based on maximum disagreement. In [189],

simpleMKL [4] was used to help learn image features. Multiple RBF kernels are applied
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to a single feature, a group of features and features from heterogeneous sources. In [96],

Honeine and Richard proved that the angular kernel is a valid reproducing kernel, and it

was explored for hyperspectral image processing because spectral angle is a popular tool

used in the literature due to its invariance to the spectral energy.

Gu et al. published a series of papers on MKL for classification in hyperspectral im-

agery [82, 81, 83]. These articles are efficient algorithms to learn the optimum weights in

`1-norm MKL. The weights of the kernels are obtained by using maximum variance ker-

nel with minimum F-norm error [82], applying low rank non-negative matrix factorization

(NMF) in [83], and regularizing the weights using cardinality based constraints in [84],

which is the extension of [82] for sparse MKL. In [83], kernel based NMF (KNMF) uses

the non-linear mapping of the base kernels. Specifically it uses the polynomial kernel to

map the base RBF kernels to a higher dimensional RKHS. In all the papers, multi-scale

RBF kernels based on Euclidean distance is used as the base kernels.

Kloft et al. provided an extensive analysis on the different variants of MKL [125].

They showed theoretically and analytically that `1-norm MKL has higher performance in

noisy situations where the noisy kernels are eliminated via the sparse weights. On the

other hand, higher norm MKL tends to give equal weights to all the kernels, and therefore

outperforms the sparse MKL when the kernels are good and diverse. In many cases in hy-

perpsectral image processing, we can have diverse feature sets that can be used to generate

quality kernels. This in turn signifies that dense MKL has a huge potential to improve the

classification results over the sparse MKL, but it has not been explored in the hyperspectral
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community to date. Herein, we employed the `p-norm MKL and found similar results that

support the analysis in [125].

In summary, while there has been interest in using MKL for hyperspectral image pro-

cessing, work to date has primarily focused on the fusion of homogeneous kernels, e.g.,

multiple RBFs with Euclidean distance. However, it is likely that different kernels are re-

quired. In addition, to the best of our knowledge little-to-no work has focused on how to

generate a diverse set of features for MKL via bandgrouping in hyperspectral image pro-

cessing. We show that diversity with respect to both features and kernels is important for

MKL as well as `p-norm MKL outperforms sparse MKL in aggregating them. Figure 6.1

is a high-level illustration of our approach.

6.2 Methods

In this section, we describe the three major parts of our approach—(i) proximity mea-

sure calculation, (ii) band grouping for feature extraction, and (iii) feature space fusion

using `p-norm MKL. For notational purposes, the 3D hyperspectral data cube is remapped

into a 2D space such that each row represents a pixel and each column is a band. Let the

re-shaped 2D data set be X = [x1 x2 · · · xn]
T 2 Rn⇥b, where n is the number of pixels in

the image and b, the number of bands.

6.2.1 Proximity Measure Calculation

Hyperspectral sensors are wonderful because each pixel has a wealth of information

and tells a story, versus traditional single channel or “RGB” imagery. However, hyperspec-

tral imagery also suffers from the curse of dimensionality, spatially, spectral and sometimes
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temporal. Instead of using all bands, or features, it is often the case that selecting individual

bands, feature projection (e.g., Principle Component Analysis (PCA), random projection,

etc.), or grouping bands leads to a better solution (higher accuracy and more robust). While

numerous approaches have been proposed, it has been shown that band group partitioning

is of utility and it can be derived, in a supervised or unsupervised fashion, from a proximity

measure [22]. For example, one can compute the correlation matrix between the different

bands (unsupervised approach). Structure in this matrix can be used to derive a band group

partitioning. However, there are a number of unsupervised proximity measures, such as

Euclidean, correlation, Jeffrey K. Matusita, Bhattacharyya, spectral angle mapper (SAM),

etc. In general, it has been demonstrated that selection of proximity measure depends in

part on the data set and task, meaning there does not appear to be a global best. Herein, we

explore the square of Euclidean, which measures the distance between a pair of vectors, and

correlation, which measures angular similarity. We selected these two proximity measures

for demonstration as they capture different aspect of the data via its features. However, in

future work this is likely a parameter that needs to be included in our algorithm.

Figure 6.1
High-level illustration of the proposed MKL approach.
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Proximity Measure 1: Square of Euclidean The square of Euclidean distance between

vectors xi and xj is

dij = d(xi,xj) =
LX

k=1

(xik � xjk)
2.

Note, the square of Euclidean distance is always positive and depends in large on L, e.g.,

the length of the vectors or the number of pixels in the training data set.

Proximity Measure 2: Correlation Correlation is a similarity measure between two sig-

natures. The Pearson’s correlation coefficient is the co-variance of two vectors normalized

by the product of the standard deviation of two distributions,

s(xi,xj) = corr(xi,xj) =
cov(xi,xj)

�xi
�xj

.

The correlation coefficient is in [�1, 1]. Distance, or the dissimilarity measure, d(xi,xj) is

obtained herein by simply subtracting the s(xi,xj) from 1.

6.2.2 Feature Extraction

In this step, we first partition similar bands from a given proximity measure into groups

and we then apply a feature extraction or reduction technique to each band group to extract

a single feature from that group. Herein, we use the algorithm proposed by Ball et al. that

performs unsupervised grouping of contiguous similar bands with respect to a provided

proximity measure (see [22] for full algorithm details). After band grouping, we can apply

a number of feature extraction techniques such as stepwise linear discriminant analysis

(SLDA) [23], mean or weight, to get features equal to the number of band groups. In this

paper, we calculate the mean of all bands in a groups as the feature. While mean might not
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be the most sophisticated technique, its advantage is that it is simple to realize in hardware

and gives rise to a simpler multispectral versus hyperspectral sensor.

6.2.3 Feature Space Fusion Using `p-Norm MKL

In the kernel approach, inputs are ideally projected into a high, possibly infinite, dimen-

sional RHKS space, where the patterns for different classes are now linearly separable. The

trick is that we can do this all via a “kernel function” in the original low(er) dimensional

space and we never have to do the actual lifting. However, in reality we do not know what

kernel to select and in general the choice of kernel is task specific. There is currently no

straightforward way to select a kernel for a given set of data. As already mentioned, MKL

provides one such path to help search for the idea kernel by the simple concept of com-

bining simple known (base) kernels to form custom (tailored) kernels. However, we must

search for this kernel and the space is both extremely large and if we are not careful, MKL

tends to succumb to overfitting (can learn the training data perfectly but not generalize well

to new test data). Herein, we restrict our analysis to a linear convex sum (LCS) of kernels.

This is by far the predominant MKL approach. While a few nonlinear approaches have

been put forth, e.g., FIGA, for various reasons (such as proving that a given aggregation

operator always yields a valid Mercer kernel) nonlinear MKL is still an unsolved problem.

For a function to be a kernel, it must satisfy the Mercer’s kernel properties such as

continuity, symmetry, and positive semi-definiteness. There are numerous kernel func-
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tions, e.g., radial basis function (RBF), polynomial, etc. In this paper, we use RBF and

correlation kernel. The RBF function is

kr(xi,xj) = exp

✓
�
||x2

i
� x

2
j
||

2�2

◆
,

where � is the so-called width parameter of the RBF kernel. The correlation kernel is

kc(xi,xj) = exp

✓
�1� corr(xi,xj)

2�2

◆

where corr(xi,xj) is the Pearson’s correlation coefficient for xi and xj . In [113], the

authors have shown that the correlation kernel satisfies the Mercer’s kernel properties.

Note, our two kernels are already more-or-less to scale by design. However, if one is

using heterogeneous kernels that produce very different scales, then the zero mean and

unit variance RHKS approach in [125] can be used.

The convex sum of M kernels is also a Mercer’s kernel. This is because both the sum

and multiplication by positive constant are positive semidefinite (PSD) preserving operators

(on M different Gram matrices). The combined kernel with `p-regularized weight wm is

k(xi,xj) =
MX

m=1

wmkm(xi,xj)

subject to ||w||p  1 and wm 2 R+, where ||w||p is the p-norm of w. Though the above

expression is notationally for M kernels on the same set of features, it is trivially gen-

eralized to multiple features, e.g., different kernels on different subsets of features [150].

Optimization-based MKL solutions, versus fixed rule or heuristic approaches, optimize

(using alternating optimization typically) the weights of the kernels and the SVM criteria

function. Again, we use `p-norm MKL [82, 189] to derive the LCS weights. However, we
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could use a number of other search algorithms for feature level fusion, such as MKLGLp

or GAMKLp, or decision-level MKL, e.g., DeFIMKLp. The `p-norm condition is more-

or-less the same across a number of solvers. In general, the different approaches represent

variations in search, e.g., Group Lasso (MKLGL), genetic algorithm based (GAMKLp),

and non-linear decision-level fusion via DeFIMKL.

6.3 Preliminary Results and Discussion

The Indian Pines data set consists of 145 ⇥ 145 pixels with a spatial resolution of

20 meters and 220 spectral channels (bands). During data pre-processing of the data, 20

water absorption bands, 104 � 108, 150 � 163 and 220 were removed. We considered

the following 9 classes for classification — Corn-notill, Corn-min, Grass-pasture, Grass-

trees, Hay-windowed, Soybean-notill, Soybean-mintill, Soybean-clean and woods. Ran-

dom jack-knife partitioning is used, where 20% is training and the remainder is testing.

Hereafter, the squared Euclidean is denoted as ’SqE’ and correlation is ’Corr’. Proximity

matrices are computed on the training data based on SqE and Corr. The number of band

groups and thus features extracted was 11 for SqE and 16 for Corr (forming two feature

vectors). The training data is standardized for each feature to have zero mean and unit

variance and the testing data is standardized using the mean and standard deviation of the

training data. For SqE and Corr, we used 10 kernels each with � = {2�3, 2�2, · · · , 26}.

Top performing kernels for each feature were selected using SVM accuracy and fused us-

ing `p-norm MKL. ’SVMLight’ and ’MKL’ implementations in the Shogun toolbox [171]
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were used. For the `p-norm, we tried p = 1.1 (approximately city block distance), p = 2

(Euclidean) and p = 100.

Table 6.1
Producer’s accuracies for `p-norm MKL based fusion.

`p-norm
Method (SqE = Square of Euclidean,
Corr = Correlation)

#
of

ke
rn

el
s

co
rn

(n
ot

ill
)

co
rn

(m
in

)

gr
as

s
(p

as
tu

re
)

gr
as

s
(tr

ee
s)

ha
y

(w
in

dr
ow

ed
)

so
yb

ea
ns

(n
ot

ill
)

so
yb

ea
ns

(m
in

)

so
yb

ea
ns

(c
le

an
)

w
oo

ds

NA
SqE 1 64.52 46.18 75.57 92.80 97.19 63.82 78.57 28.31 97.78
Corr 1 62.42 34.93 81.11 85.09 96.16 62.02 66.46 30.55 97.49

p = 1.1

Fusion of SqE & Corr 1 + 1 68.35 46.48 79.60 90.79 96.16 64.99 79.08 45.42 97.87
SqE 2 65.91 52.62 87.41 92.29 97.44 64.34 80.09 37.27 97.78
Corr 2 62.77 36.13 82.12 87.27 96.16 62.02 66.41 30.55 97.49
Fusion of SqE & Corr 2 + 2 68.70 52.02 88.41 93.13 96.42 64.99 80.45 46.64 97.87

p = 2

Fusion of SqE & Corr 1 + 1 69.92 53.37 82.87 91.96 96.16 69.77 80.14 52.55 97.20
SqE 2 69.14 57.12 88.66 92.80 97.70 69.51 81.81 46.64 97.78
Corr 2 65.82 39.28 87.15 88.11 97.19 63.70 66.67 37.07 97.49
Fusion of SqE & Corr 2 + 2 73.50 62.82 91.18 93.97 97.70 72.22 83.23 60.08 97.10

p = 100

Fusion of SqE & Corr 1 + 1 71.49 60.57 83.63 93.63 96.93 72.87 81.16 60.29 96.14
SqE 2 72.97 64.32 89.67 94.47 97.70 73.00 83.13 55.80 97.29
Corr 2 68.88 46.03 89.92 89.61 97.44 66.93 67.68 45.42 97.39
Fusion of SqE & Corr 2 + 2 77.24 69.42 92.44 94.97 97.95 76.49 85.11 66.40 95.75

Table 6.1 shows that inter-method fusion, i.e., fusion of SqE and Corr, is the top per-

former for all classes. Also, a larger p produces the best results for all classes except

’woods’. Inter-method fusion has an improvement of approximately 2% to 10% relative to

intra-method for corn-notill, corn-min, grass-pasture, soybeans-notill, soybeans-min and

soybeans-clean. It has almost the same performance for grass-tress and hay-windowed.

The behavior of wood is different from all other classes. It has the best result at p = 1.1,

and it continues to degrade with increasing p. Note, ’wood’ is easily classifiable with a

single kernel. `1.1 MKL, which promotes sparse solutions, is more suitable for this task.

In [125], Kloft et al. showed that when kernels are diverse, higher norm MKL is more

appropriate and yields better results. In our case, results improve for 8 out of 9 classes as
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`p-norm increases, which supports our claim that diversity in features and kernels is useful

for MKL-based hyperspectral classification.

6.4 Future Work

As stated above, our results are preliminary but promising—ran on a single well-known

benchmark data set that was not trivial to solve using a single kernel. In future work, we

will apply our technique to additional data sets. We will also investigate a search procedure

for MKL parameter selection, including kernel type and associated parameters (a critical

aspect of MKL that is typically overlooked due to complexity). Here, we explored, for

demonstration, one kernel based on Euclidean distance and another based on angle for

diversity. We believe it is also of interest to explore different, or a combination of different

band group selection algorithms and what particular proximity measures are fed to these

techniques to ultimately generate diverse features for MKL. Last, we are currently using

all features produced by band grouping. However, sometimes some bands (or band groups)

are not useful for a task at hand and performance can be raised if we do a feature selection

step before fusion.
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CHAPTER VII

MULTI-CRITERIA BASED LEARNING OF THE CHOQUET INTEGRAL USING

GOAL PROGRAMMING

7.1 Introduction

The fuzzy integral (FI) has been used time and time again in numerous applications

such as signal and image processing, pattern recognition and multi-criteria decision mak-

ing (MCDM) for data/information aggregation. In 1974, Sugeno introduced the fuzzy mea-

sure (FM), a monotone and normal capacity [176]. The FM is significant with respect to

the FI because it is in effect what drives (determines what specific function is computed)

nonlinear aggregation via FIs like the Choquet integral (CI) and Sugeno integral (SI). Ex-

isting approaches either manually specify the FM or attempt to learn it from data according

to a criteria such as the sum of squared error (SSE). However, the FM is difficult to specify

as it has (2N � 2), for N inputs, numbers of “free parameters”. It is extremely rare than

an expert can (or would want to) provide such information even for relatively small cases,

e.g., N = 4 has 14 values, N = 5 has 30 and N = 10 already has 1, 022 values. Common

practice is to specify just the densities, the measure values for only the singletons (individ-

uals). From there, we can use methods such as the S-Decomposable FM, the Sugeno FM

[176], and Grabischs k-additive FM and integral [140]. In [79], Grabisch and Roubens pro-

posed a method known as constraint satisfaction that takes the relative importance of the
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criteria and the type of interaction between them, if any. Alternately, identification of FMs

based on data has been explored by numerous authors in different applications; quadratic

programming (QP) [76], gradient descent [121], penalty and reward [120], Gibbs sampler

[136], and genetic algorithms [11]. However, to the best of our knowledge no method has

been put forth to date to learn the FM by taking into account a weighted combination of

both experts’ knowledge and data.

One problem with learning an aggregation from data alone is that it often results in

solutions that are overly complex and “expensive” to implement. It also runs the risk of

over-fitting and the quality of that solution is based in large on the size and diversity of

the data. On the other hand, learning an aggregation based on only expert opinion can be

overly subjective and may not result in peak performance. However, conflict between data

sets, experts or a combination of the two, can (and does) occur and must be addressed.

Consider the following multi-sensor target detection example. The goal is to use the

individual (and most important, combined) benefit of different sensors operating across the

electromagnetic spectrum. While we want to achieve the highest performance possible, we

also desire a solution whose overall cost does not exceed some limit, one that requires the

fewest computational resources (e.g., memory and processing), has the smallest form factor

and energy consumption, etc. At the heart of such a dilemma is the need to optimize some

process relative to different and often conflicting information.

Herein, weighted Goal programming [100], an approach from MCDM, is explored to

learn the FM relative to the CI for data/information fusion. This framework provides an

interesting new way to set the priority of any number of combination of different sources
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(e.g., data and high-level expert knowledge) in learning. Specifically, relative weights are

placed on data and experts. The user can exercise control on how and to what extent the

criteria from each input contribute to learning. Figure 7.1 shows the proposed weighted

Goal programming framework for CI learning.

Figure 7.1
Proposed weighted Goal programming framework to learn the CI from a combination of
data and high-level expert knowledge. Relative priorities (weights) are placed on training
data and experts. Weighted Goal programming also allows for a way to enforce the hard

constraints imposed by the fuzzy measure (normality and monotonicity).

This paper is organized as follows. In Section II, we review important definitions and

we discuss capacity learning based on training data by SSE minimization. In Section III,

after brief introduction on weighted goal programming, our method of aggregation based

on training data and experts criteria is explained in detail. Last, in Section IV, experiments

for different scenarios are provided and analyzed.

7.2 Background

We begin with a few necessary definitions relevant to data/information aggregation.

This is followed by a description of FM learning using the QP. While several FIs exist,
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e.g., the SI and CI, the focus of this article is just the CI. The CI has numerous desirable

properties, i.e., it is differentiable, it recovers the Lebesgue integral for an additive FM, etc.

The CI is defined with respect to the FM, which ultimately determines what specific aggre-

gation operator the CI breaks down into. Let there be N inputs, X = {x1, x2, · · · , xN} and

a (partial support) function, h, that maps each element of X into an interval such as [0, 1].

For example, X can be set of algorithms, features, sensors, etc. Furthermore, the integrand

(h) are often labels in pattern recognition, confidences, utility in decision making process,

evidence or sensor (quantitative) measurements. Note, the [0, 1] interval convention is a

matter of convince. Other intervals can (and have) been explored in the literature. The FM,

for 8A ✓ X , is a value in [0, 1] that often represents the (relative) “worth” of the different

subsets of sources. Often these values are subjective (e.g., provided by a human), however

they can be objective as well (e.g., correlation in a multi-sensor system). The CI is a unique

and creative way of combining the information in both g and h.

Definition 1. (Fuzzy Measure) The fuzzy measure is a set valued function

g : 2X ! [0, 1] such that

1. (Boundary condition) g(;) = 0;

2. (Monotonicty constraints) If A,B 2 X, and A ✓ B, then g(A)  g(B).

Note, often g(X) = 1 (normality) is enforced as an additional boundary constraint. Also,

if X is an infinite set then a third condition guaranteeing continuity is required, but this is
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a moot point for finite X . For example, for three inputs, we have the following boundary

constraints

g(�) = 0,

g123 = 1,

and the monotonicity constraints are

g1 � g12  0,

· · · ,

g23 � g123  0,

where g1,··· ,i is a lexicographically encoded representation (short hand notation), i.e., g1 =

g(x1), g13 = g({x1, x3}) etc.

Definition 2. (Training Data) Let the training data set be

T = {(Oj,↵j) : j = 1, · · · ,m} ,

where O = {O1, · · · , Om} is the set of objects and ↵ = {↵1, · · · ,↵m} are the correspond-

ing labels. For example, in signal/image processing and computer vision an object could

be an image chip and Oi (1  i  N ) could be the output (e.g., class label) of an algorithm

asserting the support that a human is in the image chip. Next, we provide the definition of

the CI with respect to training data.

Definition 3. (Choquet Integral) The discrete CI for Oj is
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Cg(h(Oj)) =
NX

i=1

[h(Oj : x⇡(i))� h(Oj : x⇡(i+1))]g(A⇡(i)),

for A⇡(i) =
�
x⇡(1), · · · , x⇡(i)

 
and permutation ⇡ such that

h(Oj : x⇡(1)) � · · · � h(Oj : x⇡(N)),

where h(Oj : x⇡(N+1)) = 0.

Next, we proceed to the formulation of the SSE minimization problem for FM learning

and the QP. Let the SSE between training data T and the CI with respect to the FM g, be

[12]

E(g) =
mX

j=1

(Cg(h(Oj))� ↵j)
2,

which can be expanded as

E(u) =
mX

j=1

(At

Oj
u� ↵j)

2, (7.1)

where

AOj
=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

· · ·

h(Oj : x⇡(1))� h(Oj : x⇡(2))

· · ·

h(Oj : x⇡(i))� h(Oj : x⇡(i+1))

· · ·

0

· · ·

h(Oj : x⇡(N) � 0)

· · ·

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,
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and

u = [g1, g2, · · · , g12, · · · , g12···N ]t.

Both AOj
and u are of size (2N � 1) ⇥ 1. The function difference h(Oj : x⇡(i)) � h(Oj :

x⇡(i+1)) corresponds to location g(x⇡(1), · · · , x⇡(N)) in u. Equation (7.1) can be expanded

and simplified to give the following form

E(u) = u
t
Du+ f

t
u+

mX

j=1

↵2
j
,

where

D =
mX

j=1

AOj
A

t

Oj
, f =

mX

j=1

(�2↵jAOj
).

The CI is learned through minimizing an objective function such as Equation (7.1)

with respect to the monotonicity and boundary conditions of the FM. For N inputs, the

FM has 2N variables, of which two variables g(;) and g(X) have constant values i.e.,

g(;) = 0, and g(X) = 1. Therefore, the monotonicity constraints can be constructed with

the remaining 2N � 2 variables without considering these two constant valued variables,

however, we have represented it with 2N � 1 variables including g(X) in matrix form (of

size N(2N�1 � 1)⇥ (2N � 1)) by [12],

CMu  0
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where,

CM =

0

BBBBBBBBBBBBBBBBBB@

 
t

1

 
t

2

· · ·

 
t

N+1

· · ·

 
t

N(2N�1�1)

1

CCCCCCCCCCCCCCCCCCA

.

Here, 1 is the vector representing the coefficients of the monotonicity constraint 1, g(1)�

g(12)  0. So, the coefficient matrix of monotonicity constraints consists of {0, 1,�1}

[12]

CM =

0

BBBBBBBBBB@

1 0 · · · �1 0 · · · · · · 0

1 0 · · · 0 �1 · · · · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 1 �1

1

CCCCCCCCCCA

Finally, we can write the SSE minimization problem in the QP form as

min
u

1

2
u
t bDu+ f

t
u

subject to

CMu � 0

(0, 1)t  u  1.

Note, bD = 2D and our inequality need only be multiplied by (�1) in order to formulate

the underlying QP.
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7.3 Methods

In this section, the techniques to solve the FM learning problem relative to the CI based

on both expert opinions as well as training data is discussed. This problem could be solved

relatively easily by augmenting the constraints of the training data only problem with the

expert constraints in the event that the newly added constraints do not bring about any

conflict. Ascertaining any violation by only observing the expert criteria is difficult, and

would be of no help because real world problems can (and often do) involve conflicting

criteria. Therefore, we explore a method that employs weighted Goal Programming to ad-

dress conflicting criteria. For example, conflict among experts and expert versus data. The

proposed method involves building criteria with respect to training data by transforming

the SSE objective and also mapping the expert opinion criteria into a set of inequality and

equality relations. In the subsequent subsections, we give a brief description of weighted

Goal Programming and discuss monotonicity constraints for the FM relative to CI, FM

learning relative to the CI and training data and the case of multiple experts.

7.3.1 Introduction to weighted Goal programming

Goal programming is a technique from MCDM for deriving satisfying solutions from

conflicting multi-objective Goals subject to a set of constraints. As for conflicting Goals,

simultaneous achievement of all Goals are not possible. Therefore, Goal programming

tries to attain each goal as close as possible. This is accomplished by introducing devia-

tion variables in each goal and defining an objective to minimize a function formed with
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deviation variables or deviation control parameters. Interested readers seeking in-depth

knowledge and examples on Goal programming may explore [101].

Goal programming has several variants like Lexicographic Goal programming, Weighted

Goal programming and Chebysheve Goal programming [101]. In Lexicographic Goal pro-

gramming, the goals, categorized into priority order, are optimized in a way that the goals

achieved for the higher priority level must not be worsened while optimizing the next lower

priority goals. In Weighted Goal programming, the decision maker expresses preference on

goals by relative weights and the undesired deviation of each goal is minimized according

to these weights. Additional details can be found at [101]. Weighted Goal programming

has been chosen over other variants because it gives the flexibility to set priority quantita-

tively to any proportion of choice.

7.3.2 Minimization of the SSE

As discussed in the previous section, the CI with respect to training data can be learned

by minimizing an objective function that corresponds to the SSE between the CI and the

label of the data. Using the SSE function defined in Equation (7.1), the minimization

problem can be written as

min
u

mX

j=1

⇣
A

t

Oj
u� ↵j

⌘2

(7.2)

subject to CMu � 0 and our boundary conditions.

As the Goal programming works on constraints with targets to be attained the proximity

as nearest as possible, we have to transform the SSE minimization objective in (7.2) to a

set of Goal constraints. The conditions for the minimum value of this convex function
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is obtained by computing the gradient of this function along all the hyper-axes and then

equating the gradients to zero. We start by expanding Equation (7.2),

E(u) =
mX

j=1

(ut
AOj

A
t

Oj
u� 2↵jA

t

Oj
u+ ↵2

j
),

we then take its derivative,

mX

j=1

(2AOj
A

t

Oj
u� 2↵jAOj

) = 0,

and the equality Goal constraints are therefore

mX

j=1

AOj
A

t

Oj
u =

mX

j=1

AOj
↵j, (7.3)

or

CDu = bD,

CD =
mX

j=1

AOj
A

t

Oj
,bD =

mX

j=1

AOj
↵j,

which represents the target. In addition to the monotonicity constraints, constraints repre-

senting expert opinions can also be be enforced. This is described next.

7.3.3 Expert Opinion

Expert knowledge, when available, is an extremely valuable resource. The goal of this

work is to include it in aggregation or aggregation operator learning. However, we must

consider inter and intra observer error across experts. In addition, it is a possibility that

human input might violate the monotonicity constraints of the FM and/or be in disagree-

ment with training data. Herein, we take into account all of these potential conflicts and

aberrations and we perform a weighted combination of hard and soft constraints.
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Often, experts provide their opinions as partial order relations of the different sources,

e.g., source 1 is more important than source 2. In terms of the FM, we can express this via

g(x1) � g(x2), or alternatively (in linear algebra form) as

�
t

i
u � 0,

where i indicates the ith input (partial order relation) from our expert, �i is of length

(2N � 2) ⇥ 1 and this vector has values in {1,�1, 0}. For the inequality g(x1) � g(x2),

�i is

[1 � 1 · · · 0]t .

Suppose, l-th expert provides S inequality criteria or constraints. We can express all those

constraints as

C
IN

El
u � 0, (7.4)

where

C
IN

El
=

0

BBBBBBBBBB@

�
t

1

�
t

2

· · ·

�
t

Sl

1

CCCCCCCCCCA

,

where Sl is the number of inequality constraints or criteria from l-th expert.

Typically, it is far easier, and more realistic, for an expert to qualitatively express

knowledge between different subsets of sources in terms of inequalities versus assigning

specific values to the different subsets (aka equality constraints). Nevertheless, our mathe-

matical formulation can accommodate for equality constraints if present. If an expert spec-
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ifies that the “worth” of source 3 is 0.1, then we can simply express this as g(x3) = 0.1.

This knowledge can be represented in vector form as

⌥t

i
u = b,

where

⌥t

i
= [0 0 1 · · · 0] ,

b = 0.1.

Here, a 1 appears in the 3rd index in ⌥t

i
which corresponds to g3 in u. If we have equality

inputs from l-th expert, then we can pack this into matrix form as

C
EQ

El
u = b (7.5)

where

C
EQ

El
=

0

BBBBBBBBBB@

⌥t

1

⌥t

2

· · ·

⌥t

Ql

1

CCCCCCCCCCA

,

where b is a column vector of length Ql and it includes the capacities of the inputs as

specified by the expert. Next, we describe how expert knowledge can be utilized along

with training data based on Goal programming.

7.3.4 Goal programming for training data and multiple experts

In this subsection, the Goal programming problem is formulated for the case of one or

more training data sets and multiple expert’s opinion with a priority order represented by
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relative weights. In standard weighted Goal programming, the objective function consists

of single goal minimization of the weighted sum of the undesired deviation. In [104],

the author proposed an improved weighted Goal programming method that takes relative

normalized weight for the priority of the criteria as well as maintains the relative priority

of each goal. The objective function now consists of two goals. The first goal, i.e., term

corresponds to the maximum unwanted deviation, and the second term corresponds to sum

of the undesired deviations. This method involves lexicographical minimization of the two

terms, i.e., minimization of the first term with highest priority and then minimization of the

second term without deteriorating the first goal. Let the normalized weight on the training

data be wD and the weights on multiple (P ) experts be wE = {wE1 , wE2 , · · · , wEP
} with

the normality constraint wD +
P

P

l=1 wEl
= 1. The weighted Goal program [104] is as

follows,

Lexmin z =

(
�,
X

i

(ni + pi)+

X

l

 
X

j

nlj +
X

k

(nlk + plk)

!)
,

(7.6a)
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subject to

cDi
u+ ni � pi = bDi

, i = 1, 2, ..., 2N � 2, (7.6b)

c
IN

Elj
u+ nlj � bIN

Elj
, l = 1, 2, ..., P, (7.6c)

c
EQ

Elk

u+ nlk � plk = bEQ

Elk

, l = 1, 2, ..., P, (7.6d)

CMu � 0, (7.6e)

wD(ni + pi)  �, (7.6f)

wEl
nlj  �, (7.6g)

wEl
(nlk + plk)  �, (7.6h)

ni, pi, nlj, nlk, plk � 0, (7.6i)

(0, 1)t  u  1, (7.6j)

where cDi
and bDi

corresponds to the i-th row of the coefficient matrix CD and target

vector bD of the training data constraints. Similar definition applies to cEIN

lm

, which is the

m-th row of the coefficient matrix of l-th expert’s inequality constraints. The parameter �

minimizes the maximum undesired deviation while maintaining the priority order of the

constraints. Equations (7.6e) to (7.6j) are the hard constraints which are always satisfied.

The method in [101] applies normalization on each criteria or constraints with respect to

target. However, we have not normalize the target values of criteria (e.g., bDi
) since the

target values are either zero or close to zero.

Above, we restricted the mathematical formulation to a single data set and multiple ex-

perts. However, we can utilize the underlying concept of the weighted Goal programming

to generalize the framework to cover any number of data sets and multiple experts. For this
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more general case, there are (at least) two strategies for assigning relative weights. In the

first approach, the priority order or relative weight assignment can be similar to that of a

single data set and multiple experts. For example, if we have two data sets and two experts,

then the relative weights could be 0.2, 0.3, 0.1, and 0.4 on data set 1, data set 2, expert 1

and expert 2 respectively. So, in terms of weights, it does not differentiate between data

sets and experts.

In the second approach we prioritize the group of data sets and group of experts first.

At the next level, each member data set is prioritized among the group of data sets. The

same principle is followed for experts. For example, consider the case of two data sets and

two experts. In the first level, the weight on the group of data sets might be 0.4 while the

experts is 0.6. Next, we assign weights to each data set, i.e., data set 1 with weight 0.3 and

data set 2 with weight 0.7. Subsequently, the weights of experts could be 0.7 and 0.3. This

strategy is referred to as multi-level weighted goal programming.

Next, we generate the equality constraints for all the training data sets as given by (7.3),

inequality and equality constraints for each expert according to (7.4) and (7.5). With all

the constraints in hand, it is simple to formulate the weighted Goal programming problem

in which the objective is to achieve the goal of minimizing the deviation from the goal

of each criteria according to their relative priorities. Depending on the weight assignment

strategy, the objective function will optimize for all data sets and experts in a single level

weight case or we sequentially minimize the deviation of goal for groups (e.g., group of

data sets) then for each criteria (e.g., each data set).
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Example 5. Consider the following challenge from multi-sensor signal processing. As-

sume high-level expert knowledge is present and three sensors are available for some target

detection task. Specifically, assume three algorithms exist, one for each sensor. Without

loss of generality, this example is easily extended to the case of a single (or multiple) sen-

sor(s) with different algorithms or the same algorithm with different parameters or trained

on different data. Furthermore, assume that a user assigned an importance of 0.8 to the

training data, in order to learn a solution that primarily minimizes function error, expert 1

(E1) was assigned a weight (wE1) of 0.1 and expert 2 (E2) was assigned a weight (wE2) of

0.1. Let expert 1 have information regarding the “complexity” of the various algorithms,

e.g., computationally and/or memory utilization wise. This information is important as it

dictates the processing hardware (and therefore the financial cost of the system) and it de-

termines the system’s response time. E1 provides this information as partial order relations

about the relative worth of the algorithms; e.g., g4 ⌫ g1 ,and g12 ⌫ g3. The constraints

constructed from E1’s criteria are

g4 � g1 � 0,

g12 � g3 � 0.

On the other hand, expert 2 has information about the financial cost of the sensors and

he/she expresses this knowledge as E2 = {g4, g2, g1, g3}. The constraints from E2 are

therefore,

g4 � g2 � 0,

g2 � g1 � 0,
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g1 � g3 � 0.

Note, we expressed expert information as partial order inequalities. However, if exact

numbers are know and if a user wishes to express them as specific FM values then this

can be addressed as equality constraints. In this example it is apparent that all inputs

are important and no single input is sufficient to solve this multi-criteria task. We desire

a solution that has the fewest number of inputs and cost and is still sufficient for some

problem/domain. It is also apparent that conflicts could easily arise between what is the

fastest algorithm, the lowest cost sensor and what is the best for the training data.

Note, Example 1 naturally extends to challenges such as multi/hyper spectral signal

processing in remote sensing or earth observation. Examples include multi-band and/or

classifier feature- or decision-level fusion. The proposed GOAL programming and CI tools

can also be used to address (via weighting) quality variation across data sets which arise

due to factors like solar radiation, atmospheric conditions and time of year and weather in

domains such as precision agriculture.

7.4 Experiments and Results

In this section, we demonstrate our work via synthetic experiments. Synthetic experi-

ments are used to illustrate the behavior of the methods under different extreme and infor-

mative scenarios. We explore different extreme conditions instead of a single application.

This is done in order to keep the problem tractable and the benefit is when we know the

answer and all of the associated information then we can better study and understand how
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the system reacts instead of explore what is otherwise for all intents and purposes a black

box.

Training data was generated (in Matlab) m pseud-randomly generated training in-

stances with N = 3 inputs each. We use an ordered weighted average (OWA) with weights

{0.7, 0.3, 0} to generate our labels – a FM with values g1 = .7, g2 = .7, g3 = .7, g12 = 1,

g13 = 1, g23 = 1. The following scenarios involve different combinations of multiple ex-

pert inputs with varying weights and conflict. Table 7.1 reports the results for each of the

following cases, which are outlined and discussed in detail in the following subsections.

Table 7.1
Learned FM for different scenarios involving training data, multiple experts and conflict.

Scenario weights g1 g2 g3 g12 g13 g23

Training data only training data = 1, expert = 0 0.7 0.7 0.7 1 1 1

Data and expert with no conflict training data = 0.3, expert = 0.7 0.7 0.7 0.7 1 1 1

Priority on expert 1 (E1) and conflict training data = 0.01, expert = 0.99 0.8709 0.8710 0.7335 0.8710 0.9601 0.8710

Priority on training data and conflict training data = 0.99, expert = 0.01 0.7696 0.9027 0.7204 0.9027 0.9820 0.9027

Multiple experts (priority on E1) training data = 0.1, E1 = 0.8, E2 = 0.1 0.7768 0.7768 0.7642 0.7768 0.9373 0.7784

Multiple experts (priority on E2) training data = 0.1, E1 = 0.1, E2 = 0.8 0.7660 0.7660 0.7644 0.7660 0.9377 0.7789

7.4.1 Training data only

In this scenario, row 1 from Table 7.1, we use a single training data set and we give

it full priority, i.e., weight of 1. Thus, no expert information is used. We expect and do

indeed recover the FM produced by our OWA. This scenarios is simple but it is informative

because we see that we recover the desired answer and specifically we obtain the same

result as if we just used the QP.
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7.4.2 Single expert with no conflict

In this scenario, row 2 from Table 7.1, we use a single expert and training data. Specif-

ically, no conflict between these sources exist. The expert provides the information g23 �

g1, which does not violate our monotonicity constraints. In this type of scenario, the expert

is either reinforcing our monotonicity constraints (aka constraint redundancy) or they are

giving us additional constraints (and insights) into which inputs are more important than

others (which goes beyond just monotonicity). The key is, the training data and the expert

are in agreement. We assigned a weighting of 0.7 and 0.3 for training data and expert re-

spectively. As Table 7.1 shows, there is no change in the learned FM. Thus, as long as all of

the criteria is in harmony, the resultant FM remains the same regardless of the distribution

of weights on the expert and the training data.

7.4.3 Single expert and conflict

In this scenario, rows 3 and 4 from Table 7.1, we once again use a single expert and

training data. However, we consider the case that conflict exists between the training data

solution and our expert. Specifically, the expert gives us g1 � g23, which violates the

criteria from the training data which values g23 more than g1. We can clearly see that, based

on the relative weights, our resulting FM migrates between our training data only FM to

the expert provided information (still in the context of the training data obviously). This

is a difficult scenario to characterize in general. The expert knowledge is used, however

the result is subject to our monotonicity constraints and ultimately the solution is driven

relative to the SSE criteria.
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7.4.4 Multiple experts

In this scenario, rows 5 and 6 from Table 7.1, we use multiple experts and training

data. Specifically, let the criteria from the first expert be g1 � g23 and the second expert

be g3 � g12. Thus, both experts have conflicting criteria between themselves as well as

with the training data. In both scenarios, we let the importance of the training data set be

relatively low and we vary the importance of the expert information. In the case that we

place more weight on E1, we see that g1 almost equals g23. In the case that E2 is more

important, we can see that g3 almost equals g12. They follow our input, however they

are numerically similar because each solution (FM) is a complex combination of different

weighted accounts of expert opinion and our training data. However, it is important to note

that in each of the above cases our soft constraints were taken into account while our hard

constraint, the boundary and monotonicity constraints, are enforced (otherwise we would

not have learned a FM).

7.5 Conclusion and future work

Herein, we explored a new way to learn the CI for data/information fusion based on

a combination of one more labeled training data sets and experts. Weighted Goal pro-

gramming is a way to address natural conflicts that may arise within and across sources

(e.g., data sets and experts). We showed that weighted Goal programming can be used to

enforce soft (weighted) constraints and hard constraints, e.g., boundary and monotonicity

constraints of the FM. Synthetic experiments were provided that showed a number of cases

of different weighting schemes and forms of conflict.
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In future work, we will explore how to include complexity goals for the FM in Goal

programming, such as L1 regularization. We will also explore proportion information

if/when available, e.g., input 3 is preferred by a factor of 2.4 to input 1. Last, we will

apply this work to different real world problems, e.g., multi-sensor fusion and multi/hyper

spectral processing.
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CHAPTER VIII

DATA-DRIVEN COMPRESSION AND EFFICIENT LEARNING OF THE CHOQUET

INTEGRAL

8.1 Introduction

Data/information fusion is an enabling theory for numerous fields, e.g., machine learn-

ing, signal/image processing, big data, Internet Of Things (IoT), bioinformatics, and cyber

security, to name a few. In this paper, we focus specifically on aggregation as the term

fusion has been elusive definition-wise (either too vague or overly specific). In general,

the idea is to combine N different inputs in such a way that the overall result (typically a

reduction from N inputs to one result) is somehow better than the outcome acquired using

just the individuals by themselves. First, it is up to the user to define “better”. For example,

maybe the idea is to combine a set of inputs to create a single result that can be more easily

visualized. The idea could also be to reduce (summarize) data so it is more manageable. In

machine learning, better may mean achieving more generalizable decision boundaries for

classifiers. The point is, “better” is a concept that needs to be specified relative to some task

at hand. Next, focus shifts to how to combine these N inputs. To date, most mathematical

approaches have focused on combining inputs relative to the assumption of independence

between them (which is advantageous tractability-wise). However, often there are rich in-

teractions (e.g., correlations) between inputs that should be exploited. But for N inputs,
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there are 2N possible subsets to consider. As N grows, tractability is of utmost concern.

The focus of this paper is a new tractable way to identify, model and exploit non-redundant

data supported interactions. The ideas are presented at an abstract level as to not muddle

the theory with any one particular application.

Herein, we focus on the fuzzy integral (FI) as it is a powerful and flexible aggregation

function capable of exploiting rich interactions between inputs. In 1972, Sugeno intro-

duced the fuzzy measure (FM) (a normal capacity) in the context of the Sugeno integral

(SI) [175]. Though Sugeno coined the term FI for his SI, the term FI has been general-

ized to a wider class of integrals. One well-known example is the Choquet integral (ChI),

originally proposed by Gustav Choquet in 1953 [44]. While the ChI was initially used in

statistical mechanics and potential theory, in particular with respect to an additive probabil-

ity measure, it has since found application in numerous other areas, e.g., computer vision

[135, 181], classification [43, 77, 80, 72, 137, 203], pattern recognition [118, 27, 62], multi-

criteria decision making (MCDM) [70, 127, 42, 185, 16, 17, 15], control theory, forensic

science [8], Choquistic regression [183, 184], and multi-kernel learning (MKL) for sup-

port vector machine (SVM) classification and regression [152]. Numerous algorithms have

been put forth to learn the FI from data, e.g., quadratic programming (QP) [76], gradient

descent [121], penalty/reward [120], Gibbs sampler [136], and linear programming [26],

to name a few.

For N inputs, there are 2N FM variables and N(2N�1 � 1) monotonicity constraints.

An advantage of the FI is we can model and exploit such knowledge. However, a draw-

back is lack of tractability. In practice, this is an important and often limiting factor. The
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community has been exploring ways to solve this dilemma. The traditional approach is

to require or learn just the densities (measure on just the singletons) and an imputation

function is used to fill in the remaining variables, e.g., Sugeno characteristic polynomial

and resultant �-measure [182]. In a different approach, Grabisch defined the k-order ad-

ditive FM/FI [71]. The k-additive FM/FI is a restriction limiting interactions to at most

k inputs. It can do this because the Mobius values for sets (variables) larger than k are

zero. Exploiting this property enables us to discard FM variables and obtain a lossless

compression. The k-order additive measure is indeed efficient when k is much less than

the number of inputs. In many applications, e.g., MCDM, this often proves to be sufficient

and of great utility. However, in other situations, e.g., pattern recognition, machine learn-

ing, signal/image processing, and computer vision, to name a few, we are often not dealing

with humans per se versus automation and notions like bounded rationality do not apply. It

can, and often is, the case that higher-order interactions exist and are crucial. Last, even if

we can determine the order k, many problems render k-additivity ineffective. For example,

the heavily utilized minimum and maximum aggregation operators–and other linear com-

binations of order statistics (LCOS) at that–are of N -order, requiring all 2N MT terms for

the FM and FI computation. Consequently, there is no savings in the number of variables.

On the contrary, the computational complexity increases significantly, as the computation

of the FI based on the MT is highly dense (needs all 2N terms) verses the conventional

formulation of the FI (which needs only N terms). In closing, density-based imputation

and k-order additivity have been explored to date and are applicable and of great use for

different problems/contexts.

111



Herein, we propose a new approach that scales to the problem size by adapting to avail-

able training data. Our approach has four novel parts. First, data supported variables are

identified and used in optimization. Identification of such variables also empowers us to

know about the existence of future ill posed input scenarios; i.e., FI aggregations involving

variable subsets that could not be inferred from data and therefore we should question. Sec-

ond, we outline an imputation function framework to address data unsupported variables.

Third, we present a lossless way to compress redundant variables and associated mono-

tonicity constraints. This is important with respect to computation, memory storage and

optimization. Last, we outline a lossy approximation method to further compress the ChI

(if/when desired). In summary, our approach is different in philosophy from density-based

imputation and k-additivity. However, our approach can be used to enhance k-additivity if

the goal is to learn it from data.

This work is driven by the fact that a single instance of the FI for N inputs uses only

N of the 2N FM variables. Hence, we can learn at most min{2N ,M ⇥ N} variables for

a problem with M observations and N inputs. We know from linear algebra that in order

to obtain unique solutions for 220 FM variables in a 20 input problem, we need at least 220

independent observations, which is more than one million observations. While a problem

with input sizes around 20 is common, it is rare to find this huge number of samples

for that problem. Now suppose the problem has 1, 000 observations, then at most (20 ⇥

1, 000) = 20, 000 variables are needed, when each observation is associated with unique

set of variables, to represent the FI for all the observations. In reality, the actual number

of variables is far fewer because many observations share variables among them. Another
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significant advantage from using only the data-supported variables is that it reduces the

monotonicity constraints substantially, which is exponential on the inputs for the full FI

and, therefore, can be a limiting factor in many solvers. A sophisticated solver could

possibly incorporate as many as 20, 000 variables, however, handling more than one million

variables along with exponential order of constraints becomes near impossible for any kind

of modern day solver and computing platform.

Last, before we delve into related work and new methods, an explanation of why we

explore the QP for optimization is given. One of the most commonly encountered error

functions in practice is the sum of squared error (SSE). This captures how different our

learned target function is to a ground truth. However, other error and/or associated penalty

functions can and have been used relative to learning aggregation operators. For example,

in [37] Bustince et al. discussed problems related to definitions of penalty functions in the

context of data aggregation. They gave examples of continuous penalty functions based

on spread measures including standard deviation and variance and discussed the idea to

define a penalty function for non-monotonic aggregation function. In [12], we investigated

`p norm regularization to balance function error with minimum complexity FMs. The

message is, herein we focus on a generic four step process for data-driven FI learning.

The concepts put forth can be used by different solvers, e.g., particle swarm optimization,

genetic algorithms, etc., based on a user’s desired error and/or penalty function. Our focus

is the four steps, not a particular solver.

The remainder of this paper is arranged as follows. Section 8.2 describes how to learn

the FI, specifically the ChI, from data that includes the full set of FM variables. Section 8.3
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is an example of a small problem to illustrate how the proposed method works. Section 8.4

details the proposed new methods followed by experiments and analysis in Section 8.5.

8.2 Background

In this section, the ChI is defined and its QP-based optimization is outlined. Let X =

{x1, x2, . . . , xN} be a set of finite elements, which can be things like sensors, experts,

criteria or attributes in decision making, or algorithms in pattern recognition. A discrete

(finite X) FM is a monotonic set-valued function defined on the power set of X , 2X , as

µ : 2X ! R+ that satisfies

(i) Boundary condition: µ(;) = 0,

(ii) Monotonicity: if A,B ✓ X and A ✓ B, µ(A)  µ(B).

Often an additional constraint is imposed on the FM to limit the upper bound to 1, i.e.,

µ(X) = 1. Throughout this paper, we consider this condition for simplicity and conve-

nience, which is useful in contexts like decision-level fusion.

Consider a training data set containing M pairs of observations and labels, i.e., O =

{(oj, yj)} , j = 1, 2 . . . ,M , where oj 2 RN is the jth observation, yj 2 R is the associated

label, and oj(xk) corresponds to the observed value for jth instance and kth input. Let

u = [µ({x1}), µ({x2}), . . . , µ(X)]T be the 2N � 1 dimensional vector of FM variables

except µ(;). The discrete (finite X) ChI on oj with respect to the FM µ is

Cµ(oj) =
NX

i=1

[oj(x⇡j(i))� oj(x⇡j(i�1))]µ(S⇡j(i)), (8.1)
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where ⇡j is a permutation function for observation oj on the indices that satisfies 0 

oj(x⇡(1))  . . .  oj(x⇡(N)), where S⇡j(i) =
�
x⇡j(i), x⇡j(i+1), . . . , x⇡j(N)

 
and oj(x⇡j(0)) =

0 [30]. Eq. (8.1) can be written in matrix form as Cµ(oj) = c
T

j
u, where cj is a column vec-

tor containing the (2N � 1) coefficients for observation oj . Let k be the index of variable

µ(B 2 2X) in u. Then the kth element of cj is cjk = oj(x⇡j(l))� oj(x⇡j(l�1)) if 9S⇡j
(l) =

B, l 2 {1, . . . , N}, and 0 otherwise. The FM monotonicity constraints can be written

as µ(A)  µ(B), 8A,B ✓ X and A ✓ B. The set of monotonicity constraints defined

by the above inequality relations are exhaustive; however, there are many redundant con-

straints among them which can be excluded for an optimization problem. For example,

if we include µ({x1})  µ({x1, x2}) and µ({x1, x2})  µ({x1, x2, x3}) as monotonic-

ity constraints, then they also imply that µ({x1})  µ({x1, x2, x3}), and there is no

need to explicitly define all the relations. The minimal set of constraints for an FM is

µ(A)  µ(A [ q), 8A ⇢ X and 8q 2 X, q /2 A.

The SSE between the ChI for all the observations in the training data, O, and our labels

is [76, 75]

E(O,u) =
MX

j=1

(Cµ(oj)� yj)
2 =

MX

j=1

(cT
j
u� yj)

2

=
MX

j=1

(uT
cjc

T

j
u� 2yjc

T

j
u+ y2

j
). (8.2)

Based on this, the least square minimization problem can be expressed as [76, 75]

(OP1) min
u

fO(u) = u
THu+ d

T
u,
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µ(A)  µ(A [ q), 8A ⇢ X and 8q 2 X, q /2 A,

(monotonicity conditions) (8.3a)

µ(;) = 0, (boundary conditions) (8.3b)

µ(X) = 1, (normality conditions) (8.3c)

H =
MX

j=1

cjc
T

j
and d = �2

MX

j=1

yjcj.

8.3 Example 1: Data Supported Variables

In this section, we provide a simple numeric example of the underlying principle of

the proposed method for a simple three input case (N = 3). Figure (8.1) shows the true

underlying FM. Table 8.1 is an example training data set, O, with 5 instances and labels,

drawn randomly from the true underlying FM.

Table 8.1
Example 1: Training data-set for a three input case (N = 3).
Training data (O) S⇡j(i) Used variables—uP Unused variables—uQ

Index (j) Observations (oj ) Labels (yj ) i = 1 i = 2 i = 3

1 0.6 0.5 0.1 0.41 {x1} {x1, x2} X

µ({x2, x3})
2 0.4 0.3 0.8 0.58 {x3} {x1, x3} X µ({x1}), µ({x2}), µ({x3}),
3 0.9 0.2 0.7 0.66 {x1} {x1, x3} X µ({x1, x2}), µ({x1, x3}),
4 0.5 0.6 0.3 0.48 {x2} {x1, x2} X and µ(X)

5 0.6 0.2 0.7 0.57 {x3} {x3, x1} X

Example 1 has seven variables, denoted by u, and five instances (training data). Ac-

cording to Eq. (8.1), the ChI for each instance requires FM variables for three sets, S⇡j(i), i =

{1, 2, 3} (column four in Table 8.1). In Example 1, only six of the seven variables, denoted

as uP , are encountered–shown in column five of Table 8.1. Let us denote the unused vari-

able, µ({x2, x3}), as uQ. We can split the structure in Figure (8.1) into two based on the
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variables, uP and uQ (Figure (8.2)). The variables uP can be learned by solving an opti-

mization problem with only uP as there are five unique ChI equations for five variables,

and µ(X) is constant. On the other hand, there is no ChI equation involving uQ, and its

value can be anywhere in the valid range, which is obtained using uP and the monotonicity

constraints on uQ. An imputation function, discussed in detail later, can be employed to

assign a specific value within the interval range.

Figure 8.1
Example 1. Illustration of known (aka reference) FM for three inputs (N = 3). Nodes are

variables and edges are monotonicity constraints.

8.4 Efficient ChI learning
8.4.1 Optimization with respect to just data supported variables

Based on our training data, we can partition the FM variables into two parts. The first

set, P ✓ 2X , specifically P =
�
S⇡j(i)

 
, 8i 2 {1, 2, . . . , N} and 8j 2 {1, 2, . . . ,M}, is all

variables that appear at least once in the ChI formula with respect to O (oi, i = 1, . . . ,M )

and the second set, Q = 2X \ P , is all other variables. Let the cardinality of P and Q be

p and q respectively. The partitioning of the power set leads to the decomposition of the
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vector u; u = [uP uQ], where uP (l) = µ(A), A 2 P, l = {1, 2 . . . , p}, and uQ(k) =

µ(B), B 2 Q, k = {1, 2 . . . , q}. The coefficient vector cj for each observation oj is

cj = [cPj cQj]T , where cPj and cQj are the respective coefficient vectors of uP and uQ for

the given observation. As the variables uQ are not present in the ChI definitions of all the

observations, their coefficients in the quadratic formula with respect to the training data

are always zeros, i.e., cQj = 0, 8j 2 {1, 2, . . . ,M} .

𝜇( 𝑥1, 𝑥2 ) 𝜇( 𝑥1, 𝑥3 )
= 0.8
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(b)
Figure 8.2

Example 1. (a) Illustration of required FM values for data in Table 8.1. Note, µ({x2, x3})
is not supported by training data and subsequently cannot be learned. (b) Illustration of

data unsupported values and their interval-valued ranges due to monotonicity conditions.
The values/intervals outside nodes signify that they are learned via optimization whereas

those inside are used as constants.

The objective function in OP1 consists of a quadratic term with a coefficient matrix

H and a linear term with coefficient vector d. These can be represented in terms of the
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observation coefficients, and thus can be partitioned into blocks. The coefficient matrix,

H , is therefore

H =
MX

j=1

cjc
T

j
=

MX

j=1

2

664
cPj

cQj

3

775 [cT
Pj

c
T

Qj
]

=
mX

j=1

2

664
cPjc

T

Pj
cPjc

T

Qj

cQjc
T

Pj
cQjc

T

Qj

3

775

=

2

664
2
P

M

j=1 cPjc
T

Pj
0PQ

0QP 0QQ

3

775

=

2

664
HPP 0PQ

0QP 0QQ

3

775 , (8.4)

where 0QP is a Q ⇥ P matrix of all zeros and HPP = 2
P

M

j=1 cPjc
T

Pj
. Similarly, the

coefficient vector d can be represented as

d = �2
MX

j=1

yj

2

664
cPj

cQj

3

775 =

2

664
�2

P
M

j=1 yjcPj

0Q

3

775 =

2

664
dP

0Q

3

775 ,

where 0Q is a Q ⇥ 1 vector of all zeros and dP = �2
P

M

j=1 yjcPj . We can see from the

alternate representation of the coefficient matrix H in Eq. (8.4) that the diagonal blocks

of the matrix are zeros. This indicates that variables uP and uQ in the quadratic terms

are decoupled, and consequently the objective function can be represented as a linear sum

of two functions with variables uP and uQ. That is, fO(u) = fO(uP ,uQ) = fO1(uP ) +

fO2(uQ).

Furthermore, the constraints can be divided into groups with respect to uP and uQ. For

sets A,B 2 2X , we have the following four cases: (1) µ(A), µ(B) 2 uP , (2) µ(A), µ(B) 2
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uQ, (3) µ(A) 2 uP , µ(B) 2 uQ, and (4) µ(A) 2 uQ, µ(B) 2 uP . The boundary con-

straints can also be grouped based on: (1) µ(A) 2 uP and (2) µ(A) 2 uQ. Now, we

rewrite the optimization problem in OP1 in terms of uP and uQ,

(OP2) min
uP ,uQ

fO(uP ,uQ) = u
T

P
HPPuP + u

T

P
0PQuQ+

u
T

Q
0QPuP + u

T

Q
0QQuQ + dP

T
uP + 0QuQ,

= (uT

P
HPPuP + dP

T
uP )| {z }

�0, terms with only uP

+

u
T

P
0PQuQ + u

T

Q
0QPuP| {z }

=0, terms with both uP and uQ

+u
T

Q
0QQuQ + 0QuQ| {z }

=0, terms with only uQ

, (8.5)

subject to: (1) µ(A)  µ(B) for µ(A), µ(B) 2 uP and A ⇢ B, (2) µ(A)  µ(B)

for µ(A), µ(B) 2 uQ and A ⇢ B, (3) µ(A)  µ(B) for µ(A) 2 uP , µ(B) 2 uQ and A ⇢

B, (4) µ(A)  µ(B) for µ(A) 2 uQ, µ(B) 2 uP and A ⇢ B, (5) µ(A) � 0, 8µ(A) 2 uP ,

(6) µ(A) � 0, 8µ(A) 2 uQ, and (7) µ(X) = 1, where A,B 2 2X . It is obvious from

OP2 that all the terms with uQ in the objective function are zeros, and all the constraints

involving both uP and uQ are inequality relations. That is, uP does not depend on uQ, but

rather the opposite. Therefore, we can optimize uP first and then use its result to obtain

values for uQ. As such, we break OP2 into two sequential tasks, OP2.1 and OP2.2, where

(OP2.1) min
uP

fO1(uP ) = u
T

P
HPPuP + d

T

P
uP ,

subject to µ(A)  µ(B) for µ(A), µ(B) 2 uP , µ(A) � 0 for µ(A) 2 uP , µ(X) = 1,

where A,B 2 2X .
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The second step, OP2.2, is concerned with uQ and is based on constraints defined by

the uP values learned in OP2.1,

(OP2.2) min
uQ

fO2(uQ) = u
T

Q
0QQuQ + 0QuQ = 0,

subject to a valid FM in [0, 1],

µ(A)  µ(B) for A ⇢ B and µ(A), µ(B) 2 uQ, (8.6a)

µ(A)  µ(B) for A ⇢ B and µ(A) 2 uP , µ(B) 2 uQ, (8.6b)

µ(A)  µ(B) for A ⇢ B and µ(A) 2 uQ, µ(B) 2 uP , (8.6c)

µ(A) � 0 for µ(A) 2 uQ, (8.6d)

where A,B 2 2X . It is worthwhile to note that OP2 includes the exhaustive set of mono-

tonicity constraints and extended list of boundary constraints only to facilitate our parti-

tioning of the inequality constraints so we can decompose OP1. Instead of enumerating

all possible monotonicity conditions, we instead define the monotonicity constraints, e.g.,

Eq. (8.3a) in the standard QP formulation, with the minimal set of relations excluding all

redundant constraints. In the same manner, the boundary conditions can be scaled down,

reducing the number of constraints considerably in both OP2.1 and OP2.2.

Since OP2.2 is a 0-valued objective function, it is in effect a constraint satisfaction

problem that can be wrote as

(OP2.2a) find uQ subject to MC(uQ) (8.7)

where MC(uQ) denotes the constraints in Eqs. (8.6a-d). The valid region defined by

these constraints is a convex bounded polyhedron in a q-dimensional space denoted by
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CQ, where q is the cardinality of uQ. Any point inside CQ is valid; therefore the whole

convex polyhedron constitutes the solution set of the problem. Obviously, the problem has

infinitely many solutions.

Our constraints can be further decomposed. Group I is unary constraints (Eqs. (8.6b-

d)) since they include constants and variables from uP , which are themselves constants.

In Group II, the constraints are binary with uQ variables on both sides of the inequali-

ties (Eq. (8.6a)). First, we consider the case of only Group I constraints. As these con-

straints specify that a variable is either less or greater than some constant, the hyper-

lines for these constraints run parallel to the axes of a q-dimensional space. The resul-

tant solution set for uQ, C̃, is therefore a hyper-rectangle with 2q vertices. Alternately,

we can say that the valid range of each variable with regard to Group I constraints lies

in an interval. Let I(x) = [il(x), iu(x)] be the interval for variable x = µ(A) 2 uQ,

which can be deduced from Group I constraints as il(x) = max(B⇢A,µ(B)2uP ) µ(B) and

iu(x) = min(B�A,µ(B)2uP ) µ(B). It is trivial to show that if µ(E), µ(F ) 2 uQ, and E ⇢ F ,

then il(µ(E))  il(µ(F )) and iu(µ(E))  iu(µ(F )) because each subset of E is also a

subset of F and each superset of F is also a superset of E. Substituting the unary con-

straints with intervals, OP2.2a can be rewritten as; find uQ subject to (i) µ(A)  µ(B) for

A ⇢ B and µ(A), µ(B) 2 uQ and (ii) il(µ(A))  µ(A)  iu(µ(A)), µ(A) 2 uQ. The

solution set, CQ, is a subset of C̃ constrained by (i), which means that a valid point within

CQ can be obtained from intervals by satisfying the monotonicity constraints on uQ.

In Section 8.4.3, we put forth an approach that allows data-unsupported variables to

be computed on demand; hence we do not need to store or identify the valid region ex-
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plicitly. That approach is based on the following concept. If 8A,B 2 Q, if A ⇢ B

then the interval calculated using Group I constraints always yields I(A)  I(B) or

il(A)  il(B) and iu(A)  iu(B). While C̃ can have a region over which µ(A) > µ(B),

the solution set, CQ, does not contain any such region. Therefore, we can formulate a

function, fI , that maps an interval I in [0, 1] to a point in the interval, i.e., fI(I) 2 I , such

that for any Ii < Ij , fI always preserves the relation fI(Ii)  fI(Ij).

8.4.2 Computational Complexity

Here, we provide the computational complexity of the QP learning of data-supported

variables. With training data of M samples for an N inputs problem, each observation can

add at most N variables, and the total number of training variables in the efficient ChI, nE ,

can reach to 2N�1 variables at maximum for an overdetermined system. On the other hand,

the number of training variables, nS , in conventional ChI always is 2N�1 regardless of the

training sample size. That is, nE  min{M ⇥ N, 2N � 1} and nS = 2N�1. In a scenario

when M ⇥N < 2N�1, the worst case value for nE is, nE(worst) = M ⇥N < 2N�1 = nS .

This implies that the worst case time complexity of the efficient ChI is less than the standard

ChI when M ⇥N < 2N � 1 (or M < 2N�1
N

) and is equal when M � 2N�1
N

, at which point

the two methods converges to exactly the same problem with 2N�1 variables. In reality,

the number of observations for large N does not vary exponentially with N , but rather

polynomially. For instance, we rarely encounter a 20 input problem with 220 observations,

but we face problems whose number of observations can be modeled as (c · 20x), where

c and x are arbitrary constants. As the time complexity of a convex QP is on the order

123



of O(k3) for k variables, our complexity is O((MN)3) = O(N3(x+1)), where M = Nx.

That is, we have polynomial time complexity under the assumption that the number of

observations is polynomial with respect to N .

8.4.3 Imputation of data unsupported variables

Section 8.4.1 showed that data supported variables in OP2.1 are scalars and that data

unsupported variables lie in a convex bounded polyhedron defined by these scalars and the

monotonicity conditions on the data unsupported variables. The focus of this section is a

framework for assigning values (via an imputation function) to data unsupported variables

based on the results of OP2.1 and external knowledge. First, we remark on a few important

high-level considerations.

Remark 5. Should I impute? In all data-driven ChI learning work that we are aware of,

optimization is with respect to data supported and unsupported variables. However, what is

really being assigned to those data unsupported variables and should we “trust” future de-

cisions (fusions) that rely on one or more of these data unsupported variables? Unlike prior

work, this paper informs the reader about how to identify such ill-posed fusion scenarios.

Beyond that, it is ultimately up to the user/system to decide what to do. One strategy is to

not fuse. Another is to fuse but report that data unsupported variables were used. Herein,

we explore the decision of fusing using data supported variables and a philosophy that

lets us control unsupported variable value assignment, versus making it arbitrary or a side

effect of the optimization algorithm.
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Remark 6. How is data-driven imputation different from density-driven imputation?

Technically, imputation is the mapping of interval-valued uncertainty to scalars for vari-

ables unsupported by data (or densities respectively). By definition, we are not privileged

to know the “true” answer to data (or density) unsupported variables. This is the reality

and type of problem with which we aim to advance. In density-based imputation, there

are 2N � 2 � N free (or density unsupported) variables. These variables have interval-

valued uncertainty and a philosophy such as Sugeno’s characteristic polynomial or a S-

Decomposable measure is required for scalar assignment. In the context of our current pa-

per, we are privileged to know (from data) much more than just the densities. Each observa-

tion highlights N variables of increasing cardinality (µ(
�
x⇡j(1)

 
), µ(

�
x⇡j(1), x⇡j(2)

 
), ...).

Relative to density-driven, data-driven imputation reduces the number of and narrows the

interval widths of data unsupported variables.

Remark 7. How does data-driven imputation relate to k-additivity? In k-additivity, a

subset of variables–those whose cardinality is greater than k–are, or are forced to be, irrele-

vant relative to the problem at hand. What this means is no imputation occurs. However, in

our data-driven approach variables are selected at each level of cardinality. No assumption

is made with respect to if a problem is k-additive or not. Therefore, imputation is needed

to fill in that which we do not know (that which is not observable). It is important to note

that k-additivity and data-driven imputation are not “in competition”. They are different

tools. If a problem is k-additive and the desire is to learn it from data, then our four step

approach can be combined with k-additivity.
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Next, we outline an initial approach to data-driven imputation. However, imputation–

deciding how to address that which we are not truly privileged to know–is a broad topic

that is application/domain specific and the subject of numerous future works. Our intent

here is to outline different initial approaches for the purpose of equipping the reader with

options to explore relative to their task. We consider two different approaches. The first

is where we specify the philosophy, e.g., expected value, optimistic or pessimistic. For

example, an extreme case of a pessimistic philosophy would be to always select the lower

interval value for each data unsupported variable interval. This imputation function models

the belief that we are unwilling to assign any more utility to increasing subsets of inputs

than what we observed in the data. The first approach requires the user to know something

about the problem, to have some fundamental ideology that they wish to follow, or different

approaches can be attempted and a winner selected. Our second initial idea is to take a

machine learning approach like cross validation to help learn the imputation function.

(Approach 1) Modeling: Our geometric interpretation of the solution set for data

unsupported variables informs us that if a function maps an interval to a scalar in that

interval and if that function is also non-decreasing then it will always select a point in the

valid solution space and the resultant FM will be monotone. Specifically, an imputation

function, fI(I = [il, iu]), should possess the following properties; (i) il  fI(I)  iu and

(ii) the sub-gradients with respect to interval boundaries, il and iu, are non-negative for all

intervals, I , i.e., @fI

@il
� 0, @fI

@iu
� 0. The conundrum is, there is an infinite number of such

real-valued functions. For sake of tractability, we explore three different types of functions
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(optimistic, pessimistic and expected value like) that are convex combinations of our data

unsupported variable interval endpoints,

fwI
(I) = (1� wI)il + wIiu, s.t., wI 2 [0, 1] (8.8)

In the Appendix, we prove that Eq. (8.8) satisfies the conditions of an imputation function

for a monotonic wI w.r.t I .

(Case 1) Fixed: In our first case, wI is a constant and fwI
(I) is therefore simply a linear

combination of the interval endpoints. For example, if wI = 0 we obtain fwI=0(I) = il.

If wI = 0.5, we take the expected value with respect to our observed (data supported)

evidence. Furthermore, wI = 1 is an optimistic assignment, i.e., fwI=1(I) = iu.

(Case 2) Dynamic: In case 2, the idea is to not use a constant wI . Instead, we select

a “pivot point” (single value that characterizes our interval) according to zI(I) = (1 �

�)il + �iu, where � is a user/system constant. Next, wI is calculated using zI(I). The

goal is to allow for a non-linear inflation and/or deflation based on the exact value of zI(I).

For example, if zI(I) is “large” (“small”), e.g., 0.9 (0.1), then we might desire to inflate

(deflate) our value versus what we linearly obtain in Case 1. One example is the Sigmoid

(see Appendix for proof)

wI(zI(I)) =
1

1 + e�a(zI(I)�b)
, (8.9)

where a and b are user/system parameters.

(Approach 2) Machine learning: Last, we discuss how fI can be learned from data

by fitting the function to the learned variable, uP . There are at least two ways to accom-

plish this; (i) solve an optimization problem based on a criteria like the SSE relative to
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the functions parameters or (ii) use a Hermite interpolation method to model this data with

a monotonic piece-wise polynomial function [58]. The parameters of a dynamic weight

function, wI , can be learned from uP following the below steps: First, determine the in-

terval I(x) for each variable, x 2 uP as if its actual value is unknown. That is, treat x

as a variable while others as constants with known values and use the monotonicity con-

straints along with values of uP \ x to obtain the interval. Next, calculate zI according

to zI(I(x)) = (1 � �)il(x) + �iu(x) relative to a fixed �. Then, compute wI (Eq. (8.8))

with the value of zI calculated in the previous step and fI(I) as the actual (learned) FM

value for variable x 2 uP . Last, fit a monotonic function of wI (e.g., sigmoid function

in Eq. (8.9)) or piecewise monotonic polynomial function on the data zI vs. wI(I) to es-

timate its parameter. As the weight in the fixed imputation function can be modeled as

wI(zI) = c, therefore, it can also be learned in the same manner described above. Note,

bisection method can be used to select an appropriated value for � in zI equation, however,

a fixed value of 0.5 was used in our experiments.

8.4.4 Lossless and lossy FM compression (variable elimination)

An imputation function does more than just help us build a real-valued FM. For same

or approximate valued FM variables in uP , some variables can be removed and their exact

or approximate values can be retrieved using the monotonicity constraints and imputation

function.

Suppose the sets, for which the FM value is the same, say value a, comprises a family of

sets, V , i.e., µ(v) = a, 8v 2 V ⇢ 2X . Now, assume that the sets, ; and X , are themselves
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their subset and superset respectively. Then V can be divided into three mutually exclusive

families of sets:

1. VM : Each element in VM has at least one superset and one subset in V ,

8r 2 VM , 9s, t 2 V, s ⇢ r ⇢ t.

2. VL: Each element in VL has at least one superset but no subset in V ,

8r 2 VL, @s 2 V ⇢ r and 9t 2 V � r.

3. VU : Each element in VU has at least one subset but no superset in V ,

8r 2 VL, 9s 2 V ⇢ r and @t 2 V � r.

With respect to the above sets, the valid interval range for variables defined for each

member set in VM can be derived from those in VL and VU respectively, and the interval

will have the same lower and upper bounds, a, i.e., 8v 2 VM , i.e., 9vl 2 VL,min(µ(v)) =

µ(vl) = a and 9vu 2 VU ,max(µ(v)) = µ(vu) = a. The variables for VM can be removed,

and their FM values can be recovered by any imputation function using the information

only for VL, VU , and the monotonicity constraints. Next, without loss of generality, we

illustrate FM variable compression for three cases.

Min aggregation: The FM values for the min aggregation operator for an N -input

system are µ(A) = 0, 8A where A ⇢ X, and µ(X) = 1, where V includes all the sets

in the power set except X . VU includes only those sets with cardinality N � 1, VU =

{B} , 8|B| = N�1, and VL is empty. Therefore, VM = V \(VL[VU), |VM | = 2N�N�1,
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and in total 2N � N � 1 variables can be removed. Figure 8.3(a) shows, as an example,

the full set of FM variables for a 3-input system on the left side and the compressed FM

variables on the right. Only four variables, for VL and X , are required for any imputation

function to recover the remaining three. However, irrespective of problem size, the min

imputation function needs only one variable, µ(X), which is by definition a constant.

Max aggregation: This operator for an N -input system is characterized as µ(A) = 0,

if A = {;}, else µ(A) = 1, where A ✓ X . With the same analysis as for the min, we

get VL = {B} , 8|B| = 1, VU = ;, and VM = {B} [ ;, 8|B| = 1, which suggest that

only N + 1 variables for the N singletons and the empty set, µ(x) = 1 where x 2 X,

are needed for computing the ChI of any observation. Figure 8.3(b) depicts the variable

compression process for a 3-input max aggregation operator. We need to store only four

variables, which can be further reduced to one when max imputation function is used.

Binary FM: An example of an arbitrary FM is shown in Figure 8.3(c). Of eight vari-

ables, four are 0-values and rest are 1-valued. Based on their values, these variables are

partitioned into two clusters, V1 and V2, where V1 contains 0-valued variables and V2 has

1-valued variables. Using any imputation function, four variables can be removed, two

from each cluster.

The above examples demonstrate the fact that we can reduce the number of variables

significantly in a lossless way when a group of variables share the same value. In ap-

plication, due to finite floating precision in computation, or simply to further reduce the
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number of required variables, we might want to incorporate a tolerance (✏) while removing

variables, i.e.,

max(µ(v))�min(µ(v))  ✏, 8v 2 V, and ✏ > 0. (8.10)

Note, Equation (8.10) is a lossy operation that yields ChI error.

8.5 Experiments

The aim of this section is to conduct controlled experiments, meaning we know the

answer and can therefore precisely study different conditions, and to also compare the

proposed method to relevant existing work. We do not use “real data sets,” e.g., benchmark

machine learning data sets, because we do not know what the “true” required aggregation

strategy is or if there is even one (i.e., maybe a single input is sufficient). Instead, we

focus on synthetic experiments because they allow us to explore a wider and richer range

of conditions to demonstrate, confirm and learn about the theory put forth. Their results

also therefore obviously trickle down into associated applications, e.g., computer vision,

MKL, MCDM, etc. The following four experiments are performed. First, we investigate

the impact of using only the data supported FM variables for learning versus using all

FM variables. Second, we highlight similarities and differences to k-additivity. Third,

we demonstrate how the proposed method can be used to efficiently represent and learn

a relatively large scale problem (meaning otherwise considered intractable with respect to

most modern computing platforms), N = 20. Last, we perform an experiment to show the

impact of further compressing the FM by grouping similar valued FM variables.
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Figure 8.3

Example of lossless compression (redundant variable elimination) of the FM for (a) min,
(b) max, and (c) arbitrary binary FM for N = 3 system.
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Data herein is generated (pseudo-)randomly from a uniform distribution. In experi-

ments 1, 2 and 3, N = 10 is used, which yields 1, 023 FM variables and 5, 110 mono-

tonicity constraints. The reason for N = 10 is because it is tractable (computationally and

memory storage wise) by most solvers on modern day general purpose hardware. However,

N larger than 10 quickly becomes difficult to solve—or already is more-or-less intractable.

However, we could obviously increase N if high performance computing hardware is avail-

able and the trends that we report below transfer without loss of generality. In addition,

picking a “loadable” N allows us to compare our method to all of the k-additive solu-

tions (different k’s) and the full FI using all FM variables (no restrictions). Five thousand

samples were generated. All but the fourth experiment is ran for training sample sizes of

15, 30, 75, 150, 300, 1000, and 3000 to show important trends associated with different

sample sizes. For each sample size, the training samples are selected (pseudo-)randomly

from the data set of five thousand, the FM values are learned and then tested on the remain-

ing observations. First three experiments are repeated 100 times while the last experiment

is repeated 10 times for different selections of training samples, and the average is taken

with respect to our performance metrics, the mean of squared error (MSE) (plotted on

logarithmic scale in the figures) and the number of training variables used. Three thousand

were selected specifically because it ensures that the system is overdetermined and has

enough data to learn accurately all the variables in training (relative to N = 10). Three

OWAs are used to generate the labels for the data; soft-max, mean and soft-min (OWA

weights provided in Table 8.2). These OWAs were selected as they sample the “aggre-

gation spectrum”—an optimistic operator, pessimistic operator and the last is an expected
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value operator. Furthermore, these specific operators highlight interesting scenarios rela-

tive to k-additivity.

Table 8.2
OWA weights used in experiments.

N FM OWA

10

Soft-max 0.70 0.15 0.08 0.04 0.02 0.01 5E-3 2E-3 1E-3 6E-4

Mean 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Soft-min 6E-4 1E-3 2E-3 5E-3 0.01 0.02 0.04 0.08 0.15 0.70

20

Soft-max 0.70 0.15 0.08 0.04 0.02 0.01 5E-3 2E-3 1E-3 6E-4 3E-4 1E-4 7E-5 4E-5 2E-5 9E-6 5E-6 2E-6 1E-6 6E-7

Mean 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Soft-min 6E-7 1E-6 2E-6 5E-6 9E-6 2E-5 4E-5 7E-5 1E-4 3E-4 6E-4 1E-3 2E-3 5E-3 0.01 0.02 0.04 0.08 0.15 0.70

8.5.1 Experiment 1: Optimization with all variables vs. only data supported vari-
ables

In Experiment 1, we investigate the impact of using all FM variables versus just data

supported FM variables. This allows us to explore two concepts. First, how much of a

reduction are we really talking about in terms of numbers of variables? Second, exper-

imentally, how much variation are we talking about with respect to imputation function

selection versus learning with respect to all variables? Figure (8.4) shows the average

number of training variables encountered and the MSE for soft-max, mean and soft-min.

First, when there is sufficient data, e.g., 3, 000 training samples for N = 10, the standard

and efficient ChIs (rightfully so) converge. Second, imputation enhances performance for

undersampled problems when an appropriate function is selected. Third, the error amounts

are low relative to our noteworthy savings in number of variables. It is important to high-

light that while Experiment 1 shows that it is possible to achieve a good reduction in the
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number of FM variables, and associated monotonicity constraints–which leads to much

needed improvements in optimization time–the exact amount of savings depends on data

volume and variety. This is what we should expect since our method is a way to focus on

efficiency relative to data supported variables and accountability with respect to what we

do not know (imputation function).
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Figure 8.4

Experiment 1. Comparison between the standard and efficient computation of the ChI.
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8.5.2 Experiment 2: k-additivity

Experiment 2 is not a comparison per se as our approach is data-driven, k-additivity is

a matter of representation and ultimately the two can be combined into a single approach

(if desired). In Experiment 2, we report different selections of k relative to the underlying

FMs. However, that is a lot of results and it becomes difficult (cluttered) to report in a table

or figure. Therefore, without loss of generality, we restrict our analysis to k = 1, 3, 7, 10,

which shows the trends.

Figure (8.5) tells the following story. For situations where k is relatively (with respect

to N ) small and a good fit, e.g., Figure (8.5)(c) (the 1-additive mean operator), k-additivity

does a wonderful job. However, when k is large, e.g., Figure (8.5)(b) and Figure (8.5)(d)

(soft max and soft min), our approach does particularly well with respect to both MSE

and the number of required variables. Last, at three thousand samples both the 10-additive

and our data-driven ChI correspond (turn into) the full ChI. Note, the 10-additive ChI has

slightly higher MSE—which is very low for both, 1.5⇥10�6 for the efficient Chi and 3.8⇥

10�7 for the k-additive. The reason is due to dense computation of the ChI in k-additivity–

which can have as many as 2N � 1 non-zero terms for N inputs when full-additive is used

versus at most N non-zero terms for conventional ChI–the symmetric matrix D in QP

optimization problem can be much denser relative to the standard/efficient ChI. Moreover,

constraints in k-additivity involves more non-zero terms than the standard/efficient ChI

and includes a global boundary constraint that contains all variables, the sum of which

must be one. On the other hand, the standard/efficient ChI contains only unary and binary

constraints.
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Experiment 2: Joint exploration of k-additivity and our data-driven ChI method.

8.5.3 Experiment 3: Imputation function exploration

In Experiment 3 we investigate the impact of using different imputation functions.

Specifically, we explore: (i) min: weight, wI = 0.0; (ii) mean: wI = 0.5; (iii) max:

wI = 1.0; (iv) fixed learned: wI = c, where c is learned via fitting the wI function; and

(v) dynamic learned: wI(zI(I)) is a sigmoid function, i.e., wI(zI(I)) =
1

1+e
�a(zI (I)�b) with

parameters a, b that are learned. We used a fixed value, 0.5 for �, though it could be learned

via the bisection method.
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Experiment 3: Results relative to different imputation functions.

It is intuitive that the quality of the results (see Figure (8.6)) depends on how closely

the imputation function matches the true underlying FM. We see that the max and mean

have lower MSE than min for soft-max. Similarly, the mean imputation function is the

best for the mean FM, and the min imputation function has better results for the soft-min

FM. The fixed-learned imputation function performs the best for all cases as it can capture

the trend exemplified by the variables. For example, the learned imputation function for

the soft-max FM was a soft-max, which could not be obtained using our included set
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of fixed imputation functions. The dynamic-learned imputation functions perform better

than fixed but somewhat lags behind fixed-learned in two cases as the sigmoid function

cannot exactly model a fixed weight function–which is the case for all three FMs. Using

a more flexible function that can represent static functions could have better modeled the

OWAs; however, there might be some cases for which sigmoid performs better than a fixed

imputation function. Overall, a trade-off has to be made between simplicity and complexity

while selecting an imputation function. Note, while using different imputation functions

can definitely impact the efficient ChI’s performance for relatively small sample sizes,

their effects diminish as sample size increases because the number of variables needed to

be imputed gradually decreases.

8.5.4 Experiment 4: (Relatively) Large N

In Experiment 4 we explore another payoff of the proposed work, the ability to extend

the ChI to “bigger N”. We selected N = 20, which already has 1, 048, 575 variables and

10, 485, 740 constraints. As stated earlier, one can obviously address N > 20 on better–

high performance computing–hardware. Without loss of generality, the trends we expose

and discuss next extend naturally to such an environment. Note, our efficient ChI with min

imputation is the same as the standard ChI, which enables us to learn larger scale problems

similar to the standard ChI but with a manageable number of variables. Performance can

be greatly improved by using a suitable imputation function that aligns to the underlying

FM.
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The data set for Experiment 4 is (pseudo-)randomly generated from a uniform distri-

bution. As described in Section 8.4.4, we perform variable compression to investigate the

impact on the SSE and the number of subsequent variables. We consider two values for

tolerances, ✏ = 0.01 and 0.001, which are used as thresholds for removing variables. For

simplicity, instead of clustering variables with similar values, we checked the criteria de-

fined in Eq. (8.10) for each individual variable and we removed it from the stored variables

list if the criteria was satisfied. Figure (8.7) shows the results, where (a), (c), and (f) illus-

trate the impact that the imputation functions and tolerances have on the MSE whereas (b),

(d), and (f) depict the impact on the number of variables. As expected, max imputation has

lower error than mean for soft-max (Figure 8.7(a)), mean imputation function yields better

results for mean (Figure 8.7(c)), and min imputation gives superior performance than mean

for soft-min (Figure 8.7(e)).

As Figure (8.7) shows, imputation function selection impacts the MSE. For example,

using max imputation has approximately four times improvement over mean for 1, 000

samples. On the contrary, changing the tolerances—with respect to the range under investigation—

shows little-to-no impact, e.g., ✏ = 0.001 provides the same results as no compression.

While ✏ = 0.01 has slightly worse MSE at lower training samples, it shows improved

performance for relatively higher sample sizes (e.g., 1, 000). This may be because large

numbers of samples generate huge numbers of variables, therefore removing relatively

larger numbers of variables with closely related values and then imputing them with the

same values can improve performance for the given soft-max and soft-min. Note, the soft-

max has values close to one for variables residing at the upper layers in the lattice whereas
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soft-min has values close to zero at the bottom layers. This specific phenomena is unique

to these types of FMs.
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Figure 8.7

Experiment 4: Efficient ChI results for N = 20 with and without variable compression for
different tolerances.
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Next, the efficient ChI uses on average 4, 778 training variables for 300 samples, which

is just 0.46% of the total 220 � 1 variables. When compression is used, the min and max

imputation functions provide maximum savings. For example, the max function with ✏ =

0.01 reduces 4, 778 variables of the soft-max down to 1, 081 variables, a savings of 77.38%.

In comparison to the max, the mean function uses a relatively higher number of variables

(4, 569). However, for mean there is almost no gain in terms of variable compression (mean

imputation even with ✏ = 0.01 uses all variables whereas min uses just 1, 136 variables),

which tells us the degree of compression depends obviously on both the FM and the type

of imputation function used. As discussed in Section 8.4.4, the imputation function can

offer savings only when the variables across multiple layers in the lattice have similar

values, which is the case for soft-max and soft-min but not for mean, thus, providing no

compression benefit for mean.

Last, Experiment 4 tells us that the MSE can reach an impressive rate (on the order

of 10�3) at a relatively small sample/variable size. This “cut-off point” depends on the

acceptable error rate as well as the complexity of the underlying FM. The results suggest

that when we have limited resources, we may not want to run the efficient ChI on all the

samples, but rather randomly sample a fraction of the data, thus keeping the number of

variables at a workable level and still achieve acceptable performance for a less complex

solution.
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8.6 Conclusion

Herein, we introduced a new efficient and flexible data-driven way to represent and

learn the FI. Specifically, variables supported by data are identified and used in optimiza-

tion. Identification of data supported variables also allows us predict future ill posed in-

put scenarios; ChI aggregations involving variable subsets that could not be inferred from

data. Second, we outlined an imputation function framework for attacking data unsup-

ported variables. Third, we presented a lossless method to compress redundant variables

and monotonicity constraints. Last, we outlined a lossy approximation method to further

compress the ChI (if/when desired). Optimization was cast in the context of quadratic

programming. However, the four step process is independent of the underlying solver.

Complexity analysis was provided and experiments were provided to allow more func-

tional insight into the proposed theories. Advantages were shown relative to experiments

in using all versus just data supported variables, k-additivity, impact of imputation function

selection and computing the ChI for (relatively) large N . We noted that, like the k-additive

integral and density-driven imputation, different applications have different needs and dif-

ferent amounts of knowledge are available. Overall, there does not seem to be a “best

approach” but instead a set of tools for different problems/contexts.

In future work, we will focus on improving the imputation function. For example, we

will try to develop intuition to help a user map attributes of their problem to a particular

function (or family of functions). Furthermore, we focused on solutions that produced a

real-valued number from interval-valued information. However, we have extensions for

the FI, both integrand and FM, that allow for computation with respect to interval and
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set-valued information. It will be interesting to instead of forcing a real-valued number

to instead compute with the full uncertainty and discover what benefits, if any, there are

in such an approach. We also plan to study how the use of an imputation function helps

address overfitting. Furthermore, we partitioned the problem into data supported and data

unsupported variables. However, within the set of data supported, not all variables are

supported the same (number of samples). We would like to further study how to com-

bat different degrees of “data supported” variables in learning. Next, we plan to explore

different error and/or penalty functions and associated optimization algorithms. Since we

learn from data and since the ChI has potentially many variables, over fitting can occur.

The reader can refer to [12] for our prior work on regularization based learning of the ChI,

which fits in naturally to the proposed paper and solver. However, it is likely that selec-

tion of imputation function can help as well. In future work, we will investigate questions

like this to make the proposed work more generalizable. Last, the k-additive FI is a well-

known and utilized approach in areas like MCDM, due to reasons like bounded rationality.

In situations where it is desired and appropriate to learn a k-additivity solution, we will

explore the impact of integrating our proposed four step data-driven learning to realize an

improved technique; both in terms of data supported versus data unsupported variables but

also the lossless and lossy compression of variables.

Appendix

Proposition 1: Function fwI
(I) = (1 � wI)il + wIiu is a valid imputation function if

wI 2 [0, 1] is non-decreasing with respect to interval I = [il, iu] ✓ [0, 1].
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Proof: It is sufficient to show that (i) fwI
(I) 2 [il, iu], and (ii) fwI

is non-decreasing with

respect to interval I ✓ [0, 1].

i) As fwI
(I) is simply the linear convex sum of il and iu, fwI

(I) 2 [il, iu].

ii) The partial derivative of fwI
(I) with respect to the lower interval endpoint il gives

@fwI
(I)

@il
= (1� wI)�

@wI

@il
il +

@wI

@il
iu = (1� wI) + (iu � il)

@wI

@il
.

As this is a non-decreasing function, wI has a non-negative gradient, i.e., @wI

@il
� 0 and

wI 2 [0, 1]. Therefore, @fwI

@il
� 0 or non-decreasing with respect to il. Similarly, it can

easily be shown that @wI

@iu
= wI+(iu�il)

@wI

@iu
� 0, which concludes that fwI

is an imputation

function.

Proposition 2: The function wI(I) = wI(zI(I)), where zI = (1 � �)il + �iu is

a valid weight function in Eq. 8.8 if it has the following properties: (i) � 2 [0, 1], (ii)

h : [0, 1] ! [0, 1] and (iii) h(zI) is non-decreasing.

Proof: First, we show that wI lies in [0, 1]. Then, we prove that wI is a non-decreasing

function w.r.t I .

(i) When � 2 [0, 1], zI(I) becomes the linear convex sum of interval endpoints, there-

fore zI(I) 2 [0, 1]. If h holds the second property in Prop. 1, then wI(I) is in [0, 1].

(ii) Taking partial derivative of wI with respect to il gives

@wI

@il
=

@wI

@zI(I)

@zI(I)

@il
= (1� �)

@zI(I)

@il
.

Using Properties (i) and (iii), @zI(I)
@il

� 0. Following the same procedure, it can also be

shown that @zI(I)
@iu

is non-negative. Therefore, wI is a valid weight function. Note that the

weight function, wI , based on sigmoid function has all the properties above.
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CHAPTER IX

EFFICIENT BINARY FUZZY MEASURE REPRESENTATION AND CHOQUET

INTEGRAL LEARNING

9.1 Introduction

Data/information fusion can be described as the intelligent combining of multiple sour-

ces/inputs to provide a more accurate, summarized, and/or reliable result than what a single

source can achieve on its own. Driven by the need for better results, countless applications

in many fields, such as computer vision and remote sensing, have long been applying

fusion at different “levels” (signal, feature, decision etc.). Furthermore, the daily advance-

ment in engineering technologies like smart cars, which operate in complex and dynamic

environments using multiple sensors, are raising both the demand for and complexity of

fusion.

While there is a multitude of fuzzy integral (FI) variants for fusion, we focus in this pa-

per on the Choquet Integral (ChI), a well-known, demonstrated, and flexible aggregation

function. The ChI has been used in numerous applications (mostly focused on decision

level fusion), e.g., humanitarian demining [155], computer vision [181], pattern recogni-

tion [77, 80, 137, 118, 62], multi-criteria decision making [70, 127], control theory [187],

and multiple kernel learning [152, 150, 155, 98, 97]. The ChI is a nonlinear aggregation

function paramterized by the fuzzy measure (FM), a normal and monotone capacity. The
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FM is defined on the power set of the sources, i.e., on the sets of all possible combination

of sources, and therefore has 2N variables for N sources. With the flexibility of choosing

values for these 2N � 2 parameters (excluding null set and X , which have fixed values by

definition) in the FM, the ChI covers a wide range of aggregation operators. However, this

advantage comes at a price: the requirement to specify (by human) or learn (from data) the

FM. This means that the complexity of a learning problem, both in terms of storage and

computation, is on the order of exponential to the number of sources. Therefore, a learning

problem with the full set of variables becomes intractable at a relatively small N . Different

approaches exist to learn the ChI from data, e.g., quadratic programming (QP) [76], gra-

dient descent [121], penalty/reward [120], Gibbs sampler [136], linear programming [26],

and efficient optimization with only data-supported variables [111].

In [9], Anderson et al. explored the binary fuzzy measure (BFM), a variant of the FM

that takes values in {0, 1} instead of [0, 1]. The BFM was motivated by the work of Du et

al. in [55], in which the ChI was used to fuse information for a binary decision making

problem relative to uncertainty from multiples sources. In particular, [55] extended the

ChI for multiple instance learning in classification and showed that the learned FM had

values approximately in {0, 1} versus [0, 1]. This suggests that the underlying FM in some

applications can be binary, which motivates the use of BFM directly rather than the generic

FM due to its simplicity and efficient computation. Thus, many problems are a natural fit

for the BFM and others are likely approximatable.

The BFM also has some nice properties and computational advantages over the FM.

Anderson et al. showed that the ChI relative to BFM is equivalent to the Sugeno integral.
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They also showed that only one variable is effectively used for the ChI computation of an

observation in compared to N variables for the real valued FM. Moreover, only one-valued

variables need to be stored since zero-valued variables can be discarded. These features

make the ChI computation and its storage (the BFM) less expensive compared to the real

valued FM and ChI.

Herein, we first put forth an efficient data-driven learning method for the BFM and

subsequently the BChI, which we refer to as efficient BChI (EBChI). Based on the fact

that only one variable contributes to the BChI computation of an instance, we can explain

this for variable selection during learning. Thus, each training instance adds at most one

variable and the learning problem consequently becomes scalable to the problem size. That

is, the number of variables to be optimized is no longer exponential of N , but rather linear

to the number of instances (in the worst case). This not only lessens the computation

burden, but it also provides a more robust and generalized solution since the number of

unknowns (variables) are always fewer then the number of equations (training instances).

In contrast, the learning problem with the entire set of FM variables is prone to overfitting

as the number of training samples now becomes much smaller than the number of variables

(2N � 2) [12].

Next, we provide a representation scheme for the BFM with the minimum set of vari-

ables, which we call efficient BFM (EBFM). The BFM variables can be partitioned into two

groups, one-valued variables and zero-valued variables. Among the one-valued variables,

some of them can deduce their values from others using the FM’s monotonicity property

(which we call dependent variables) while others cannot (which we call independent vari-
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ables). The dependent variables can be eliminated without any loss of information and

the BFM can be represented with only the independent variables, of which there can be at

most
�

N

N/2

�
variables. The full set of FM variables can be retrieved from these independent

variables and vice-versa. Therefore, the independent variables constitute the minimal BFM

or EBFM.

The remainder of this article is organized as such. In Section 9.2 we give the prelim-

inaries of the FM, BFM, ChI, and BChI. Section 9.3 describes the efficient data-driven

BFM learning followed by the representation in Section 9.4. In Section 9.5, we conduct

controlled experiments on synthetic data to demonstrate the performance of our proposed

learning method.

9.2 Fuzzy Measures and Choquet Integral

Let X = {x1, x2, ..., xN} be a set of N inputs. A real-valued FM is a monotonic

function defined on the power set of X , 2X , as µ : 2X ! <+ that satisfies the following

properties:

(i) (boundary condition:) µ(;) = 0,

(ii) (monotonicity:) if A,B ✓ X,A ✓ B, µ(A)  µ(B).

Often an additional constraint is imposed on the FM to limit the upper bound to 1, i.e.,

µ(X) = 1.

Let h(xi) be the data/information from the ith input. The discrete ChI (finite X) is

Z

C

h � µ = Cµ(h) =
NX

i=1

h(x⇡(i))
⇥
µ(S⇡(i))� µ(S⇡(i�1))

⇤
, (9.1)
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where ⇡ is a permutation of X , such that h(x⇡(1)) � h(x⇡(2)) � . . . � h(x⇡(N)), S⇡(i) =

{x⇡(1), . . . , x⇡(i)}, and µ(S0) = 0. Equation (9.1) is often referred to as the difference-

in-measure form since the integral is represented as the sum of difference-in-measure

weighted by the input-values. The ChI can equivalently be written in difference-in-inputs

form as
Z

C

h � µ = Cµ(h) =
NX

i=1

[h(x⇡(i) � h(x⇡(i+1))]µ(S⇡(i)), (9.2)

where h(x⇡(N+1)) = 0. The latter weighted-measure form at (9.2) is suitable for the FM

learning problem herein, where µ is unknown. Equation 9.2 can be written in matrix form

to facilitate optimization as

Cµ(h) = c
T
uB, (9.3)

where uB is the vector of all variables except µ(;) and has a length of 2N � 1, and c holds

the coefficients of uB for observation h.

The FM can be visualized with respect to its uncertainty in a lattice (shown in Fig-

ure 9.1). Each instance yields a sort, ⇡, which produces a walk up the lattice. The walk

starts with µ(;) followed by N other variables, each of different size cardinality. For ex-

ample, an observation h with h({x2}) � h({x1}) � h({x4}) � h({x3}) walks along the

path shown in Figure 9.1(b) and the corresponding ChI has variables µ({x2}), µ({x1, x2}),

µ({x1, x2, x4}), and µ(X).

9.2.1 The Binary Fuzzy Measure

As already stated, a BFM, µB, is a special case of the real-valued FM, µ, that restricts

µB 2 {0, 1} instead of [0, 1]. Obviously, this drastically reduces the search space for an
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optimization problem. In article [9], we proved that the BChI and Sugeno Integral are

equivalent. The BChI is simply the standard Choquet Integral with respect to the BFM.

Suppose the BFM values along the walk for h are given by

µB(S⇡(i)) =

8
>>><

>>>:

0 if i < k

1 else,

(9.4)

where µB(S⇡(k)) is the first variable encountered along this path with value 1. Replacing

the FM with this BFM in Eq. (9.1) and then expanding it, the BChI can be written as [9]
Z

C

h � µB = CµB
(h)

=
NX

i=1

h(x⇡(i))
⇥
µB(S⇡(i))� µB(S⇡(i�1))

⇤

=

 
k�1X

i=1

h(x⇡(i))
⇥
µB(S⇡(i))� µB(S⇡(i�1))

⇤
!

+ h(x⇡(k))
⇥
µB(S⇡(k))� µB(S⇡(k�1))

⇤

+

 
NX

i=k+1

h(x⇡(i))
⇥
µB(S⇡(i))� µB(S⇡(i�1))

⇤
!
.

= h(x⇡(k))µB(S⇡(k)),

(9.5)

since µB(S⇡(i)) � µB(S⇡(i�1)) is zero except for i = k and µB(S⇡(k�1)) = 0. It is trivial

to show with some mathematical manipulation that the BChI in difference-in-inputs form

also can be written as
Z

C

h � µB = CµB
(h) =

NX

i=1

[h(x⇡(i))� h(x⇡(i+1))]µB(S⇡(i))

= h(x⇡(k))µB(S⇡(k)). (9.6)
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According to Eqs. (9.5) and (9.6), the BChI of an instance uses only one variable µB(S⇡(k)).

This fact allows us to use significantly fewer variables than the standard ChI (which we will

show in Section 9.3), thus enabling the learning of a BFM for relatively larger number of

inputs/sources problems, which would otherwise be intractable to solve on most personal

computers.

{x1} {x2} {x3} {x4}

{x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3}

X

{}

{x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

{x1,x2}

(a) FM for N=4

{x1} {x2} {x3} {x4}

{x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3}

X

{}

{x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

{x1,x2}

(b) Walk for an example input
Figure 9.1

(a) FM lattice for four inputs. Arrows indicate monotonicity conditions on the immediate
subsets. (b) Illustration of the path taken by observation h with
h({x2}) � h({x1}) � h({x4}) � h({x3}). Only four variables

µ({x2}), µ({x1, x2}), µ({x1, x2, x4}), and µ(X) are used for the ChI

9.3 BChI learning

Let O = {hj, yj}, j = 1, 2, . . . ,M , be a training data set with M instances. Here

hj represents the jth instance with data from N inputs and yj is the associated label or

ground-truth for hj . For example, hj could be an image, hj({xi}) could be the soft-max

normalized decision of N different learners and yj = 0 if hj is not the category of interest,

e.g., person, or yj = 1 if it is.
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The goal is to learn the BFM such that the aggregation results of the training instances

optimize a criteria, which is usually specified by a function of error relative to a label, yi,

called as an objective function. Common objective functions include the sum of squared

error (SSE) [12, 80, 43] and the sum of absolute error (SAE). Without loss of generality,

in this paper we focus only on the SSE, which is widely used due to its continuity, differ-

entiabiliy, and non-linearity relative to errors. The sum of squared error for training data,

O, is

E(O,uB) =
MX

j=1

(CµB
(hj)� yj)

2,

where CµB
(hj) is the BChI for instance hj and yj is associated label.

9.3.1 Learning with the full set of FM variables

Traditionally, a FM learning problem is formulated with a full set of variables without

extracting any knowledge from the training data to reduce the number of variables to learn.

In this case, the BChI for a training instance hj is represented with a 2N � 1 dimensional

vector uB, and, consequently, the SSE for training data, O, becomes

E(O,uB) =
MX

j=1

ej =
MX

j=1

(cT
j
uB � yj)

2

= ||DuB � y||22,

where D = [c1 c2 . . . cM ]T , y = [y1 y2 . . . yM ]T , ||x||2 is norm-2 operation on x, and

uB is the vector of the 2N � 1 binary variables excluding null set. Based on this, the SSE

optimization problem is

min
uB

f(uB) = ||DuB � y||2,
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subject to

uB(k)  uB(l), if uB(k) = µB(A), uB(l) = µB(B),

and A ⇢ B, 8k, l (monotonicity conditions)

uB(p) = 1, if uB(p) = µB(X) (normality conditions)

uB(l) 2 {0, 1}, 8l (BFM value restriction),

which can be solved by any mixed-integer, integer, or binary quadratic programming li-

brary [147, 66]. It is obvious that this optimization problem does not scale well since

the variables are exponential in N regardless of the training sample size. Moreover, its

complexity would be higher than the standard FM due to the use of integer-programming,

which is in general costlier than the real-valued counterpart.

9.3.2 Efficient ChI learning

Herein, we develop an efficient algorithm that selects variables for learning from the

training data instead of blindly using all FM variables in the optimization problem. As a

result, the number of variables can be far fewer than the standard method, and the reduc-

tions in variables depends on different aspects of the problem at hand (e.g., training sample

size, underlying FM and the problem environment–noisy or noise-free systems). In vari-

able selection, the proposed method particularly uses the fact that the BChI computation
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of an instance hj requires only one variable verses N variables for the real-valued FM as

shown in Eq. (9.2), i.e.,

CµB
(hj) =

NX

i=1

[hj(x⇡j(i))� hj(x⇡j(i+1))]µB(S⇡j(i))

= hj(x⇡j(k))µB(S⇡j(k)) = hj(x⇡j(k)),

where µB(S⇡j(i)) = 0, for i < k else 1. In a noise-free system with underlying BFM, the

the instance-error, ej in the SSE is zero, which makes the training label yj to be equal to

CµB
(hj), which in turn is equal to hj(x⇡j(k)). Eventually,

yj = hj(x⇡j(k)).

This tells us that just by inspecting the sorted input that equals yj , we can determine k, and,

ultimately, the values of variables along the walk for hj . However, real world problems are

affected by noise (e.g., inherent or external) and/or the underlying FM may not be a ’true’

BFM (here BFM will approximate the real-valued FM). In that scenario, we identify the

index k and associated variable µB(S⇡j(k)) that gives the minimum instance error, ej ,

k = argmin
i

||yj � hj(x⇡j(i))||2. (9.7)

The noise can follow a distribution such as Gaussian, Poisson or can be purely random.

Due to the variation in noise magnitude across the instances, the training instances with the

same sorting order can pick different k’s and hence different µB(S⇡j(k))’s, which otherwise

in noise-free system would pick the same single variable.

Suppose, the instances hl, l = {l1, l2, . . . , lp} have the same permutation, ⇡, for their

sorting order and the set of variables picked by them using Eq. (9.7) are µB(S⇡(k)), k =
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{k1, k2, . . . , kQ} with S⇡(k1) ⇢ S⇡(k2) ⇢ · · · ⇢ S⇡(kQ). Then the BChI for hl w.r.t. these

variables is

CµB
(hl) =

QX

q=1

[hl(x⇡(kq))� hl(x⇡(kq+1))]µB(S⇡(kq)), (9.8)

where hl(x⇡(kQ+1)) = 0. Note that the number of the selected variables, Q is bounded

within [1, N ].

Let the set of variables selected by all the training instances (using Eq. (9.7)) be repre-

sented in vector form as vB. Then The EBChI of hj can be written in matrix form as

CµB
(hj) = a

T

j
vB,

where aj be the coefficient of vB calculated according to Eq. (9.8). Based on this, the SSE

minimization problem now becomes

min
vB

f(vB) = ||WvB � y||22,

subject to

vB(i)  vB(j), if vB(i) = µ(A), vB(j) = µ(B)

and A ⇢ B, 8i, j 2 {1, 2, . . . , Q} (monotonicity conditions)

vB(j) = 1, if vB(j) = µB(X) (normality conditions)

vB(i) 2 {0, 1}, 8i (BFM value restriction)

(9.9)

where

W = [a1 a2 . . . aM ]T .
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(a) Full set of FM variables

1

1 1 1 1

1

1
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(b) Only one-valued variables

1

1 1 1 1

1 1 1

(c) Training variables from an arbitrary
data set

1

1

(d) Independent variables

Figure 9.2
An example of the BFM representation for four inputs case. Light gray nodes with zeros

represent zero-valued variables while dark-grey nodes with one’s denote one-valued
variables. Empty nodes are for placeholders only, and indicate that their variables are

removed. (a) shows the full set of FM variables, (b) only one-valued variables, (c) EBChI
variables selected from a noise free training data set, and (d) EBFM represented with

independent variables. It can be seen from (d) that there is no partial order or
monotonicity conditions defined among independent variables. The full FM lattice (a) can

be simply derived from (d) using the FM’s monotonicity property.

It is to be noted that instead of selecting one variable per instance as in Eq. (9.7), we

can use different criteria to select multiple variables per instance, e.g., selecting variables

associated with those inputs that fall within a certain threshold (or standard deviation) of

the training label yj . While increasing the number of variables will have no impact for a

system with little noise with sufficient training samples, it can lower the SSE for a highly
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noisy system with limited data. However, increasing variables gives diminishing results,

so for a given problem there is a trade-off between the number of variables and the error of

the objective function.

9.4 Efficient BFM data structure

In the last section, we provided an algorithm to efficiently learn a BFM that uses fewer

variables. Anderson et al. introduced a simple approach to represent the BFM that can be

applied here to further reduce the learned variables for efficient storage and representation.

In that method, the variable elimination process considers only the values of the variables

and does not take into account the properties of the FM, which can greatly enhance the

representation technique. By taking into consideration both values and properties, herein

we propose a new way to efficiently represent the full-fledged BFM and then we provide

an upper bound on the minimum number of variables required.

9.4.1 Representation

Since the variables of a BFM are binary valued, the variables can take either zero or one

values. The zero-valued variables do not contribute to the BChI, so they can be discarded.

Thus, only one-valued variables can be considered as candidates for representation. Due to

the FM’s monotonicity property, if a variable µB(A) is one-valued, then all variables that

are for the supersets of A are also one-valued. As such, the one-valued variables can be

divided into two parts: (i) independent variables whose values cannot be derived from an-

other one-valued variable using monotonicity condition and (ii) dependent variables whose

values can be retrieved using the independent variables and monotonicity condition, and
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therefore, can be discarded. Consequently, only the one-valued independent variables are

necessary to represent a BFM, which we refer to as EBFM. Figure 9.2 illustrates the EBFM

representation technique for an example with N = 4.

From the EBFM with independent variables that correspond to sets B = {B1, B2, . . . ,

Bl}, the BChI of an observation hj can be computed as follows:

1. Sort inputs in descending order. Let the sorting order be x⇡j(i), i = 1, 2, . . . , N , and

the associated variables for the BChI are µB(S⇡j(i)), i = 1, 2, . . . , N .

2. Find the minimum k for which S⇡j(k) ◆ Bl 2 B, 8Bl.

3. Return hj(x⇡j(k)) as the output.

9.4.2 Upper bound

To determine the upper bound on the number of variables in EBFM, we use a theorem

by E. Sperner [172]. The theorem proves that if B1, B2, . . . , Bt are subsets of an N -element

set B, such that no Bi is a subset of any other Bj , then

t 
✓

N

[N/2]

◆
, (9.10)

where [x] denotes the rounded integer value. As the independent variables in EBFM have

the same definitions as the Bis above, Eq. (9.10) also gives the upper bound on the num-

ber of variables in the EBFM. For 20 inputs, there can be at most 184, 756 independent

variables (in median-like aggregation case), thus using only 17.62% of the total variables

in the worst case. However, the actual usage (or saving) depends on the specific BFM; for

example, min and max aggregation operators require 1 and N variables respectively.
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9.5 Experiments

Experiments are conducted on synthetic data set for the following reasons. First and

foremost, we know the true underlying BFM, which facilitates the comparison and inves-

tigation of the proposed method’s behaviour, whereas in real world applications/data the

true FM may never be known. Moreover, it is quite challenging to find real world examples

of varying complexity while it is far easier to create a FM in synthetic data with different

complexity. Synthetic experiments also give us insight into how the learning method will

behave in different noisy contexts. The experiments are designed to compare the compu-

tational complexity as well as to measure the performance in terms of mean squared error

(MSE) from the predicted test labels using the learned BFM in a no noise as well as in a

noisy environment.

9.5.1 No noise scenario

First, a training data set of M = 500 and N = 8 is generated pseudo-randomly from

a uniform distribution, which is then partitioned to create five data-sets for five fold cross-

validation. Each cross-validation data-set contains 400 training samples and 100 test sam-

ples. Then we created training data-sets of sample sizes 150, 75, 30, and 15 via random

selection of instances from those of 400, 150, 75, and 30 respectively. Test data for all

sample sizes remains the same. We specified three BFMs–BFM1, BFM2 and BFM3–in

Table 9.1 using the EBFM representation with independent variables. In the table, each

independent variable is denoted with the inputs’ indices in the set, e.g., 12 stands for inde-

pendent variable µB({x1, x2}). The independent variables in BFM1 lie in the lower part
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of the lattice (hence largest number of one valued variables) while those of BFM3 reside

on the upper part. The BFM2 independent variables spread across the lattice from top to

bottom. The labels for these BFMs are created without adding any noise, which also serve

as the ground-truth for noisy system.

Table 9.1
The FMs used in the experiment

BFM Independent variables #var # 1-var

1 8 56 67 57 345 346 347 1234 1235 1245 1236 1246 1237 1247 255 211

2 3568 3578 3678 4568 4578 4678 5678 12568 12578 12678 123458 123468 123478 1234567 255 59

3 67 68 78 123456 123457 123458 255 131

Figure 9.3 shows the results for different sample sizes. As can be seen, the number

of variables increases linearly at small M , then remains constant for large sample sizes,

which is still far fewer than the standard optimization method. The average of the MSE

as well as the number of variables correctly learned are approximately the same for both

standard and EBChI (Figure 9.3(b) and (c)). An interesting observation from Figure 9.3(d)

is that the EBChI has far fewer independent variables for 15 training samples, meaning the

learned FM from the EBChI is less complex than the standard one.

9.5.2 Noisy scenario

In most analysis of the noisy systems, noise is usually modeled as Gaussian distribu-

tion, which provides a very good approximation in many real world scenarios. Herein,

we model the output as y = CµB
(h) + ✏, ✏ ⇠ N (0, �2

n
). The observations in the training

data set are the same as those for the noise-free system; however, the labels are created
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by adding randomly generated values from a normal distribution of variance �2
n
. We con-

ducted experiments with five different variances, �n/�y = {0, 0.01, 0.05, 0.1, 0.3, 0.5},

where �2
y

is the variance of the true labels. The standard deviations for FM1, FM2, and

FM3 are 0.184, 0.1804, and 0.2055 respectively. We measured the MSE with respect to

the true test labels.
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Figure 9.3
Results for data-driven learning from noise-free training data of different sample sizes,

M = 15, 30, 75, 150, and 400.

Figure 9.4 compares the results for noisy data with 400 training samples. More noise

means more variations around the true value, which results in selection of multiple vari-
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ables for instances with the same sorting order. Thus, the number of training variables

in EBChI increases with the noise level. The presence of noise equally affects both the

EBChI and the standard BChI. When the FMs are learned with sufficient number of sam-

ples, the error is minimal–on the order of 10�3 (Figure 9.4(c))–and there is a mismatch of

only 4 out of 255 variables in the worst scenario; see Figure 9.4(c). As the result shows,

both the standard method and EBChI are resilient to relatively moderate level of noise

(�n/�y = 0.3).

9.6 Conclusion

In this paper, we proposed an efficient method to learn the BFM. Variable selection

in the EBChI is driven by the observed instances whereas the standard learning method

uses full set of variables. This makes the EBChI tractable for a relatively large problem

(large N ) in contrast to the standard approach. As demonstrated by the results, learning

with the EBChI is approximately equivalent to the standard BChI learning method for

noisy and noise-free scenarios; therefore, it provides an efficient alternative for data-driven

learning of the BFM. Moreover, we introduced a representation technique called the EBFM

to describe a BFM minimally via independent variables. In future work, we will apply our

technique to real world problems. Additionally, we will study which problems can be

natural fit to BFM and which problems can be approximated by a BFM.
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Figure 9.4

Results for data-driven learning with noise, with standard deviation, �n = {0.0�y, } . (a)
average number of training variables over five iterations, (b) average mean squared error

on test data, (c) average number of variables correctly learned, (d) corresponding
independent variables
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CHAPTER X

EXPLAINABLE AI FOR UNDERSTANDING DECISIONS AND DATA-DRIVEN

OPTIMIZATION OF THE CHOQUET INTEGRAL

10.1 Introduction

Data and information fusion is a fundamental capability in many state-of-the-art tech-

nologies, e.g., Big Data, smart cars, remote sensing, computer vision, etc. However, fusion

is a rather vague concept that takes many forms. For example, in remote sensing sensor

registration is fusion. In computer vision, the combining of features is fusion. In expert sys-

tems, the combining of expert opinions is fusion. Herein, we restrict our analysis and focus

on a more specific avenue of fusion: aggregation functions. Let X = {x1, ..., xN} be N

sources like a sensor, human or algorithm. In general, an aggregation function is a mapping

of data from our N sources, denoted by h(xi) 2 <, to data, f({h(x1), ..., h(xN)},⇥) 2 <,

where ⇥ are the parameters of f . Fusion typically needs a “home” to make sense, e.g.,

fusion for machine learning, fusion for scientific visualization, etc. The point is, in order

to evaluate the success of fusion one typically needs a context in which to explore the qual-

ity of its result. Common nomenclature for fusion of different data is signal-in-signal-out

(SISO), feature-in-feature-out (FIFO) and decision-in-decision-out (DIDO). Herein, we

focus on Sugeno’s fuzzy Choquet integral (ChI), which has been used for SISO, FIFO and

DIDO.
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Often, it is too complicated or not possible for a human to specify the parameters of the

underlying aggregation operator. In response, a multitude of methods have appeared on

data-driven optimization of aggregation operators, e.g.,[111]. The subject of this article is,

learning a solution from data is useful, but what is the quality of that learned solution and

why should we trust decisions that it produces on new data? In part, the current article is

driven by the emerging need for so-called explainable artificial intelligence (XAI). Herein,

we explore XAI methods for introspection of the ChI. As such, we pull together existing

methods and explore new data-driven ones.

In Section 10.2 we review the ChI, Section 10.3 is existing fuzzy measure (FM) specific

XAI tools, Section 10.4 is existing ChI specific XAI methods, and 10.5 is new data-centric

XAI methods. Last, in Section 10.6 we use these XAI methods to fuse a heterogeneous

set of deep convolutional neural networks (DCNN) for remote sensing on benchmark data

sets.

10.2 Measure and Choquet Integral

The fuzzy integral has been demonstrated numerous times in a variety of applications;

e.g., explosive hazard detection [167, 62], computer vision [181], pattern recognition [77,

137, 118], multi-criteria decision making [70, 127], forensic anthropology [6, 14], fuzzy

logic [187], multiple kernel learning [152], multiple instance learning [55], ontologies [3],

missing data [110], and deep learning for remote sensing [5, 164], to name a few. The

ChI is a nonlinear aggregation function parameterized by the FM. Herein, we focus on the

real-valued discrete (finite X) ChI.

166



The first action we face is how to assign “worth” to different subsets of sources. For

example, the well-known backbone of calculus on real-valued domains is the Lebesgue

measure; which coincides with length, area and hypervolume. However, when X is a

discrete domain, e.g., set of algorithms, what is the corresponding measure? In [181],

Keller et al. first investigated the idea of using the fuzzy integral for pattern recognition.

A FM is a function, µ, on the power set of X , 2X , which satisfies (1) (boundary condition)

µ(;) = 0 and (2) (monotonicity) if A,B ✓ X and A ✓ B, then µ(A)  µ(B). Often,

µ(X) = 1 is imposed in settings like DIDO fusion.

The FM models interactions (e.g., subjective worth, statistical correlation, etc.) be-

tween input subsets. The data provided by our inputs are {h({x1}), h({x2}), ..., h({xN})}.

The fuzzy integral is a way to combine the integrand (h) data relative to the FM (µ). Let

h({xi}) 2 <�0 be the data/information from input i. The discrete (finite X) Sugeno FI is1

Z

S

h � µ = Sµ(h) =
N_

i=1

�
h({x⇡(i)}) ^ µ(Ai)

�
, (10.1)

where ⇡ is h({x⇡(1)}) � h({x⇡(2)}), . . . ,� h({x⇡(N)}) and Ai = {x⇡(1), . . . ,x⇡(i)}. The

discrete ChI is2,3

Z

C

h � µ = Cµ(h) =
NX

i=1

h({x⇡(i)}) [µ(Ai)� µ(Ai�1)] , (10.2)

1Due to the maximum (t-conorm) and minimum (t-norm) operators, the Sugeno FI does not actually
generate any possible number between the minimum and maximum of the inputs. Instead, it selects one of
the FM or input values, i.e., at most one of 2N +N values.

2The ChI is used frequently for a number of reasons; e.g., it is differentiable [137], for an additive (prob-
ability) measure it recovers the Lebesgue integral, it yields a wider (versus the Sugeno integral) spectrum of
values, etc.

3If µ(X) < 1, idempotence, boundedness, etc. are not guaranteed.
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where µ(A0) = 0. Since the ChI is a parametric aggregation function, once the FM is

determined the ChI turns into a specific operator. For example: if µ(A) = 1, 8A 2 2X \ ;,

the ChI becomes the maximum operator; if µ(A) = 0, 8A 2 2X \ X , we recover the

minimum; if µ(A) = |A|
N

, we recover the mean; and for µ(A) = µ(B) when |A| = |B|,

8A,B ✓ X , we obtain a linear combination of order statistics (LCOS). In general, each

of these cases can be viewed as constraints or simplifications on the FM (and therefore the

ChI).

The discrete ChI can alternatively be regarded as N ! linear convex sum (LCS) operators–

one for each possible input sort.4 For a single instance of the ChI, i.e., N new inputs that

need to be fused, its sort determines which LCS to use. If we consider a constrained

FM then this set of LCSs is reduced. For example, a LCOS has one underlying oper-

ator. Each sort has a corresponding “walk” in the FM. For example, let N = 3 and

h({x2}) � h({x3}) � h({x1}). Equation (10.2) thus uses the FM variables µ(;), µ({x2}),

µ({x2, x3}) and µ(X). This sequence of increasing size (cardinality) FM variables is re-

ferred to as a “walk” up the FM lattice hereafter5.

10.2.1 Data-Driven Optimization of the ChI

A big question is, where do we get the FM from? One option is to have an expert

specify it. However, this is not practical (assuming the expert could even meaningfully

assign values to the interactions) as the number of inputs increases. Another option is we
4Whereas there are N ! LCS operators, they share 2N variables. For example, for N = 6 we have 720

LCS operators but only 64 variables.
5As µ(;) = 0 and µ(X) = 1, it is trivial to prove that the difference-in-measure coefficients in Equation

(10.2) sum to 1.
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can specify or learn the worth of just the singletons (the densities). From there, a number

of formulas can be used to impute (fill in) the missing variable values. Popular approaches

include the Sugeno �-FM and the S-Decomposable FM [176]. However, while convenient,

most often we do not obtain the desired values for variables that we need. Next, we quickly

review one method of optimizing the ChI. The reader can refer to [111] for more details

(full mathematical detail and experiments).

Let O = {hj, yj}, j = 1, . . . ,M , be M training examples; where hj is the j-th

instance with data/information from N inputs and yj is the ground-truth for hj . The sum

of squared error for training dataset O is

E(O,u) =
MX

j=1

ej =
MX

j=1

(cT
j
u� yj)

2 = ||Du� y||22, (10.3)

where u = [µ({x1}), ..., µ({x1, x2}), µ({x1, x3}), ..., µ(X)] (lexiographic vector of size

2N � 1), D = [c1 c2 . . . cM ]T (full dataset), y = [y1 y2 . . . yM ]T , || · ||2 is norm-

2 operation, and cj holds the coefficients of u for observation hj , e.g., for N = 3 and

h({x2}) � h({x1}) � h({x3}), c is

[0, h({x2})� h({x1}), 0, h({x1})� h({x3}), 0, 0, h({x3})] .

The regularized SSE optimization problem is

min
u

f(u) = ||Du� y||2 + �v(u), (10.4)

where � 2 <�0 is a regularization constant (which balances the “cost” (or penalty) of

obtaining minimum function error relative to our desire to have minimal model complexity)

and v(u) is an index of model complexity (e.g., k-additive and Mobius, Gini-Simpson, `p-

norm, etc. [149]), subject to the FM boundary and monotonicity conditions (see [12] for
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how to pack the constraints into a linear algebra expression), which can be solved via

quadratic programming. Full code and explanation (including how to build the constraint

matrix C) can be found at www.derektanderson.com/FuzzyLibrary.

10.2.2 Data Supported and Unsupported Variables

Many parametric methods are unable to determine which variables are supported (and

to what degree at that) by data. For example, determination of which parameters are suf-

ficiently approximated by data in a neural network is unsolved. In [111], we put forth a

way to identify data supported and data unsupported FM variables for learning the FM/ChI

from data. For M training instances we get, at maximum, M unique sorts6. For each walk,

we record which variables are used. Data supported means a FM variable (A ✓ X) was

encountered at least once. Data unsupported means a variable was never encountered in

the M walks.

Figure 10.1 shows the 2N FM variables for an N = 4 problem–specifically the fusion of

DCNNs. “Layer” L (from bottom to top) in the image denotes FM variables with cardinally

L. Thus, layer 0 (bottom node) is the empty set, the next layer is the singletons (from left

to right), top is µ(X), etc. Each variable is presented in lexicographic order, i.e., layer 2

is {x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4} and {x3, x4}. The nodes are also drawn

size-wise proportional to their value (a minimum size and maximum was specified to make

them still show up for 0-valued variables). In addition, the “paths” drawn indicate the

visitation frequency (the brighter the line, the higher the visitation) for test data in fold 1.
6In practice, it is not common that we encounter M unique sorts for M instances. Depending on the

diversity of our data, it is more common to have just a small percentage of unique walks. The number of
walks typically becomes sparser as N increases.
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Fold 1: Lattice for neuron 1

0

0.027 9.6e-07 9.6e-07 1.8e-06

0.5 0.49 0.31 3.1e-06 8e-06 8e-06

0.95 0.96 0.91 1e-05

1

Figure 10.1
Visualization of the FM and walk visitation frequency for the fusion of four deep

convolutional neural networks for neuron one (agricultural) in the remote sensing UCM
dataset. The most frequently encountered walk is {x1}, {x1, x2}, {x1, x2, x3}, then

{x1, x2, x3, x4} (which corresponds to the DCNNs CaffeeNet, GoogleNet, ResNet50 and
ResNet101).

10.3 Measure-Centric Indices: fmc(µ)

Next, we review the first of three approaches to understand the inner-workings of fu-

sion. In general, we have (µ,Cµ, O) at our disposal–the measure, integral and data set

respectively. This section focuses on questions that require just µ.

10.3.1 Shapley Index

The Shapley index informs us about the “worth” of each input,

�µ(i) =
X

K✓X\{i}

⇣X,1(K) (µ(K [ {i})� µ(K)) , (10.5)

⇣X,1(K) =
(|X|� |K|� 1)!|K|!

|X|! ,

where K ✓ X\{i} denotes all proper subsets from X that do not include source i. The

Shapley value of µ is the vector �µ = (�µ(1), ...,�µ(N))t and
P

N

i=1�µ(i) = 1. The
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Shapley index can be interpreted as the average amount of contribution of source i across

all coalitions.

10.3.2 Interaction Index

The Interaction Index informs us about how two inputs interact with one another–aka

what advantage (or not) is there in combining inputs. The Interaction Index (Murofushi

and Soneda [142]) between i and j is

Iµ(i, j) =
X

K✓X\{i,j}

⇣X,2(K)(µ(K [ {i, j})

� µ(K [ {i})� µ(K [ {j}) + µ(K)), (10.6)

⇣X,2(K) =
(|X|� |K|� 2)!|K|!

(|X|� 1)!
,

where Iµ(i, j) 2 [�1, 1], 8i, j 2 {1, 2, ..., N}. A value of 1 (respectively, �1) represents

the maximum complementary (respective redundancy) between i and j. The reader can

refer to [78] for further details about the interaction index, its connections to game theory

and interpretations. Grabisch extended the index to the general case of any coalition [74],

Iµ(A) =
X

K✓X\A

⇣X,3(K,A)
X

C✓A

(�1)|A\C|µ(C [K), (10.7)

⇣X,3(K,A) =
(|X|� |K|� |A|)!|K|!

(|X|� |A|+ 1)!
.

Equation (10.7) is a generalization of both the Shapley index and Murofushi and Soneda’s

interaction index as �µ(i) corresponds with Iµ({i}) and Iµ(i, j) with Iµ({i, j}).
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10.4 Integral-Centric Indices: fic(µ,Cµ)

A different fundamental question is what “type” of aggregation is the ChI performing?

Answering this question helps us understand how the inputs are being combined (e.g., in an

optimistic, pessimistic, expected value like fashion, etc.). In this section we review indices

that operate on (µ,Cµ).

In [154], we established an index D1 to measure the degree to which a given FM/ChI is

an maximum operator. Let “layer k” (measure defined on sets of cardinality k) be denoted

by L(k), e.g., L(1) = {µ({x1}), µ({x2}), µ({x3})} for N = 3.

D1(µ) =
1X

k=1

W(k)

2
(T1 + T4) +

"
NX

k=2

W(k)

3
(T1 + T2 + T4)

#
, (10.8)

T1 = 1�
 P

I2L(k) µ(I)

|L(k)|

!
,

T2 =

 P
I2L(i) µ(I)

|L(k)| �
P

J2L(k�1) µ(J)

|L(k � 1)|

!
,

T3 =

P
I2L(k) µ(I)

|L(k)| ,

T4 =

P
I2L(k)(µ(I)� T3)2

|L(k)|� 1
,

W =
[ 1
N
, ..., 1]

P
N

i=1
i

N

.

In summary, T4 is the variance of a layer, T3 is the mean of a layer, T2 is the difference in

mean value between two consecutive layers, T1 is how far the mean of a layer is from value

1 and W is a set of layer weights. A value of D1 = 0 means that a ChI is the maximum
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operator. In addition, the distance of a learned capacity to a minimum operator (D2), mean

(D3) and LCOS (D4) is

D2(µ) =
1X

k=1

W2(k)

2
(T3 + T4)

+

"
N�1X

k=2

W2(i)

3
(T3 + T2 + T4)

#
,

(10.9)

D3(µ) =
1

2N � 2

N�1X

k=1

X

I2L(k)

����µ(I)�
k

N

����, (10.10)

D4(µ) =
1

N � 1

N�1X

k=1

p
T4, (10.11)

W2 =

⇥
1, ..., 1

N�1

⇤
P

N�1
i=1

i

N�1

.

The formulas in this section provide a way to measure the divergence of a learned FM to

a reference FM (and thus underlying ChI). However, the caveat is these indices are distance

measures. As such, their values are not directly membership degrees. If one desires such

information then a membership function needs to be specified or learned.

10.5 Data-Centric Indices: fdc(µ,Cµ, O)

In this section, we create new indices for answering data-driven questions. Ultimately,

these results help us understand the diversity (or lack of) contained in O. Last, we explore a

way to determine how much we should trust the result of fusion for data not in our training

set. Meaning, have we seen its like before and how confident should we be in the result

coming out of our system (fusion operator)?
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10.5.1 Variable Visitation

In this subsection we address the question of how frequently is a FM variable encoun-

tered in training data? Algorithm 9 is a formal description of the procedure.

Algorithm 3: Variable Visitation

1 INPUT: Data set O .M instances with N inputs each

2 INPUT: FM µ . Our fuzzy measure

3 Initialize each variable in v (where |v| = |u|) to zero

4 for j = 1 to M . Evaluate each instance do

5 For hj , identify the N � 1 FM variables (excluding the empty set and X) used in Equation

(10.2). Let these N � 1 indices be denoted as Ij = {Ij,1, ..., Ij,N�1}, where Ij,1 is the index

for a density, Ij,3 is for a three tuple, etc.

6 for k = 1 to N � 1 do

7 Set v(Ij,k) = v(Ij,k) + 1.

8 Set v = v
M .

9 RETURN: v

Algorithm 9 counts how many times a FM variable is encountered in the M different

ChI instances. It then normalizes these counts to obtain their relative frequency of oc-

currence per layer. Each layer has a different number of variables. Consider the case of

N = 4. Layer one (densities) has four variables and layer two (tuples) has six variables.

Assume there are four training samples, M = 4, so four walks. It is possible for each

walk to touch a different density. However, these four walks can only touch four of the

six tuples. We normalize per layer to provide an answer that supports what is the relative

frequency of occurrence of variables at each layer, i.e., how often did I encounter this three
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tuple relative to other three tuples? Last, data supported variables are derived by looking at

entries in v whose value is greater than zero. Data unsupported are entries in v with value

(probability) zero.

10.5.2 Percentage of Data Supported Variables

The next question we address is overall, what percentage of our FM variables are

supported by data? To answer this question we first run Algorithm 9. Next, we “harden”

v—meaning we convert v into v̂ such that an index in v̂ is 0 if its corresponding value in

v is 0, otherwise it is assigned a 1. Next, we calculate an auxiliary variable,

�1 =
|v̂|X

k=1

v̂(k).

The answer to our question is

i1(µ,O) =
�1
|v̂| 2 [0, 1]. (10.12)

10.5.3 Walk Visitation

The last two subsections focused on individual variables. The next index (see Algo-

rithm 3) we explore is based on the fact that the discrete (finite X) ChI is in reality N ! LCS

operators. As such, we need to know which of these operators are supported by training

data.

Algorithm 3 simply iterates each instance in our training data, determines its sort, and

a mapping function (from sort to index in the FM) is used to increment the counts. At the

end, these counts are normalized by the number of instances (M ).
8For example, let N = 2 and h1({x2}) � h1({x1}). The sort index (walk) would therefore be [2, 1].
8Note, r(·) 2 {1, ..., N !} is the index resolving function for sort sj .
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Algorithm 4: Walk Visitation Frequency

1 INPUT: Data set O .M instances with N inputs each INPUT: FM µ . Our fuzzy measure Let z (size

N !) be a vector of all zeros for j = 1 to M . Evaluate each instance do

2 Sort (in decending order) the values in hj . The result is sj = [sj,1, ..., sj,N ].7Let each sort map

to a unique index in z. As such, let z(r(sj)) = z(r(sj)) + 1.8

3 Divide each variable in z by M . RETURN: z

10.5.4 Percentage of LCSs Observed

Algorithm 3 determines the relative frequency of occurrence for each walk. The next

index is a summarizing statistic of what percentage of walks were encountered? This is

calculated in a similar respect to index i1. First, we convert z into a vector of zeros and

ones (ẑ). The index is then calculated as i2(µ,O) = �2
N ! 2 [0, 1], where �2 is the sum of the

ẑ values.

10.5.5 Dominant Walk Identification

The next index asks the high-level summarizing question of, is our training data di-

verse, or does there exist a dominant walk? This index, i3(µ,O), is

i3(µ,O) = max
k

z(k). (10.13)

If the training data has ideal walk variety then z is a uniform distribution. On the other

hand, when diversity is poor we drive towards a single value of one and zero elsewhere.

Thus, higher values for i3(µ,O) mean less diversity in data and therefore our fusion solu-

tion may suffer.
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10.5.6 Should we Trust our Fused Result?

The above techniques are focused on answering questions about variable and walk

visitation and data diversity. However, at the end of the day we are typically given a set of

data O, that may or may not be diverse, and we have to learn from what we are given. An

important question is, if we are given a new instance (N inputs)–e.g., a sample from test

data–can we trust the fused result? Whereas this might seem like a simple question, it is

an important and fundamental one. Algorithm 7 is our proposed method.

Algorithm 5: Should We Trust the Fused Result?

1 INPUT: new instance h

2 INPUT: learned µ

3 Set t = 0

4 for k = 1 to N � 1 do

5 Obtain the walk for h.

6 For each variable encountered in the walk, if its corresponding variable value in v is 0,

increment t.

7 Set t = 1� t
N�1 . RETURN: t

Algorithm 7 yields a value t 2 [0, 1]. This value is one when we have encountered

data in training to support all of its relevant FM variables. However, as t decreases, we

are relying on variables (parts of our fusion calculation) that were not supported by data

but are most likely a result of the optimization process. As we showed in [111], this often

depends on the optimizer. For example, in simple quadratic programming data unsupported

variables will take the lowest possible value to ensure monotonicity. Is this the “correct”
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value that should have been used? Most likely, no. The point is, a system can now return

the tuple (Cµ(h), t), i.e., what is the result of fusion and how much might we trust this in

terms of what percentage of the answer was supported by data.

10.6 Experiments and Results

Herein, we fuse four heterogeneous architecture DCNNs–CaffeeNet, GoogleNet,

ResNet50 and ResNet101–on the UC Merced (UCM) remote sensing dataset. The UCM

includes 21 classes that are a mix of objects and landcover (see Table 10.1). Each im-

age chip is 256x256 in spatial size and each pixel is approximately 0.3m ground sampling

distance (GSD) spatial resolution. Some classes, e.g., harbor and parking lot, are com-

plex compositions of sub-entities (boats and vehicles); while others are general structural

patterns of shapes (e.g., intersection and baseball diamonds). In general, the variability

and complexity of overhead imagery is immense as visual cues exist at multiple levels:

fine-scale (e.g. airplane shapes, vehicle presence, etc.) to large-scale (e.g., road way con-

figurations in overpasses versus intersections versus freeway).

The DCNNs were trained using our procedure outlined in [163], which includes trans-

fer learning and data augmentation. The trained DCNNs are then used in a locked state,

i.e., no further learning happens in DL during the fusion stage. The training of the DCNNs

are done in five-fold, cross validation manner; such that we have 5 sets of 80% training and

20% testing for both datasets. Per DCNN fold, three-fold CV fusion is used. An approx-

imately equal number of samples are randomly selected per class across the fusion folds.

This helps avoid scenarios where classes get zero samples.
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Table 10.1
UCM benchmark dataset

Label Class Label Class
1 agricultural 12 intersection

2 airplane 13 medium residential

3 baseball diamond 14 mobile home park

4 beach 15 overpass

5 buildings 16 parking lot

6 chaparral 17 river

7 dense residential 18 runway

8 forest 19 sparse residential

9 freeway 20 storage tanks

10 golf course 21 tennis court

11 harbor

The reader should refer to our prior research for a detailed discussion of how to learn a

ChI per class/output neuron versus a shared ChI across all neurons [5]. In this article, the

goal is not to simply analyze the accuracy of ChI-based DCNN fusion, that was already

demonstrated in [5]. Instead, our goal is to open the hood on the learned solutions and see

if the XAI-ChI tools provide additional insight. Most figures reported in this section are

illustrated using the “redblue” color map coding for visual simplicity–which means zero is

blue, white is 0.5, and 1.0 is red. Furthermore, in each figure the NNs have been assigned

the indices CaffeeNet=1, GoogleNet=2, ResNet50=3 and ResNet101=4. Table 10.2 reports

the classification accuracy of the individual NNs and their fused result. As a further point

of reference, we also ran the PatternNet data set and obtained the classification results
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reported in Table 10.2 [X]. As Table 10.2 is clearly the more difficult case, with respect to

fusion, we use the XAI-ChI tools on it for analysis.

Table 10.2
Accuracy of Individual NNs and their ChI Fusion

CaffeeNet GoogleNet RN50 RN101 ChI
UCM 0.974 0.980 0.986 0.985 0.990

PatternNet 0.932 0.953 0.955 0.955 0.997

10.6.1 Measure-Centric Indices

Figure 10.2 is the Shapley index. We cannot report all results as there are five cross

validation folds with respect to the NNs, three fusion folds per NN fold, and 21 object

classes. However, the trends are more-or-less consistent across all folds in the UCM data

set. As such, we arbitrarily selected the first fold.

Figure 10.2 reveals a few interesting stories. First, classes 13 and 19 clearly indicate

the existence of a (different) dominant NN. On the other hand, classes 1, 2, 4, and 6 say all

four NNs have equal worth. Overall, there are no global trends–i.e., no consensus across

classes about a single best NN or a single poor NN. If we listen to the Shapley, it seems

to say that different classes require different fusions and all NNs are vital to achieving

success. Next, we analyze the interaction index (Figure 10.3).

In Figure 10.3, class 1 indicates independence between all of the NNs. However, class

15 indicates positive interaction between ResNet50 and ResNet101, and more-or-less in-

dependence otherwise. Class 10 indicates strong negative interactions (redundancies) be-
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tween CaffeeNet and the other three networks. While it is possible to study each class

across all folds, what is apparent is variation across the interaction index results. There

does not appear to be a NN that we can remove–or a NN that we can solely rely on.
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Figure 10.2
Visualization of the Shapley index values for (NN fold 1, fusion fold 1). Rows are the 21

classes and the x-axis is the four NNs. Each row sums to one.

10.6.2 Integral-Centric Indices

In this sub-section we investigate how the NNs are being combined via the ChI. Figure

10.4 is a visual summarization for NN fold 1 and fusion fold 1. Again, we focus on a single

NN-fusion fold for sake of space.

The takeaway from Figure 10.4 is as follows. First, once again we see diversity in

the way that different classes are aggregating their data. Classes 1, 2, 4, and 6 are for

sure LCOS operators–as their fourth column distance values are zeros. However, they are

not exactly min, max or mean like–confirmed by the other column one to three values. If

anything, they are the most like a mean operator. What is interesting is there are numerous
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non-LCOS like ChIs learned. This is encouraging per se because it helps to maybe justify

that the ChI has a place here, versus a simpler fixed operator.

10.6.3 Data-Centric Indices

The summary of the last two sections is that there is variety in the worth of the individ-

ual NNs, their interactions and the aggregation operators. In this sub-section we explore

the problem from a data-driven perspective to see if there is anything else to learn. Figure

10.5 shows variable visitation frequencies and percentage of data supported variables.

Figure 10.5 reveals a more disturbing trend in the UCM data set, as it relates to fusion.

There is a strong imbalance in the visitation of variables and many low percentages of data

supported variables. This indicates that variety is low in this data set–again, with respect

to fusion–and as such we do not really have adequate data to support learning a quality

fusion solution. Figure 10.6 reinforces this claim in terms of observed percentage of LCSs

and dominant walk assessment.

Figure 10.6 is alarming in the respect that most learned ChIs see approximately only ten

to forty percent of the different underlying ChI LCSs. Furthermore, the index for dominant

walk indicates that most NNs have a single dominant walk, more support in the claim of

low data diversity.

Based on the alarming evidence from the data-driven indices, we went back to the

data and looked at both the outputs (decisions) from the different NNs and the miss-

classification cases. What we discovered was two fold. First, the NNs are extremely strong

classifiers, as indicated by their individual accuracy rates. As such, in the vast majority of
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cases they are all “voting” the same way. Second, most of the missed chips are either natu-

rally ambiguous chips or mislabeled chips–e.g., a golf course with no golf features that was

called forest (which would likely trick a human). As such, when they get something wrong

they all more-or-less get it uniformly wrong. There is not much to work with in terms of

fusion. Overall, there are numerous red flags that indicate a scenario of poor training data

to support learning quality fusion solutions.

On a side note, the dominant walk imbalance seems to be related to the fact that we

are fusing very strong learners. Meaning, a great number of inputs result in the same

value across the NNs, a confidence of 100%. As such, the default sort order becomes an

ascending index ordering. Meaning, the dominant walk is really a product of the (too)

strong agreement between the NNs and a further testament to low diversity.

10.6.4 Measure + Integral + Data Index Combination

In order to reach a holistic decision about the quality of our fusion solution, we need

to combine the results of these three indices. The reality is these indices are obviously

not independent of one another. The indices merely give us different ways to answer

various questions. As such, the data-centric indices tell us that there is a severe lack of

data diversity in the UCM data set. The Shapley, interaction index and aggregation indices

tell us that there is diversity–meaning no obvious worthless DCNNs that can be removed.

However, we would trust those indices a great deal if there was ideal data diversity. Since

there is not, we must conclude that while we observe performance improvement on the
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UCM data set, there is not really the data to support the learning of fusion and based on

what we can observe all DCNNs are needed.

10.7 Conclusion and Future Work

In this article, we summarized existing indices and introduced new data-driven indices

to support explainable AI (XAI) for the Sugeno Choquet integral. These indices were

applied to the fusion of a set of heterogeneous architecture deep convolutional neural net-

works in remote sensing. The indices were used to assemble a more complete understand-

ing of how fusion was working (or not working!).

The data-driven indices put forth, and how we ultimately “use them”, are preliminary.

For example, in our remote sensing problem there were many folds and classes. There

are likely better indices and/or better methods of summarizing the findings across folds to

build a more complete and informative picture. Also, we are currently using these indices

in a manual investigative mode. Our desire is to find new algorithmic ways to use these

indices to improve the results. For example, it might be possible to use these indices during

training to promote less over-fitting and more diverse NNs.
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Figure 10.5
Visualization of variable visitation frequency and percentage of data supported variables

for (left) (NN fold 1, fusion fold 1) and (right) (NN fold 2, fusion fold 1). Variables appear
according their binary encoded index. Row 1 are ideal values–meaning, if the variable

visitations were uniformly distributed then that is the value (and thus color) they should
be. Row 2 is NN class 1, row 3 is NN class 2, and so forth. Columns 1 to 15 are the FM
variable according their binary encoded index. For example, column 1 is variable {x1},

column 2 is {x2}, column 3 is {x1, x2}, and so forth. Column 16 is the percentage of data
supported variables for each class (relative to color and decimal point display resolution).
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one desired)
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(b) Dominant walk index (lower values preferred)

Figure 10.6
(a) Percentage of LCS operators observed and dominant walk index. X-axis is output

neuron (class) number.
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CHAPTER XI

FUZZY CHOQUET INTEGRATION OF DEEP CONVOLUTIONAL NEURAL

NETWORKS FOR REMOTE SENSING

11.1 Introduction

We humans excel at many robust pattern recognition tasks in which computational

systems can only perform well when limited in scope and constrained in operating envi-

ronment. The human visual system is no exception. Humans develop at an early age a

comprehensive visual processing and pattern recognition ability. Our vision allows us to

process our physical environment (navigation) and facilitates many higher-level cognitive

functions such as object classification and entity resolution. We accomplish this via a com-

plex multistage visual system that begins with basic lightness and color receptors, then

builds upon the perceived edges to derive shapes, spatial relationships, and eventually to

organization of components into objects of interest – and this is before any higher level

cognitive processing.

Deep neural network models follow a similar paradigm conceptually, extracting first

edges and other simple geometric primitives in the lowest levels, then later mid-level as-

semblies of these primitives into visual concepts, which are then combined in higher-level

layers as object components (blobs), that are eventually agglomerated into objects. These

visual objects are agglomerated within fully connected neural layers for eventual classifi-
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cations, which is an informational (cognitive) output. What deep architectures lack at the

moment is the heterogeneous and dynamic capabilities of the human system, which is in

part because a single architecture is not capable of the level of modeling and representation

of the complex human system. Therefore, a heterogeneous set of pathways from sensory

stimulus to cognitive function needs to be developed in a richer computational model. The

model proposed in this chapter represents the learning of multiple pathways–as deep neu-

ral networks–coupled with appropriate information fusion. We feel fusion of the cognitive

outputs (information) from multiple heterogeneous models (pathways) is the next step to-

wards robust computational cognitive processing of visual, and visual-like, sensory data.

In general, computational intelligence (CI) is a branch of mathematics inspired by na-

ture. Specifically, CI is associated with neural networks (NNs), evolutionary algorithms

(EA) and fuzzy set theory (FST). NNs were established in 1943 by McCulloch and Pitts

[134], FST was established in 1965 by Zadeh [208] and EAs were made popular by Hol-

land in the early 1970s [94] (but arguably have roots going back as far as Turing in 1950).

The point is, CI has existed in one form or another since the advent of artificial intel-

ligence (AI). In this chapter, we focus on the intersection of NNs and FST for pattern

recognition. In the last decade, substantial interest and effort has gone into deep learning

(DL), a re-branding of NNs. This shift has forced us to re-address fundamental questions

like; should humans design features (the classical approach to pattern recognition) or is

a machine better at this task? Empirically, DL has more-or-less unanimously topped the

charts in performance in many domains (e.g., natural language processing [48, 170], vision

[60, 126, 45, 180, 46], remote sensing [29, 99, 41, 207]). However, while DL has generated
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great excitement, much remains to be explored and explained. In this chapter, we focus on

the specific question of how to perform decision-level fusion of DL networks.

DL can be viewed as a generalization of the classical pattern recognition pipeline–

e.g., pre-processing, feature extraction (selection and/or reduction), classification and post-

processing. In some settings this is now being called shallow learning because there are

only a few “layers” in the pattern recognition pipeline. In the context of computer vision,

DL can also be decomposed into levels; “low” (e.g., signal/image analysis via convolu-

tion), “mid” and “high” (more AI than signal processing, e.g., MLP classification). In the

extreme, DL is nothing more than a series of operations that transform data to decisions.

The point is, fusion can (and often does) take place at different levels in pattern recogni-

tion/DL. For example, keeping with the fusion nomenclature of the Joint Directors of Lab-

oratories (JDL) [174], some fusion algorithms do signal-in-signal-out (SISO), whereas

others do feature-in-feature-out (FIFO) and decision-in-decision-out (DIDO). If we regard

DL as a SIDO process (e.g., SI=image and DO=class label), then it can be decomposed

into its corresponding SISO, SIFO, FIFO, FIDO, DIDO (and combinations therein). In

summary, fusion is not as simple as “cram data into a DL and let it do its thing”.

Herein, we restrict our analysis to deep convolutional neural networks (DCNNs) [60,

126, 45, 180, 46, 209, 179], versus auto encoders (AEs) [92, 191, 40, 59, 64], deep be-

lief nets (DBNs) [91, 128], etc., for sake of discussion tractability. The reality is, we still

know little-to-nothing about fundamental DL fusion questions such as; (i) how/where is

fusion currently happening, (ii) based on our current set of neurons/transformations, what

is mathematically expressible and what is not (but should be), (iii) how should we be per-
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forming fusion at different levels, (iv) how do we address heterogeneity with respect to

semantics and/or uncertainty across data/information sources, and (v) how do we explain

what fusion is doing (aka explainable AI (XAI)), to list a few. Independent of DL, fusion is

a complicated topic that often means different things to different people in different fields

(and even within the same field). Fusion is a wealth of challenges wrapped up into one

term. Fusion ranges from data association (e.g., finding a one-to-one mapping between

pixels in one sensor to pixels in another) to the mathematics of aggregation (specific func-

tions/operators). In general, the idea of fusion is to obtain a “better” result than if we only

used the individual inputs. However, better is not a well defined concept. In some appli-

cations, better might mean taking a set of inputs and reducing them into a single result

that can be more efficiently or effectively used for visualization. Better could also refer

to obtaining more desirable properties such as higher information content or lower con-

flict. In areas like pattern recognition, better often refers to some desirable property like

more robust and generalizable solutions (e.g., classifiers). Regardless of the task at hand or

the particular application, fusion is a core tool at the heart of numerous modern scientific

thrusts.

In this chapter, we make the following contributions. First, we discuss two approaches

for heterogeneous DCNN architecture fusion; density-based imputation and full Choquet

integral (ChI) learning (per neuron and “shared weight”). Second, we outline indices

for introspection and information theoretic indices to understand the capacity and inte-

gral (moving us closer to a so-called XAI solution versus black box solution). Third,

we demonstrate and analyze these ideas on remotely sensed data. Fourth, we provide
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open source code at www.derektanderson.com/FuzzyLibrary and https://

github.com/scottgs/fi\_library.

11.2 Deep Convolutional Neural Networks
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Figure 11.1
Example CNN. Input is a 3D cube (x-y are spatial, z is spectral), green layers consist of

some subset of convolution (morphology, etc.), pooling (average, max, etc.), batch
normalization (or other method to help mitigate overfitting) and nonlinear function (e.g.,
ReLU activation). The output of the green layers are typically fed to a MLP and optional

post-processing steps (e.g., soft max normalization).

To date, the AE [92, 191, 40], CNN [60, 126, 45, 180, 46, 209, 179], DBN [91, 128]

and recurrent NNs (RNNs) [139, 61] are the most mainstream DLs. However, other

DL approaches exist, e.g., deep inference nets ([157] Verma et al. Takagi-Sugeno-Kang

deep net), deconvolution CNNs (specifically transpose matrix convolution) [199, 210, 211]

and morphological shared weight neural networks [198, 114]. Herein, we focus on the

CNN, which is by far the most employed and often the highest performer. With re-
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spect to the CNN, a number of architectures have been explored to date, e.g., AlexNet

[126], GoogLeNet [179], VGGNet [166] and their derivatives. These architectures can be

downloaded and extended (training, evaluation, visualization) via open source libraries like

TensorFlow [1], CaffeNet [112], and MatConvNet [190]. The fundamental challenges of

which architecture, how deep versus wide, hyperparameter tuning, what neuron types, how

to transfer a DL from one domain to another (transfer learning [206]), and other questions

are unanswered. Also, numerous associated challenges exist; e.g., lack of training data

volume (and variety), class imbalance, dimensionality (spatial, temporal and spectral), ex-

plainable DL (what did the DL learn, versus a black box solution), to name a few. While

DL has sparked a revolution in computer vision, pattern recognition and AI in general, an

overwhelming number of theoretical and applied questions remain ripe for exploration.

In general, most CNNs consist of combinations of the following operations (see Fig-

ure 11.1). First, let the input to the system, O0, be a three dimensional data cube of size

N0⇥M0⇥D0; where N0 and M0 are spatial dimensions and D0 is the temporal or spectral

dimensionality (e.g., RGB imagery has D0 = 3). (Convolution) The backbone of a CNN

is filtering via convolution. Filtering can take a number of meanings, e.g., enhancement,

denoising or detection. Convolution specifics include factors like (i) stride (spatial and/or

spectral/temporal “jumps”) and (ii) padding (if no padding is used then the spatial di-

mension shrinks). (Pooling) Pooling is often applied to reduce spatial dimensionality–and

combat challenges related to affine variation, noise, etc. Most often, average and max pool-

ing are used. (Activation) Nonlinearity is also typically applied, in the form of a function

like hyperbolic tangent (tanh), sigmoid, or ReLU (ReLU(x) = max(0, x)). (Training
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Techniques) In order to combat factors like sensitivity to parameter selection and over-

training, methods like dropout [173], regularization [68] and/or batch normalization [103]

(addresses internal covariate shift and vanishing gradients) are often used. Beyond ar-

chitecture, there are factors like GPU acceleration [35], training (e.g., stochastic gradient

decent (SGD) [33], SGD with momentum [153, 178], AdaGrad [57], RMSProp [186] and

ADAM [123]). The reader can refer to [68] for additional mathematical and algorithm de-

tails related to CNNs. The reader can also refer to [21] for a recent survey of DL in remote

sensing (theory, applications and open challenges).

The idea of FST in NNs is not new. The reader can refer to the work of Pal and

Mitra [148] for neuro-fuzzy pattern recognition. Pal, Mitra, and others (e.g., Keller and

the fuzzy perceptron [119]), explored a variety of topics such as fuzzy min-max networks,

fuzzy MLPs, and fuzzy Kohonen networks. In terms of aggregation, a few FST works

have been explored to date. In 1992 [202], Yager put forth the ordered weighted average

(OWA) [201]–which technically is a linear combination of order statistics (LCOS) since

the weights are real-valued numbers (versus sets)–neuron. In 1995, Sung-Bae utilized

the OWA for NN aggregation (at the decision/output level) [177]. In 1995, Sung-Bae et

al. also explored the fuzzy integral, the Sugeno fuzzy integral not Sugeno’s fuzzy ChI,

for NN aggregation [43]. Specifically, they used the Sugeno �-fuzzy measure (FM) and

the densities were derived using their respective accuracy rates on training data. In 2017

[164], we (Scott et al.) used the Sugeno and ChIs for DCNN fusion. Specifically, Scott et

al. used transfer learning to adapt GoogLeNet, AlexNet and ResNet50 from perspective

RGB imagery to aerial remote sensing imagery. Scott then applied different aggregations–
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the fuzzy integral, voting, arrogance, and weighted sum–to these DCNNs. Scott’s fusion

was based on the Sugeno � FM and the densities were (i) set to the DL normalized classifier

accuracies and (ii) a genetic algorithm was used to learn the densities (which led to higher

performance).

11.3 Fuzzy Measure and Fuzzy Integrals

The ChI has been successfully demonstrated in numerous applications; e.g., explosive

hazard detection [155, 167, 168], computer vision [181], pattern recognition [77, 80, 137,

118, 62], remote sensing [162], multi-criteria decision making [70, 127], forensic anthro-

pology [6, 8, 14], control [187], multiple kernel learning [152, 150, 155, 98, 97], multiple

instance learning [55], ontologies [3], missing data [110], and most relevant to the current

chapter, DL [164]. The ChI is a nonlinear aggregation function that is parameterized by

the FM (aka capacity). Countless mathematical variations of the fuzzy integral have been

put forward for different reasons; e.g., address different types (i.e., real-valued, interval-

valued, set-valued) of uncertainty in the integrand and/or measure, limit the number of

input interactions for tractability, etc. Herein, we focus on and succinctly review just the

real-valued discrete (finite X) ChI for DCNN fusion.

11.3.1 Discrete (Finite X) Fuzzy Measure

Let X = {x1, x2, ..., xN} be N sources, e.g., experts, sensors, or in the case of this

chapter, DCNNs. The first action we face is how to assign “worth/utility” to different

subsets of DCNNs. For example, the well-known backbone of calculus on real-valued

domains is the Lebesgue measure; which coincides with length, area and hypervolume.
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However, when X is a discrete domain, e.g., set of DCNNs, what is the corresponding

“measure”? In [181], Keller et al. first investigated the idea of using the fuzzy integral

for pattern recognition. A FM is a function, µ, on the power set of X , 2X , which satisfies

(1) (boundary condition) µ(;) = 0 and (2) (monotonicity) if A,B ✓ X and A ✓ B, then

µ(A)  µ(B). Often, the constraint µ(X) = 1 is imposed in settings like decision level

fusion1.

11.3.2 Discrete (Finite X) Fuzzy Integral

The FM models important “interactions” (e.g., subjective worth, statistical correlation,

etc.) between different source subsets. The input provided by our sources is {h({x1})

, h({x2}), ..., h({xN})}. The fuzzy integral is a way to combine the integrand (h) infor-

mation relative to the FM (µ). Let h({xi}) 2 <�0 be the data/information from source i.

The discrete (finite X) Sugeno FI is2

Z

S

h � µ = Sµ(h) =
N_

i=1

�
h({x⇡(i)}) ^ µ(Ai)

�
, (11.1)

where ⇡ is the permutation h({x⇡(1)}) � h({x⇡(2)}), . . . ,� h({x⇡(N)}), Ai = {x⇡(1), . . . ,x⇡(i)}

and µ(A0) = 0. The discrete (finite X) ChI is3

1If µ(X) < 1, properties like idempotency and boundedness are not guaranteed.
2Due to the maximum (t-conorm) and minimum operators (t-norm), the Sugeno FI does not actually

generate any possible number between the minimum and maximum of the inputs. Instead, it selects one of
the FM or input values, i.e., at most one of 2N +N values.

3The ChI is used frequently for a number of reasons; e.g., it is differentiable [137], for an additive (prob-
ability) measure it recovers the Lebesgue integral, it yields a wider spectrum of values between the minimum
and maximum inputs (versus the discrete and relatively small number of values that the Sugeno FI selects
from), etc.
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Z

C

h � µ = Cµ(h) =
NX

i=1

h({x⇡(i)}) [µ(Ai)� µ(Ai�1)] . (11.2)

Since the ChI is a parametric aggregation function, once the FM is determined the ChI

turns into a specific operator. For example: if µ(A) = 1, 8A 2 2X \ ;, the ChI becomes

the maximum operator; if µ(A) = 0, 8A 2 2X \ X , we recover the minimum; and if

µ(A) = |A|
N

, we recover the mean. Each of these cases can be viewed as constraints or

simplifications on the FM (and therefore the ChI). In general, the discrete ChI has N !

unique input sortings and each yields a linear convex sum operator.

11.3.3 Data-Driven Optimization

The first challenge we must confront is, where do we get the FM (µ) from? One option

is to have an expert specify it. However, this is not practical (assuming the expert could

even meaningfully assign values to the interactions) as the number of inputs (e.g., DLs)

increases. Another option is we can specify or try to learn the worth of just the singletons

(the densities). From there, a number of formulas can be used to impute (fill in) the missing

variable values. Popular approaches include the Sugeno �-FM and the S-Decomposable

FM [176]. However, while convenient, most often we do not obtain the desired values

for variables that we need. With respect to pattern recognition, the focus of this chapter,

another route is to learn it from data. Next, we review one way to learn the FM, and

therefore the ChI, in the context of DIDO for DL. However, the reader can refer to [111]

for an efficient learning method with only data-supported variables and [121] for a review

of alternative FM/ChI learning methods.
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We quickly summarize one way to learn the full FM/ChI (see [12] for full mathematical

explanation). Let O = {hj, yj}, j = 1, 2, . . . ,M , be M training examples; where hj is

the j-th instance with data from N inputs and yj is the ground-truth for hj . The sum of

squared error for training dataset O is

E(O,u) =
MX

j=1

ej =
MX

j=1

(cT
j
u� yj)

2 = ||Du� y||22, (11.3)

where u = [µ({x1}), ..., µ({xN}), µ({x1, x2}), µ({x1, x3}), ..., µ(X)] (lexiographic vec-

tor of size 2N � 1), cj holds the coefficients of u for observation hj (e.g., for N = 3

and h({x2}) � h({x1}) � h({x3}), c = [0, h({x2})� 0, 0, h({x1, x2})� h({x2}), 0, 0,

1� h({x1, x2})]), D = [c1 c2 . . . cM ]T (full dataset), y = [y1 y2 . . . yM ]T , and || · ||2 is

norm-2 operation, u. The regularized SSE optimization problem is

min
u

f(u) = ||Du� y||2 + �v(u), (11.4)

where � 2 <�0 (regularization constant, which balances the “cost” (or penalty) of ob-

taining minimum function error relative to our desire to have minimal model complexity)

and v(u) is an index of model complexity (e.g., k-additive and Mobius, Gini-Simpson,

`p-norm, etc. [149]), subject to the FM boundary and monotonicity conditions (see [12]

for how to pack the constraints into a linear algebra expression), which can be solved

via quadratic programming. Full code and explanation (including how to build the con-

straint matrix C) can be found at www.derektanderson.com/FuzzyLibrary and

https://github.com/scottgs/fi\_library.
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11.3.4 Explainable AI (XAI) Fusion

It is one thing to train a network and another to understand it! In this subsection,

we highlight FM and ChI indices for the purpose of explainable AI (XAI)4. XAI is an

attempt to explain the inner operations of pattern recognition for purposes like describing

it to others for domain knowledge transfer, trust, etc. The Shapley index addresses the

importance or worth of each input (aka DL),

�µ(i) =
X

K✓X\{i}

⇣X,1(K) (µ(K [ {i})� µ(K)) , (11.5)

where ⇣X,1(K) = (|X|�|K|�1)!|K|!
|X|! , K ✓ X\{i} denotes all proper subsets from X that

do not include source i. The Shapley value of µ is the vector �µ = (�µ(1), ...,�µ(N))t

and
P

N

i=1�µ(i) = 1. The Shapley index can be interpreted as the average amount of

contribution of source i across all coalitions. The next index informs us about how two

inputs interact with one another (aka what advantage is there in combining DLs). The

interaction index (Murofushi and Soneda [142]) between i and j is

Iµ(i, j) =
X

K✓X\{i,j}

⇣X,2(K)(µ(K[{i, j})�µ(K[{i})�µ(K[{j})+µ(K)), i = 1, ..., N,

(11.6)

where ⇣X,2(K) = (|X|�|K|�2)!|K|!
(|X|�1)! , Iµ(i, j) 2 [�1, 1], 8i, j 2 {1, 2, ..., N}. A value of 1 (re-

spectively, �1) represents the maximum complementary (respective redundancy) between

i and j. The reader can refer to [78] for further details about the interaction index, its con-
4Implementation can be found at www.derektanderson.com/FuzzyLibrary and https://

github.com/scottgs/fi\_library
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nections to game theory and interpretations. Grabisch later extended the interaction index

to the general case of any coalition [74],

Iµ(A) =
X

K✓X\A

⇣X,3(K,A)
X

C✓A

(�1)|A\C|µ(C [K), i = 1, ..., N, (11.7)

where ⇣X,3(K,A) = (|X|�|K|�|A|)!|K|!
(|X|�|A|+1)! . Equation (11.7) is a generalization of both the Shap-

ley index and Murofushi and Soneda’s interaction index as �µ(i) corresponds with Iµ({i})

and Iµ(i, j) with Iµ({i, j}).

The above indices are focused strictly on the FM. A different fundamental type of

question is what “type” of aggregation is the ChI performing? Answering this question

helps us understand how the DL information is being combined (e.g., in an optimistic,

pessimistic, expected value like fashion, etc.). In [154], we established an index (D1) to

measure the degree to which a given FM/ChI is an maximum operator. In the following, we

discuss the FM in terms of its underlying lattice structure. Let “layer k” (measure defined

on sets of cardinality k) be denoted by L(k), e.g., L(1) = {µ({x1}), µ({x2}), µ({x3})}

for N = 3. Next, let W =
[ 1
N
,...,1]

P
N

i=1
i

N

be weights (penalty or costs) for each layer and

D1(µ) =
1X

k=1

W(k)

2
(T1 + T4) +

"
NX

k=2

W(k)

3
(T1 + T2 + T4)

#
, (11.8)

T1 = 1 �
⇣P

I2L(k) µ(I)

|L(k)|

⌘
, T2 =

⇣P
I2L(i) µ(I)

|L(k)| �
P

J2L(k�1) µ(J)

|L(k�1)|

⌘
, T3 =

P
I2L(k) µ(I)

|L(k)| and T4 =
P

I2L(k)(µ(I)�T3)2

|L(k)|�1 . A value of D1 = 0 means the ChI is the maximum operator. The distance

of a learned capacity to a minimum operator (D2), mean (D3) and LCOS (D4), for W2 =

[1,..., 1
N�1 ]P

N�1
i=1

i

N�1

, is

200



D2(µ) =
1X

k=1

W2(k)

2
(T3 + T4) +

"
N�1X

k=2

W2(i)

3
(T3 + T2 + T4)

#
, (11.9)

D3(µ) =
1

2N � 2

N�1X

k=1

X

I2L(k)

����µ(I)�
k

N

����, (11.10)

D4(µ) =
1

N � 1

N�1X

k=1

p
T4. (11.11)

11.4 DCNN Fusion Based on Fuzzy Integration

The focus of this chapter is the fusion of different state-of-the-art DCNN architectures.

However, the procedures outlined herein are applicable to other neural inputs (see Figure

11.2).

11.4.1 DCNN Architectures Used for Fusion

The first NN used herein for fusion is CaffeNet [112], which is a derivative of AlexNet

with similar structure, except that the order of pooling and normalization is reversed to

reduce learnable parameters. CaffeNet contains five convolutional feature extraction steps

and three fully connected layers for classification. Classification is performed with two

fully connected inner product layers and a final soft-max layer for the network output. The

output of the soft-max classification layer is effectively a classification vector. CaffeNet

represents the most simple and shallow of our DL investigated herein.

GoogLeNet [179] is a much deeper NN than CaffeNet–it has 27 parameterized layers.

Because of this network depth, GoogLeNet has three classification outputs at various stages
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of the network to facilitate error back propagation. GoogLeNet’s novel inception layer

processes the input with max-pooling, 1x1, 3x3, and 5x5 convolutions simultaneously in

a feature extraction step, and the outputs are concatenated as the layer output to achieve

a multi-scale feature extraction. Using multiple convolutions at each stage follows the

intuition that features from different kernel scales can be extracted and processed at the

same time, thereby extracting multi-scale visual features. GoogLeNet is from a family of

networks commonly referred to as inception networks.
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Figure 11.2
Illustration of DIDO DCNN fusion. Note, many possibilities exist; e.g., variations in

architecture, pre-conditioning/transforms (e.g., conversion to frequency analysis versus
spatial domain, band selection or grouping, etc.), training data, etc. Next, neuron

mapping/association is required followed by aggregation. Herein, a different fusion
operator is learned per output neuron (versus shared fusions/weights).
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ResNet [90] is a collection of DCNN architectures inspired by VGGNet [166]. In both

ResNet and VGGNet, the primary kernels used to construct the convolution layers are 3x3.

The architecture design incorporates the following rules to govern their structure. First,

if the output of the feature map is the same, then the same number of 3x3 convolutional

layers will be used. Second, if the output of the feature map is halved, then it will use twice

as many 3x3 convolutional kernels The ResNet architectures employ residual connections

that bypass two or more convolution layers at a time, allowing error to better propagate

backward through the network. These are commonly referred to as residual networks, and

here the ResNet50 and ResNet101 architectures are used within our experimental design.

These networks have 50 and 101 feature extraction steps, respectively.

11.4.2 Transfer Learning, Neuron Association and Conditioning

If we design a set of custom DCNNs then it is trivial to ensure a bijection (one-to-one

and onto) output neuron mapping. However, if existing community pretrained DCNNs

(GoogLeNet, AlexNet, etc.) are leveraged–a task encountered frequently in practice–then

this is not guaranteed. One way to resolve the one-to-one mapping task is to replace and

retrain the DCNN classification layers per the labels for the task at hand. This is a type of

transfer learning that keeps the feature layers intact. In [163], we (i) replaced and retrained

the classification layers and we also (ii) updated the feature weights (e.g., convolution

layers). Thus, we built custom classifiers for remote sensing of aerial imagery based on a

network initialized by ground-perspective RGB imagery. In addition, data augmentation

via rotation and image flipping was applied as well. However, we remark that other avenues
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exist; e.g., one could manually resolve the mapping or use an automated method based

on an ontology. Regardless, using multiple custom or pretrained networks of different

architectures raises another question; are the outputs numerically (e.g., all in [0, 1]) and

semantically “to scale” (e.g., does a (e.g., a = 0.5) in domain i map to a in the other

domains). One way to mitigate this issue in practice is to add a soft max normalization

(aka normalized exponent function) layer after the raw neuronal output layer. For example,

if ⌘ is the soft max output for neuron oj then the soft max function is ⌘(oj) = e
oj

P
N

n=1 e
on

.

Thereby, we bound the domain of input for the subsequent fusion layer of our pattern

recognition system, ensure the data across networks and neurons is well conditioned.

11.4.3 Non-Optimization Approach: �-FM Based Imputation of the ChI

The first fusion approach explored here is to exploit our knowledge about the perfor-

mance of the individual DCNNs on training data [43, 164]. A classical approach to obtain-

ing the remaining 2N � 2�N FM values (beyond the densities) is the Sugeno �-measure.

For sets A,B ✓ X , such that A \ B = �,

µ�(A [ B) = µ�(A) + µ�(B) + �µ�(A)µ�(B), (11.12)

for some � > �1. In particular, Sugeno showed that � can be found by solving

�+ 1 =
NY

i=1

(1 + �µ(xi)),� > �1, (11.13)

where there exists exactly one real solution such that � > �1. Some advantages of the

Sugeno �-measure include its simplicity, the N densities can be more tractable to acquire,
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fewer number of parameters can help address overfitting (versus using the full 2N vari-

ables), and it is a probability measure when � = 0. However, there is no guarantee in

practice that the values that it imputes are what we actually need. Simply speaking, more

information or a different imputation formula may be required; e.g., the S-Decomposable

imputation formula, µ(A) =
W

i2A(µ(xi)) (where
W

is a t-conorm). Algorithm (6) de-

scribes how to use the Sugeno �-measure to fuse a set of pretrained DLs based on individ-

ual performance for density.

Algorithm 6: �-FM Based Imputation of the ChI from a Set of Pre-Trained DCNNs

1 INPUT: DLi - N DCNNs (B neurons each); Ō - labeled training data

2 1. Run each DCNN on Ō, get overall accuries (OA); ab,i 2 [0, 1] (i.e., performance

of DL i on class b)

3 2. Assign the ith density its corresponding OA; i.e., µ�b
(xi) = ab,i

4 3. Find �b (using {µ�b
({x1}), ..., µ�b

({xN})}) for the Sugeno �-FM (aka solve Eq.

(11.13))

5 4. Recursively calculate µ�b
(A), 8A 2 2X \ {{x1}, ..., {xN}}, using the densities

and �b (Eq. (11.12))

6 OUTPUT: B full fuzzy measures - {µ�1 , ..., µ�B
}
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11.4.4 Optimization Approach: Learning the Full ChI

As stated in Section 11.4.3, there is no guarantee that imputation from densities results

in the input interactions that we desire (and thus results in an appropriate aggregation

operator). Algorithm (5) shows how to use quadratic programming for acquisition of the

full FM for DIDO fusion of DCNNs (Algorithm (5) is how to learn a single “shared” FM

to be applied to all neurons). Thus, training data is directly used to learn these crucial

interactions–which means better selection of appropriate aggregation operator. However,

as we discuss in [111], this process can lead to a big boost in performance but it is not

without flaw. Specifically, in [111] we show that training data only typically supports a

subset of FM variables. In return, we put forth an extended optimization of the ChI by

(1) identifying which variables are supported by data, (2) optimizing just those variables

and then (3) looking at imputation methods to infer the value of data unsupported variables

based on application specific criteria. We do not have space to go into depth about the

extension here, the reader can refer to [111] for full details.

11.5 Experiments

In this chapter, two benchmark remote sensing datasets suitable for classification tasks

of objects or land-cover/land-use are used. Remote sensing data represents a significant

pattern recognition challenge. As can be seen in Figures 11.3 and 11.9 below, the vari-

ability and complexity of overhead imagery is immense. The visual cues exist at multilple

levels: fine-scale (e.g. airplane shapes, vehicle presence, etc.) to large-scale (e.g., road

way configurations in overpasses versus intersections versus freeway). In fact the entire
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Algorithm 7: Learn a Full FM/ChI Per Class for a Set of Pre-Trained DCNNs

1 INPUT: DLi - N DCNNs (B neurons each); Ō - labeled training data; � -

regularization value

2 1. Per class/output neuron (b), run each instance (1  j  |Ō|) through each DCNN

(i); get hb

j
(xi) terms

3 2. Per neuron (b), construct the individual Db from the hb

j
(xi) terms

4 3. Run B independent quadratic programs (on the Db respectively); yielding

{µ1, ..., µB}

5 OUTPUT: B full fuzzy measures - {µ1, ..., µB}

Algorithm 8: Learn a Single “Shared Weight” Full FM/ChI for a Set of Pre-Trained

DCNNs

1 INPUT: DLi - N DCNNs (B neurons each); Ō - labeled training data; � -

regularization value

2 1. Per class/output neuron (b), run each instance (1  j  |Ō|) through each DCNN

(i); get hb

j
(xi) terms

3 2. Per neuron (b), construct the individual Db from the hb

j
(xi) terms

4 3. Use quadratic program to solve (||D1u� y1||22 + ...+ ||DBu� yB||22 + �v(u));

yields µ

5 OUTPUT: Full fuzzy measure - µ
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field of photo-interpretation revolves around developing human expertise in this pattern

recognition task. For each of the datasets herein DCNNs were trained using the techniques

detailed in [163], including transfer learning and data augmentation via rotation and im-

age flipping. The trained DCNNs are then used in a locked state, i.e., no further learning

happens in DL during the fusion stage. The training of the DCNNs are done in five-fold,

cross validation manner; such that we have 5 sets of 80% training and 20% testing for both

datasets. Per DCNN fold, three-fold CV fusion is used (due to limited data).

11.5.1 UC Merced (UCM) dataset

The UC Merced (UCM) benchmark dataset [145][204] has been used in a wide range

of remote sensing research, including prior work in classification of objects and land-cover

such as [164], [163], and [38]. Figure 11.3 shows exemplar image chips from each class

of the UCM dataset. The dataset includes 21 classes that are a mix of objects (airplane,

baseball diamond, etc.) and landcover (beach, chaparral, etc.). We see that some classes,

e.g., harbor and parking lot, are complex compositions of sub-entities (boats and vehi-

cles); while others are general structural patterns of shapes (e.g., intersection and baseball

diamonds).

Table 11.1 is the result of fusion on the UCM dataset. First, we see that aggregation

outperforms no aggregation (i.e., the individual DCNNs) in four out of five folds. Second,

we see that min, max and average (basic aggregation operators) do well in comparison to

the ChI. However, these three operators are specific instances of the ChI, which informs

us that there are challenges with variety and thus generalizability of this particular data set
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(otherwise they should have been selected). Next, it is interesting to see that the shared

weight fusion solutions do as well as they do. It is our suspicion–something to be ex-

plored in future work–that a shared FM for the ChI helps combat overfitting. It is also

our suspicion–again, subject of future work–that while the Sugeno �-FM would not be our

first choice, it might also help combat overfitting as it has just N parameters versus the

otherwise 2N � 1. However, the performance of the individual DCNNs (which were used

as the densities) are so remarkably high that ultimately this forces the Sugeno �-FM to

more-or-less be the maximum operator.

Figure 11.3
Sample image chips from the 21 class UCM benchmark dataset, each 256x256 pixels
approximately 0.3m ground sampling distance (GSD) spatial resolution. Classes in

left-to-right, top-down order: 1 agricultural, 2 airplane, 3 baseball diamond, 4 beach, 5
buildings, 6 chaparral, 7 dense residential, 8 forest, 9 freeway, 10 golf course, 11 harbor,
12 intersection, 13 medium residential, 14 mobile home park, 15 overpass, 16 parking lot,

17 river, 18 runway, 19 sparse residential, 20 storage tanks, and 21 tennis court. In
subsection 11.5.1, neuron indices are used instead of text descriptions for sake of

compactness.
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Table 11.1
Fusion Results for the UCM dataset

Accuracy
Method

Full ChI
Per Neuron

Full ChI
Shared

SLFM ChI
Shared

CaffeNet GoogLeNet
ResNet

50
ResNet

101
Max Avg Min

Fold 1 0.979 0.977 0.984 0.957 0.957 0.985 0.973 0.978 0.981 0.976

Fold 2 0.991 0.994 0.993 0.964 0.983 0.978 0.988 0.993 0.994 0.993
Fold 3 0.994 0.990 0.996 0.971 0.985 0.992 0.988 0.996 0.996 0.998
Fold 4 0.992 0.996 0.996 0.988 0.980 0.983 0.988 0.996 0.992 0.998
Fold 5 0.989 0.985 0.989 0.976 0.973 0.983 0.980 0.989 0.989 0.986
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Figure 11.4
Color coded matrix showing the distances obtained using the four reported indices of

introspection (D1(µ) to D4(µ)) relative to the learned full ChI per neuron on fold 1 of the
UCM dataset. y-axis is the neuron index (see Figure 11.3) and x-axis is the distance

measure. Neurons two, four and six are OWA operators (but not min, max or mean like).

Next, Figure 11.4 gives us a feel for what type of aggregation strategy is being used

for the 21 classes. Again, the max, min and mean are all OWAs, so we can start first

with analyzing column four. There are three neurons (2, 4 and 6–i.e., airplane, beach and
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chaparral) that learned an OWA. The other neurons have learned something more unique,

which helps justify the inclusion of the ChI versus say a simpler operator (see Figure

11.5(a)). At that, none of the learned OWAs are that similar to our extreme markers of

max (a t-conorm or union like operator), min (a t-conorm or intersection like operator) or

average (an expected value like operator). For example, Figure 11.5(b) shows one of these

OWA operators, which breaks down into a trimmed mean operator.

Fold 1: Lattice for neuron 1

0

0.027 9.6e-07 9.6e-07 1.8e-06

0.5 0.49 0.31 3.1e-06 8e-06 8e-06

0.95 0.96 0.91 1e-05
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(a)

Fold 1: Lattice for neuron 4

0

0.067 0.067 0.067 0.067

0.5 0.5 0.5 0.5 0.5 0.5
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(b)
Figure 11.5

Example of two full FMs for the (a) first and (b) fourth neuron in fold 1 of the UCM
dataset. “Layer” l (from bottom to top) in the image denotes FM variables with cardinally

l. Thus, layer 0 (bottom node) is the empty set, the next layer is the singletons, top is
µ(X), etc. Each variable is presented in lexicographic order, i.e., layer 2 is {x1, x2},

{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4} and {x3, x4}. The nodes are also drawn size-wise
proportional to their value (a minimum size and maximum was specified to make them

still show up for 0 valued variables). In addition, the “paths” drawn indicate the visitation
frequency (the brighter the line, the higher the visitation) for the test data in fold 1.
Furthermore, the fourth neuron learned an OWA with weights (0.067, 0.433, 0.43,

0.07)t–a trimmed mean operator. Conversely, neuron one is more complex to decode. It
does not reduce into a single compact description like an OWA. However, we can view it

in terms of the N ! walks (possible sorts). Since the h({x1}) � h({x2}) � h({x3}) �
h({x4}) is encountered frequently, we decode and analyze its weights. The linear convex
sum weights for the ChI of this walk (sorting) are (0.027, 0.473, 0.45, 0.05) respectively.
Thus, it is a weighted average of GoogLeNet and ResNet50. This analytic process can be

repeated for the other N !� 1 walks if desired.
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Fold 1: Shapley values
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Figure 11.6

Learned full ChI per neuron on fold 1 of the UCM dataset. (a) Plot of the 24 � 1 binary
encoded FM variables, i.e., for N = 3 the order is (x1, x2, x12, x3, x13, x23, x123, x4,

x14, x24, x124, x34, x134, x234, x1234). This plot gives us an idea about the
agreement/disagreement of variable values across the 21 neurons. If all neurons required
the same fusion then each x-axis location would have a single convergent set of circles

(FM variable values). However, we can clearly see that each x-axis location (FM variable)
has for the most part significant variation (outside the CaffeNet density). (b) Plot of the 4
neuron Shapley index values across the 21 neurons. Again, this plot shows the variety of

values learned. With respect to individual output neurons, some NNs could be eliminated.
However, across the 21 neurons, there is no single NN that can be eliminated (we would

expect to see approximately all zero values for that Shapley if so).
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Figure 11.7
Interaction index values for the learned full ChI per neuron on fold 1 of the UCM dataset.
Index 1 is CaffeNet, 2 is GoogLeNet, 3 is ResNet50 and 4 is ResNet101. Consider neuron

1. CaffeNet has positive interactions (complementary information) with the other three
NNs (0.37, 0.34 and 0.3 respectively). On the other hand, GoogLeNet has negative

interaction values (redundancy) with the ResNet NNs (-0.19 and -0.1 respectively). The
two ResNet NNs have a negative interaction index of -0.12. Also, in neuron 7, CaffeNet
has approximately a zero interaction index with the other NNs (independence), whereas
GoogLeNet has a value of -0.29 with ResNet50 and a positive interaction value of 0.22
with ResNet101. Last, ResNet50 and ResNet101 have a large negative interaction index

of -0.72 with each other.
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Misclassified Image Other images from correct class Predicted Class Exemplar

a Dense Residential Mobile Home Park

b Intersection Overpass

c Medium Residential Dense Residential

d Golf Course Forest

e Dense Residential Medium Residential
Figure 11.8

Five images missed by the fusion framework; a) dense residential misclassified as mobile
home park, b) (incorrectly labeled) intersection misclassified as overpass (correct label),

c) medium residential misclassified as dense residentail, d) (incorrectly labeled) golf
course misclassified as forest, and e) dense residential misclassified as medium

residential.

Last, Figure 11.6 shows the FM and Shapley values. While it is more-or-less impossi-

ble to read individual values in these plots, they show that there is no consensus in values

nor importance of DCNNs. Meaning, different output neurons (classes) appears to use

these different DCNNs in different ways. Furthermore, Figure 11.7 shows the correspond-

214



ing interaction index values. These values also reinforce the complex interplay and back-

and-forth exchange of complementary, independent and redundant information between

DCNNs across output neurons (classes). In total, the combination of analysis of underly-

ing aggregation function, importance of individual DCNNs and their pair-wise interaction

behavior help the claim that performance appears to be improving due to diversity in the

way these DCNNs operate. This is in line with our intuition about these DCNNs based on

the ways their architectures were created.

Last, Figure 11.8 shows example images missed by our fusion approach. As the reader

can visually verify, these examples are extreme and represent incorrectly labeled or fun-

damentally ambiguous labels. We would not expect fusion to be able to fix this type of

problem. At that, it is hard to say that the DCNNs should have got these, as a human might

just as well mistaken them.

Table 11.2
Fusion Results for the RSD dataset

Accuracy
Method

Full ChI
Per Neuron

Full ChI
Shared

SLFM ChI
Shared

CaffeNet GoogLeNet ResNet50 Max Avg Min

Fold 1 0.989 0.991 0.991 0.982 0.977 0.988 0.991 0.991 0.991
Fold 2 0.992 0.984 0.992 0.978 0.994 0.989 0.987 0.992 0.987

Fold 3 0.984 0.992 0.979 0.955 0.988 0.966 0.979 0.979 0.979

Fold 4 0.983 0.983 0.983 0.983 0.960 0.971 0.983 0.988 0.987

Fold 5 0.998 1.00 1.00 0.977 0.994 0.994 1.00 1.00 1.00
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Figure 11.9
Sample image chips from the 19 class RSD benchmark dataset, each 600x600 pixels of
various spatial resolution. Classes in left-to-right, top-down order: 1 airport, 2 beach, 3
bridge, 4 commercial area, 5 desert, 6 farmland, 7 football field, 8 forest, 9 industrial
area, 10 meadow, 11 mountain, 12 park, 13 parking lot, 14 pond, 15 port, 16 railway

station, 17 residential area, 18 river, and 19 viaduct. In subsection 11.5.2, neuron indices
are used instead of text descriptions for sake of compactness.

11.5.2 WHU-RS19 (RSD) dataset

The WHU-RS19 (RSD) dataset is composed of 600x600 pixel, JPEG compressed im-

ages [51]. This class includes 19 classes, and approximately 50 chips per class. This

imagery was screen scrapped from Google Earth, and therefore they are of variable spatial

resolutions. Figure 11.9 shows exemplar image chips from each class of the RSD bench-

mark dataset. Similar to the UCM dataset, this dataset is a mixture of landcover and objects
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within the image chips. Table 11.2 shows the result of fusion, Figure 11.10 are the indices

of introspection, Figure 11.11 are example lattices, Figure 11.12 are the FM and the Shap-

ley indices and Figure 11.13 are example interaction indices. Overall, we see the same

general trend (as the UCM dataset). Namely, i) aggregation outperforms no aggregation in

general and ii) there are challenges with variety (and therefore generalizability) in the RSD

data set as well.
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Figure 11.10
Color coded matrix showing the distances obtained using the four reported indices of

introspection (D1(µ) to D4(µ)) relative to the learned full ChI per neuron on fold 1 of the
RSD dataset. y-axis is the neuron index (see Figure 11.9) and x-axis is the distance

measure.
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Fold 1: Lattice for neuron 3
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Fold 1: Lattice for neuron 5
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Figure 11.11

Two example FMs for fold 1 of the RSD dataset. Neuron three is for all intents and
purposes a binary FM (see [9] for a formal characterization of binary FMs, the resultant
FI and efficient ways of representing and learning such a function). For binary FMs, the

Sugeno FI and the ChI are mathematically equivalent [9]. The FI is acting like a “dynamic
maximum operator” with respect to FM variables that have a value one–or conversely a
“dynamic minimum” with respect to zero valued FM variables. For example, if h({x1})
� h({x2}) � h({x3}) (aka CaffeNet is more confident than GoogLeNet followed by
ResNet) then we take the output of GoogLeNet. However, if h({x2}) (GoogLeNet) is

ever the most confident then we take its input. This line of reasoning can be followed to
get similar stories for the other N !� 2 walks. Another interesting observation of neuron

3, versus neuron 5, is a slightly more diverse visitation (walk) pattern.
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Fold 1: Shapley values

(b)
Figure 11.12

Binary encoded 23 � 1 FM variables and the 3 Shapley index values for the nineteen
output neurons in the RSD dataset. As demonstrated in the UCM dataset, great variability

exists in FM variable and Shapley values for these nineteen output neurons.
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Figure 11.13
Interaction index values for nineteen outputs in the RSD dataset. Index 1 is CaffeNet, 2 is

GoogLeNet and 3 is ResNet50.

11.6 Conclusion and Future Work

In summary, this chapter outlined a data-driven method for optimizing Choquet integral-

based fusion of heterogeneous deep convolutional neural networks for pattern recognition

in remotely sensed data. To the best of our knowledge, no one has previously learned
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the full fuzzy Choquet integral for fusing neural networks, just density-based fuzzy mea-

sures. This chapter brought together state-of-the-art advancements in two important parts

of computational intelligence; fuzzy set theory and neural networks. Specifically, Caf-

feNet, GoogLeNet, ResNet50 and ResNet101 were fused at the per-output-neuron and

with respect to a single “shared weight” solution. In a strive for explainable AI, versus

black box solutions, different indices of introspection of the Choquet integral and infor-

mation theoretic indices of the fuzzy measure were highlighted for analysis of the final

deep learning solution. These indices showed us that there does appear to be diversity in

these different heterogeneous DCNNs. Two benchmark remote sensing datasets were used,

UCM and RSD, and our fused results showed improvement over the individual deep learn-

ers. However, this data set and DCNNs were saturated and therefore limited data (both

volume and variety) existed for training fusion. Last, analysis of mislabeled imagery from

our fusion revealed incorrectly labeled data and ambiguous image chips that would likely

lead to a human mislabeling imagery.

While encouraging, more research (theory and application) is needed. In future work,

we will migrate our Choquet integral solution into a strictly neural representation for op-

timization and speed. Furthermore, we will move away from DIDO and explore fusion

neurons at various layers in the network. We will also investigate what types of neural

inputs should be fed to DIDO fusion; e.g., combinations of deep and shallow, different

convolution map scales, etc. Future work will also include simultaneously learning the

DCNNs and our fusion operators (they are learned independently herein). Last, we will

look to use our explainable AI methods to make improvements to the fusion and DCNNs,
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manually as well as possibly using them directly computationally to promote diversity

and/or aid in the design of our networks.
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CHAPTER XII

AN EFFICIENT EVOLUTIONARY ALGORITHM FOR OPTIMIZATION OF THE

CHOQUET INTEGRAL

12.1 Introduction

Data and information fusion, hereafter referred to as data fusion unless there is a reason

to differentiate, is an essential part of nearly all state-of-the-art and emerging technologies.

For example, self driving cars work on the basis of exploiting sensors like lidar and radar

to determine safe navigation in complex and dynamic environments. Similarly, computer

vision operates on the basis of extracting and exploiting a diverse set of features for tasks

such as object detection. In a geospatial context, remote sensing systems frequently require

the intelligent combining of human, sensor (e.g., multi and hyperspectral, synthetic aper-

ture radar, RGB, near infrared, etc.), and algorithm outputs for tasks like object detection,

land classification and earth observations, to name a few. These are just a few examples

that emphasize the necessity of studying fusion for problems demanding the transformation

of data to decisions.

In general, the term “fusion” is too generic; meaning the word has too much variation

across domains and users. Herein, we narrow our focus and discuss a piece of the fusion

puzzle called aggregation. Let X = {x1, x2, ..., xN} be N sources of data, let z({xi}) be

the input from source i, and let z = (z({x1}), ..., z({xN}))t be a vector of inputs. An
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aggregation operator is a mapping of data-to-data, f(z) = y. Typically, y is not multi-

dimensional but real-valued, making the goal one of summarization.

Herein, we focus on the Choquet integral (ChI), a powerful aggregation operator. The

ChI performs nonlinear integration of z with respect to a fuzzy measure (FM). In many

applications the FM is learned from available training data via solving an underlying op-

timization problem. While classical algorithms like gradient descent [121], sub-gradient

descent, and interior point can solve convex problems (e.g., quadratic programming [76],

linear programming [27, 26], and regularization based ChI [12]), they are not a good fit

for non-convex objective functions. To find a solution to challenging and non-analytically

solvable optimization tasks, Holland introduced a heuristic search method, the genetic al-

gorithm (GA) [93, 36]. Herein, we propose a new efficient GA to solve the task of learning

the highly inequality constrained (due to the FM) ChI. However, without loss of generality,

our proposed operators can be applied to other evolutionary algorithms (EAs) and prob-

lems (beyond the ChI) when/if desired. In particular, the FM is defined over every possible

subset of sources, which results in 2N variables. By definition, a FM must satisfy the

monotonicity property, which gives rise to a massive number of constraints, N(2N�1 � 1).

For example, a problem with 10 inputs has 1, 024 variables and 5, 110 constraints.

Constraint-based optimization with a GA has been addressed in a few indirect ways to

date. For example, in [95, 138, 205, 116] any candidate solution that violates a constraint

is discarded. Beyond the obvious inefficiency of this approach, a problem is that some of

these “invalid” solutions may actually reside in close proximity to a local or global opti-

mum. Second, this approach is not scalable, meaning it suffers from solution starvation as
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the number of inputs and thus constraints increase. Another constraint handling approach

[53, 47] is to penalize the violating solutions to some degree so that they play a lesser role

in the search process. However, an obvious issue with this approach is how do we identify

a suitable penalty function and since solutions returned by the process may violate con-

straints, how is a valid solution obtained? The point is, prior direct (relating to the ChI)

and indirect (GA optimization in general) work exists.

Another way to address constrained optimization problems is via cultural algorithms

(CAs). A CA can incorporate the knowledge, prior or acquired during the optimization

process, to guide the search process. In [115], Jin and Reynolds proposed a CA to solve a

nonlinearly constrained optimization problem. The idea is to partition the problem domain

into small regions or “cells”, and to label the cells as feasible, non-feasible, and unknown,

with the knowledge acquired in the search process. As the algorithm progresses, it narrows

the search space by removing the undesirable parts and it directs its search toward the

region where the solution is most likely to reside. Obviously, this algorithm is highly

computational intensive and storage demanding.

Recently, a few have developed customized GAs to address the ChI. In [55], multiple

instance learning based ChI GA (MICIGA) was put forth. MICIGA identifies the admis-

sible range for each FM variable that does not violate the constraints and it allows the FM

to change within that range. The amount of change, either “small” or “large”, is stochas-

tically determined by comparing a randomly generated value from a uniform distribution

with a user specified threshold. Due to the absence of one of the main GA operators,

namely crossover, the quality of the outcome from MICIGA depends primarily on random
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exploration and sampling of the initial population from the search space. Furthermore, as

random changes occur to each FM variable at each iteration, it is hard to determine when

MICIGA converges to a solution. In a separate work [2], the ChI was used for ontology

matching. This GA identifies valid candidate pairs. However, as the number of inputs,

and thus inequalities increase, few (if any) pairs are available and a condition known as

starvation can occur. Furthermore, in [11] the authors explicitly search for violations. If

any violation is found, then a bottom-up correction is applied by searching for the closest

valid solution. As a result, search is not entirely “smooth” and as the number of inputs

increase, more-or-less every solution is constantly being subjected to correction. Last, in

[131] Mago and Modave proposed a GA for the 2-additive ChI for MCDM. In particular,

a 2-additive ChI restricts interaction to at most two sources, and as a result there are dras-

tically fewer constraints to handle. However, their savings come at the expense of a trade

off in representation.

In summary, none of the discussed algorithms offer an efficient way to solve the prob-

lem that we are interested in: optimizing the ChI. As a result, herein we propose an efficient

algorithm, which we refer to as efficient ChI GA (ECGA). The proposed method introduces

two new evolutionary operators that naturally enforce the monotonicity and boundary con-

ditions of the FM. These operators can be used to create an offspring from parents during

crossover as well as in mutation. Aided by these monotonic and boundary preserving op-

erations, we also provide an efficient representation of the FM. It can be easily shown that

the set of FMs is a convex set, which allows expressing a FM as a linear convex sum of

the vertices of the FM convex polyhedron. However, the actual number of vertices of this

226



convex set is exponential to N , making it computationally expensive if we wish to generate

new points by enumerating vertices. To combat this, we provide a new computationally

feasible representation of a FM with only N vertices of the FM set, which we refer to as

a minimal set. This representation enables us to generate random points in the feasible

solution space as well as prove that any point in the solution space can be reached via re-

combination of points. We use three monotonic operators, linear sum, product and ordered

weighted average (OWA), to create three offspring, which compete against siblings and

parents to survive to the next generation. Unlike [55], which uses small scale mutation

in the feasible interval, our mutation can make changes beyond the interval bounds, thus

providing more degrees of freedom in exploring the solution space.

The remainder of this article is organized as follows. Section II provides an overview

of the FM/ChI. Section III details the operations that preserve the FM properties and we

introduce the new FM representation. Section IV is the overall GA and experiments are

discussed in Section V.

12.2 The Fuzzy Measure and Choquet Integral

Non-additive fuzzy integrals, such as the ChI, are defined with respect to a non-additive

FM. The ChI provides a flexible way to fuse multiple inputs in a nonlinear manner. The

FM, g : 2X ! R+, is a function with the following two properties; (i) (boundary condition)

g(;) = 0, and (ii) (monotonicity) if A,B ✓ X , and A ⇢ B, then g(A)  g(B).

Without loss of generality, sometimes a normality condition is imposed upon the FM

for simplicity and convenience such that g(X) = 1. Throughout this paper, we consider
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this condition, which results in 2N � 2 variables since two FM variables, g(;) and g(X)

are constants due to boundary and normality conditions. Next, we discuss the concept of a

partially ordered set relative to the FM. This is critical to our representation and subsequent

optimization.

Definition 1 (Partially ordered set)

Let A = {ai} , i = 1, 2, ..., r be an arbitrary set and R be a reflexive, antisymmetric, and

transitive binary relation on A. Then P = (A,R) is called a partially ordered set (poset),

where A is called the ground set and R is the partial order [188].

It is trivial to show that a FM is a poset (see Def. 3), where the monotonicity constraints

characterize the inequality relations among its variables.

Definition 2 (FM poset)

Let F = {g({x1}), . . . , g(X)} be a lexicographically ordered FM. According to the defi-

nition of a FM and Def. 1, F is a poset.

Definition 3 (Monotonic poset)

A monotonic poset is g0 : 2X ! R that preserves the FM monotonicity property and may

or may not hold the boundary and normality conditions. As such, let F 0 = {g0({x1}), ...,

g0(X)} be a lexicograhically ordered poset, where g0 lies on the real-valued line versus

[0, 1].

Let F = {F} be the set of all FM posets and F 0 = {F 0} be the set of all monotonic

posets. As F 0 encompasses all FM posets, F ⇢ F 0.
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Definition 4 (Anti-monotonic poset)

An anti-mononotic poset, g00 : 2X ! R is a poset, where g00(x) is monontonically non-

increasing (versus mononotonically non-decreasing), i.e., if A,B ✓ X , and A ⇢ B, then

g00(A) � g00(B).

An anti-monotonic poset can easily be converted to a monotoinicy poset and vice versa

by simply multiplying the elements in the set by �1, which flips the inequality relations.

Definition 5 (Choquet integral)

The ChI of an observation z = (z1, z2, . . . , zN)t, where zi = z({xi}), on X with respect to

FM g is

Cg(z) =
NX

j=1

(z⇡(j) � z⇡(j�1))g(A⇡(j)),

for A⇡(j) = {x⇡(j), . . . , x⇡(N)}, permutation ⇡ such that z⇡(1) � z⇡(2) � . . . � z⇡(N), and

z⇡(0) = 0 [12].

12.3 Foundation for Evolutionary Operators

In this section, the mathematics that facilitate the efficient optimization of the ChI are

discussed. These are not the final mutation and crossover operations (provided in Section

12.4), rather they are the numeric operations used in the EA operators. This section fo-

cuses on i) unary and multi-ary monotonic operations, ii) boundary preservation and iii) an

efficient representation of a FM.

12.3.1 FM Property Preserving Operations

Proposition 2 (Unary monotonic) A function f : F 0 ! F 0 is a unary monotonic opera-

tion if it is monontonically non-decreasing, i.e., df

dt
� 0, t 2 <.

229



Proof: Let F 0 = {{s1, s2} : 8s1, s2 2 < and s1 � s2} be a set of posets with partial

order relation s1 � s2 and F 0 = {a, b} , F 0 2 F 0. The function f operates elementwise

on F 0 and maps it to G = {f(a), f(b)}. In order for G to be in F 0, f(a) and f(b) need

to satisfy the partial order relations f(a) � f(b), meaning that f has to be monotonicially

non-decreasing, i.e., f(a) � f(b) when a � b. This condition can be written using the

basic definition of gradient at point b as df

dt

��
t=b

= f(a)�f(b)
a�b

� 0. This concludes our proof.

Some examples of unary operations are: (i) multiplication by a constant: f(t) =

wt, w 2 R+ and (ii) addition or subtraction by constant: f(t) = t ± c. This defini-

tion can easily be extended to multi-ary operations that combine a number of FM posets to

produce a monotonic poset.

Proposition 3 (Multi-ary monotonic) A multi-ary monotonic operation f : F 0⇥· · ·⇥F 0⇥

· · ·⇥F 0 ! F 0, is a n-variate monontonically non-decreasing function f(t1, t2, . . . , ti, . . . , tn),

i.e., @f
@ti

� 0, ti 2 <.

Let F 0 = {{s1, s2} : 8s1, s2 2 < and s1 � s2} be a set of posets with partial order relation

s1 � s2 and F 0
1 = {a, b}, F 0

2 = {c, d} , F 0
1, F

0
2 2 F 0. Then a 2-variate non-decreasing

function f can combine F 0
1 and F 0

2 to create a new poset F 0
3 = {f(a, c), f(b, d)}, f(a, c) �

f(b, d) that is also in F 0. This proposition can easily be proved for arbitrary N posets using

the same procedure described in Proposition 2.
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Examples of monotonic operators with two (or more) variables include the (i) lin-

ear conic sum (f(t1, t2) = w1t1 + w2t2, w1, w2 2 R+), (ii) monomial (f(t1, t2) =

tw1
1 tw2

2 , w1, w2 2 R+) (iii) numerous t-norms and t-conorms, and (v) the OWA.

Operations, such as the linear convex sum (a special case of linear conic sum where the

sum of weights are equal to one), most t-norm and t-conorm’s, and OWAs map the output

into [0, 1]; thus they also satisfy the boundary condition and therefore directly map to a

valid FM. However, many other operators do not, and as such we need to apply boundary

preserving operations. Next, we propose an operation that enforces the boundary and

normality conditions on F 0, and thus transforms the monotonic poset, F 0 to a valid FM

poset, F .

Definition 6 (Boundary fixing operation)

Let the function for the boundary fixing operation be defined as

f(t) =

8
>>>>>>>><

>>>>>>>>:

0 if t = g0(;)

1 if t = g0(X)

max(min(1, t), 0) else

.

It can easily be shown that the above example operators preserve all the FM properties;

however, we demonstrate it for one case, the linear convex sum in Section 12.3.2.

12.3.2 Efficient FM Representation

In order to facilitate a geometric interpretation and ultimately an efficient representation

of F , we regard elements in F as a point (p) in a multi-dimensional space. First, we show

that F is a convex set, meaning any point in this set can be represented as a linear convex
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sum of its vertices. Second, we show an efficient way to represent a FM in terms of

drastically fewer points (versus all of its verticies).

Proposition 4 (FM as a convex set) F , the set of all FMs on X is a convex set. That is, the

convex combination of any number of points in F also lies in F , i.e.,
P

r

i
wipi 2 F for r 2

N,pi 2 F , wi � 0 and
P

r

i
wi = 1.

Proof: According to Proposition 3, linear sum preserves monotonicity. As such, the linear

convex sum of FM in a multi-dimensional space, i.e.,
P

r

i
wipi is also monotonic. Further-

more, linear convex sum yields zero when all inputs are zeros, one when all inputs are ones

and its output is bounded within [0, 1] if the inputs range is [0, 1]. Therefore, linear convex

sum preserves the boundary conditions. Since
P

r

i
wipi, where wi � 0 and

P
r

i
wi = 1,

has all the properties of a FM, this concludes our proof.

Since F is a convex set it forms a convex polyhedron. The vertices of this polyhedron

can be obtained by solving the inequality and equality constraints. An example is pro-

vided next. However, we remark that Avis and Fukuda provided an efficient algorithm to

enumerate the vertices from constraints [19].

Example 6. In this example we illustrate the aforementioned FM representation for N =

3. Let the FM be g = {g1, g2, g3, g12, g13, g23, g123}, which is shorthand notation for

readability, i.e., g12 stands for g({x1, x2}). The boundary, normality, and monotonicity

properties are:
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g; = 0

g1 � 0 (12.1)

g2 � 0 (12.2)

g3 � 0 (12.3)

g12 � 0 (12.4)

g13 � 0 (12.5)

g23 � 0 (12.6)

g1  1 (12.7)

g2  1 (12.8)

g3  1 (12.9)

g12  1 (12.10)

g13  1 (12.11)

g23  1 (12.12)

g12 � g1 (12.13)

g12 � g2 (12.14)

g13 � g1 (12.15)

g13 � g3 (12.16)

g23 � g2 (12.17)

g23 � g3 (12.18)

g123 = 1.

Since the FM values for the empty set and X are constants, we can perform our analysis

based on the remaining 2N � 2, or 6, variables. Equations (12.1)-(12.18) determine the

feasible solution space of these 6 variables. Solving these equations analytically, we obtain

the vertices of the solution space, a 6-dimensional convex polyhedron. Table 12.2 lists the

vertices along with the corresponding intersecting equations. Furthermore, any point with

the convex polyhedron can be represented as the linear convex sum of these vertices, i.e.,

pi =
X

i

wivi, wi � 0,
X

i

wi = 1.
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Table 12.1
Coefficients for the minimal set for generating vertices

c1 c2 c3 c4 c5 c6 Resultant vertex

0 0 0 0 0 0 v1

1 0 0 0 0 0 v2 = m1

0 1 0 0 0 0 v3 = m2

0 0 1 0 0 0 v4 = m3

1 1 0 0 0 0 v5

1 0 1 0 0 0 v6

0 1 1 0 0 0 v7

1 1 1 0 0 0 v8

0 0 0 1 0 0 v9 = m4

0 1 0 0 1 0 v10 = m5

0 0 0 0 0 1 v11 = m6

1 0 0 1 0 0 v12

0 1 0 0 1 0 v13

0 0 1 0 0 1 v14

0 0 0 1 1 0 v15

0 0 0 1 0 1 v16

0 0 0 0 1 1 v17

1 1 1 0 0 0 v18
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Minimal FM Representation: Let the set of vertices of the FM convex polyhedron

be V = {vj}. Building on Example 1, we now define a minimal set of vertices, M =

{mi} , i = 1, 2, . . . , 2N � 2. Specifically, vertices in M can only be represented by them-

selves, i.e., they cannot be expressed as a linear convex sum of the remaining vertices in

V . There exists exactly one mi 2 M corresponding to each variable, g(A), A 2 2X \ X

such that

mi(B) =

8
>>><

>>>:

1 if B ◆ A

0 else

. (12.19)

Any vertex v 2 V in the polyhedron can be expressed in terms of the minimal set using

the following equation

v = min(1,
2N�2X

i

cimi), ci 2 {0, 1}. (12.20)

The minimal set for Example 1 is M = {m1,m2,m3,m4,m5,m6}, which correspond

to vertices v2, v3, v4, v9, v10, and v11 respectively (from Table 12.2). Table 12.1 shows

that all of the vertices in F can be expressed in terms of the minimal set, M , with respect

to its corresponding coefficients (c’s). Even though we show this for N = 3, it is easy to

generalize to the case of any N .

In summary, the significance of Eq. 12.19 is it tells us that we can work with a small

set of vertices and exploit it in EA operations like weighted recombination to produce

new valid points (FMs). This efficient representation forms the basis of our EA search

algorithm.
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Table 12.2
Vertices for 3 sources

Vertex g1 g2 g3 g12 g13 g23 Intersecting equations

v1 0 0 0 0 0 0 12.1⇠12.6, 12.13⇠12.18
v2 0 0 0 0 0 1 12.1⇠12.5, 12.12
v3 0 0 0 0 1 0 12.1⇠12.4, 12.6, 12.11
v4 0 0 0 1 0 0 12.1⇠12.3, 12.5, 12.6, 12.10
v5 0 0 0 0 1 1 12.1⇠12.4, 12.11, 12.12
v6 0 0 0 1 0 1 12.1⇠12.3, 12.5, 12.10, 12.12
v7 0 0 0 1 1 0 12.1⇠12.3, 12.6, 12.10, 12.11
v8 0 0 0 1 1 1 12.1⇠12.3, 12.10⇠12.12
v9 1 0 0 1 1 0 12.2, 12.3, 12.6, 12.7, 12.10, 12.11, 12.13, 12.15
v10 0 1 0 1 0 1 12.1, 12.3, 12.5, 12.8, 12.10, 12.12, 12.14, 12.17
v11 0 0 1 0 1 1 12.1, 12.2, 12.4, 12.9, 12.11, 12.12, 12.16, 12.18
v12 1 0 0 1 1 1 12.2, 12.3, 12.7, 12.10⇠12.13, 12.15,
v13 0 1 0 1 1 1 12.1, 12.3, 12.8, 12.10⇠12.12, 12.14, 12.17,
v14 0 0 1 1 1 1 12.1, 12.2, 12.9⇠12.12, 12.16, 12.18,
v15 1 1 0 1 1 1 12.3, 12.7, 12.8, 12.10⇠12.15, 12.17
v16 1 0 1 1 1 1 12.2, 12.7, 12.9⇠12.13, 12.15, 12.16, 12.18
v17 0 1 1 1 1 1 12.1, 12.8⇠12.12, 12.14, 12.16⇠12.18
v18 1 1 1 1 1 1 12.7⇠12.18

12.4 Efficient GA for the ChI

The previous sections outlined the mechanics (operators and representation) of our evo-

lutionary optimization approach. In this section, we focus on how to use these ideas for (i)

initialization, (ii) selection, (iii) crossover and (iv) mutation in a GA. Again, while we focus

on a GA, the operators discussed are equally applicable for other EA-based optimization

approaches.
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12.4.1 Initialization

Our first action is to determine an initial set of candidate solutions. In order to en-

sure that subsequent operations have free range over the full feasible space, we begin by

randomly picking points in a range between 1 to N from M (see Eq. 12.19). Next, we

generate np �N additional individuals using equation

p = min(1,
nrX

j=1

wjtj), tj 2 M and 1  nr  N (12.21)

where np is the population size, nr ⇠ U(1, N) is an integer randomly selected from a

uniform distribution, tj is a point randomly selected from M and wj 2 U(0, 1) is the

corresponding weight sampled from a uniform distribution.

Algorithm 9: Initialization

1 Input initial population size, nP

2 Initialize input population, P , to empty

3 Generate the minimal set, M = {mk} , k = 1, 2, . . . , N using Eq. 12.19 and add these to P

4 for i = 1, · · · , nP �N do

5 Randomly select the number of vertices, s ⇠ U(1, N)

6 Randomly pick nr vertices, tj 2 M, j = 1, 2, . . . , s

7 Select wj ⇠ U(0, 1), j = 1, 2, . . . , s

8 Create a new valid FM, p, using Eq. 12.21

9 Add p to P

10 Return P
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12.4.1.1 Selection

Any GA selection method is applicable here. However, in this article we use non-linear

ranking with stochastic selection and elitism (to ensure that that the best solution is not lost

from one iteration to the next). Algorithm 15 summarizes our selection process.

12.4.1.2 Crossover

While multiple parents can be recombined to spawn an offspring, we limit our discus-

sion to the case of two herein. Our approach involves a monotonic operation followed

by the boundary operation, discussed in Section III. Specifically, in this section we focus

on three operators that utilize sum, product and sorting operations. Let p1 and p2 be the

parents. The three methods explored for generating a child are the following:

1. linear sum: p̃1 = c11p1 + c12p2,

2. monomial: p̃2 = p
c21
1 p

c22
2 ,

3. OWA: p̃3 = c3 max(p1,p2) + (1� c3)min(p1,p2),

where the coefficients c11, c12, c21, c22, and c3 are randomly generated from a uniform

distribution, U(0, 1). Figure 12.1 illustrates where the offspring reside in relation to the

parents. Algorithm 6 is a formal description of our crossover algorithm.

12.4.1.3 Mutation

Mutation is what truly enables global search for solutions over the feasible space. Al-

gorithm 14 is a formal description of our approach.
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Algorithm 10: Selection

1 Input population, P

2 Input number of offsprings to select, no

3 Calculate the rank of an individual, pi 2 P based on its position in the ascending sorting order of

fitness scores, fr(pi)

4 Square root the rank, fs(pi) =
p
fr(pi)

5 Calculate probability of an individual pi as  (pi) =
fs(pi)P
i fs(pi)

6 for i = 1, . . . , no do

7 �i = 0

8 r ⇠ U(0, 1
ns
)

9 sum = 0

10 for i = 1, . . . , ns do

11 sum = sum+  (pi)

12 while sum  r do

13 �i = �i + 1

14 r = r + 1
no

15 Return index of the selected individuals, � = (�1, · · · ,�ns)

Algorithm 11: Crossover using recombination of two parents

1 Input crossover rate, rC

2 Input the parents, p1, and p2

3 if r ⇠ U(0, 1)  rC then

4 Randomly select the coefficients, c11, c12, c21, c22, and c3 from a uniform distribution

5 Calculate the three offsprings, p̃1 = c11p1 + c12p2, p̃2 = pc21
1 pc22

2 , and

p̃3 = c3 max(p1,p2) + (1� c3)min(p1,p2)

6 Evaluate the fitness scores of p1, p2, p̃1, p̃2, and p̃3 and return the one with the best fitness score.
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Figure 12.1
Example illustration of crossover for the case of two arbitrary points at g1 = (0.2, 0.6)

and g12 = (0.3, 0.4); a subset of the multi-dimensional optimization space. The different
sets (represented by color coded points) show the range of the underlying linear sum,

product and OWA operators on these two parents.
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Algorithm 12: Mutation

1 Input chromosome p

2 Input mutation point, i ⇠ U(1, n)

3 Generate a random value, w ⇠ U(�1, 1)

4 if w � 0 then

5 Compute upper bound, ubpi of pi from its superset variables

6 Calculate pi = min(ubpi , pi + w)

7 Find residual offset, wr = max(0, w � ubpi)

8 Combine p with ith vertex in minimal set as p = min(1,p+ wrmi)

9 else

10 Compute lower bound, lbpi of pi from its subset variables

11 Calculate pi = max(lbpi , pi + w)

12 Find residual offset, wr = min(0, w � lbpi)

13 Combine p with ith vertex in anti-monotonic set as p = min(1,p+ wrqi)

14 Return p
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In Algorithm 14 we start by selecting mutation points, pi. Next, an offset is selected,

w 2 [�1, 1], which determines the “direction” of alteration. If this value is positive then

we compare it with the feasible upper bound, ubpi , computed from the superset variables

of gi and make the admissible change in pi within this bound. Last, an residual offset is

calculated, wr = max(0, w� ubpi), and used to combine the individual with the ith vertex

in M via

p = min(1,p+ wrmi).

On the other hand, if this shift variable is negative we make an admissible change within

the lower bound. and we use the residual offset, wr = min(0, w � lbpi), to combine with

an anti-monotonic point, qi, to preserve monotonicity. Like the minimal set, we generate

an anti-monotonic point, qi 2 Q, for each variable, g(A), A ✓ 2X \X , as follows

qi(B) =

8
>>><

>>>:

1 if B ✓ A

0 else

. (12.22)

We can pre-compute minimal and anti-monotonic sets, Q, to increase computational effi-

ciency. Table 12.3 shows the sets, subset and superset variables for the case of Example 1

(N = 3). As we can see, the subset and superset variables for each variable can easily be

computed from the anti-monotonic set and minimal set respectively. For each variable, gi,

we look for variables that are 1s in the corresponding vertex, mi, which gives the superset

(including gi). In order to create strictly superset variables, gi is excluded. In the same

manner, subset variables can be obtained from anti-monotonic set Q.
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Table 12.3
Minimal set, anti-monotonic set, and subset and superset variables for three inputs

Minimal Set Anti-monotonic Minimal Set

Variables Vertex g1 g2 g3 g12 g13 g23 g123 Superset variables Point g1 g2 g3 g12 g13 g23 g123 Subset variables

g1 m1 1 0 0 1 1 0 1 g12, g13, g123 q1 1 0 0 0 0 0 0 ;

g2 m2 0 1 0 1 0 1 1 g2, g12, g123 q2 0 1 0 0 0 0 0 ;

g3 m3 0 0 1 0 1 1 1 g3, g13, g123 q3 0 0 1 0 0 0 0 ;

g12 m4 0 0 0 1 0 0 1 g123 q4 1 1 0 1 0 0 0 g1, g2

g13 m5 0 0 0 0 1 0 1 g123 q5 1 0 1 0 1 0 0 g1, g3

g23 m6 0 0 0 0 0 1 1 g123 q6 0 1 1 0 0 1 0 g2, g3

12.5 Experiments

To demonstrate the quality of ECGA, we compare it against prior work on several

different optimization functions. As there are no benchmark nonlinear ChI optimization

problems, we propose experiments such that the location of the global optimum varies

across cases. Specifically, we compare ECGA to the GA in [11] and [55], referred to

hereafter as FVFMGA and MICIGA respectively. We do not compare to [2], as it suffers

extremely from early termination due to starvation of crossover pair identification and it

does not scale well at all.

The following experiments are performed. First, we demonstrate ECGA, FVFMGA

and MICIGA on a small scale problem; three inputs, thus seven variables. Second, we

investigate the impact of increasing the number of variables. Third, we demonstrate scal-

ability versus execution time, which gives us insight into the computational complexity of

these approaches. Last, we investigate the impact of the different equations for crossover

in ECGA.
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In each of our optimization tasks, we consider the following problem,

min
u

h(Cu) = e(u),

subject to

ui  uj if ui = g(A), uj = g(B) and A ⇢ B,

8i, j 2 {1, 2, . . . , 2N � 1},

ui = 1, if ui = g(X),

where u is a vector representation of the FM variables, h is a function of ChI with respect

to u and e is a function of u. For simplicity and computational efficiency, we can chose

to use a binary encoded index for variables in u. This means that for a three input case,

indices 1, 3, and 4 corresponds to binary representation of 001, 011, and 100 respectively

and, consequently, u1 = g({x1}), u3 = g({x1, x2}), u4 = g({x3}) and so forth.

For the first three functions, we use the sum of residuals

ei =
2N�1X

j=1

(uj � cj)
2, i = 1, 2, 3. (12.23)

The idea is to compare the candidate solution, u, to an underlying solution (ground truth)

FM, C = [c1 c2 . . . c2N�1].

The first three functions are focused on the ChI. In the fourth data set we use a bench-

mark data set, the Rastrigin function. This is performed in order to demonstrate that our

methods are equally applicable to any multi-variate function with inequality constraints.

The conventional Rastrigin function spans [�5.12, 5.12] and has a global minimum at

zero. Without loss of generality, we modified the function by scaling and translating it
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so the function now spans [0, 1] and the global minimum is now at 0.5. Thus, the function

e4, i.e., modified Rastrigin function, is

e4(u) = 10 ⇤ (2N � 2) +
2N�2X

j=1

[u2
j
� 10cos(2⇡uj)], (12.24)

Figure 12.2 shows the surface plot of Eq. 12.24.

Figure 12.2
Surface plot of the modified Rastrigin function for two variables, which is the fourth data
set explored herein. A non-ChI data set was selected to demonstrate the generalizability

of our proposed ECGA.

12.5.1 Experiment 1: Small Scale Optimization Problem

This experiment has N=3, thus seven variables. The function e1, e2 and e3 correspond

to OWAs with weights [0.1, 0.2, 0.7], (soft min), [0.7, 0.2, 0.1] (soft max) and [0.3, 0.4, 0.3]

(mean like) respectively (see Table 12.4 for coefficients). These three functions were se-
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lected in order to span the range of optimistic (union like), pessimistic (intersection like),

and expected value (e.g., mean) like. The global optimum for each function is at zero. The

fourth function is the Rastrigin function.

Table 12.4
Coefficients for e1, e2, and e3 for three inputs

function c1 c2 c3 c4 c5 c6 c7

e1 0.1 0.1 0.3 0.1 0.3 0.3 1
e2 0.7 0.7 0.9 0.7 0.9 0.9 1
e3 0.3 0.3 0.7 0.3 0.7 0.7 1

Binary encoded coefficient index is used.
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Figure 12.3
Experiment 1. Comparison of best fitness scores for N = 3 for e1, e2, e3, and e4.
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The default parameter settings are as follows. The population size was 100 and 500

generations were used. For ECGA and FVFMGA, crossover rates vary from 0.6 to 0.9 in

step increments of 0.1 and mutation rates of 0.05, 0.1, 0.2, and 0.3 were used. For MICIGA,

we used the implementation provided by the authors, which can be found at https:

//github.com/GatorSense/MICI. While MICIGA was designed to solve multiple

instance tasks, we adapted it to solve our four functions. MICIGA parameter settings are,

small mutation rate from 0.6 to 0.9 in step sizes of 0.1, variance around sample mean of

0.05, 0.1, 0.2, and 0.3. Note MICIGA does not have crossover. Instead it performs small

scale mutation. Each experiment was repeated 50 times and for each method, the average

score for the best performer is reported. The best fitness score is used as the evaluation

metric.

Figure 12.3 shows the results of Experiment 1. We can see that all three methods

achieve the same best fitness score at some point (number of generations). This should

be expected for a simple problem. However, ECGA outperforms the other algorithms in

all four problems with respect to the number of generations needed to converge. Of the

three methods, MICIGA has the worst results, which might be expected as it involves only

mutation (taking more generations to get to an answer).

12.5.2 Experiment 2: Scalability

Experiment 2 has N = 6, 63 variables and 186 monotonicity constraints. The three er-

ror functions had coefficients generated randomly from a uniform distribution with ranges

[0, 1], [0, 0.5] and [0.5, 1] respectively. A population size of 200 and 500 generations was
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ran. The method specific parameter settings are the same as Experiment 1. Figure 12.4

shows the result.
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Experiment 2. Comparison of best fitness scores for N = 6 for e1, e2, e3, and e4.

Figure 12.4 shows the effectiveness of ECGA. Specifically, none of the other methods

achieved the same quality of solution. On e4, FVFMGA attained a solution as good as

ECGA, but it took approximately 350 iterations versus 10. Also, if we look at the best

score from the initial population, ECGA has the lowest score for all four error functions.

This result is evidence that the initial population of ECGA is likely more distributed over
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the solution space. In summary, Experiment 2 demonstrates that our proposed method is

suitable for larger scale problems, compared to prior work.

12.5.3 Experiment 3: Computational Performance

Our experiments were run on a Windows PC with an Intel Xeon CPU EP-2650 at

2GHz clock speed and 64GB of RAM. All parameters were kept the same for the N = 3

and N = 6 cases, except for population size. Each experiment was repeated for 50 times

and the average running time for each combination of parameters (e.g., crossover rate =

0.6 and mutation rate=0.05 for ECGA and FVFMGA) was recorded. Table 12.5 lists the

minimum, mean, maximum, and the best running time. Here, the best corresponds to

the scenario that yields the best results. The number of variables increased by 9 times

from N = 3 to 6 while running time for ECGA, FMFMGA, and MICIGA increased by

3.47, 8.65, and 11.91 respectively. While FVFMGA has the lowest execution time for

N = 3, it spends on average 1.6 times more time than ECGA for N = 6. The reason is,

FVFMGA checks each monotonicity relation for each variable, and there are N(2N � 1)

such checks to make. This causes an extreme computational burden for FVFMGA as N

grows. MICIGA has the maximum execution time due to the mutation operation of a large

number of variables (60% to 80% of the total variables go through small scale mutation

each iteration), which involves calculating the lower and upper bounds and assigning a

random value. In summary, we conclude that our method scales well to problem size (N ).
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Table 12.5
Execution time in seconds

Method
3 inputs 6 inputs

e1 e2 e3 e4 Average e1 e2 e3 e4 Average

ECGA 1.87 1.83 1.81 2.54 2.01 6.17 6.07 6.02 7.36 6.41
Minimum FVFMGA 1.35 1.33 1.42 1.64 1.44 12.92 12.86 12.78 12.96 12.88

MICIGA 5.47 5.49 5.53 5.50 5.50 52.17 44.35 48.60 51.26 49.09
ECGA 2.25 2.16 2.11 3.00 2.38 7.41 7.69 7.65 10.23 8.25

Mean FVFMGA 1.43 1.44 1.53 1.77 1.54 13.49 13.20 13.04 13.65 13.34
MICIGA 6.44 6.52 6.45 6.92 6.58 82.45 71.88 74.18 85.00 78.38
ECGA 3.38 2.58 2.59 3.67 3.05 10.09 10.25 10.32 12.75 10.85

Maximum FVFMGA 1.71 2.16 2.19 2.10 2.04 14.97 14.64 15.35 15.14 15.02
MICIGA 8.24 7.77 8.07 8.69 8.19 122.40 109.69 103.43 125.05 115.14
ECGA 2.36 2.09 2.33 3.12 2.47 6.17 6.07 7.01 10.95 7.55

Best FVFMGA 1.37 1.42 1.43 1.66 1.47 13.62 12.86 12.81 12.96 13.06
MICIGA 7.14 7.31 7.31 8.18 7.48 89.76 61.22 66.40 119.00 84.09

12.5.4 Experiment 4: ECGA Crossover Operators

In Experiment 4, we explore the significance of the different operators involved in

crossover; linear sum, monomial and OWA. Figure 6 reports the best fitness for the follow-

ing scenarios; crossover with (i) all three operations, (ii) just linear sum, (iii) just mono-

mial, (iv) just OWA, and (v) linear sum and OWA. As we can see, OWA, linear sum and

OWA, and all three exhibit almost identical trends with best results for e1, e2, and e3. How-

ever, OWA’s performance appears to degrade considerably relative to the others for e4. For

relatively large problems, e.g., 63 variables, the best score trends for linear sum and OWA

are very close (if not identical) for all four functions. Based on the experimental findings,

and guided by intuition, we are led to believe that individually none of these operators

are universally best. The takeaway from this experiment is that the selection of appropri-
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ate operators is important and adding more operators may have diminishing results with

increasing computational complexity.
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Figure 12.5

Experiment 4. Performance comparison of linear sum, OWA and monomial operators in
ECGA crossover.

12.6 Conclusion

Herein, we proposed new operators for an efficient evolutionary algorithm. Specifi-

cally, these operators are focused on learning the Choquet integral. As such, the under-
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lying problem that we want to solve is minimization of some function error relative to a

large number of inequality constraints (due to the monotonicity and boundary conditions

of the fuzzy measure). To this end, we introduced new theory and algorithms with a solid

geometric interpretation. Our method more-or-less allows us to “bypass” our constraints

and run an evolutionary algorithm in a smooth and uninterrupted fashion. The method is

applicable to a number of problems, but where it excels is in cases of larger numbers of

inputs and on complicated (non-convex) error functions. Experiments demonstrated supe-

riority in accuracy and computational performance relative to prior work on different ChI

and a benchmark non-ChI function (the Rastrigin function).

In future work, we will extend our theory (operators) beyond the scope of optimizing

the ChI. Whereas we demonstrated its operation on the Rastrigin function, we will go fur-

ther and study the more abstract problem of efficient solutions to complex functions with

large numbers of equality and inequality constraints. Also, we showed in [111] that most

data-driven problems do not involve all variables in the fuzzy measure. As such, we will

follow our ideas in [111] and look for a way to “compress” and further improve the effi-

ciency of our evolutionary optimization in a data set/variable specific fashion. Last, many

problems involve non-real-valued (e.g., intervals, type-1 sets, type-2 sets, etc.) integrands

and/or measures. In the future we will explore the extension of our operators for uncertain

inputs and measures.
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CHAPTER XIII

CONCLUSIONS

13.1 Contributions

Due to an increasing reliance on multiple sources of data/information in a wide variety

of applications, the demand for aggregation is not going away. To date, a limited amount

of work has focused on the efficiency of learning algorithms. In this dissertation I present

several approaches to efficiently represent and optimize the ChI.

The learning of the ChI in its standard form becomes quickly intractable due to its

exponential increase of variables with respect to input size. Therefore, most applications

either resort to simpler and relatively restrictive integrals with fewer variables–such as

Sugeno �-measure or k-additive–or they use fixed operators like the max, min, majority

voting, etc. In Chapter VIII, I proposed the identification and optimization of the variables

supported by data. I also proposed an imputation strategy for data-unsupported variables,

which can be fixed or learned. From the experiments conducted on synthetic data sets, it

was demonstrated that the proposed method outperforms k-additive measure and can yield

better results than the standard ChI when suitable imputation function is used.

In Chapter XII, I presented an efficient GA for optimizing ChI problems. As GAs do

not naturally provide a mechanism to handle constraints directly, numerous indirect ways

have been introduced. Since the ChI has N(2N � 1) constraints for N inputs, its opti-
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mization is costly with generalized constraint handling approaches. Several GAs, specifi-

cally for learning the ChI, have recently been proposed such as MICIGA and FVFMGA.

MICIGA uses large-scale mutation to search the space while small-scale mutation for

convergence. FVFMGA fixes the violated chromosome in a bottom-up fashion. Exper-

iments result show that ECGA is computationally efficient in compared with MICIGA and

FVFMGA for a large number of inputs.

In Chapter II, the BChI was introduced, where the variables in the BFM lie in {0, 1} in-

stead of [0, 1]. This representation offers savings in computation and storage by drastically

reducing the search space. Moreover, the ChI computation requires only one variable. The

BChI is a natural fit for some applications and can be approximated for others. An efficient

learning algorithm for the BChI was presented in Chapter IX, which shows a huge saving

in the number of variables required to learn, represent, and compute the BChI.

In Chapter V, I proposed a dimensionality reduction technique using a visual clustering

algorithm, CLODD, which is inspired by the way human do clustering from an image.

The proposed method can perform both contiguous and non-contiguous band grouping in

supervised or unsupervised manner. The experiment results on the Indian Pines data set

show that overall contiguous clustering has superior performance, which is intuitive as it

carries more information than the non-contiguous one.

In Chapter VI, I studied the impact of varying Lp-norm for feature level fusion using

MKL in hyperspectral image processing. While L1-norm MKL (or sparse MKL) is suitable

for kernel selection from noisy features, higher norm MKL can significantly improve re-

sults via dense aggregation of diverse and complementary features. However, MKL works
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in hyperspectral images heavily favored the use of L1-norm MKL and to the best of my

knowledge that explored Lp-norm MKL. In the proposed method, two diverse feature sets

using two different proximity measures, square of Euclidean and correlation, were used

to extract features, which were then fused with two kernels, RBF and correlation, using

MKL. Experiments conducted on the Indian Pines dataset demonstrate that in most cases,

higher norm (e.g., p=100) yields higher classification accuracy than the L1-norm MKL.

13.2 Future Research Directions

This dissertation provides a framework for multiple directions of future work in the

area of efficient learning and representation of aggregation operators. For example:

Data-driven learning: In EChIGA, the problem is partitioned into data supported and

unsupported variables. However, for data supported not all variables are supported to the

same degree. For example, some variables could have hundreds of samples whereas others

may have a single sample. It would be interesting to study how to combat different degrees

of “data supported” variables in learning. In addition, I plan to explore different error

and/or penalty functions and associated optimization algorithms [111].

Efficient GA: In future work, I will extend the theory (operators) beyond the scope of

optimizing the ChI. As shown in [111], most data-driven problems do not involve all vari-

ables in the fuzzy measure. As such, I will follow our ideas in [111] and look for a way

to “compress” and further improve the efficiency of evolutionary optimization in a data

set/variable specific fashion. Last, many problems involve non-real-valued (e.g., intervals,
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type-1 sets, type-2 sets, etc.) integrands and/or measures. In the future I will explore the

extension of our operators for uncertain inputs and measures [109].

Aggregation under uncertainty: This article is just a first step towards missing data and

the FI. In future work, I will expand our scope to include both missing integrand (h) and

missing FM (µ), the latter only slightly touched on in our case study. I will also attempt to

simultaneously solve for the FM in conjunction with how to normalize it (versus specify

the normalization). I will also explore pathways involving “up sampling” (type increasing).

In future work I will study interval and fuzzy set valued label driven learning, or learning

of such data in light of scalar-valued inputs [110].

Lp-norm MKL feature fustion: In the future, I will investigate a search procedure for

MKL parameter selection, including kernel type and associated parameters (a critical as-

pect of MKL that is typically overlooked due to complexity). Last, currently all features

produced by band grouping are used. However, sometimes some bands (or band groups)

are not useful for a task at hand and performance can be raised if the feature selection is

performed before fusion [106].

Fusion in deep learning: In the future, my plan is to migrate the ChI solution into a

strictly neural representation for optimization and speed. Furthermore, fusion neurons at

various layers in the network will be explored. Future work will also include simultane-

ously learning the DCNNs and our fusion operators (they are learned independently herein)

[13].

256



This dissertation proposed efficient methods to represent and learn aggregation op-

erators that I believe would be useful for many applications. There remain many more

challenges in numerous aspects of fusion such as aggregation of heterogeneous inputs, ag-

gregation under uncertainty, and Choquistic neuron representation. I believe it would be

well worth to study these problems.
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