673 research outputs found

    Clustering of ECG segments for patients before sudden cardiac death based on Lagrange descriptors

    Get PDF
    Novel approach to clustering of ECG segments based on Lagrange descriptors is presented in this paper. The approach starts by extracting 2D features with the help of Lagrange descriptors. Then the features are transformed to latent vectors which are clustered using K-means algorithm. The object of the research is to visualize the dynamics of clusters of 2D features of segments of ECG before sudden cardiac death happens to a patient

    ECG-Based Arrhythmia Classification using Recurrent Neural Networks in Embedded Systems

    Get PDF
    Cardiac arrhythmia is one of the most important cardiovascular diseases (CVDs), causing million deaths every year. Moreover it is difficult to diagnose because it occurs intermittently and as such requires the analysis of large amount of data, collected during the daily life of patients. An important tool for CVD diagnosis is the analysis of electrocardiogram (ECG), because of its non-invasive nature and simplicity of acquisition. In this work we propose a classification algorithm for arrhythmia based on recurrent neural networks (RNNs) that operate directly on ECG data, exploring the effectiveness and efficiency of several variations of the general RNN, in particular using different types of layers implementing the network memory. We use the MIT-BIH arrhythmia database and the evaluation protocol recommended by the Association for the Advancement of Medical Instrumentation (AAMI). After designing and testing the effectiveness of the different networks, we then test its porting to an embedded platform, namely the STM32 microcontroller architecture from ST, using a specific framework to port a pre-built RNN to the embedded hardware, convert it to optimized code for the platform and evaluate its performance in terms of resource usage. Both in binary and multiclass classification, the basic RNN model outperforms the other architectures in terms of memory storage (∼117 KB), number of parameters (∼5 k) and inference time (∼150 ms), while the RNN LSTM-based achieved the best accuracy (∼90%)

    Presenting a New Strategy to Extract Data Clustering Heartbeat Samples by Using Discrete Wavelet Transform

    Get PDF
    This paper presents the improvement of detection system that normal and arrhythmia electrocardiogram classification. This classification is done to aid the ANFIS (Adaptive Neuro Fuzzy Inference System). The data used in this paper obtained from MIT-BIH normal sinus ECG database signal and MIT-BIH arrhythmia database signal. The main goal of our approach is to create an interpretable classifier that provides an acceptable accuracy. In this model, the feature extraction using DWT (Discrete Wavelet Transform) is obtained. The last stage of this extraction is introduced as the input of ANFIS model. In this paper, the ANFIS model has been trained with Quantum Behaved Particle Swarm Optimization (QPSO). In this study, for training of proposed model, four sample data have been used which result in acceleration of training data. On the test set, we achieved an outstanding sensitivity and accuracy 100%. Experimental results show that the proposed approach is very fast and accurate in improving classification. Using the proposed methodology and telemedicine technology can manage patient of heart disease

    Presenting a New Strategy to Extract Data Clustering Heartbeat Samples by Using Discrete Wavelet Transform

    Get PDF
    This paper presents the improvement of detection system that normal and arrhythmia electrocardiogram classification. This classification is done to aid the ANFIS (Adaptive Neuro Fuzzy Inference System). The data used in this paper obtained from MIT-BIH normal sinus ECG database signal and MIT-BIH arrhythmia database signal. The main goal of our approach is to create an interpretable classifier that provides an acceptable accuracy. In this model, the feature extraction using DWT (Discrete Wavelet Transform) is obtained. The last stage of this extraction is introduced as the input of ANFIS model. In this paper, the ANFIS model has been trained with Quantum Behaved Particle Swarm Optimization (QPSO). In this study, for training of proposed model, four sample data have been used which result in acceleration of training data. On the test set, we achieved an outstanding sensitivity and accuracy 100%. Experimental results show that the proposed approach is very fast and accurate in improving classification. Using the proposed methodology and telemedicine technology can manage patient of heart disease

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Assentication: User Deauthentication and Lunchtime Attack Mitigation with Seated Posture Biometric

    Full text link
    Biometric techniques are often used as an extra security factor in authenticating human users. Numerous biometrics have been proposed and evaluated, each with its own set of benefits and pitfalls. Static biometrics (such as fingerprints) are geared for discrete operation, to identify users, which typically involves some user burden. Meanwhile, behavioral biometrics (such as keystroke dynamics) are well suited for continuous, and sometimes more unobtrusive, operation. One important application domain for biometrics is deauthentication, a means of quickly detecting absence of a previously authenticated user and immediately terminating that user's active secure sessions. Deauthentication is crucial for mitigating so called Lunchtime Attacks, whereby an insider adversary takes over (before any inactivity timeout kicks in) authenticated state of a careless user who walks away from her computer. Motivated primarily by the need for an unobtrusive and continuous biometric to support effective deauthentication, we introduce PoPa, a new hybrid biometric based on a human user's seated posture pattern. PoPa captures a unique combination of physiological and behavioral traits. We describe a low cost fully functioning prototype that involves an office chair instrumented with 16 tiny pressure sensors. We also explore (via user experiments) how PoPa can be used in a typical workplace to provide continuous authentication (and deauthentication) of users. We experimentally assess viability of PoPa in terms of uniqueness by collecting and evaluating posture patterns of a cohort of users. Results show that PoPa exhibits very low false positive, and even lower false negative, rates. In particular, users can be identified with, on average, 91.0% accuracy. Finally, we compare pros and cons of PoPa with those of several prominent biometric based deauthentication techniques

    Automatic segmentation of the left ventricle cavity and myocardium in MRI data

    Get PDF
    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method

    Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    Get PDF
    To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection
    corecore