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Abstract

Cardiac arrhythmia is one of the most important cardiovascular diseases (CVDs), causing million deaths every year. Moreover
it is difficult to diagnose because it occurs intermittently and as such requires the analysis of large amount of data, collected
during the daily life of patients. An important tool for CVD diagnosis is the analysis of electrocardiogram (ECG), because of
its non-invasive nature and simplicity of acquisition. In this work we propose a classification algorithm for arrhythmia based
on recurrent neural networks (RNNs) that operate directly on ECG data, exploring the effectiveness and efficiency of several
variations of the general RNN, in particular using different types of layers implementing the network memory. We use the MIT-BIH
arrhythmia database and the evaluation protocol recommended by the Association for the Advancement of Medical Instrumentation
(AAMI). After designing and testing the effectiveness of the different networks, we then test its porting to an embedded platform,
namely the STM32 microcontroller architecture from ST, using a specific framework to port a pre-built RNN to the embedded
hardware, convert it to optimized code for the platform and evaluate its performance in terms of resource usage. Both in binary and
multiclass classification, the basic RNN model outperforms the other architectures in terms of memory storage (∼117 KB), number
of parameters (∼5 k) and inference time (∼150 ms), while the RNN LSTM-based achieved the best accuracy (∼90%).
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1. Introduction

Cardiovascular diseases (CVDs), such as myocardial infarction, myocarditis and arrhythmia, are among the leading
causes of death worldwide, accounting for more than 17 million deaths every year, representing 32% of all global
deaths, according to the World Health Organization [1].
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Cardiac arrhythmia is one of the most important CVDs. Arrhythmias are irregularities in the heartbeat, causing it to
be too fast or too slow, due to improper intracardiac conduction or to erroneous pulse formation. While arrhythmia can
often be a mild condition, it can affect the whole heart functionality and lead to more severe diseases, even resulting
in sudden death. To complicate the diagnosis, arrhythmias can occur intermittently, especially in early stages of the
problem; it is thus difficult to detect them in a short time window, requiring instead continuous patient monitoring in
daily life [2].

Electrocardiogram (ECG) plays a central role in clinical diagnosis of CVDs, including arrhythmia [3–6]. The
ECG signal records the electrical activities of the heart, reflecting the physiological state of various parts of the organ.
Cardiologists can detect several CVDs or other anomalies by visually inspecting the waveforms from ECG recordings.

However, due to the intermittent nature of arrhythmias, the diagnosis in this case requires examination of large
amount of data, thus highlighting the importance of automated analysis techniques, that have shown to generally be
reliable and accurate in classification of patients affected by arrhythmia [7–16].

Such automated techniques can possibly be implemented in wearable devices [17–21], directly carried on the
patient’s body in order to acquire data over long periods of time, a crucial requirement for arrhythmia detection.

In particular, computer-aided multi-class classification of pathological beats is of paramount importance to perform
correct diagnosis as reported in recent works [13, 22–35] where several methods for automatic classification of ECG
signals have been used to this end.

A first set of algorithms can be grouped in the category of statistical machine learning (ML). Specific classification
algorithms that have been used in this category include support vector machine (SVM) [8, 28, 30–32, 36–38], k-
nearest neighbors (k-nn) [39], as well as powerful dynamical models such as Bayesian networks [40, 41] and hidden
Markov models [42, 43]. Signals are directly elaborated in time-domain, or specific features can be extracted, for
example in the frequency domain or through wavelets [44, 45].

A second category of algorithms is deep learning, using deep neural networks (DNNs) to classify input data through
a network previously trained on a similar set of inputs with associated output information, in the process known as
supervised learning [23, 24, 46–48], possibly combined with other techniques, like hybrid neuro-fuzzy systems [49–
51]. In particular, recurrent neural networks (RNNs) have shown to be especially effective for time-based data series,
being able to model temporal dependencies intrinsic in dynamically variable signals [18, 52, 53]. To this end, an RNN
contains special layers that can keep track of the previous input data at a given time, unlike other layers reacting to the
current state only, thus implementing a memory of the signal trend.

In this article we propose an RNN-based classification algorithm for arrhythmia operating directly on ECG data,
exploring the effectiveness and efficiency of several variations of the general RNN, in particular using different types
of layers implementing the network memory.

After designing and testing the effectiveness of the different networks, we then test its porting to an embedded
platform, namely the STM32 microcontroller architecture from ST, using a specific framework to port a pre-built
DNN to the embedded hardware, convert it to optimized code for the platform and evaluate its performance in terms
of resource usage.

The article is organized as follows. In Section 2 we describe the ECG dataset we used, the architecture of the RNNs
and the hardware and software used. Section 3 reports the experimental results on both the desktop and the embedded
platform. Finally some conclusions are drawn in Section 4.

2. Material and Methods

2.1. Dataset

The dataset used is the MIT-BIH arrhythmia database [54, 55], a publicly available database provided by PhysioNet
[56].

The MIT-BIH arrhythmia database contains 48 half-hour excerpts of two-channel ambulatory ECG recordings,
obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979. 23 recordings were
chosen at random from a set of 4000 24-hour ambulatory ECG recordings collected from a mixed population of
inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth Israel Hospital; the remaining 25 recordings
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were selected from the same set to include less common but clinically significant arrhythmias that would not be
well-represented in a small random sample.

2.2. RNN Architecture

The RNN used in this paper is depicted in Figure 1, and is based on architectures commonly used with time-based
sensor data [57, 58, 53].

lstm_input: InputLayer
input:

output:

[(None, 145, 1)]

[(None, 145, 1)]

lstm: LSTM
input:

output:

(None, 145, 1)

(None, 145, 32)

dropout: Dropout
input:

output:

(None, 145, 32)

(None, 145, 32)

lstm_1: LSTM
input:

output:

(None, 145, 32)

(None, 145, 32)

dropout_1: Dropout
input:

output:

(None, 145, 32)

(None, 145, 32)

lstm_2: LSTM
input:

output:

(None, 145, 32)

(None, 32)

dropout_2: Dropout
input:

output:

(None, 32)

(None, 32)

dense: Dense
input:

output:

(None, 32)

(None, 1)

Fig. 1. Network architecture using LSTM as RNN layers.

We used TensorFlow with Keras to build and run the network (see Section 2.3). The core of the network is repre-
sented by three cascaded RNN cells, each followed by a dropout layer randomly discarding part of the input in order
to reduce overfitting.

The last component is a fully connected (dense) layer with a sigmoid/softmax activation function for bi-
nary/multiclass classification respectively, performing the final classification of the input sample.

As part of the experiment, four kinds of RNN layers have been tested, all of them available in the software frame-
work, specifically:
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• Simple RNN: Basic RNN block where the output from previous timesteps is to be fed to next timestep.
• GRU: Gated Recurrent Unit, first proposed in Cho et al. [59].
• LSTM: Long Short-Term Memory, first proposed in Hochreiter & Schmidhuber [60].
• Bidirectional LSTM: A variant of LSTM that not only processes sequence from start to end, but also backwards.

2.3. Hardware and Software

For the desktop part, the RNNs were developed with TensorFlow 2.4.0 and Keras 2.4.0, on the Google Colaboratory
platform.

For the embedded part, we tested the RNNs on a Cloud-JAM L4 board [61] which, for its small form factor and
integrated Wi-Fi, can represent a valid prototyping base for an hypothetical wearable system. Moreover it allows
testing the RNN on a real hardware and evaluating its performance in terms of memory and execution time. The
classification of test data is done in real time by providing input data to the board from the test set via a serial
interface. This also ensures reproducibility of the results with respect to the other tests.

The board features an STM32L476RG microcontroller, with an ARM 32-bit Cortex-M4 CPU + FPU, frequency
up to 80 MHz, 1 MiB flash memory, 128 KiB RAM and about 3 mA of CPU current consumption at full speed.

The porting of the neural network to the STM32 architecture is made possible by a software framework from ST,
named “STM32Cube.AI” [62] (version 7.0.0), integrated in the STM32Cube IDE. The software is a complete solution
to import a TensorFlow/Keras model, test its compatibility and memory requirements and convert it to an optimized C
implementation for the target architecture. The generated network can then be evaluated with test input data, both on
the computer and the actual device, to get various metrics like execution time, number of specific hardware operations
and accuracy.

3. Experimental Results

3.1. Testing on Desktop

The experiments were made with 4 different variations of the RNN layers (see Section 2.2) with the following
parameters:

• size of the recurrent states: 32
• dropout rate: 0.2
• batch size: 64
• training epochs: 30

The MIT-BIH dataset was split as follows: 75% for traininig, 5% for validation during training, 20% for indepen-
dent testing of the resulting network, considering different subjects for each set. A window of 200 ms (145 samples)
containing the annotated beat was extracted for each ECG record, obtaining a tensor of n × 145 × 1 as input of the
RNNs, where n represents the number of observations for training, validation or testing. Thus, the input of the RNNs
is a time series divided into windows of a given duration (event-based).

A binary and a multiclass classification have been carried to detect abnormal from normal beats and to classify
different types of arrhythmias.

The binary classification has been performed grouping the original 15 classes of the MIT-BIH database in 2 classes,
dividing all the abnormal beat records (A) from the normal beat one (N). In this first case, the MIT-BIH dataset (47
subjects) was split in 34 subjects for traininig (75%), 3 subjects for validation (5%), 10 subjects for testing (20%) and
thus have a consistency of: 82080 observations for training (56670 for N and 25410 for A), 5558 observations for
validation (3485 for N and 2073 for A) and 21837 observations for testing (14884 for N and 6953 for A).

Following the Association for the Advancement of Medical Instrumentation (AAMI) recommended practice [63],
the MIT-BIH heartbeat types are grouped into 5 heartbeat classes: normal beat (N), supraventricular ectopic beat
(SVEB), ventricular ectopic beat (VEB), fusion (F) and unknown beat type (Q), as shown in Table 2. Therefore,
multiclass classification has been performed grouping the original 15 classes of the MIT-BIH database into 5 classes.
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In addition, as recommended by the AAMI, the records with paced beats were not considered, namely 102, 104, 107,
and 217. In this second case, the resulting 43 subjects of the MIT-BIH dataset were split in 31 subjects for traininig
(75%), 3 subjects for validation (5%), 9 subjects for testing (20%) and thus have a consistency of: 75256 observations
for training, 5422 observations for validation and 20036 observations for testing.

Table 1 shows the result of the binary classification, comparing the use of the four different kinds of RNN layers.
The table shows, for every experiment, the memory occupation of the resulting model, the number of trainable pa-
rameters, the classification accuracy of the training, validation and testing phases respectively, the corresponding loss
value for every phase and the inference time for the testing phase, averaged on a single input.

It can be seen from the results that the LSTM layer reaches the best accuracy, in particular an accuracy of 90.62%
for the independent testing set, at the cost of a bigger complexity in terms of memory and number of parameters.

Table 1. Comparison of different RNNs trained on the MIT-BIH arrhythmia database in terms of storage cost, accuracy, loss and inference time,
best results are displayed in bold - Binary classification - Performance on Desktop.

Model Storage cost
[KB]

Parameters
number

Accuracy Loss Inference time
[ms]

Train Val Test Train Val Test

RNN 114.062 5281 0.7208 0.6531 0.7871 0.5664 0.6248 0.4984 0.505
GRU 245.234 16065 0.9822 0.9518 0.8248 0.0563 0.1473 0.4418 0.846
LSTM 303.680 21025 0.9847 0.9291 0.9062 0.0540 0.2527 0.2686 1.374
BiLSTM 778.812 58433 0.9822 0.9225 0.8627 0.0574 0.2114 0.4832 1.653

Table 2. MIT-BIH labelling according the standard AAMI classes.

AAMI Classes MIT-BIH labels

Normal N N, L, R
Supraventricular Ectopic Beat SVEB e, j, A, a, J, S
Ventricular Ectopic Beat VEB V, E
Fusion F F
Unknown Beat Q /, f, Q

Table 3 shows the results obtained using the different architectures to solve the multiclass classification task. Also in
this case, the basic RNN model outperforms the other architectures in terms of memory storage, number of parameters
and inference time, while the RNN LSTM-based achieved the best accuracy.

3.2. Testing on the Embedded Platform STM32L4 Cloud-JAM L4

In order to implement a wearable sensor able to detect arrhythmia disease using RNNs, we ported the models
described in Table 1 and Table 3 on the embedded device Cloud-JAM L4, based on an STM32 microcontroller, which
requires a modest computational power and memory resources.

The porting of the neural networks to the STM32 architecture has been performed as follow. Once the model has
been trained to a satisfactory accuracy, it must be converted to an executable code that runs on the embedded device.
This can be a complex process, but STM32Cube IDE offers the STM32Cube.AI converter for this purpose, that
converts the TensorFlow/Keras model in C code and generates the firmware for the chosen platform. The generated
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Table 3. Comparison of different RNNs trained on the MIT-BIH arrhythmia database in terms of storage cost, accuracy and inference time, best
results are displayed in bold - Multiclass classification - Performance on Desktop.

Model Storage cost
[KB]

Parameters
number

Accuracy Loss Inference time
[ms]

Train Val Test Train Val Test

RNN 116.273 5413 0.9272 0.9495 0.8698 0.2722 0.1894 0.3220 0.821
GRU 245.984 16197 0.9642 0.9698 0.8664 0.1461 0.1027 0.4776 1.660
LSTM 305.602 21157 0.9609 0.9187 0.9019 0.1522 0.2086 0.3093 1.590
BiLSTM 782.305 58693 0.9713 0.9056 0.8888 0.1032 0.3759 0.3617 2.262

network can then be evaluated with test input data, both on the computer and the actual device, to get various metrics
like execution time, number of specific hardware operations and accuracy. Figure 2 resumes the described procedure.

Table 4 reports the results achieved by the implemented on board RNNs in terms of testing accuracy, MACC
(multiply-accumulate operation), ROM Bytes, RAM Bytes, and inference time, for binary and multiclass classification
respectively.

Design TensorFlow RNN architecture

Train TensorFlow model

Analyse the model
with STM32Cube.AI

Generate C code from model
with STM32Cube.AI

Build code &
Program board

Fig. 2. Process of integrating the RNN into the STM32L4 Cloud-JAM L4 board with STM32Cube.AI.
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Table 4. Details of the LSTM model on the MIT-BIH arrhythmia database analyzed with X-CUBE-AI - Binary classification - Performance on the
embedded platform STM32L4 Cloud-JAM L4.

Model Test
Accuracy

MACC ROM
Bytes

RAM
Bytes

Inference
time [ms]

Binary
Classification

RNN 0.7871 761003 21124 37960 149.792
GRU 0.8248 2269003 64260 38472 427.620

LSTM 0.9062 3057803 85252 38600 659.160
BiLSTM 0.8627 8491275 236036 75720 1640.590

Multiclass
Classification

RNN 0.8698 761200 21652 37976 148.536
GRU 0.8664 2269200 64788 38488 426.806

LSTM 0.9019 3058000 85780 38616 665.863
BiLSTM 0.8888 8491600 237076 75736 1642.146

4. Conclusions

In this work, several variations of RNNs have been applied to detect arrhythmia in ECG signals. The primary aim
was to perform a binary and a multiclass recognition, classifying both normal/abnormal beats and different types of
arrhythmia. The effectiveness, accuracy and capabilities of ECG arrhythmia detection through RNNs is demonstrated
and a comparisons with different RNN models have been carried out. Moreover, in order to perform the arrhythmia
detection directly on an embedded device, a porting of the implemented RNNs has been made in a low cost, low
power microcontroller, ensuring the required performance in terms of accuracy and low complexity. Both in binary
and multiclass classification, the basic RNN model outperforms the other architectures in terms of memory storage
(∼117 KB), number of parameters (∼5 k) and inference time (∼150 ms), while the RNN LSTM-based achieved the
best accuracy (∼90%).
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