46 research outputs found

    The design and multiplier-less realization of software radio receivers with reduced system delay

    Get PDF
    This paper studies the design and multiplier-less realization of a new software radio receiver (SRR) with reduced system delay. It employs low-delay finite-impulse response (FIR) and digital allpass filters to effectively reduce the system delay of the multistage decimators in SRRs. The optimal least-square and minimax designs of these low-delay FIR and allpass-based filters are formulated as a semidefinite programming (SDP) problem, which allows zero magnitude constraint at Ļ‰ = Ļ€ to be incorporated readily as additional linear matrix inequalities (LMIs). By implementing the sampling rate converter (SRC) using a variable digital filter (VDF) immediately after the integer decimators, the needs for an expensive programmable FIR filter in the traditional SRR is avoided. A new method for the optimal minimax design of this VDF-based SRC using SDP is also proposed and compared with traditional weight least squares method. Other implementation issues including the multiplier-less and digital signal processor (DSP) realizations of the SRR and the generation of the clock signal in the SRC are also studied. Design results show that the system delay and implementation complexities (especially in terms of high-speed variable multipliers) of the proposed architecture are considerably reduced as compared with conventional approaches. Ā© 2004 IEEE.published_or_final_versio

    Rapidly converging multichannel controllers for broadband noise and vibrations

    Get PDF
    Applications are given of a preconditioned adaptive algorithm for broadband multichannel active noise control. Based on state-space descriptions of the relevant transfer functions, the algorithm uses the inverse of the minimum-phase part of the secondary path in order to improve the speed of convergence. A further improvement of the convergence rate is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be essential for robust operation. The particular regularization technique preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm, such as for applications with rapidly changing disturbance spectra, applications with large parametric uncertainty, applications with control of time-varying acoustic energy density

    Adaptive multichannel control of time-varying broadband noise and vibrations

    Get PDF
    This paper presents results obtained from a number of applications in which a recent adaptive algorithm for broadband multichannel active noise control is used. The core of the algorithm uses the inverse of the minimum-phase part of the secondary path for improvement of the speed of convergence. A further improvement of the speed of convergence is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be necessary for robust operation. The regularization technique which is used preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm. For an application with rapidly changing disturbance spectra, the core algorithm was extended with an iterative affine projection scheme, leading to improved convergence rates as compared to the standard nomalized lms update rules. In another application, in which the influence of the parametric uncertainties was critical, the core algorithm was extended with low authority control loops operating at high sample rates. In addition, results of other applications are given, such as control of acoustic energy density and control of time-varying periodic and non-periodic vibrations

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Multistage adaptive filtering in a multirate digital signal processing system

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1993.Includes bibliographical references (leaves 101-104).by Jen Mei Chen.Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1993

    FRM-Based FIR filters with minimum coefficient sensitivities

    Get PDF
    A method for optimizing FRM-based FIR filters with optimum coefficient sensitivity is presented. This technique can be used in conjunction with nonlinear optimization techniques to design very sharp filters that do not only have very sparse coefficient values but also very low coefficient sensitivity

    Switched-current filtering systems: design, synthesis and software development

    Get PDF
    Allpass filters are commonly employed in many applications to perform group delay equalisation in the passband. They are non-minimum phase by definition and are characterised by poles and zeros in mirror-image symmetry. SI allpass filters of both cascade biquad and bilinear-LDI ladder types have been in existence. These were implemented using Euler based integrators. Cascade biquads are known to have highly sensitive amplitude responses and Euler integrators suffer from excess phase. The equalisers that are proposed here are based on bilinear integrators instead of Euler ones. Derivation of these equalisers can proceed from either the s-domain, or directly from the z-domain, where a prototype is synthesised using the respective continued-fractions expansions, and simulated using standard matrix methods. The amplitude response of the bilinear allpass filter is shown to be completely insensitive to deviations in the reactive ladder section. Simulations of sensitivities and non-ideal responses reveal the advantages and disadvantages of the various structures. Existing DI multirate filters have to date been implemented as direct-form FIR and IIR polyphase structures, or as simple cascade biquad or ladder structures with non-optimum settling times. FIR structures require a large number of impulse coefficients to realise highly selective responses. Even in the case of linear phase response with symmetric impulse coefficients, when the number of coefficients can be halved, significant overheads can be incurred by additional multiplexing circuitry. Direct-form IIR structures are simple but are known to be sensitive to coefficient deviations and structures with non-optimum settling times operate entirely at the higher clock frequency. The novel SI decimators and interpolators proposed are based on low sensitivity ladder structures coupled with FIR polyphase networks. They operate entirely at the lower clock frequency which maximises the time available for the memory cells to settle. Two different coupling architectures with different advantages and disadvantages are studied
    corecore