
Multistage Adaptive Filtering in

a Multirate Digital Signal Processing System

by

Jen Mei Chen

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science
and

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

@Jen Mei Chen, 1993. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature redacted
Author :...........: ..-.

Department of Electrical Engineering and Computer Science

SI k May 20, 1993
Signature redacted

Certified by

Professor George Verghese
Department of Electrical Engineering

MIT Thesis Supervisor

Signature redacted
C ertified by e

Dr. Ganesh Rajan
tr ix Laboratories

Cqoep,-fng pa T s Supervisor

Accepted by~ Signature redactedAcepe b
ARCHIVES Professor Campbell e !e

MASSACHUSETTS INSTITUTECharman, Departmental Committee on Graduate Students
OF T;:r.Wmm fsy

rJUL 09 1993
LIBRARIES

Multistage Adaptive Filtering in a Multirate Digital Signal

Processing System

by

Jen Mei Chen

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1993, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science

and
Master of Science

Abstract

Recent years have seen the increasing application of multirate digital signal process-
ing in the adaptive filtering context, leading to improvement both in computational
complexity and in convergence speed. This thesis proposes a modification to the
current multirate, adaptive filter structure, whereby we decompose the adaptive fil-
ter into smaller ones and insert each filter in between successive decimation stages.
We explore this new multistage, multirate adaptive filter in the context of adaptive
equalization of a downsampled, narrow-band signal.

Two types of filter-design techniques are studied: 1) the classic least-squares
method, and 2) the frequency-domain block least mean square (FBLMS) algorithm.
The first algorithm is in the time domain and is run non-adaptively while the second
one is adaptive and in the frequency domain. With the aid of software simulations,
we compare the multistage, multirate filter with the single-stage, multirate structure
based on two performance criteria: 1) the residual error, and 2) the computational
complexities of the filter design and operation. Our study shows that for our particu-
lar model of the system, the multistage, multirate scheme shows no clear improvement
over the single-stage scheme for the non-adaptive least-squares method. For the adap-
tive FBLMS filter, the multistage structure demonstrates significant computational
savings over the single-stage filter, but at the cost of an increased residual error at
convergence.

Thesis Supervisor: Professor George Verghese
Title: Professor of Electrical Engineering

Thesis Supervisor: Dr. Ganesh Rajan
Title: Manager of DSP Group, Tektronix Laboratories

Acknowledgments

While waiting for my thesis to print out, I could easily recall many individuals I met

over the years who have enriched my life in some ways. I would like to acknowledge

and thank them here.

First, I would like to express my sincere gratitude to my thesis advisor, Profes-

sor George Verghese, for his careful reading of my thesis and for his many helpful

comments which have improved the writing. Furthermore, his friendliness and acces-

sibility is very much appreciated.

The work of this thesis was carried out in the Digital Signal Processing Group of

Tektronix Laboratories in Beaverton, OR. I was fortunate to work with many knowl-

edgeable and energetic people who had made my stay there very enjoyable. I would

like to thank my Tektronix thesis advisor, Dr. Ganesh Rajan, for his enthusiastic

support throughout my work on the thesis, even up to the very last minute. I would

like to acknowledge Ben Ward for getting my feet wet on the thesis. I first learned

about adaptive filtering and multirate DSP during my work with him on the cali-

bration project for the Test & Measurement Division. In addition, Ben's help with

computer-related questions are appreciated, too. I also wish to thank Ganesh and

Ben for reading the electronic drafts of my thesis and Gail for express mailing the

corrected versions back to me. (Thank God for emails and express mails!) Many spe-

cial thanks also go to Dr. V. S. Somayazulu for helping me demystify many concepts

related to my thesis and for his general guidance throughout my work. The discus-

sions with Dr. Ajay Luthra were also valuable and appreciated. My interactions with

the other individuals in the group-Craig, Dean, Norm, Mike, and Regis- were also

rewarding. Finally, I cannot express enough heart-felt thanks to Gail Floyd who in

many little ways had made my days at the Lab more pleasant.

Long distance communication with other individuals also contributed to my thesis.

My email correspondences with Dr. Vinay Sathe and Professor John Shynk at the

University of California, Santa Barbara have helped clarify some of my questions.

I especially appreciate Professor Shynk's generous sharing of his knowledge, even

though he has not met me before, by replying in great detail to my questions about

the frequency-domain adaption.

I wish to acknowledge Mr. Vic Hansen of the Test & Measurement Division of

Tektronix, Inc. for his financial support of my work and for presenting me with the

calibration problem in the summer that had led to the development of this thesis. I

also like to thank my advisors from my two previous VI-A assignments, Mr. Mike

Cronk & the late Mr. Todd Mount and Dr. Kevin Smith & Dr. Tom Hawkins, for

working with me and teaching me.

The three summers and one fall that I spent in Oregon would not have been as

enjoyable without the friendship of some of the people I met there. I was fortunate

enough to be "adopted" by two families- Mr. & Mrs. Ky Bui and Mr. Tran Thong &

Mrs. Thuy Nguyen- who went out of their ways to welcome me to the life in Oregon.

Their willingness to lend a hand, their friendliness, and their delicious cookings had

made my stay more pleasant. Mrs. Marty Peiffer, the former VI-A coordinator of

Tektronix, had also eased my transition to the new living environment. And then

there are those summer interns who made living "all the way out there" much more

fun. Thanks to the past and present VI-A interns who had made it possible: Kathy,

Johnson, Garrison, Chris, Cecilia, Phil, Craig, Andy & Andy, Dan & Dan, Frances,

Claude, David, and Peter.

I also wish to thank the many good friends who have stood (or stuck) by me

during my last five years at MIT. To the "gang"-Tony, Ona, Mona, and Kiet-you

guys are still great since the days we all first met at our freshman R/O picnic. I'll

never forget all those birthday outings! And thanks for all those "Keep it up!" zwrites

and emails throughout the writing of my thesis. Then there is one special friend who

you can always count on. Thanks to Sujata-"Mama Su"-for always being there to

listen and for making those long nights of problem sets so much fun. (Let's go out in

the rain at 3 a.m. to search for ice cream!) A special thank to Jeff for his friendship,

encouragement, and help with Latex for the thesis. And long live the VSA! What a

a bunch of fun pranksters you all are! Thanks for your friendship and for all those

great Thanksgiving and Senior dinners. (And I still couldn't believe what I did on

stage!) And to the many other friends who in small ways make my days at the 'tute

more bearable and who remind me that after all of this, times shared with friends are

the memories that will last the longest and matter the most.

Much appreciation also goes to David for his care and support, especially during

the last few weeks of the writing of my thesis. I would like to thank him for proof

reading my thesis and helping me with Latex, and also for cooking and bringing me

food while I typed away at the computer cluster.

I also appreciate my brother, Luong, for staying up until 4 a.m. with me on the

night before the due date to help me with the graphs. I know my other siblings- Hao,

An, Mei-Yi, and Alex-would have done likewise if they were around here. Thanks you

all for making growing up in a big family so much fun. And yes, thanks to Grandma

too for all the many wonderful tales of the past that have helped me to understand

my roots. But my deepest gratitude and biggest hug go to mom and dad for their

unfailing love, nurture, encouragement, and support throughout my life. Thanks for

praying for me every single night and for always being there to listen and care. This

thesis is dedicated to you both!

Above all, my humble gratitude to the Almighty and loving God who has guided

and watched over me through each moment of my life.

I would like to acknowledge and thank the American Association of University

Women (AAUW) Foundation for partially funding my Master's studies through the

Selected Profession Fellowship (1992-1993).

Contents

1 Introduction

1.1 The Big Picture .

1.2 Motivation and Scope. .

2 Background

2.1 Adaptive Filtering .

2.1.1 Introduction .

2.1.2 The Least Squares Filter

2.1.3 Computational Complexity

2.1.4 The Minimum Mean Square Error Method

2.1.5 Least Mean Square Algorithm

2.1.6 Frequency-Domain Adaptation

2.1.7 Frequency-Domain Block Least Mean Squares (FBLMS)

2.1.8 Summary .

2.2 Multirate Digital Signal Processing

2.2.1 Introduction .

2.2.2 Review of Decimation

2.2.3 Multistage Decimation

Multistage, Multirate Adaptive Filter

Introduction .

The Multistage, Multirate Adaptive Filter

Basis for Comparison .

4

8

8

9

14

. . . 14

. . . 14

. . . 19

. . . 23

. . . 24

27

31

. . . 34

. . . 41

. . . 42

42

42

44

52

52

54

57

3 The

3.1

3.2

3.3

3.4 Motivation for a Simulation Study . 59

3.5 A Model System for Simulation Studies 60

3.5.1 Introduction . 60

3.5.2 The Distortion Channel . 62

3.5.3 The Desired Response . 65

3.5.4 The Delay Element . 65

3.5.5 The Decimation Filters . 67

3.6 The Least-Squares Filter . 71

3.6.1 Computational Complexity of the Least-Squares Filter 72

3.6.2 Results of Time-Domain Least Squares 74

3.7 The FBLMS Filter . 82

3.7.1 The Setup . 82

3.7.2 Computational Complexity of the FBLMS Filter 83

3.7.3 Results of FBLMS with Gradient Constraint 86

3.8 The Modified FBLMS Filter . 93

4 Conclusion 97

4.1 Summary . 97

4.2 Discussion and Suggestions for Future Research 99

5

List of Figures

1-1 Adaptive filtering in subbands .. .

1-2 Block diagram of a channel equalization in a multirate environment. .

2-1 Structure of a non-adaptive FIR filter.

2-2 Structure of an adaptive FIR filter.

2-3 Channel equalization with an adaptive filtering.

2-4 System identification with adaptive filtering.

2-5 Structure of the adaptive FIR filter.

2-6 Least squares as an orthogonal projection.

2-7 Structure of Overlap-Save Frequency-Domain Block LMS Filter. . . .

2-8 Block diagram for decimation by an integer factor M.

2-9 Single stage decimation and multistage decimation.

2-10 Structure of (a) single stage and (2) multistage decimation for factor

of 10.......

2-11 Example of filters for (a) single stage and (b), (c) multistage decimation.

3-1 Block diagram of of the single-stage decimation, single-stage adaptive

filter .

3-2 Block diagram equivalence for the decimator.

3-3 Block diagram of the two-stage decimation, two-stage adaptive filter.

3-4 Three different system configurations for study.

3-5 Characteristics of the distortion channel

3-6 Characteristics of the desired response.

3-7 Characteristics of the decimation-by-10 filter.

6

3-8 Characteristics of the decimation-by-5 filter. 69

3-9 Characteristics of the decimation-by-2 filter. 70

3-10 Comparison of three systems using the least-squares filter. 75

3-11 Study of decomposition of the two-stage equalizer using the least-

squares m ethod. 76

3-12 EFL for the different decompositions of the two-stage equalizer. . . . 76

3-13 Magnitude responses of the two-stage equalizer with 11 taps in the first

stage........... 78

3-14 Magnitude responses of the two-stage equalizer with 91 taps in the first

stage............. 80

3-15 LSE versus taps in the second-stage equalizer. 81

3-16 Three setups for simulation study. 87

3-17 Summary of the simulation results for the FBLMS algorithm. 88

3-18 Result of single-stage adaptive FBLMS filter with 128 taps. 90

3-19 Result of stage 1 in two-stage adaptive FBLMS filters with 64 taps each. 91

3-20 Result of stage 2 in two-stage adaptive FBLMS filters with 64 taps each. 92

3-21 Block diagram of adaptive filtering in subbands. 96

7

Chapter 1

Introduction

1.1 The Big Picture

Two of the prevalent problems confronting telecommunications today are (1) the

imperfection and time-varying nature of the channel in which it takes place, and (2)

the limitations of the hardware speed and storage. In recent years, many techniques

in digital signal processing (DSP) have been developed to solve these problems. This

thesis will study two of these techniques, digital adaptive filtering and multirate DSP.

Before describing the thesis problem, we will first place the subject matter in a

broader context. The first problem mentioned above appears where the properties of

the communication channel are unknown, where it is corrupted with noise or nonlinear

distortion, or is time-varying due to some physical phenomena. In this situation, any

signal sent through the channel will be distorted unfavorably and the received signal

is no longer the message intended by the transmitter.

An example of this problem comes from our common experience of watching broad-

cast television programs where annoying "ghost" images usually appear. This occurs

because the broadcast signal does not reach our television receptor directly but may

be reflected from interfering buildings or trees in its path. This reflection from mul-

tipath is a delayed and attenuated version of the original signal which shows up as

a ghost image on the television set. Thus, it is desirable to cancel the ghost in or-

der to improve the picture quality, and it is easy to do so in the digital domain as

8

will be possible with the advent of digital televisions and High Definition Television

(HDTV). Other examples of this multipath problem appears in mobile and cellular

communications, where the transmitted signal is speech. The problem is even more

difficult here since the receiver is usually not fixed, but moving. To correct these

problems, we usually use digital adaptive filters with coefficients that can be adjusted

as more information is acquired about the unknown statistics of the channel and as

the channel varies in time. This is necessary to perform the echo or noise cancellation,

for example.

Multirate digital signal processing is as prevalent as adaptive filtering. It appears

wherever there is a need for varying the sampling rate of a signal, by decimation or

interpolation, from point to point in a system or between systems. Such alteration

of the sampling rate often makes the processing of the signal more efficient since the

the sampling rates at different points can be made small as possible. An example of

the use of multirate DSP is in subband coding of speech and image signals. Since

the human auditory and visual systems are more sensitive to certain frequencies

than others, coding the different frequency bands non-uniformly can greatly reduce

the number of bits for transmission or storage. Furthermore, the subbands can be

downsampled to reduce the rate of the system before the data are transmitted or

stored and subsequently reconstructed by interpolation.

In summary, changing signal environments call for adaptive filtering while physical

or hardware limitations require multirate digital signal processing. These problems

are becoming more pronounced as telecommunications become increasingly sophisti-

cated. Although we have only mentioned applications of adaptive filtering and mul-

tirate DSP in the context of communications, these two fields are of numerous use in

other interesting areas as well, ranging from biomedical applications to seismology.

1.2 Motivation and Scope

In the previous section, we show some common examples where adaptive filtering

and multirate digital signal processing techniques have been utilized. In this thesis

9

we would like to combine these two fields in the problem of adaptive equalization of

a narrow band signal, and study a new adaptive filter structure that we propose. In

particular, we would like to explore the feasibility of performing adaptive equalization

in multiple stages on a narrow band signal or a signal that has been processed by a

multirate system. We call this filter structre the multistage, multirate adaptive filter.

Before we describe the problem, let's look at two practical applications where we find

adaptive filtering and multirate DSP appearing together.

Research in adaptive filtering and multirate digital signal processing spans several

decades, but only within the last five years or so have these two fields merged in many

useful applications. A prime example of this union is adaptive filtering in subbands,

as illustrated in Figure 1-1 [37]. In this scenario, a bank of parallel bandpass filters,

called the analysis filter bank, splits the distorted signal into adjacent frequency bands.

Each subband is then downsampled and corrected individually by an adaptive filter.

To reconstruct the corrected signal, we upsample the subbands by the same factor

used in downsampling, filter them with a synthesis filter bank consisting of parallel

bandpass filters, and recombine the results.

A practical application of this scheme, which has been under continual research in

recent years, is acoustic echo cancellation in teleconferencing, where the goal of the

adaptive filter is to identify the unknown acoustics of the conference room or track

its time-varying properties that result from the movement of the people, for example.

[16], [17], [18], [24], [42], [37]. In practice, it is most desirable to perform the echo

cancellation in real time, but correcting the full spectrum typically would require a

single adaptive filter with a very high order, perhaps in the thousands, which requires

a tremendous amount of computation and a long time to converge. By doing echo

cancellation in subbands, we allow multiple smaller adaptive filters to do the job of

one single filter. Thus, unlike the full-band case, subband filtering can greatly reduce

computational complexity because the signal is downsampled, and it usually improves

the convergence speed of the adaptive filter as well, because each subband is filtered

separately [18].

Another example of the merging of those two areas is channel equalization for a

10

F DO(z) (z I gOz)

~Inpu)t siz output

/

~~ W M (z)- z) I-1(z)

Figure 1-1: Adaptive filtering in subbands.

x(t),, Analog A/I) x[n] Digital
Anti-Aliasing Converter Anti-Aliasing

Filter Filter

ejwo

0w w 0 w 0 w 0 W

Figure 1-2: Block diagram of a channel equalization in a multirate environment.

narrow band signal as shown in Figure 1-2. The channel in this example may be an

analog anti-aliasing filter that is placed before an A/D converter. This analog filter

has ripple in the passband that is bigger than desired, and has nonlinear phase, both

of which will produce distortion. We want to correct this distortion but only over

a selected narrow band. Since the selected distortion is confined to a narrow band

of the spectrum, we can allow it to run at a lower sampling rate by filtering and

decimating it. If the selected narrow band's center frequency, wO, is not at zero, we

must demodulate it to DC first before decimating it, as shown in the figure.

Equalization will be done adaptively because the analog filter is not known initially

or it may be time-varying. Furthermore, the subband we want to correct will also

differ according to selection. Not only does the analog anti-aliasing filter deviate

11

from specifications from time to time, but the center frequency of the band to be

filtered also varies from case to case. The decimation factor also changes according

to the width of the selected band. Occurence of any of these factors will require the

equalization filter to update its coefficients again.

We use this channel equalization system to study the multistage, multirate filter.

To simplify the problem, we will only deal with the correction of the narrow band

distortion centered at DC, which can be thought of as a subset of the problem of

adaptive filtering in subbands described earlier. The narrow band corresponds to

the subband centered at zero frequency, and we will deal only with the analysis and

adaptive filtering part, and not the synthesis or reconstruction part.

Based on the fact that multistage decimation leads to significant computational

savings, as we shall see in Section 2.2, here we will also downsample the signal in

multiple stages and equalize it with multiple adaptive filters, each inserted in between

successive decimation stages. The length of the single-stage equalizer must be long

in order to justify its decomposition in stages, which is the case when we have to

correct very bad channel distortions or similarly to finely correct moderate ones. By

performing the correction in multiple stages, each of the equalizer can be smaller and

less stringent, whereby the filter at each successive stage corrects whatever distortion

that did not get corrected in the previous stages.

As in the multistage decimation scenario, multistage equalization perhaps may

perhaps simplify the design of the adaptive filter, lower its total length, and reduce

the number of multiplications per second for a given equalization error. In practice,

however, multistage decimation and multistage equalization will not go hand-in-hand

in all instances. In the extreme case, for example, if the decimation factor is very high,

meaning that we are looking at a very narrow band, the magnitude response of the

distorted signal will approximate a straight line. The equalizer then needs to be only

one tap long to shift this distortion to the right level of correction. Thus, while the

multistage structure may be helpful for decimation, it is not necessary for equalization

if the required equalizers are short. In this study, we consider a situation, which exists

in some applications, where a signal after being decimated with a reasonably high

12

factor still has a fairly large distortion. This setting allows for a sensible study of

multistage equalization in a multistage, multirate environment.

To address the above questions, we formulate models of the multistage, multirate

filter and the single-stage structure and study them for two filter-design techniques:

1) the classic least-squares method and 2) the frequency-domain block least mean

square (FBLMS) algorithm. While the first method is in the time-domain and is

run nonadaptively, the second algorithm is adaptive and in the frequency domain.

The background for these algorithms is discussed in Section 2.1. Due to the some

inherent difficulties in rigorous analysis of the multistage, multirate filter as discussed

in Section 3.4, we will approach the study of the proposed structure by using solft-

ware simulations with a representative example. The models that we develop for the

multistage and single-stage filters are discussed in Section 3.5, and the results of the

simulations for the least squares method and the FBLMS algorithm are included in

Sections 3.6 and 3.7, respectively. What we present in this thesis is not a comprehen-

sive study of the proposed filter structure, but rather a possible approach to explore

the multistage, multirate adaptive filter.

13

Chapter 2

Background

2.1 Adaptive Filtering

2.1.1 Introduction

The basis of adaptive filters arises from the non-adaptive data-fitting problem as

shown in Figure 2-1. The goal here is to design a filter h[n] that processes an

input x[n] and produces some output y[n] that must match as closely as possible

to a given desired output d[n]. The difference between the filter output and the

desired response is the error, e[n] = d[n] - y[n]. The most commonly-used error

criterion involves a quadratic function of the error. deterministic or stochastic, and

the optimum filter for that error criterion is the deterministic least-squares or the

probabilistic minimum-square error filter, respectively. To obtain the "optimum"

solution for this nonadaptive filter, we must have full knowledge of the deterministic

input or the statistical properties of the stochastic input. The solution involves solving

a system of equation by some matrix inversion.

Figure 2-2 depicts the adaptive filtering problem. The difference between this

adaptive structure and the nonadaptive one is that the error here is fed back into

an algorithm that minimizes some function of the error to obtain the optimum filter

coefficients. There are generally three situations where finding the filter that best

performs the data fitting must be done adaptively. The first is when, despite a

14

known input signal or one with specificied statistics, we do not want to perform

the matrix inversion because it may lead to a computational overload and numerical

instability. Therefore, we resort to an iterative or adaptive procedure to solve for the

optimum solution. The second reason for finding the filter adaptively arises when the

statistical properties of the stochastic input are unknown. We must then estimate

them adaptively, based on the incoming input samples, in order to find the optimum

solution. In both cases, the filter's coefficients will vary, but only during the time of

adaptation, and they remain fixed after the adaptation is over. In the third situation,

the statistics of the input vary with time so that even after the optimum solution is

found, the filter must adapt again whenever the signal environment changes.

x[n] , Filter y[n]

h[n]

e[n]

d[n] +

Figure 2-1: Structure of a non-adaptive FIR filter.

x[n] , Filter 7Z y~n]

h[n]
e[n]

d[n] +

Figure 2-2: Structure of an adaptive FIR filter.

Two common system configurations that include adaptive filters: (1) channel

equalization, and (2) system identification. In channel equalization, we have a channel

that causes some undesirable distortion of the signal that passes through it. Examples

15

of such channels are cables or the atmosphere, where a signal that travels through it is

being degraded. The objective here is to design an adaptive filter that estimates the

unknown statistics of the channel and undoes-or equalizes-the distortion caused by

the channel. Such a filter is called an equalizer. The situation is illustrated in Figure

2-3. In system identification, as depicted in Figure 2-4, the task of the adaptive

filter is to identify the system function of some unknown system. An example of this

is in echo cancellation in teleconferencing, where the adaptive filter tries to find the

unknown acoustics of the room and/or track its changing acoustic properties over

time.

x[n] r Distortion Filter y[n]

Channel h[n]

e[n]

d[n] +

Figure 2-3: Channel equalization with an adaptive filtering.

Filter y[n]

h[n]

x~n] e[n]

Unknown d[n]
System

Figure 2-4: System identification with adaptive filtering.

Like non-adaptive filters, adaptive filters also consist of two types: IIR (infinite

impulse response) and FIR (finite impulse response). We choose to study the FIR

16

filter in this thesis because it has several attractive properties that the IIR filters lack,

and it is more widely used in practice. The reasons will be made clear once we have

an understanding of adaptive filters.

The FIR adaptive filter consists of tapped delays and a set of adjustable coeffi-

cients, {h,}, that are updated by a controlling algorithm at each iteration or as the

filter input, x[n], or its statistics vary over time. See Figure 2-5. The output of

the adaptive filter, y[n], is compared to a given desired output, d[n]. The difference

between these two signals is the error e[n] = d[n] - y[n]. The goal is to minimize

some function f(e) of the error:

min{f(e)} (2.1)

to obtain the optimum set of filter coefficients, h*[n].

The following sections will discuss different ways to obtain the solution to the

adaptive filter. The optimum solution for the general stochastic signal environment

was first developed by Norbert Wiener in the 1940's, and it is commonly known as the

Wiener filter. However, its origins extend back several centuries to the well-known

deterministic data-fitting by least-squares, first explored by Gauss and Legendre.

Therefore, in order to have a proper understanding of the subject matter, we will

start from the foundation by reviewing the least-squares filter from both the calculus

and linear algebra points of view. Following this, we will extend the deterministic

solution to the probabilistic one to obtain the Wiener filter. In both the deterministic

and stochastic cases, the optimum solution can be obtained by solving a system of

equations. We next delve into the problem of finding the Wiener solution by an

adaptive or recursive means. This will lead us to focus on the least-mean squares

(LMS) algorithm, which is one of the simplest and most widely used variations of the

gradient descent method for solving the Wiener solution recursively. Although the

LMS algorithm is not used explicitly in this thesis, it is nevertheles the basis of many

frequency-domain adaptive algorithms. The frequency-domain block LMS filter is the

specific frequency-domain algorithm used in this thesis and will be discussed in the

last section on adaptive filtering.

17

e a

e eq
U\

Fiue25Ntutr fteaatv I itr

18

2.1.2 The Least Squares Filter

Given the filter structure shown in Figure 2-5, we want to minimize some function

of the error e[n] = d[n] - y[n] to obtain an optimum set of filter weights h[n]. Let's

examine the simplest case where the input to the filter is deterministic, in which case

the goal is to find a filter h[n] such that its output, y[n] = x[n] * h[n], best matches

the desired response d[n]. The classic method of least squares is commonly employed

to solve this problem, where we want to minimize the sum of error squares:

i2

= E e2[n] (2.2)

within some time window limited by i1 and i2 .

First, we want to write a system of equations that describes just the linear com-

biner part of the filter structure. We can see that for an N-tap filter, the output y[n]

at time n is the convolution of the N filter coefficients h[n] with the last N input

samples of x[n]:

y[n] = x[n] * h[n] (2.3)

or
N-1

y[n] = E h[i]x[n - i]. (2.4)
i=O

Expanding the convolution equation out for L outputs (where L > N) and assum-

ing that x[n] = 0 for n < 0, we obtain a system of equations in (2.5). Note that the

19

time index n for each time variable is subscripted here for compactness in notation.

Yo

Y1

Y2

YN-1

YL-1

= xoho

= x 1 ho

= X2 ho

+

+

+

0

xoh1

x 1h1

+

+

+

0

0

0

(2.5)
= XN-lho + XN-2h + -- + xohN-1

= XL-lho + XL-2h + --- + XL-NhN-1

Let's assume that our input x[n] is L long and our time window of interest in

(2.2) has index limits i1 = 0 to i 2 = L - 1. We next cast the system of equations in

(2.5) into vector notation and obtain:

Yo

Y1

Y2

YN-1

YL-1

xo

X1

X2

XN-1

0

xo

X1N

XN-2

0

0

xo

XN-3

XL-1 XL-2 XL-3

0

0

0

... xO

... XLN

hN-1

(2.6)

or

y=Xh (2.7)

where y and h are vectors and X a matrix as shown in (2.6) above.

We want to find a filter h that would match the filter output y = Xh with a

desired response vector d of the same length:

Xh = d. (2.8)

However, from (2.6) we can see that there are more equations than unknowns

20

(L > N) so that the system of equations (2.8) is typically inconsistent and has no

exact solutions. Instead, we want to find an h that would minimize a measure of the

error vector, e = d - Xh. A convenient way to define this measure is the sum of

squares:
L-1

6= E e2[n], (2.9)
n=O

which is the error criterion of the least-squares method.

Substituting d[n] - y[n] for e[n] in (2.9), we obtain:

L-1

S= Z (d[n] - y[n]) 2 , (2.10)
n=0

which becomes
L-1 N-1

= Z (d[n] - E h[i]x[n - i])2 , (2.11)
n=O i=0

by replacing y[n] with the convolution sum in (2.4).

Since the error function is quadratic and always positive, it is guaranteed to have

a unique global minimum. The set of filter coeffients, {h0 , hi, ..., hN-1} that would

give this unique minimum can be found by solving the following set of equations:

= 0, i = 0, 1,..., N - 1. (2.12)
Ohi

We can also look at the least-squares filter from the linear algebra point of view

[36]. Since Xh = d is inconsistent, the desired vector d cannot be expressed as a

linear combination of the columns of the matrix X; it lies outside the column space,

or the range, of X. The error here is the distance of d from y, which lies in the

range of X. Minimizing the error corresponds to finding a solution h in the range

(or the column space) of X such that y = Xh has the closest distance to d. This

is the same as finding the projection of the desired vector d onto the column space

of the matrix X, and the perpendicular line from this projection corresponds to the

minimum error. Figure 2-6 illustrates this with a simple example where the input

length is L = 3 and the filter length is N = 2.

Thus, in the least-squares method, minimizing the sum of error squares can be

21

d e=d-y

column I of X

column
space of X

y=Xh

column 2 of X

Figure 2-6: Least squares as an orthogonal projection.

equivalently viewed as minimizing the length of the error vector e:

L-1

min(E) = min(E e2 [n]) = min(eT e) . (2.13)
n=O

Using linear algebra, we can solve for the system of equations Xh = d - e by

multiplying both sides of this equation by the transpose of X, denoted by XT, and

using the orthogonality to recognize that XTe = 0, so that

XT Xh = XTd . (2.14)

The optimum filter coefficients h* can now be found through a matrix inversion

h = (XTX)-IXT d . (2.15)

If the columns of X are linearly independent, then the resulting matrix XTX is in-

vertible. Equations in (2.15) are sometimes called the deterministic normal equations

since the principle of orthogonality is exploited here.

22

2.1.3 Computational Complexity

The least squares filter requires solving the following matrix equations for the filter

weights vector h:

h = (XTX)-,(XT d) (2.16)

or equivalently

(2.17)

where A = XT X and b = XTd.

Let the following denotes the lengths of the vectors of interest here:

e Nh : length of filter vector h

* N, : length of input vector x

* Nd : length of desired response vector d

The matrix X is of size Nh x N, which makes A of size Nh x Nh. Each entry in

A takes N, multiplications so forming the matrix A takes a total of

NNh (2.18)

multiplications.

To invert the matrix A, assuming using Gaussian elimination, would take approx-

imately

(2.19)

multiplications.

The vector b is Nh x 1 long and each entry takes N. multiplications which gives

a total number of multiplications for b to be

NxNh . (2.20)

23

N 3

Performing the products A-'b takes

N' (2.21)

mutiplications.

Thus, the total number of multiplications required in the time-domain least squares

solution is the sum of Equations above is

N3 + N,2(N_ + 1) + NhNx (2.22)

From (3.25) above, we can see the length of the filter figures highly in the com-

putational complexity equation.

2.1.4 The Minimum Mean Square Error Method

The least squares approach to finding the filter coefficients, as discussed previously,

is effective only when the filter input is deterministic. If the input to the filter is

random, we must find another solution that will take into account the statistical

properties of the filter input. This method, also based on the deterministic method

of least squares, is known as the minimum mean squared error, or MMSE, method

and the resulting solution is often called the Wiener filter[1],[21], [44].

In the MMSE scheme, we try to minimize the ensemble average, or the expected

value, of the squared error:

min{E(e2 [n])} (2.23)

Let us formulate the equations for the Wiener solution. First, assume that the

filter input x[n] and a desired response d[n] are real, discrete-time stochastic processes

that are wide-sense stationary. The N-element vector of filter weights we want to

find is

h = [ho h, ... hN-1T (2.24)

24

At each time n, let us also form a vector x, of length n as follows:

xn = [xn xn_1 ... Xn-N+1 TI (2.25)

where each sample x[n] is subscripted here for compactness in notation.

Furthermore, the statistics of the random input and the desired response are

assumed to be known. In particular, we are interested in the autocorrelation matrix

R of the input xn, defined as

R = E(xnx) (2.26)

and the cross correlation vector of the desired signal d[n] and input vector xn:

p = E(d[n]xn) (2.27)

The elements of the autocorrelation matrix R and the cross-correlation vector p

above are defined by these functions:

Autocorrelation : r,.,(k) = E(x[n]x[n + k])

Cross-correlation : rdx(k) = E(d[n]x[n + k])

(2.28)

(2.29)

Note that these correlation functions apply only to wide-sense stationary processes,

where the correlation functions depend only on the difference, or lag, between the

sample times n and n + k, which is k.

For x a wide-sense stationary process, R becomes

r.(0)

r, 1)

r.(N - 1)

r.,(1)

(0)

r,,(N - 2)

... r.,(N - 1)

... r,,(N - 2)

.. . r,,(O)

where each element, r.,(k), is as given in (2.28). The special properties of the matrix

'Note: For x complex, the Hermitian transpose xH replaces the real transpose in (2.26).

25

(2.30)

R are that it is square, symmetric, and Toeplitz (the terms on each diagonal are

equal), which makes it easy to invert if the matrix is not singular.

For x and d stationary, the autocorrelation vector p becomes

rd1,(0)

P rd, (2.31)

rd(N - 1)

where rdw(k) is as given in (2.29).

Similar to the least-squares filter, here we also try to match the filter output y[n]

with the desired response d[n], but these signals now have stochastic models. There-

fore, we want to minimize, not the sum of the squared errors as in the deterministic

least-squares filter, but the mean-square error (MSE) given by

MSE = E(e2 [n]) = E((d[n] - y[n]) 2) . (2.32)

The expanded form of the MSE is

MSE = E(d 2 [n] - 2h Td[n]xn + hTxnxTh) (2.33)

which becomes

MSE = E(d2 [n]) - 2hT E(d[n]xn) + hT E(xnxT)h. (2.34)

Substituting R and p from (2.26) and (2.27) above, we obtain the following form

for the MSE:

MSE = o + 2hTp + h Rh (2.35)

where o- = E(d2 [n]).

Analogous to the least-squares method, the goal here is to find a vector of filter

weights, h*, that is optimum but in a probabilistic mean-square sense. This is achieved

26

by minimizing the MSE in (2.35) with respect to h by solving

=(MSE) = 2Rh - 2p = 0 (2.36)
Oh

for h*.

The optimum filter weights vector, h*, that minimizes the error function in the

mean square sense simply involves the inverted autocorrelation matrix of the input,

R-1, and the cross correlation vector of the input and the desired output, p:

h* = R-1p . (2.37)

This is known as the Wiener solution.

Compared to Equation (2.15) from the deterministic least squares approach, the

minimum mean squared solution also has a similar structure. The autocorrelation

matrix, R, is the probabilistic counterpart of the deterministic matrix XTX; likewise

for p and XTd.

The minimum mean squared error function has a geometrical interpretation, which

is called the error performance surface. For an N-weight FIR filter operating in a sta-

tionary environment, the error performance surface is an upward concave paraboloid

in an N + 1 dimensional space with a unique global minimum. The expression in

(2.36) is the gradient V of the error surface. The goal of the minimum mean-square

error method is to find the bottom of this "bowl", which corresponds to a set of filter

weights that is optimum in the mean square sense.

2.1.5 Least Mean Square Algorithm

The least mean square, or LMS, algorithm belongs to a class of algorithms that

computes the Wiener filter iteratively using the method of steepest descent [1],[21],

[44]. The method of steepest descent searches for the optimum filter weights by

iteratively calculating the gradient of the error performance surface at regular time

intervals and incrementally sliding down toward the bottom of the bowl. The filter

27

coefficients are first initialized, usually to zero, and they are updated at each time

increment as follows:

hn+1 = hn - AV (2.38)

where V is the gradient of the error performance surface calculated at the previous

time n and it is the step size of the adaptation. The subscripts in h denote the

filter weights at update times n and n + 1. Note that the algorithm is moving in

the negative direction of the gradient in order to get to the minimum of the upward

concave bowl.

To calculate the gradient V in the steepest descent method, we differentiate the

mean squared error MSE of the Wiener filter in (2.35) with respect to the filter weight

h to obtain

V = 2Rhn - 2p (2.39)

Substituting this in (2.38) we get

hn+1 = hn + 2 p(p - Rhn) . (2.40)

In practice, however, the true gradient in (2.39) is hard to find since we must have

full knowledge of the second-order statistics of the input x[n] and the desired output

d[n] in order to calculate the autocorrelation matrix R and the cross-correlation vector

p. A way to avoid this difficulty is to simply estimate R and p from the instantaneous

sample values of the input vector xn and the desired response d[n] at time n. The

estimated autocorrelation matrix, Rn, is

T= xnx (2.41)

and the estimated cross-correlation vector, I n, is

pn= d[n]xn . (2.42)

28

Substituting Rn and P, into (2.40), we obtain

hn+1 = hn + 2Apn - Rnhn) (2.43)

which simplifies to

hn+1 = hn + 2pxni[n] (2.44)

where e[n] = d[n] - x Thn. Equation (2.44) is known as the Widrow-Hoff least mean

square, or LMS, filter update equation.

Note that while the gradient descent algorithm is deterministic, the LMS algorithm

is stochastic since the direction it takes at each iteration is based on an instantaneous

estimate which is random.

The convergence of the LMS algorithm is governed by the eigenvalue spread of

the autocorrelation matrix R of the input. Convergence is obtained for any step size

1L satisfying

0 < it < (2.45)<U<JN Ai

where the Ai's are the eigenvalues of the autocorrelation matrix R. Equation (2.45)

can also be equivalently expressed as

1
0 <'U < .(2.46)

total input power

since the total power of the input signal equals the sum of the eigenvalues of its au-

tocorrelation matrix. 2 Choosing it outside the specified ranges in (2.45) would make

the algorithm diverge. Furthermore, the step size y, also determines the convergence

2 Recall that the trace of a square matrix A is the sum of its diagonal elements. Thus, the trace,
denoted as tr[-], of the N x N autocorrelation matrix R in (2.30) is

N

tr[R] = Zr,(0) (2.47)
i=1

= Nr.,(0) (2.48)

where N is the number of filter taps, and r,,(0) is the autocorrelation function of the tap inputs
with zero lag. Furthermore, the total power of a stationary input equals Nr..(0). It is also true
that the trace of a autocorrelation matrix is the sum of its eigenvalues. Hence, the trace of R can

29

rate of the adaptation as well as the minimum mean-square error achievable by the

algorithm. A large it would lead to fast convergence but to a large mean-square error.

This is because we are taking big steps down the error performance surface and are

not likely to get close to the actual minimum point. At the other extreme, if it is

really small then we would be able to "inch" closer to the actual minimum point, but

it would take a long time for the algorithm to converge. Which value of P to choose

depends on the application at hand.

In practice, using an iterative procedure to search for the Wiener solution does not

usually yield the exact optimum solution. One reason is that since the step size P used

in the iteration is finite, there is always some residual error even when the step size is

very small. Another reason is that there are always round-off errors in representing

the numbers in finite bit precision. A measure of how close the iterative search for the

solution is to the actual minimum square error is given by the misadjustment error

defined as

M =- = 1 A= . (2.51)

where M expresses the ratio of the average excess mean-square error obtained by the

steepest descent algorithm to the actual minimum mean-square error of the Wiener

filter. A smaller M implies the adaptive solution is closer to the optimum solution.

In summary, the least mean square (LMS) algorithm is one of the most widely used

adaptive algorithms because its update equation is simple to implement and compute.

Furthermore, it has been proven to perform well in both stationary and non-stationary

signal environments. Refer to [1],[21], or [44 for more extensive coverage of the LMS

algorithm and its properties.

be equivalently expressed as
N

tr[R = Ai (2.49)
i=1

where Ai's are the eigenvalues of R. Therefore, (2.49) and (2.48) are identical. Consequently,

Ai = Nr,.(0) = total input power . (2.50)

30

2.1.6 Frequency-Domain Adaptation

Adaptive filters can be implemented not only in the time domain but also in the

frequency domain. There are generally two broad classes of frequency-domain adap-

tation. The first class uses FFT's to perform the block convolution and correlation

needed in the time-domain adaptive algorithm. The second class involves splitting

the input signal up into subbands using a filter bank and adapting on each subband

individually. We will use an algorithm from the first class to study the multistage,

multirate adaptive filter.

This thesis studies the frequency-domain block least mean square (FBLMS) al-

gorithm [10],[15],[32], which is an efficient implementation of its time-domain coun-

terpart, the time-domain block LMS (TBLMS) [9]. The difference between the block

LMS and the conventional, nonblock LMS is that instead of updating the adaptive

filter coefficients at every pair of input vector and desired response, we update them

once per data block. The estimated gradient is computed from a block of data, and

the same gradient is used to update all the filter coefficients once per block of data

until the filter converges. The gradient computed this way is actually a better es-

timate of the true ensemble gradient of the optimum Wiener filter because it takes

an average of a block of data instead of just one sampling instant as in the nonblock

LMS case. Consequently, block adaptation allows for a smoother convergence since

the estimated gradient is less "noisy".

Another appealing attribute of the block LMS filter is that it needs fewer up-

dates because the filter coefficients are adjusted only once every block of data, which,

consequently, reduces the total number of computations in the adaptation. Finally,

block implementation of the filter can take advantage of the computational efficiency

of parallel procesors or serial processors plus the fast Fourier transform (FFT) [9].

The latter form is used in this thesis and will be discussed in the next section.

Algorithm for Time-Domain Block LMS

Before we start, let us establish some notations. In the time-domain block LMS

method, an input sample is accumulated at each discrete time n to form a block of

31

length N. The adaptive filter h, also of length N, is updated at every nN input

samples, which we shall call the kth block iteration where k = nN.

Let hk be a vector of N filter coefficients at the kth block iteration. It is repre-

sented as

hi = [ho h1 ... hN-1]T . (2.52)

where hi are the coefficients of the filter.

Step 1: First, initialize the filter coefficients to zero:

ho = [0 ... 0]T (2.53)

Step 2: At each discrete time n, form an input vector xn of length N:

xn = [x xn-1 ... Xn-N+l]T (2.54)

Step 3: At each kth block iteration, form an N x N matrix Xk from N input

vectors x, in Step 2 above:

X(k-1)N+1

Xk X(k-)N+2 (2.55)

X(k-1)N

This is a block of length N from the total input matrix X in (2.6) in Section 2.1.2.

Step 4: The output block of the filter, Yk at the kth block iteration is the

convolution, or vector multiplication, of the input matrix Xk in (2.55) with the current

filter vector hn as follows:

Yk Xkhk (2.56)

Step 5: The error vector at the kth block iteration is

ek = [e(k-1)N+1 e(k-1)N+2 ... ekN]T (2.57)

32

which represents the difference between the kth filter output block yk and the kth

desired output block:

ek = yk - dk (2.58)

Step 6: The estimate block gradient at iteration k is

Vk = --- Xek . (2.59)N k

Step 7: The update equation at the (k + 1)st block iteration is

hk+1 = hk - LBVk (2.60)

= h A+ BXTe (2.61)

where AB is the step size of the block LMS. Steps 2 to 7 are repeated until the

algorithm converges to give a filter h that approximates the Wiener filter. Athough

we have shown the case where the data block has the same length as the adaptive

filter, N, this does not have to be so in general. However, it has been shown that the

optimum block length is equal to the filter length [9], [10].

Block Mean Square Error

For stationary inputs, both the block and nonblock LMS try to minimize essentially

the same mean-square error (MSE), but the MSE estimated by the block LMS al-

gorithm is closer to the true MSE of the Wiener filter because it is averaged over a

block of data. The block mean square error (BMSE) is defined as

I 1 kN
BMSE = NE(ek ek) = E(N E e) (2.62)

i=(k-1)N+l

Note that for block length N = 1, the BLMS algorithm reduces to the LMS

algorithm.

33

Convergence Properties of the BLMS Algorithm

It has been proven that the BLMS algorithm converges, which involves showing that

as the number of blocks in the adaptation approaches infinity, the expected value of

the filter vector, E(hk), approaches the optimum or Wiener solution [9]. The bounds

on the step size, AB, for the BLMS are the same as the bounds on u for the LMS

algorithm in (2.45) [9]:

0 < 6 < 23) O~tLBly Aiz=1

This similarity exists because the eigenvalue spread of the autocorrelation matrix R

does not change when data averaging is used to estimate the gradient.

2.1.7 Frequency-Domain Block Least Mean Squares (FBLMS)

A further improvement in the time-domain block LMS can be achieved by implement-

ing it in the frequency domain. Here we can take advantage of the computational

efficiency of the fast Fourier transform (FFT) to perform the linear convolution and

linear correlation needed in the time-domain filter. Of the two well-known data sec-

tioning techniques (overlap-save and overlap-add) for block convolution [28], we will

use the overlap-save method because it has been shown to take fewer computations

than the overlap-add [10].

The linear convolution required in the time-domain block LMS filter is that be-

tween an N coefficients filter, h[n], and a block of N samples from a relatively long

filter input x[n], to yield the filter output y[n] as given by

N-1

y[n] = E x[i]h[n - i] . (2.64)
i=O

The linear correlation is between a block of N samples from x[n] and N samples of

the error, e[n], to produce the estimate gradient V:

N-1

V= Zx[i]e[n + i]. (2.65)
i=O

34

The convolution and the correlation operations are essentially the same except that

for correlation neither sequence is reversed in the sum of products.

Using FFT's and the overlap-save block convolution method, we can efficiently

implement the time-domain convolution and correlation above, whereby the convo-

lution/correlation are now complex multiplications of the two respective transformed

signals. To obtain an N point linear convolution/correlation, a 2N-points FFT must

be used since half of the data points will be aliased because multiplying the FFT's (or

DFT's in general) of two signals correspond to their circular convolution in the time

domain. Using the overlap-save method, the linear convolution part corresponds to

the last N points of their circular convolution, whereas their linear correlation corre-

sponds to the first N points.

The FBLMS Algorithm

Implementing the FBLMS using the overlap-save sectioning method and FFT's can

easily be understood from Figure 2-7. The objective here is to adaptively find an

N-point filter H in the frequency-domain:

H = [HoH1 ... HN-l] (2.66)

Since the overlap-save method calls for an overlap of a block of old data with the

new one for each block convolution, we will choose the filter length N as the length of

the overlap block. Therefore, we must use 2N long FFT's or IFFT's (inverse FFT) in

Figure 2-7 to ensure that only N of the points will be aliased while the other half of

the points will give a perfect convolution or correlation. The length of the adaptive

filter H in (2.66) must be 2N long as well:

H = [Ho H1 ... HN ... H2 N-1 (2-67)

At each iteration k, a new block of N input samples

Xk,new = [XO X 1 ... XN-1] (2.68)

35

x[n] Concatenate

2 Blocks F

old new

IWLIJx

X[k] Y[k] Save yEn]

Last Block

H[k]

Delay LVLJ

H[k+1]
discard

G[k]

I-----------------------I

FF Gradient

Constraint

Zero Out
Last Blockg

S - - - - - - - .. - - - - - - -|

ugt X Gk 2u[k]

X [k]

E[k] ,

Insert e[n]
FYF Zero Block

10 1e I d[n]

Figure 2-7: Structure of Overlap-Save Frequency-Domain Block LMS Filter.

36

is concatenated to an old block of N input samples

Xk,old = [XN XN+1 ... x 2N-]T (2.69)

and the result is transformed by a 2N-point FFT and represented by a diagonal

matrix Xk as follows

Xk = diag(Xo X1 ... XN ... X2N-1) (2.70)

where diag(.) is an operator that forms a diagonal matrix. Note that each element Xi

in (2.70) corresponds to a frequency bin while each element xi in (2.68) and (2.69)

is a time sample.

The transformed filter output,

Y = [Y Y1 ... YN Y2 N-] T (2.71)

is the product of the input matrix X with the transformed filter vector H,

Y = XH. (2.72)

The time-domain output vector, y is the inverse transform of Y:

Y = [Yo Y1 ... YN y2N- 1]T = IFFT(Y). (2.73)

However, only the last N-points of y constitute the result of the linear convolution,

and the first block must be discarded because it is the aliased portion of the circular

convolution, according to the overlap-save method.

The error at each iteration is first computed in the time domain by subtracting

the valid latter half of the current output block in (2.73) from the current block of

the desired response,

ek = dk - Yk. (2.74)

37

This N-point error vector must be first augmented with N zeros,

e = [0 0 ... 0 eN eN+1 ... e2N- 1]T (2.75)

before taking its 2N-point FFT. The augmented zeros must be in the first block

because the first block is where no aliasing occurs in the correlation calculation to

obtain the gradient estimate. The transformed error vector Ek at iteration k is

Ek = [E0 E1 ... EN ... E2N-1]T (2.76)

The estimate gradient vector, Gk, at the kth iteration is

Gk = 2pk XH E (2.77)

where Pk is a diagonal matrix of step sizes for the frequency bins, which will be

discussed later.

The product of the FFT's in (2.77) above yields a circular correlation but only

the first N points of the gradient vector in the time domain is valid. Therefore, we

must eliminate the latter aliased half by constraining the time-domain gradient, g,

to be all zeros. The gradient constraint is done in the time domain so Gk must be

inverse transformed to the time domain first:

gk = IFFT(Gk) (2.78)

before constraining the last N elements of gk as follows

9k = diag(go g1 ... 9N-1 0 0 ... OT) (2.79)

The time-domain constraint gradient above is then transformed back to Gk and is

applied in the filter update equation:

Hk+1 = Hk + Gk . (2.80)

38

Step Sizes for the FBLMS Algorithm

Besides the computational savings, implementing the adaptive filter in the frequency

domain has another advantage in that the DFT tends to decorrelate any input signal

that is correlated (as usually the case in speech or image signals). Once uncorrelated,

a different step size can be used for each frequency bin to achieve a more uniform

convergence. It is well known that the converenge behavior of the adaptive algorithm

is governed by the eigenvalue spread of the input autocorrelation matrix. In general,

the eigenvalue spread of a signal is bounded by the maximum and minimum values

of its power spectrum:
Amax Pmao, (2.81)
Amin Pmin

where the A's are the eigenvalues and P's are values of the power spectrum [21].

In practice, one would not have available all the input signal to calculate the power

spectrum but must estimate it instead. There are several different ways to estimate

the power spectrum, but in this thesis we will use the following exponential power

averaging function:

Pk+1 = aPk + (1 - a) Xk1 2 (2.82)

where a is the memory factor that controls how much of the current power estimation

is based on the past estimation [34].

Using the power estimate PA, we can normalize the eigenvalue spread by having

a different step size for each frequency bin. The step size jtt for the ith frequency bin

is

= (2.83)
Pi

where 1L is some convergence constant and Pi the estimate power of the ith bin. A

diagonal matrix itk formed from the pi's above can be used in the estimate gradient

G in (2.77).

The error function that this frequency-domain algorithm tries to minimize is the

same as the block mean square error (BMSE) in (2.62) of the time-domain block

LMS filter. Alternatively, we can also think that the FBLMS filter is designed to

39

minimize the frequency-domain block mean-square error directly, since by Parseval's

theorem, the error energy is equivalent both in the time and frequency domain. The

frequency-domain block error is

2N-1

FBSE = E |Ei 2 = EHEk (2.84)
i=O

where Ei's are the individual elements of the frequency-domain error vector Ek in

(2.76).

Variations on the FBLMS Algorithms

There are two variations to the FBLMS algorithms. One is removing the gradient

constraint in the dotted box in Figure 2-7. By doing so we can save two transform

operations, an FFT and an IFFT, but the gradient vector will contain some aliasing

since we no longer have the exact linear block correlation. Hence, this unconstrained

gradient FBLMS, or UFBLMS, method does not exactly implement the time-domain

block LMS (TBLMS) as the one with gradient constraint. It has been shown to

converge to the Wiener solution under certain signal conditions, and to converge fast,

especially for highly correlated input signals, but to a worse mean-squared error than

the FBLMS with gradient constraint. [27].

The other variation of the FBLMS is to eliminate not only the gradient constraint

but also the error constraint. In other words, the error is computed directly in the

frequency domain by subtracting the transformed output Y from a current block of

transformed desired vector D:

E = Y - D. (2.85)

This is one of the earliest frequency-domain algorithms, first proposed by Dentino et

al. [13].

By removing both the gradient and error constraints, this algorithm no longer im-

plements the linear convolution or correlation, but the circular convolution/correlation

instead, which gives this method the name circular convolution algorithm. Since it

implements circular convolution/correlation, it is no longer necessary to use 2N-point

40

FFT's or IFFT's as in the FBLMS filter. Recall that we need 2N-point transforms so

that N of those points would correspond to the linear convolution/correlation while

the other N points are discarded because of the aliasing. Furthermore, E in (2.85)

above provides N approximately orthogonal error outputs, each corresponding to a

frequency bin. This is in contrast to a single global error that the FBLMS algorithms

try to minimize.

By eliminating the error constraint, we further get rid of one FFT operation in

addition to the two from using the unconstrained gradient. The total number of

transforms needed here is only three, instead of five as in the original FBLMS al-

gorithm, and each FFT and IFFT has only N points instead of 2N points. The

tremendous gain in computational savings, however, come at a loss in filter perfor-

mance. The circular convolution introduces large aliasing where only the first point

of the convolution is valid. In other words, the circular convolution algorithm no

longer implements the time-domain block LMS, and thus the converged solution is

not exactly the Wiener filter. The paper [32] discusses all three frequency-domain

algorithms (FBLMS, UFBLMS, and circular convolution algorithms) covered in this

section.

2.1.8 Summary

In the first half of this background section, we have covered an array of different

methods to solve the data-fitting problem discussed at the beginning. Although we

will use only the least-squares and the frequency-domain block LMS (FBLMS) filters

in this thesis, discussing the other algorithms (the Wiener filter, the LMS algorithm,

and the block LMS algorithm) helps us to place the ones we use in proper perspective.

41

2.2 Multirate Digital Signal Processing

2.2.1 Introduction

In many applications, it may be more convenient and efficient to have a DSP system

perform different processing algorithms at different sampling rates. Such a system,

whose basic components are decimators or interpolators, is called a multirate system

since its sampling rate varies across the system. Multirate techniques can often reduce

the operation rate of the digital filters and lower the computational complexity of the

system in terms of number of multiplications per second. More extensive treatments

of multirate DSP may be found in [7],[11], [20], [26],[40].

2.2.2 Review of Decimation

Since we are using the decimator in this thesis, let's review it briefly. For more

detailed coverage of decimation and interpolation, consult [28], [11].

Figure 2-8: Block diagram for decimation by an integer factor M.

Figure 2-8 shows the block diagram of performing decimation by an integer factor

M. Our objective in decimation is to reduce the sampling rate of a discrete-time signal

42

x[n] by some factor M. Equation (2.86) shows the effect of decimation by M on the

sampling period T and the sampling frequency F of x[n], where the prime on them

denote the downsampled output

T' M

T 1

or
1 1 F

F'= = - - = - (2.86)T' MT M

We can see from the results above that downsampling reduces the number of

samples of x[n] in the time domain wgle expanding its spectrum in the frequency

domain.

Since x[n] is a sampled version of an analog signal, its frequency spectrum is

replicated at every 21r in the frequency domain. From Nyquist's sampling theorem,

if the spectrum of x[n] is not bandlimited to ', replications of the spectrum will

overlap, or alias, with each other when the signal is downsampled by M. To ensure

no aliasing, it is necessary to filter x[n] with a digital lowpass filter G(ei") that

approximates the ideal characteristic:

1 < 2wF'T -_

G(e-''')= I - 2 M

0, otherwise

The output p[n] in Figure 2-8 is simply the convolution

p[n] = x[n]g[n]

or
00

p[n] = (g[i]x[n - i]
i-00

where g[n] is the impulse response of the digital anti-aliasing filter G(eiw).

The circle with the down arrow is a often called the the compressor because it

compresses the sequence x[n] by keeping only every Mth sample of the filtered output

p[n]:

43

y[n] = p[Mn]

or

y[n] =E g[i]x[Mn - i]
i=-00

where y[n] is the final result of decimation by M. The output y[n] in the frequency

domain is

SM-1 -jw2r)Mw2r/)
Y(ej"') = 1 G(e-) e-j(

1=0

If G is very close to the ideal response G, then

1
Y(e-w) ~ -X(e*w/M) , w <7r . (2.87)M

2.2.3 Multistage Decimation

Past research shows that for large decimation or interpolation factors, sampling rate

conversion can be best done in cascaded stages [3], [11], [31]. Because the greatest

complexity and cost in decimation or interpolation lie in the filtering, multistage

decimation or interpolation will:

1. Simplify the design of the anti-aliasing (or anti-imaging) digital filters

2. Significantly reduce computational complexity

3. Reduce storage of filter coefficients

4. Reduce quantization error in the implementation of the filters.

Let's examine the multistage decimation process, which is used in this thesis. If

the decimation factor is large and composite, then it may be factored into a product

of I positive integers.

M= flMi (2.88)

44

The digital anti-aliasing filter before the decimator can in turn be decomposed into

I smaller filters. A sub-decimator with a factor of Mi and a sub-filter together form

a decimation stage. The cascade of all I decimation stages will yield the equivalence

of a single-stage decimator with the downsampling factor of M. See Figure 2-9

Let's briefly examine where the savings in multistage decimation come from. For a

symmetric, equiripple FIR filter, the number of taps, Ni, in stage i is approximately:

D (RP , R')
Ni r-. (2.89)

Afi/f,~

where

D(R,, R') is a function of the maximum passband ripple R, and the max-

imum stopband ripple R' in stage i,

Afj is the transition width, and

f,j is the sampling frequency.

Since decimation is performed in multistages, the filter in each stage has fewer

constraints than in the single-stage case. Although the filters in the early stages

must operate at higher sampling rates, they can have wider transition bands because

aliasing is allowed. The aliasing poses no concern for it will be "cleaned up" in later

stages by filters with narrower transition bands. Thus, higher sampling rates in the

early stages are counterbalanced by the wider transition bands of the filters, which

together give shorter overall filter lengths according to Equation (2.89). For the later

stages, the transition widths of the filters must be narrower but the sampling rates

are also lower, so this combination likewise yields smaller filter lengths. In other

words, the computation in each stage is kept as low as possible so that the multistage

structure can have fewer total number of filter taps than the single-stage one [11].

Similarly, the multiplication rate in the multistage structure is also reduced. The

number of multiplication per second, or MPS, of stage i in the multirate system is

approximately:

MPS ~M_ (2.90)
2Mj

45

Since the total filter length is lower, the total number of multiplication is also

proportionally reduced as shown in Equation (2.90). The high sampling frequencies

in the early stages will give a larger MPS, but this effect can be offset by placing

decimators with high downsampling factors in the beginning stages.

In summary, for a large decimation (or interpolation) factor, the multistage scheme

is a better choice than the single-stage one in terms of computational and filter com-

plexities. Multistage structures, however, also have their drawbacks. They require

more control than the single-stage ones, and there are also the issues of choosing the

appropriate number of decimation stages I, and the best factor Mi, for each stage

[11].

More Exact Equations For Filter Length

The more exact equation for the filter length N for stage i is ([11, 20]):

N = 1 + D(Rp-R) g(R,, R,)AF (2.91)
AF

where

/XF = Afi/fj is the normalized transition width, where Afj is the tran-

sition width of the ith stage and fj its sampling frequency,

D(R,, R,) = [a(log R,)2 + blog R, - c] log R, - [d(log R,)2 + e log R, + f],

g(R,, R,) = g log(R,/R,) + h

and

a = 0.005309, b = 0.07114, c = 0.4761, d = 0.00266,

e = 0.5941, f = 0.4278, g = 0.51244, h = 11.01

All logs here have base 10.

A simpler equation of the filter length is given by Kaiser [20]:

-10log(R,, R.) - 13
N =46A + 1 (2.92)

14.6A F

where again

46

AF = Afi/f, is the normalized transition width.

Example of a Two-Stage Decimation

The following is an illustration of why multistage decimation can reduce the overall

length of the digital anti-aliasing filter and its computational complexity. Let's look

at decimation by 10, where we divide the downsampler into two stages with factors

of 5 and 2 as shown in Figure 2-10.

First of all, let's state the assumptions and filter parameters used throughout

this example. In order to avoid any confusion, we will do the the analysis in the

unnormalized frequency domain. The sampling rate of the input x to the decimator

is set at 2000Hz, as shown in Figure 2-11. The passband ripple of the filter is R,

and the stopband ripple is R,. Finally, to avoid aliasing, the cutoff frequency of the

decimation filter should be:

fe
fcutof f = (2.93)

where

f,/2 is the Nyquist frequency or half of the sampling frequency, and

M is the decimation factor. 3

One-Stage Decimation

For downsampling by 10, the cutoff frequency of the single-stage decimation filter

without aliasing is

fcutoff = 1000/10 = 100Hz (2.94)

The passband is chosen to be from 0 to 90Hz, which leaves a 10Hz transition

width. Using these parameters along with the chosen passband ripple and stopband

attenuation, Equations (2.91) and (2.92) give filter lengths of 557 and 517, respec-

tively. The actual design takes 527 taps. The number of multiplications per second

'The exact parameters and designed filters are detailed in Chapter 3 on the Simulation.

47

(MPS) is given by MPS = !Nf,/M as discussed earlier. Since the sampling rate is

reduced after decimation, only every Mth output point needs multiplications. Using

the actual filter length, MPS for this single-stage decimation is 52,700.

Two-Stage Decimation

Now let us look at the filter requirements for two-stage decimation and see where the

savings in filter lengths and number of multiplications come from. First of all, keep in

mind that the (logarithmic) passband ripple and the stopband attenuation of each of

the stages in cascade add up. Therefore, the specifications of these ripples in each of

the two stages should be less than that of the single-stage, and their sum in cascade

should be equal to that of the single-stage.

Since 10 is the ultimate downsampling factor we want, each of the two decimation

filters in cascade can have the same passband, 0 to 90 Hz, as the single stage filter

above. The maximum possible stopband, or cutoff frequency, starts at:

fei = f,;/Mi - festoff (2.95)

where

fcj is the cutoff frequency of the ith stage,

f,i is the sampling frequency of the ith stage,

Mi is the decimation factor of the ith stage,

and feutoff is the ultimate desired cutoff frequency as in equation above

Because of the narrower passband, the transition width of the first decimation

filter can stretch out further than usual without aliasing. According to the filter

length equation, for a given sampling rate the filter length will become shorter as the

the transition width gets wider. In this example, the filter for the decimation by 5 of

stage 1 can have its cutoff frequency at

fci = 2000/5 - 100 = 300Hz

48

and a transition width of

Afi = 300 - 90 = 270Hz

as followed from Equation (2.95). With these parameters, Equations (2.91) and (2.92)

predict filter lengths of 26 and 25, respectively. The actual design needs 27 taps and

527 MPS.

After the first stage, the sampling rate of the signal has been reduced by 5 and

now becomes

f82 = 2000/5 = 400Hz

Again, following from Equation (2.95), its cutoff frequency should be

fC2 = 400/2 - 100 = 100Hz

which gives a transition width of 10Hz. Although the transition width of this second

stage is the same as that of the single-stage decimation-by-10 filter, its sampling rate

is reduced and hence still yields a shorter filter length. From Equations (2.91) and

(2.92) we obtain lengths of 149 and 135, respectively, but the actual design gives 137

with 2700 MPS.

Summary of Example

In summary, for decimation by 10, single-stage filtering requires 527 taps and 52,700

multiplications per second, whereas two-stage filtering requires a total of only 164

taps and 8,100 MPS. The total filter length of the two-stage structure is reduced by

about a third while its total MPS is more than six times lower than that of the single

stage. The reduction is indeed significant even at a low decimation factor as shown

in this example, and will become more substantial as the downsampling factor gets

larger.

49

xc 1 -4) M

Figure 2-9: Single stage decimation and multistage decimation.

]i y[n]
m[n] 10

pling Decimated
uency Frequency

f fNlO

Stage 1 Stage 2

-- ------------ ------------------------

x[n] y[n]

m1[n] 5 1m2[n] 2

-------- ---------. -----l --------------.. ----..- --|

f f/5 f/(5*2)=f/10

Figure 2-10: Structure of (a) single stage and (2) multistage decimation for factor of
10.

50

x[n

Sam
Freq

6 x Lyle] I M (vi

It\

..- ~ ~..-

90 100

A = 10

2000 f (Hz)1000

A = 210

90 300

-.. ~ ~...

1000 f (Hz)2000

A=10

-7

90 100 200 400

Figure 2-11: Example of filters for (a) single stage and (b), (c) multistage decimation.

51

f (Hz)

/-
I -\

I

I

in

In,

Chapter 3

The Multistage, Multirate

Adaptive Filter

3.1 Introduction

Research in adaptive filtering and multirate digital signal processing spans several

decades, but only within the last five years or so have these two fields started to

merge in some useful applications. A prime example of this union is adaptive filtering

in subbands as introduced in Section 1.2.

The problem of this thesis may be viewed as adaptive filtering for only one sub-

band from the filter bank structure, in particular, the subband centered around zero

frequency. Instead of using a filter bank, it is only necessary to design a filter that

picks out just the subband of interest. We will then use this subband to study the

multistage adaptive filter structure as will be described shortly.

There are several reasons for not investigating our proposed multistage, multirate

adaptive filter on all the subbands from the filter bank. Firstly, isolating the problem

to one subband simplifies the study a great deal. Secondly, we want to use a multistage

decimator to downsample the signal, which has not been done before in the context of

adaptive filtering in subbands. Finally, the most crucial reason of all is that adaptive

filtering in subbands poses many problematic issues that are still under investigation.

For example, aliasing between adjacent bands occurs when critically sub-sampled

52

filter banks are used, where the signal is downsampled at the exact cut-off frequency

of the digital anti-aliasing filter with finite transition widths. This aliasing problem

can be avoided by using non-overlapping bands filter banks, but the reconstructed

signals will have spectral gaps which may not be acceptable in some applications. A

scheme has been proposed to avoid both of those issues by adding "cross-terms" to

the adaptive filter in adjacent bands, but this modification is complicated and has its

own problems as well [16, 17, 18].

Therefore, avoiding the filter bank structure in our study of the multistage, mul-

tirate adaptive filter is a sensible approach. Furthermore, the thesis problem can be

generalized outside of the context of adaptive filtering in subbands. It can be viewed

as adaptive filtering of any narrowband signal.

The multistage, multirate adaptive filter will be introduced and compared to the

single-stage, multirate adaptive filter in Section 3.2. There we will present, using

Fourier analysis, the effects of the single-stage and multistage equalizer on the input

signal, which will clarify the similarities and differences between the two structures.

In Section 3.4 we will discuss some of the limitations of performing analysis on

the multirate, multistage filter, which will lead us to study the proposed structure

using software simulations as discussed in Section 3.5. In that section, we will first

discuss the three system configurations used in the simulation, how we model the

components in the systems, and finally present two algorithms that we study, the

least-squares filter and the adaptive frequency-domain block LMS filter. The reason

we want to study the non-adaptive least-squares filter first is that we are interested

in the multistage equalization filter structure itself, even without subjecting it to an

adaptive environment. The problems that we discovered in our time-domain least-

squares algorithm then motivate us to use an adaptive algorithm in the frequency

domain. In Sections 3.6 and 3.7, we will present the computational complexities

of the multirate, multistage filter using the least-squares method and the FBLMS

algorithm. Finally, some representative simulations will illustrate the properties of

this multistage, multirate filter.

53

3.2 The Multistage, Multirate Adaptive Filter

The problem that motivates our work is adaptive filtering of a narrow band of a signal

which is depicted by the block diagram in Figure 3-1. We want to equalize only a

narrow band of the output xo[n] of the distortion channel. The decimator picks out

this narrow band signal, x[n], by filtering xo[n] with a digital anti-aliasing filter g[n],

and it also downsamples the signal by a factor M. The box with the down arrow

box denotes the decimator, which includes both the digital anti-aliasing filter and the

time-compressor as illustrated in Figure 3-2. This top path is called the distortion

path. The desired path, parallel to it, contains a desired channel and a delay element

to match the delay of the desired path. The equalizer h[n] corrects the narrowband

signal, x [n], by minimizing a function of the error e[n], which is the difference between

the filter output y[n] and the desired response d[n].

Distoion M Equalizer y[n]
Channel h[]

Chsire Delay

Figure 3-1: Block diagram of of the single-stage decimation, single-stage adaptive
filter

xo[n] x[n] xo[n] x[n]
M g[n] M .

Figure 3-2: Block diagram equivalence for the decimator.

In this thesis, instead of doing the equalization in one single stage, we are interested

in doing it in multiple stages, as Figure 3-3 illustrates for a two-stage structure. The

decimator is also in multiple stages since that has shown to have some advantages in

54

practice, as discussed in Section 2.2. We decompose the equalizer into two stages

and insert the first one in between the two decimators.

D o[n] 1i[n] E er1 1 [n] x 2[n] Equalirzr2 y2 [n]
Channel hi P] M2 h2[n]

-- op. /-el[n] - 4-e2[n] -

Delay Chanel - Delay

d 1 [n] d2[n]

Figure 3-3: Block diagram of the two-stage decimation, two-stage adaptive filter.

Before formulating the problem statement of the multistage, multirate adaptive

filter, let us first examine the single-stage decimation, single-stage adaptive filter as a

basis of comparison with the proposed filter structure. We will analyze, in the Fourier

domain, the effect of the input signal xo[n], which is the output of the distortion

channel, as it passes through the distortion path of the system. First, assume that

the digital anti-aliasing filter g[n] for the decimator with factor M is ideal and has

the frequency response,

G(e3w) = - (3.1)
10, otherwise

For G(ejw) ideal, the output of the decimator, X(ejw), can be represented as

1
X(es") = - Xo(ew/M) ,|W| _< <r (3.2)

M

as shown in Section 2.2. Because we assume the digital anti-aliasing filter is ideal here,

it is not necessary to compare here the proposed multistage adaptive filter with the

multistage decimation, single-stage filter. Recall from Section 2.2 that the advantage

of the multistage decimation lies in the actual design of the non-ideal digital anti-

aliasing filter. However, in our simulations and in actual implementations, the filters

are not ideal and the output will be affected by passband ripples and aliasing.

55

The output Y(ejw) of the adaptive filter H(ejw) is

Y(ed") = H(es")X(e-") (3.3)
1 jI

= g H(e")Xo(e (3.4)

for jwj < -r.

Now we examine what happens to the same xo[n] as it is processed by the multi-

stage, multirate adaptive filter. Again, we assume that the digital anti-aliasing filters

G,(ejw) and G2(ejw) are ideal.

The output Yi(ejw) of the first stage adaptive filter has the identical form to (3.4)

of the single-stage filter. It is

Y(es") = X1(e-")H1(e") (3.5)

= X1 (ejw/M1)Hi(ejw) (3.6)
M,

for Iwl < ir.

The critical difference between the two filter structures occurs in the second stage,

where the signal is decimated again. After decimating the output of the first equalizer

by the second decimator with factor M2, we get the output, x 2[n], whose Fourier

transform is

1
X2(el") = Y(ed") (3.7)

__ 1
=Xo(ejw/(MM2)) H(ejw/M2) (3.8)
MIM2

for Jwj < 7r.

Note that not only the original input signal xo[n] is decimated, but the first

adaptive filter hi[n] as well.

Finally, the output of the second adaptive filter is

Y2(e-") = X2(e-")H2(e-") (3.9)

56

= Xo(ejw/(M1M2))H(ejw/M2)H
2 (ew) (3.10)

M1M2

for wJ < ir.

Since the digital anti-aliasing filters of both systems are ideal, the decimated input

signals, Xo(e j/(M1M2)), are the same, but not the adaptive filters. The frequency-

response of the single-stage, single-rate filter is

N-1

H(e") = h[n]e- . (3.11)
n=O

For the multistage, multirate structure, the first filter has N1 taps and the second

N2 taps, and the combined filter has the frequency response

H'(e3w) = H1(ejw/M2)H2(ejw) (3.12)
N1 -1 N2 -1

= (E hi[n]e-jwn/M2)(E h2 [nje 3j) (3-13)
n=O n=O

The objective of this thesis may be stated as follows:

Given the single-stage filter (3.11) and the multi-stage, multirate filter (3.13), how

do the performances of the two structures compare for an equivalent measure of filter

lengths. In other words, for N ~ f(N1 , N2 , M2) where f is some function, how will the

two structures compare in terms of residual error from equalization and computational

complexity. These performance criteria will be discussed next.

3.3 Basis for Comparison

The comparison between the multistage adaptive filter with single stage adaptive filter

will be based on two criteria: (1) residual error and (2) computational complexity.

The residual error indicates how well the filter equalizes the distortion channel, and

the calculation of the error depends on the algorithm that we use. It is called the

least-squares error (LSE) for the least-squares filter, and minimum-mean square error

(MSE) for the FBLMS filter.

57

There are two measures of computational complexity. The first is the number of

computations it takes to obtain the equalization filter, which also reflects complexity

of the algorithm that we use. For the least-squares method, finding the equalizer

involves solving a known system of equations. For the FBLMS algorithm, it involves

adapting the filter to the signal environment over time. The parameters that will

figure in this complexity are the lengths of the equalizer, its input, and the desired

response. For the FBLMS filter, the convergence time also matters because it is

adaptive. In addition, the computational efficiency of an algorithm usually involves

many issues, such as storage requirements and number of machine cycles for CPU,

but these are mainly implementation issues which depend on the specific hardware

architecture. Therefore, we will only examine the number of real multiplications as a

measure of the computational complexity of the algorithm. The calculations of the

filter design complexities will be provided in details in Sections 3.6.1 and 3.7.2 when

we discuss the simulation studies of the least-squares and the FBLMS filters.

The second measure of computational complexity involves using the filter once

it is designed, such as equalizing a distorted signal, for instance. This convolution

between the input signal and the designed filter can be implemented in either the

time or frequency domain, each of which yields different amounts of multiplications.

To avoid this peripheral complication, we will measure this filtering complexity by

the effective filter length (EFL), which will be defined for each filter structure.

For the single-stage structure, let's normalize the sampling rate of the filter input

to 1 since the input is completely downsampled to the desired factor M. For the two-

stage equalizer, the input to the second-stage equalizer also has the same sampling rate

as that of the single-stage equalizer. However, the input to the first-stage equalizer has

approximately M2 times the sample points of the input to the second-stage equalizer

since it has only been downsampled by the first decimator (M2 is the decimation

factor of the second decimator). Therefore, the effective filter length (EFL) of the

single-stage structure is simply the filter length Nh-

EFL = Nh , (3.14)

58

but for the two-stage adaptive filter structure, it is

EFL = M2 Nh1 + Nh2 - (3.15)

3.4 Motivation for a Simulation Study

In this thesis, we study the multistage, multirate filter based on its computational

complexity and the residual error. We are able to assess the computational complex-

ities of this new structure for two algorithms, the least-squares and the frequency-

domain block LMS methods. However, we have not been successful with the deriva-

tion of some analytical equations that govern the convergence behavior and/or the

residual error of the overall structure. The difficulties here are two-fold: 1) the stages

are in cascade so the convergence behavior and/or the residue error of each filter are

dependent on the previous stages, and 2) each stage in the structure is operating at

a different sampling rate.

One way to simplify these problems is to view each stage individually so the

residual error and/or the convergence behavior would be the same as that of the single-

stage filter. On this local scale, each filter has its own distortion, and it operates at

a single sampling rate. The cascaded effect of the filters, however, cannot be entirely

ignored.

Because of these issues, we will approach the study of the multistage, multirate

adaptive filter using simulations with a representative example. We will first develop

some models of the components in the system and then simulate them. What we

present here is a possible approach to answer this problem, and the conclusions from

this study may not be true for all cases until further investigations confirm so.

59

3.5 A Model System for Simulation Studies

3.5.1 Introduction

This chapter presents some simulation results of multistage equalization as compared

to single-stage equalization, both operating in a multirate environment. The goal

of these simulations is to study the multistage, multirate equalizer using the system

models we develop. In particular, we want to compare its performance with the single-

stage equalizer based on the residual error and computational complexity. We are

also interested in how we should decompose the equalizer for the multistage structure.

The conclusions that we obtain from these experiments pertain only to the models

that we choose, and they may not apply to other system models. However, what we

illustrate here is a possible approach that one can take to study this problem. Further

investigation is needed before the properties of the multistage, multirate filter can be

fully generalized.

We use software for the simulations and thus do not address some issues that

hardware implementation might raise, such as memory storage, delay, hardware ar-

chitectures, etc. Except for the time-domain least squares algorithm which is written

in C, all components of the simulations are written in Matlab. Furthermore, all the

calculations are done in double precision, which is 16 bits on the workstations that

run the simulations, so quantization error is rather low here.

To simplify the study, only two equalization and two decimation stages are con-

sidered here. The decimation factor is 10, and it is divided into two stages of 5 and

2. Figure 3-4 shows three possible system configurations of the adaptive filters in a

multirate environment. The box with a down arrow is the decimator which includes

both the digital anti-aliasing filter and the time compressor, as illustrated before in

Figure 3-2. The equalizer plus the decimator preceding it is called "a stage" from

now on. We will sometimes refer to these three system configurations by the following

names:

* System 1: Single-stage decimation, single-stage equalization filter.

60

9 System 2: Two-stage decimation, single-stage equalization filter.

* System 3: Two-stage decimation, two-stage equalization filter.

1. A one-stage decimator followed by a one-stage equalizer.

x O 10 - -+ Equalizer 1 y

2. A two-stage decimator followed by a one-stage equalizer.

x 5 2 - + Equalizer y

3. A two-stage decimator and a two-stage equalizer.

x y5 Equalizer - 2 Equalizer2 y

Figure 3-4: Three different system configurations for study.

Only the simulation of the time-domain least squares approach studies all three

structures shown above. The rest of the simulations implementing other algorithms

compare only configurations 2 and 3.

We use the following adaptive algorithms in the simulations:

" Time-Domain Least Squares

" Frequency-Domain Block Least Mean Squares (FBLMS)

61

The sections following this introduction will present the simulation results of each

of the algorithms above. But before delving into the outcomes, we will first look

at how we model the components in the system for the simulations: the distortion,

the desired response, the delay, and the decimation filters. Since it is not practical

to do an exhaustive study of every possible system component (i.e. different kinds

of channel distortion and different decimation factors), we will concentrate only on

a few representative models and report on the trends that we observe and provide

explanations for them. The procedure we use here may be applied to study other

system configurations.

3.5.2 The Distortion Channel

We model the distortion channel q[n] or Q(z) as a cascade of an FIR filter with an

all-pole IIR one. That is,

1 _A(z)

Q(z) = A(z) = B(z) (3.16)
B(z) B(z)

where A(z) and 1/B(z) 1 are the system functions of the FIR and the IIR filters,

respectively. While the A(z) contributes to the zeros of the final distortion, B(z)

provides the poles. This representation of the distortion channel is also known in the

literature as autoregressive, moving-average (ARMA) modelling. ([21], [20]).

The distortion to be equalized by the adaptive filter must have significant magni-

tude ripple in the passband as well as nonlinear phase, even after decimation by 10.

This is because we are interested in the scenario where the adaptive filter is long in

order to justify multistage equalization. This occurs when the desired response has

very small ripple and/or the distortion is really severe.

This can be obtained by using the model in (3.16) above, where the function of

the FIR filter is to fashion the magnitude ripple of the distortion channel, and the

IIR filter is to add nonlinear phase. Of the different digital all-pole filters we tried,

none yielded the desired level of magnitude ripple without becoming unstable itself,

'In general, an IIR filter may have its own zeros as well so its system function would be y.

62

because the required filter order is rather large. However, using an FIR filter, we can

easily create the desired ripple without demanding a long IIR filter.

The passband ripple of the distortion channel is about 30 dB peak-to-peak and its

phase is 8 degrees nonlinear as shown in Figure 3-5. A 50th order, symmetric FIR

filter, designed by the Parks-McClellan algorithm, provides the magnitude ripple, and

a 9th order Chebyshev Type I filter furnishes the non-linear phase. Note that the

digital IIR filter here is the bilinear transformation of an analog filter with frequency

warping. (See [28] for a review of digital filters.) These two particular filters fit the

ARMA model described in (3.16) rather well. While the FIR filter contains all the

zeros, the Chebyshev Type I filter contains all the poles since it has no zeros. Further-

more, because the FIR filter is symmetric, it does not contribute to the nonlinearity

of the phase at all. 0

Below is a summary of the characteristics of the FIR and IIR filters and the

distortion channel.

Characteristics of the FIR Filter

Filter length: 51
Passband: 0.9
Stopband: 0.92
Transition width: 0.02
Passband ripple in dB (peak-to peak): 11.4
Stopband attenuation in dB: -67

Characteristics of the IIR Filter

Filter order: 10
Passband: 0.9
Stopband: 0.92
Transition width: 0.02
Passband ripple in dB (peak-to peak): 0.52
Stopband attenuation in dB: -200
Phase nonlinearity in degree: 8

63

(a) Magnitude response

0.2 0.4 0.6 0.8
Normalized Frequency (pi=1)

(c) Nonlinear phase
A. .

0 0.2 0.4 0.6 0.8
Normalized Frequency (pi=1)

15

10

5

0

-5

-10

-15
1) 0.2 0.4 0.6 0.8 1

Normalized Frequency (pi=1)

(d) Impulse response
2

1.5

1

0.5

0

-0.5[

1
-110 20 40

Sample

Figure 3-5: Characteristics of the distortion channel

64

0

-50

-100

0

10

-2.

-4

-6-

-8-

-10
60 80

(b) Passband ripple

Characteristics of the Distortion

Filter length: 1150
Passband: 0.9
Stopband: 0.92
Transition width: 0.02
Passband ripple in dB (peak-to peak): 30
Stopband attenuation in dB: -80
Phase nonlinearity in degree: 8

3.5.3 The Desired Response

The desired response is an FIR filter designed using the Parks-McClellan algorithm,

and the same desired response is used in each of the system configurations in Figure

3-4. Furthermore, we do not need to decimate the desired signal in the two-stage

equalization scheme because in the digital domain the frequency is normalized so the

different sampling rate conversions are immaterial. In addition, the desired response

has equiripple in the passband so decimating it will give about the same response

except with fewer ripples. Thus, by not decimating we can reduce the complexity of

the desired path. The desired response's characteristics are given in Figure 3-6 and

in the specifications below.

Filter length: 113
Passband: 0.96
Stopband: 0.9
Transition width: 0.06
Passband ripple in dB (peak-to peak): 0.005
Stopband attenuation in dB: -60

3.5.4 The Delay Element

Besides the delay that makes the system causal, oftentimes another time delay must

be added to the desired path or even to the distortion path to compensate for the

time difference in the two outputs. Exceptional to simulation studies such as this

one is that we know what the distortion signal is since we design it ourselves. With

this foreknowledge and the given desired response and adaptive filter length-which

are already known beforehand in real situations-we can determine the relative delay

between the two paths in the adaptive filter structure.

65

a.) Magnitude response of the desired channel

-20-
-40-

0 0.2 0.4 0.6 0.8 1 1.2
Normalized Frequency (1=PI)

1.4 1.6 1.8

x 10-2 b.) Passband ripple
0

'0

0 0.2 0.4 0.6 0.8
Normalized Frequency (1=PI)

-20

-40

-60

-80
0.

c.) Transition width

9 0.92 0.94
Frequency (1=PI)

c.) Time sequence of filter

IL

0 20 40 60 80
Time

Figure 3-6: Characteristics of the desired response.

66

-8(
2

0

-1

1

C

0.96

100

'

The delay in this simulation is estimated from the given filter length, N, and the

peaks of the main lobes of the time-domain distortion and desired signals, xpeak and

dpeak respectively, as follows:

delay = (xpeak + N/2) - dpeak . (3.17)

If delay in the above equation is positive then that much delay must be added to

the desired path, else the the distortion path needs that extra delay. The latter case

can occur when the adaptive filter is short, for example.

In practice, however, the peak of the distortion might be impossible to pinpoint

since it may be time-varying; thus the delay must be estimated by some other meth-

ods. Our chosen method, though unrealistic, is necessary to avoid choosing the delay

arbitrarily, which may "unfairly" affect the outcome of each case study.

3.5.5 The Decimation Filters

The digital prefilter in each decimator is designed by the Parks-McClellan algorithms.

We summarize their characteristics below while Figures ??,??,?? display their prop-

erties graphically. (Note: All frequencies are normalized where 1 = ir.)

Decimation-by-10 Filter

Filter length: 527
Passband: 0.09
Stopband: 0.1
Transition width: 0.01
Passband ripple, R,,: 5.68 * 10-3
Stopband ripple, R,: 1.51 * 10-3
Passband ripple in dB (peak-to peak): 9.83 * 10-2
Stopband attenuation in dB: -56.4

67

a.) Magnitude response of decimation-by-10 filter

0.1 0.2 0.3 0.4 0.5 0.6
Normalized Frequency (1=PI)

0.7 0.8 0.9

x 10-2 b.) Passband ripple

0.02 0.04 0.06 0.08 0.1
Normalized Frequency (1=PI)

0

4.)

c.) Transition width

-20-

-40-

-60

8.5 9 9.5 10
Frequency (1=PI) x 10-2

c.) Time sequence of filter

100 200
Time

300 400

Figure 3-7: Characteristics of the decimation-by-10 filter.

68

-20 -
2 -40-

-60-

-80-
0 1

6

4

2

0

-2

-4

.)

0

x 10-2
in

4.)
I0

4

8-
6 -
4-
2 -
0-

-2 -
0

-I
500

r%

a.) Magnitude response of the desired channel

-20
-40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Normalized Frequency (1=PI)

x 102 b.) Passband ripple

0 0.2 0.4 0.6 0.8
Normalized Frequency (1=PI)

0

I
-20

-60

-0U
0.9

c.) Transition width

0.92 0.94
Frequency (1=PI)

c.) Time sequence of filter

20 40 60 80
Time

Figure 3-8: Characteristics of the decimation-by-5 filter.

69

0.5

0

-1

1

0

0.96

0 100
JL

a.) Magnitude response of decimation-by-2 filter

0.1 0.2 0.3 0.4 0.5 0.6
Normalized Frequency (1=PI)

0.7 0.8

x 10-3 b.) Passband ripple

1~

0

a.)
*0a

-20

-40

-60

0.1 0.2 0.3 0.4
Normalized Frequency (1=PI)

0.46

c.) Transition width

0.48
Frequency (1=PI)

c.) Time sequence of filter

40 60 80 100
Time

Figure 3-9: Characteristics of the decimation-by-2 filter.

70

-20-
-40-
-60-
-80-

0

5

0

0.9 1

-.)

-5'
0 0.5

0 20

I
120

VI I I

Decimation-by-5 Filter

Filter length: 27
Passband: 0.09
Stopband: 0.3
Transition width: 0.21
Passband ripple, R,: 5.23 * 10-3
Stopband ripple, R,: 2.17 * 10-3
Passband ripple in dB (peak-to peak): 9.06 * 10-2

Stopband attenuation in dB: -53.3

Decimation-by-2 Filter

Filter length: 137
Passband: 0.45
Stopband: 0.5
Transition width: 0.05
Passband ripple, R, : 4.42 * 104

Stopband ripple, R, : 1.47 * 10-3
Passband ripple in dB (peak-to peak): 7.7 * 10-
Stopband attenuation in dB: -56.6

3.6 The Least-Squares Filter

The least-squares algorithm first is a deterministic, non-adaptive approach to design

filters that are optimum in the least squares sense, as discussed in Section 2.1.2. The

input to be equalized is the impulse response q[n] of the distortion channel.

where 5[n] is the impulse, q[n] the distortion channel, and x[n] the input to the

equalizer. The desired response is similarly the impulse response of the desired chan-

nel.

The least squared error (LSE) is obtained by summing the squares of the difference

between the filter output y[n] and the desired output d[nj:

n+N-1

LSE = E (d[i] - y[i]) 2 . (3.18)
i=n

71

3.6.1 Computational Complexity of the Least-Squares Fil-

ter

Single-Stage Filter

As reviewed in Section 2.1.2, the least squares filter requires solving the following

matrix equations for the filter weight vector h:

h = (XTX)-l(XT d) (3.19)

or equivalently

h = A-b (3.20)

where A = XTX and b = XTd. Let us compute the complexity of designing the

filter h, which is measured by the number of multiplications to solve (3.19) above.

Let the following denote the lengths of the vectors of interest here:

" Nh : length of filter vector h

" N : length of input vector x

* Nd : length of desired response vector d

The matrix X is of size Nh x N, which makes A of size Nh x Nh. Each entry in

A takes N, multiplications, and since A is symmetric, forming the matrix A takes a

total of

(3.21)2

multiplications.

To invert the matrix A, we assume we use the standard Gaussian elimination

method, which would take approximately on the order of

N3 (3.22)

multiplications [36]. In practice, however, we would exploit some nice properties of

the matrix A resulting from the way we window the input data as discussed in Sec-

72

tion 2.1.2 The matrix A is always symmetric and positive-semidefinite whatever the

windowing, so its inversion can be accomplished by a Cholesky decomposition, which

is more efficient than Gaussian elimination. On the other hand, if the windowing is

done by the correlation method, A becomes symmetric and Toeplitz, and the faster

Levison recursion can be used for the matrix inversion. However, the autocorrelation

windowing method gives only an approximation to the least-squares solution [20].

The vector b is Nh x 1 long and each entry takes N. multiplications to compute,

which gives a total number of multiplications for b to be

NxNh . (3.23)

Performing the products A-lb takes

hZ (3.24)

mutiplications.

Thus, the total number of multiplications required in the time-domain least squares

solution is the sum of Equations (??) above, which is

Ni + NI2(Nx + 1) + NhNx (3.25)

Multistage Filter

Extending the computational complexity result of the single-stage filter given in

(3.25), the number of multiplications in designing the filter with two-stages in Figure

3-3 is

N'i + NI(Nx1 + 1) + Nh1Nx1 + (3.26)

Nh2 + Nh2(Nx 2 + 1) + Nh 2Nx2 , (3.27)

where the subscripts 1 and 2 above indicate the first and second stage, respectively.

Note that the input data lengths, N, 1 and N.2 for the first and second stage are

73

different because of the decimation operation in between them.

A generalized equation for computational complexity of designing a filter with I

stages using the least-squares method is

7 V + N(N.T + 1) + NhiNeT . (3.28)

We can see from the complexity equations that a large filter length Nh will figure

dominantly in the number of multiplications of the filter since it is cubed. Thus,

if we could have smaller filters in the stages of the multistage structure, then its

combined complexity will be less than that of the single-stage structure. Whether

this decomposition will yield comparable least-squared error will be shown by the

simulation results in Section 3.6.

For the single-stage equalizer, let's normalize the sampling rate of its input to

1 since the input has been downsampled by both decimators. For the two-stage

equalizer, the input to the second stage equalizer also has the same sampling rate as

that of the single-stage equalizer. However, the input to the first stage equalizer has

approximately M2 times the sample points of the second-stage equalizer since it has

only been downsampled by the first decimator (M2 is the decimation factor of the

second decimator).

3.6.2 Results of Time-Domain Least Squares

In the first simulation example using the least-squares method, we fix the effective

filter lengths (EFL), as defined in (3.14) and (3.15), for all three system configurations

in Figure 3-4 and compare the resulting least squared errors and computational

complexities of designing the equalization filters. The selected EFL is 129, and the

results of this experiment are summarized in the table in Figure 3-10. For two-stage

equalization, the optimum number of taps for the first stage is 11 taps, and 107 taps

for the second stage. From (3.14) and (3.15), this is equivalent to the single-stage

EFL of 129. The LSE is approximately the same for the three system configurations;

they are in the order of 10-7 and 10-. The computational complexity of obtaining

74

the filter is slightly lower for the multistage equalizer than for the other two single-

stage systems, about 30% less. This computational saving will no longer be evident

if the there are more than 11 taps in the first stage, as we will discuss subsequently.

The table also shows the advantage of doing decimation in multiple stages, as evident

by the reduction in the length of the digital anti-aliasing filters for the multistage

scheme.

System 1 System 2 System 3

Effective
129 129 11*2+107=129

Filter Length (EFL)

1.58*l0A(-7) 6.41*0A(-8) 1.06*l0A(-7)
LSE -------------------------------- ------------

1 0.41 0.67

Computational 5.0*10A6 5.30*10A6 3.49*10A6
Complexity of ---------------------------- - -------------

Obtaining Filter 1 1.06 0.69

Effective 527 27*2+137=191 27*2+137=191

Decimator Length 1 0.36 0.36

Figure 3-10: Comparison of three systems using the least-squares filter.

In another experiment, we attempt to answer the question of how best to assign

the number of taps to each stage of the two-stage equalizer. Fixing the least-square

error to 1 x 107, we vary the number of taps in the first-stage equalizer from 9 to 91

and observe the effect of this on the number of taps in the second stage. Initially, we

would expect the length of the second-stage equalizer to decrease as we increase the

number of taps in the first stage. However, the simulation results indicate otherwise,

as shown in Figure 3-11. The x-axis gives the number of taps assigned to the first

stage while the y-axis plots the number of taps required to reach the preset least-

squared error. For this particular case, the optimum number of taps appears to be

75

11, while having more or fewer taps in the first stage does not help the equalization

of the second stage, since they all still need around 110 taps to correct to the chosen

LSE level. Figure 3-12 shows the effective filter lengths (EFL's) for the different

decompositions of the multistage equalizer in Figure 3-11.

Figure 3-11: Study of decomposition of the two-stage equalizer using the least-squares
method.

Figure 3-12: EFL for the different decompositions of the two-stage equalizer.

Let's examine this phenomenon in more detail by comparing two extreme exam-

ples, 11 taps versus 91 taps in the first stage, as illustrated by Figures 3-13 and

76

3-14, respectively. After equalization with 11 taps in the first stage, the distortion is

reduced from 30 dB to about 20 dB, but the number of alternation points, or ripples,

is small. It takes an additional 107 taps in the second stage to correct the distortion

to the preset LSE level of 1 x 10-7 . On the other hand, using 91 taps in the first stage

reduces the magnitude of the distortion tremendously, down to less than 1 dB, but it

also adds many ripples to the distortion signal. Correcting the remaining distortion

to specification still requires a large number of taps, 113. Increasing the taps in the

first stage certainly reduces the magnitude of the passband ripple of the distortion

for the second stage but it also adds more ripples, which require more taps to correct.

77

Distortion -,Equalized -. -

/-N

/\\ /

/ ~ I

0.5 1
Normalized Frequency

Distortion -- , Equalized -. -

/ N

/ \/~ I\

I I
I I
I I

I II
I /
/1 I
J

0.5
Normalized

Close-up of Desired & Equalized

0
C
a,

C

-151

-20'
0

-V
C

a,

-V

C

-0.02

1
Frequency

0.5
Normalized Frequency

Close-up of Desired & Equalized

0.02 -

0

0 0.5
Normalized Frequency

1

Figure 3-13: Magnitude responses of the two-stage equalizer with 11 taps in the first
stage.

78

0,
C

2~

10

0

10

/ \~ *I ,* \~7~

I'

-2iC
0

0
C

a, -5

-10

-15

0

-5 -

10 -

To ascertain that our observation above is not peculiar to the small LSE level

of 10' that we chose, we perform another experiment where we assign 51 taps to

the first equalizer and note the final LSE as we vary the taps in the second equalizer.

Figure 3-15 plots the LSE versus the number of taps in the second equalizer. The LSE

decreases as we increase the number of taps, as expected, but it does not reach 10'

until we get to 110 taps. Thus, quantization error is not an issue here as demonstrated

by the experiment and by the fact that we use 16 bits for double-precision arithmetic.

From the observations, we can conclude for this case that there is a good choice

of number of taps for the first equalization stage, and that this number is usually

small. Its function is mainly to perform rough equalization of the distortion while

the second stage equalizer performs fine correction. A higher filter length would

correct the magnitude of the distortion in the first stage better but it also adds

additional zeros to the output which would require a longer equalizer in the second

stage. Furthermore, fine equalization in the first stage may be wasteful since it does

not help reduce the number of equalizer taps in the second stage. This is, in part,

due to the filtering by the second decimator, which discards a part of the frequency

spectrum of the first equalizer output. In our case, half of the frequency spectrum

of the first equalizer output is eliminated by the second stage decimator with factor

M 2 = 2.

From our studies of the least-squares method using the models we develop, we

conclude that the multistage, multirate equalizer offers no major advantages over the

single-stage equalizer. This is due mainly to the fact that the the first equalizer is

unnecessarily spending many of its taps to correct over the frequency-band which will

be discarded by the second-stage decimator. However, one possible advantage of the

multistage equalization scheme is that solving the matrix equation (3.19) would re-

quire less computation if the lengths of the equalizers are shorter. As the experiments

show, finding a decomposition of the equalizer that would yield the least computa-

tions for a given least-squared error is not an easy task. Our observations tend to

indicate that a shorter filter in the first stage that performs a "rough" correction

followed by a longer filter in the second stage that performs fine equalization would

79

Distortion -,Equalized -. -

\\

0.5 1
Normalized Frequency

Distortion Equalized -.-

- -

0.5
Normalized

Close-up of Desired & Equalized

CO

"'0

C

:3

1

0.5

C

-0.5

-1
0 0.5 1

Normalized Frequency
Close-up of Desired & Equalized

C

~0
C

0)

0.02

0

-0.02

1
Frequency

0 0.5
Normalized Frequency

1

Figure 3-14: Magnitude responses of the two-stage equalizer with 91 taps in the first

stage.

80

m 10
0

C
0)

2 -10

.7
t. v 711 7

0

1

_0

C:

~0
CZ
0)

0.5

0

-0.5

1
0

59"vM"~ww~A

Figure 3-15: LSE versus taps in the second-stage equalizer.

81

yield the best result in terms of least-squared error and computational complexity.

3.7 The FBLMS Filter

The second algorithm we use to study the multistage, multirate equalizer is the

frequency-domain block LMS filter discussed in Section 2.1.6. Our initial motivation

for using a frequency-domain algorithm is that we can exploit the approximate un-

correlatedness that comes with the transformation of the input signal to selectively

adapt only over the frequency band of interest. The time-domain algorithm, on the

other hand, corrects indiscriminately over the whole spectrum. This implies that for

the multistage equalizer, the first equalizer invests as much effort in correcting the

unnecessary frequency band (which will be filtered out by the second stage decimator)

as the ultimate band of interest.

Therefore, by performing the adaptation in the frequency domain, we can incor-

porate a frequency-weighting factor in the transformed error. The weight is a vector

of 1's over the frequency-band of interest and O's over the don't-care band, which

essentially is windowing the frequency-domain data over the band of interest. This

weighted frequency error is then used in the estimate gradient to update the filter

coefficients. However, this idea does not work, as we shall discover, with the FBLMS

algorithm. Hence, the work for the no error weighting is the main focus here. Why

error weighting does not work for the FBLMS filter will be discussed later. In Section

4.2, we will suggest and discuss another frequency-domain adaptive algorithm where

the frequency-error weighting idea might work.

3.7.1 The Setup

A Gaussian white noise with zero mean and unit variance is used to drive the input

of the system, so it is represented by the convolution of a white noise w[n] with the

distortion channel q[n]:

x[n] = w[n] * q[n] . (3.29)

82

The output of this convolution, x[n], is a discrete-time stochastic process which is used

as the input to the adaptive filter. The desired output d[n] is similarly generated by

driving the desired channel with the same white noise w[n]. An attractive property of

white noise is that its spectral density is flat at all frequencies so that all frequencies

of the distortion channel can be excited.

To obtain the residual error, we let the adaptation run sufficiently long beyond

convergence so that we can estimate the mean square error (MSE) by averaging the

error in the last several hundred blocks after convergence. This is based on the

assumption that the stochastic process is ergodic whereby a time average of the error

e[n] can approximate its ensemble average:

E(e2 [n]) = lim[] (3.30)
N-inf N e'n (-0

For two-stage adaptive equalization, we let the first stage completely converge

first before we adapt the second stage. In practice, it may be more efficient if we can

use pipelining, whereby the first stage adapts on a block of data and passes it to the

second stage to correct while the first stage goes on to correct the next block of data.

3.7.2 Computational Complexity of the FBLMS Filter

Like the least-squares fiter, there are also two types of computational complexity

involved with the FBLMS filter. The first is the total complexity of computing the

filter in the adaptation stage, and the second is the complexity of using the filter per

unit time, once it has converged and adaptation has been turned off.

Let us determine the computational complexity of adapting the FBLMS filter

with gradient constraint. We measure the complexity of the algorithm in terms of

the number of multiplications it requires. Refer to Figure 2-7 in Section 2.1.6.

Complexity Per Iteration of Adaptation

First, the number of real multiplications for an M-point FFT (IFFT) is approxi-

83

mately

Mlog 2 M (3.31)

using the radix-2 FFT algorithm.

Each linear convolution or correlation in the FBLMS filter takes M = 2Nh points

where Nh is the length of the adaptive filter, as well as the block size. There are a

total of 5 FFT's and IFFT's in the overlap-save FBLMS with gradient constraint, so

the number of real multiplications to perform these transforms is

1ONhlog 2(2Nh) (3.32)

The computation of each filter output, Y = XH, and the gradient, G = XHE,

requires 4M real multiplications since the DFT's are complex. For M = 2N, the

total number of real multiplications is 16N. The total number of multiplications for

each block of iteration of the FBLMS algorithm is thus

1ONhlog2(2Nh) + 16Nh . (3.33)

This measures the complexity of the FBLMS algorithm.

Total Number of Multiplications in Adaptation Stage

Another comparison of interest is the total number of multiplications required

during the adaptation stage. This is the product of the number of multiplications in

each iteration and the number of blocks it takes the algorithm to converge.

For a single-stage filter that takes L blocks to converge, the total number of

multiplications, abbreviated as TM, during the adaptation stage is:

TM = L[lONhlog 2(2Nh) + 16Nh] . (3.34)

The total number of multiplications it takes to adapt both equalizers in the mul-

84

tistage structure is

TM' = L1[1ONhllog2(2Nhi) + 16Nhl] (3.35)

+L 2 [lONh 2log 2(2Nh2) + 16Nh2] (3.36)

where L, and L 2 are the numbers of blocks the first and second equalizers take to

converge.

Time For Convergence

In practice, the number of input samples, at the original, undecimated rate it takes

for the entire filter structure to converge is usually of interest. This gives a measure

of the convergence time of the entire filter structure, which we shall abbreviated as

CT here.

For the single-stage equalizer preceded by a two-stage decimator with factors M1

and M2 , the convergence time is

CT = MlM2LNh = MLNh (3.37)

for M = M1 M2 and L is the number of blocks the filter takes to converge. We must

include the sampling rate here since we downsample the original input signal i[n] of

the system. Although each FFT and IFFT is 2Nh long, the number of new input

data, after decimation, that comes into the equalizer at each iteration is Nh, which is

also the length of the equalizer.

For the multistage equalizer, the convergence time for the filter in the first stage,

CT1, with respect to the original sampling rate is

CT = M1L1Nhl (3.38)

and that of the second stage is

CT2 = MlM2 L 2 N 2 (3.39)

85

The total convergence time, CT', of the two-stage adaptive filter is the sum of

(3.38) and (3.39)

CT' = MiLiNhi + MlM2 L 2 N 2 (3.40)

Effective Filter Length

The effective filter length (EFL) for the FBLMS filter is the same as that defined

in (3.14) and (3.15). It meaures the complexity of using the filter after adaptation

is turned off. Again, the EFL of the single-stage structure is Nh while that of the

two-stage structure is

EFL = M2 Nhl + Nh2. (3.41)

3.7.3 Results of FBLMS with Gradient Constraint

To compare the performance of the multistage adaptive filter with that of the single-

stage adaptive filter, let us examine the results of three sets of experiments. Here, we

fix the total number of equalizer length for both the single-stage and the multistage

adaptive filters, and compare their peformances based on:

* Mean-squared error (MSE)

e Total number of multiplications during adaptation(TM)

e Number of multiplications per unit time (MPT)

* Convergence Time (CT)

* Effective Filter Length (EFL)

The three lengths we chose for the single-stage filter in the three sets of experiments

are 64, 128, and 192. For filter lengths lower than 32, the algorithm shows poor

convergence for the data we have, and for filter lengths that are too high we would be

equalizing beyond the desired specification. The table in Figure 3-16 indicates how

we decompose the filter of the multistage structure for the chosen filter lengths.

86

Setup 1 Setup 2 Setup 3

Singlestage 64 128 192
Multistage 32:32 32:128 64:128

64:64

Figure 3-16: Three setups for simulation study.

The complexity of the algorithm is calculated based on the assumption that the

filter length Nh is a power of 2 so we can use fast radix-2 algorithm for the FFT.

Therefore, for filter lengths in the table above that are not powers of 2, such as 96

and 192 in the table, we have to pad the filters with zeros to obtain the next highest

power of 2 before the FFT is perforemd.

The table in 3-17 summarizes the results of the three setups. Note that we also

express the results in terms of ratio as follows:

Multistage Performance
Performance Ratio = Sistage Performance (3.42)

Single-stage Performance

to ease the comparison between the two filter structures.

First, let us look at the number of blocks it takes for each individual filter to

coverge. The simulations show that each of the filters in the multistage filter takes

fewer updates to converge than the single-stage equalizer alone. This is due to the

fact that each of them have shorter lengths.

Let us look at the convergence plots of two filters in Setup 2: the single-stage filter

with 128 taps and the two-stage filter with 64 taps in both stages. Figure 3-18 (a)

displays the convergence plot of the single-stage, and Figures 3-19 3-20 a) pertain to

the two equalizers of the two-stage structure. The x-axis gives the number of blocks,

or iterations, in the adaptation of the FBLMS filter. The y-axis shows the MSE

in dB. We define the convergence point as the block number where the convergence

curve has steadied out to approximately a flat line. The convergence curve shown

here is only one realization of the random process and thus it is noisy. The noise

is due to the fact that the gradient has to be estimated at each iteration as well as

87

0 Co
fl

0 0

Se
tu

p
1

Si
ng

le

M
ul

tis
ta

ge

64

32
:3

2

10
0

80
:4

0

3.
76

79
e-

06

6.
70

24
e-

05
1

17
.7

88
15

8

55
04

00

29
18

40
1

0.
53

02
32

56

64
00

0
25

60
0

1
0.

75

64

19
2

Si
ng

le

12
8

30
0

2.
43

49
e-

07
1

36
86

40
0 1

38
40

00
1

12
8

Se
tu

p
2

M
ul

tis
ta

ge
 1

32
:% 80

:5
0

5.
89

54
e-

05
24

2.
12

08
3

80
89

60
0.

21
94

44
44

76
80

0
0.

2

16
5

M
ul

it
st

ag
e

2

64
:6

4

50
:5

0

8.
52

81
e-

07
3.

50
24

43
6

55
04
00

0.
14

93
05

56

48
00

0
0.

12
5

19
2

Si
ng

le

9.
31

24

94
97 89

6Se
tu

p
3

M
ul

tis
ta

ge

19
2

64
:1

28

35
0

50
:2

00

e-
09

1.

08
15

e-
08

1
1.

16
13

54
8

60
0

27
32
80
0

1
0.

28
77

35
85

00
0

27
20
00

1
0.

30
35

19
2

25
6

0
0 00

F
il

te
r L

en
gt

h

B

lo
ck

s
to

 C
on

ve
rg

e

M
SE

M
SE

 R
at

io

T
ot

al
 M

ul
t

(T
M

)
T

M
 R

at
io

C
on

ve
rg

e
T

im
e

(C
T

)
C

T
 R

at
io

E
FL

to numerical rounding. Thus, the solution tends to bounce back and forth in the

performance surface, never reaching the minimum. Averaging the covergence plots

for many different runs would give a smoother convergence curve. We can see that the

single-stage filter takes around 300 blocks to converge, whereas the first and second

stage of the multistage filter each takes approximately 50 blocks.

Although each of the filters in the multistage structure converges faster than the

single-stage filter, each one converges to a higher MSE than the single-stage one

as shown in the convergence plot. Specifically, the 64:64-filter-pair converges to an

overall MSE of 8.5 x 10- but the 128-filter has an MSE of 2.4 x 10-, which is about

one third less than that of the multistage filter. For other setups that we studied, the

single-stage filter consistently converges to the lowest MSE, as shown in the table.

It is interesting to observe that the MSE of the multistage structure is rather large

when we use 32 taps in the first stage. For instance, the 32:96-filter in Setup 2 has

an MSE that is about 240 times larger than that of the 128-filter.

The total number of multiplications (TM) for obtaining a converged filter as de-

fined in (3.34) is consistently lower for all the multistage structures studied here, as

can be seen in the table. They range from 15% to 50% of the TM of the single-stage

filters. Since the total number of multiplications is a function of the equalizer length

as well as the number of blocks for convergence, the multistage structure wins in both

of those categories, which explains their lower TM.

The convergence time (CT) is measured by the number of original, undecimated

input samples that it takes for the filter to converge, and it is given by (3.37) and

(3.40). Again, the multistage structure has consistently low CT's for all the Setups,

which again can be explained by their short filter lengths and low number of blocks

for convergence.

Finally, we are also interested in the complexity of using the filter once it has

converged. This is measured by the effective filter length (EFL) defined in (3.14).

Recall that the EFL is a function of the filter lengths plus the sampling rate that it

operates at. In this category, the multistage filters does not fare well mainly because

the first equalizer has to run at M2 or twice the sampling rate of the single-stage

89

a.) Convergence plot. Filter Length=128, MSE=2.4349e-07

) 100 200 300 400 500 600 700
Number of Blocks in Adaptation

b.) Passband ripples of equalizer output and desired response

X /-

0.2

Distortion after

0.5

0.4
Normalized

decimation

1
Normalized Frequency (1=PI)

0.6
Frequency

mO
0

C

a,

10

0

10

0.8 1
(1=PI)

Equalizer response

0
Normalized

0.5 1
Frequency (1=PI)

Figure 3-18: Result of single-stage adaptive FBLMS filter with 128 taps.

90

0

-100C/)

o 0.02

- 0
C

2 -0.02
0

M

10
0

0)-10

-\ p
' I

I -
I I

0

\ f~

I ~

If

Stage2. Filter Lengths= 64--64. MSE=8.8388e-O7

*1 001

0 100 200 300 400
Number of Blocks in Adaptation

b.) Passband ripples of equalizer output and desired response
5

0
0.2 0.4

Normalized
c.) Stage2 distortion

0
Normalized

0.5
Frequency

0.6
Frequency

co_0

A

1
(1 =PI)

0.8
(1=qPI)

d.) Equalizer

0
Normalized

1

response

0.5 1
Frequency (1=PI)

Figure 3-19: Result of stage 1 in two-stage adaptive FBLMS filters with 64 taps each.

91

0

LU
Cn

C S0.

a>

C-
0)

S-0.

M
90
C

C

0

5.

0

5

a.) Convergence plot.

Convergence plot. Filter Lengths= 64--64. MSE=6.2563e-04

0 100 200 300 400
Number of Blocks in Adaptation

Passband ripples of equalizer output and desired response

- -

-) I
0.2 0.4 0.6 0.8 1

Normalized Frequency (1=PI)
Stagel distortion Equalizer response

0.5 1
Normalized Frequency (1=PI)

Cii

C
a,

C

Co

10

0I

10

0
Normalized

0.5
Frequency

Figure 3-20: Result of stage 2 in two-stage adaptive FBLMS filters with 64 taps each.

92

0

C

Cl)

C2

=3

0

10

C -10

0

-

- --- - - -- - 4
1

(1=PI)

-50

l

equalizer.

In summary, we have studied the multistage and single-stage adaptive filters,

where adaptation is done using the FBLMS algorithm. We have three setups with

total filter lengths of 64, 128, and 192. We compare the two filter structures by several

benchmarks as summarized by the table in Figure 3-17. From our particular model

of the systems and parameters, we see that the multistage adaptive filter consistently

fares well in terms of the time and computational complexity during adaptation. This

is mainly because each of the filter is smaller than the single-stage filter and thus

this allows for faster convergence. However, the faster convergence of the multistage

structure also leads to larger mean square errors (MSE) than that of the MSE. In

our experiments, we fix the step size 0 to 1 for all filters. Although the eigenvalue

spread of the autocorrelation matrix of the input signal is normalized by the estimated

power of the input blocks, this normalization might not be perfect. The y controls the

rate of convergence of the algorithm. In the multistage adaptive filter, we can have

multiple y's for the stages and thus more freedom in choosing the convergence rates

of the adaptive filters than that of the single-stage structure. However, in practice, we

might not have the luxury of knowing the convergence behaviors of the intermediate

stages.

3.8 The Modified FBLMS Filter

As mentioned in the introduction to this section, our initial motive for exploring

adaptation in the frequency-domain is that we hope to exploit the approximate un-

correlatedness of the transformed signal in our multistage, multirate adaptive filter

structure. In particular, we want to selectively adapt only over the frequency band

of interest and not over the entire spectrum of the signal. This is especially useful

in the first-stage equalizer since it is wasteful for it to correct the frequency band

outside of r/M, where M is the ultimate decimation factor, which will be discarded

by the second decimator anyway. Thus, we can incorporate a weighting function in

the frequency-domain error which would specify which frequency bins we want adap-

93

tation and which ones we do not. We explore this idea using the FBLMS filter, but

it does not work as we have hoped and we shall see why. We will also suggest a class

of algorithms where the error-weighting idea might perform correctly.

Refer once again to Figure 2-7 to review the block diagram of the FBLMS filter

using overlap-save data sectioning with gradient constraint. We want to weight the

transformed error vector,

E = [EoE1...E 2 N-1 (3.43)

with a weight matrix W of 1's over the frequency band of interest and O's over the

don't-care band. A weight matrix is defined as

W = diag[11...00...11] (3.44)

where diag[-] is an operator that forms a diagonal matrix. The components on the

diagonal of W must be symmetric to be consistent with E, which is conjugate sym-

metric because it is the DFT of a real time-domain error. The weighting is done by a

matrix multiplication, WE. This weighted error vector is then used in the calculation

of the gradient vector G as in the original FBLMS algorithm.

The simulation of this modified FBLMS algorithm yields inconsistent results which

indicate that the modification has altered the filter in an incorrect way. We have an

explanation for why this error weighting does not work. In general, weighting the

error E with the weight matrix W is like truncating the the frequency domain error

with a perfect rectangular window whose passband is 1 in the band of interest and 0

in the don't-care band. In the time domain, this operation is equivalent to a circular

convolution of the time domain error e with a sinc function:

WE G (e, (3.45)
7rn

where w, is the cutoff frequency of the window W. Because of this circular con-

volution, the weighted error is a "smeared" version of the original error, and such

modification might not be desirable since the algorithm now tries to minimize a func-

94

tion of a different error. Thus, the steady state solution is entirely different from that

of the unweighted error.

However, the fundamental problem underlying the error weighting idea resides in

the error property of the FBLMS filter itself. Each frequency bin in the FBLMS

filter does not have its own individual error term, since the error is derived in the

time domain. The frequency transformation of the error in the algorithm is only

necessary because we want to use the Fast Fourier Transform (FFT) to realize the

linear correlation needed in the time-domain algorithm. Hence, the mean-squared

error (MSE) that the FBLMS tries to minimize is global, so weighting the frequency-

domain error will not make the algorithm adapt selectively over the band of interest.

However, it is still true, by Parseval's theorem, that minimizing the error energy in

the time domain would be equivalent to minimizing the error energy in the frequency

domain, which is achieved by the FBLMS filter, as pointed out in Section 2.1.6.

Thus, the FBLMS filter should be viewed more as an efficient implementation of the

time-domain block LMS algorithm, rather than an algorithm with a frequency-domain

error. These subtle attributes of the FBLMS algorithm were initially not clear to us

until we explored the error weighting idea.

We believe that the frequency error weighting idea might work better for the class

of adaptive filters that compute and use the frequency-domain error directly in the

adaptation. The circular convolution algorithm, mentioned in Section 2.1.7, is such

an algorithm since the error is found directly from the difference of the transformed

filter output and the transformed desired respone, E = Y - D. Here, each frequency

bin has its own local MSE to minimize instead of the transform of a global MSE as in

the FBLMS filter. However, because the convolution is circular in this algorithm, the

performance is degraded and it might not perform well for certain types of signal. In

this thesis, we did try to use the circular convolution algorithm but the degradation

in performance is not tolerable here.

Another place where error weighting might perform well is adaptive filtering in

subbands, as illustrated in Figure 3-21. As introduced in Section 1.2, in this scheme

an analysis filter bank splits the input signal x[n] into smaller frequency bands called

95

subbands, and each subband can be downsampled by some factor M. The subbands

of the desired response d[n] are similarly obtained. The adaptive filter then tries to

adapt over each subband and produces, at the kth iteration, a vector of subband

outputs, Y. Thus, each subband has its own error term, and the error vector for all

the subbands is E = Y - D. Now, we can sensibly incorporate the weighting factor

W in 3.44 into the frequency error vector, which is WE.

Input Output

X[Anal yis Equalizer Y[k] Synthesis y

Adaptive E[k] -
Algorithm +

d~n) AnalsisD[kl

Figure 3-21: Block diagram of adaptive filtering in subbands.

Figure 3-21 shows the general structure of a single-stage adaptive filter in sub-

bands, where the output of the adaptive filter must be reconstructed from the sub-

bands by upsampling and filtering it with a synthesis bank. There are many issues

involved in the design of the filter banks and the adaptive filter in the subband schemes

as mentioned in Section 3.1. These issues are dealt with in great detail in [32], [37],

[16, 17, 18], [40].

What we have presented here is only a rough sketch of a possible improvement

in the performance of the multistage, multirate adaptive filter by incorporating an

error weighting factor in the frequency-domain adaptation. From our study, we have

learned and understood why this idea does not work for the FBLMS algorithm. We

then propose that the error weighting idea may be successfully applied to a class of

algorithms that minimizes the frequency mean-squared error directly. The circular

convolution adaptive filter and the subband adaptive filter belong to such a class.

96

Chapter 4

Conclusion

4.1 Summary

In this thesis we have proposed a modification to the current structure of the adaptive

filter that operates in a multirate system. Specifically, we decompose the single-stage

adaptive filter into smaller ones and insert them in between successive decimation

stages. We explore this multistage, multirate adaptive filter in the context of adap-

tive equalization of a downsampled, narrow-band signal. We have investigated a

simple decomposition, that of a two-stage equalizer operating at two different sam-

pling rates. We construct a hypothetical model for such equalization system, and

study its performance for two filter-design techniques: 1) the classic least-squares

method and 2) the frequency-domain block least mean square (FBLMS) algorithm.

With the aid of software simulations, we compare the multistage, multirate filter with

the single-stage structure based on two performance criteria: 1) the residual error and

2) the computational complexities of the filter design and operation.

In Chapter 2, we cover some fundamental backgrounds on adaptive filtering and

multirate digital signal processing. We first review the least-squares method, which

is a classic deterministic method for data-fitting. Its exploitation of the orthogonality

principle to minimize the error function is a powerful and fundamental concept, and

is also the basis of the probabilistic solution, the Wiener filter. Although the Wiener

filter is optimum in the mean-square sense, it assumes perfect knowledge of the signal

97

statistics, which is not available in practice. Efforts to relax this assumption led to the

development of adaptive filters. We then discuss one of the simplest and most widely

used adaptive algorithms, the least mean square (LMS) method. The LMS is an

iterative approach to compute the Wiener solution by using instantaneous estimates

of the gradient of the error performance surface to descend toward the optimum

solution. A variation of the LMS algorithm is to estimate the gradient from a block

of input and error data which allows for a smoother convergence of the algorithm. This

method is called the time-domain block LMS (TBLMS). These preludes then prepare

us for the discussion of the frequency-domain block LMS (FBLMS) algorithm, which

is used in this thesis. This adaptive filter is an efficient implementation of the time-

domain block LMS by using fast Fourier transforms (FFT's) to compute the linear

convolution and correlation needed in the TBLMS filter. Another of its nice attributes

is that the Fourier transform tends to decorrelate the signals so that a different step

size can be used for each adaptive weight to give a more uniform convergence rate

In Chapter 3, we describe the proposed multistage, multirate adaptive filter and

discuss some of the difficulties inherent in the analysis of this system, which lead us to

study the problem using simulations. We model the system as an equalization problem

of a narrow band signal. For the single-stage structure, the system has two decimators

followed by a single-stage equalizer. The multistage structure, on the other hand, has

two equalizers, one of which is inserted in between the two stages. We compare the

performances of these two structures for the least squares method and the frequency-

domain block LMS algorithm that we used in the simulations. The performance

criteria are: 1) residual error and 2) the computational complexities of the design of

the filter and of using the filter. Our study shows that for our particular model of

the system, the multistage, multirate scheme shows no clear improvement over the

single-stage filter for the non-adaptive least-squares method. For the adaptive FBLMS

filter, the multistage structure demonstrates significant computational savings over

the single-stage filter but at a cost of an increased residual error at convergence. In

both cases, the proposed scheme also adds complexity to the design of the filter since

it is not clear what is the best allocation of the number of taps to each stage of the

98

filters to optimize the convergence rate and the residual error.

4.2 Discussion and Suggestions for Future Re-

search

In this section, we will discuss various points that have not been dealt with in the

thesis and suggest some future works.

1. In our study of the FBLMS filter, we simplify the problem by letting the first

adaptive filter to converge before starting to adapt the second filter. In real situations,

it might be more practical to let both filters adapt simultaneously by pipelining the

blocks of input data. However, it is not clear whether doing so would guarantee

convergence of the two adaptive equalizers.

2. In our current sheme, we may be unnecessarily over-optimizing the first-stage

equalizer by matching its output with the same desired response used for the second

stage. Since the ultimate desired response has small ripples, the first equalizer will

have to work harder with the relatively few number of taps that it has. We can relax

the work load of the first stage equalizer by having a different desired signal that has

bigger ripples than the final desire response. However, in practice we might not know

what the result of the intermediate corrections will be, which makes it difficult to

determine the intermediate desired response.

3. The first-stage equalizer is correcting the distortion not only over the ultimate

passband, but also over the don't-care band which will be discarded by the anti-

aliasing filter of the decimator. We have attempted to improve on this situation by

incorporating a weighting factor to the frequency-domain error vector, which specifies

the frequency bands where adaptation should occur. However, we have discovered

and understood why this error weighting does not work with the FBLMS algorithm as

discussed in Section 3.8. We also suggest applying the error weighting to another class

of algorithms where each frequency bin actually has its own error term. Examples are

the circular convolution algorithm in Section 2.1.7 and adaptive filtering in subbands

in Section 3.8.

99

4. The FBLMS filter comes from the LMS algorithm which uses a stochastic

gradient approach to estimate the Wiener solution. The minimum mean-squared error

criterion of the Wiener filter guarantees the designed filter to be optimum when the

the distortion channel is fixed over time. However, when the channel is time-varying,

the position of the minimum point on the error performance surface corresponding

to the optimum filter weights, h*, is no longer fixed. The LMS algorithm has been

shown to have the capability to track the location of this changing minimum point in

a nonstationary environment [21]. In such case, the filter must continuously update

its coefficients. We did not deal with the issue of nonstationary in this thesis, but it

is a realistic and crucial problem confronting many applications in communications.

In summary, what we have presented in this thesis is a possible approach to

study the multistage, multirate adaptive filter that we propose. In the course of

understanding this new filter structure, we have raised more questions than answers,

and further study and analysis are necessary to confirm the properties and merits of

this multistage, multirage filter.

100

Bibliography

[1] S. T. Alexander, Adaptive Signal Processing, Springer-Verlag, 1986.

[2] H. Baher, Analog & Digital Signal Processing. John Wiley & Sons, 1990.

[3] M. G. Bellanger et al., "Interpolation, Extrapolation, and Reduction of Compu-
tation Speed in Digital Filters," IEEE Trans. ASSP., vol. ASSP-22, no. 4, pp.
231-235, Aug. 1974.

[4] M. G. Bellanger et al., "Digital Filtering by Polyphase Network: Application to
Sample-Rate Alteration and Filter Banks," IEEE Trans. ASSP., vol. ASSP-24,
no. 2, pp. 109-114, Apr. 1976.

[5] M. G. Bellanger, "Computation Rate and Storage Estimation in Multirate Dig-
ital Filtering with Half-Band Filters," IEEE Trans. ASSP., vol. ASSP-25, no. 4,
pp. 344-346, Aug. 1977.

[6] M. G. Bellanger, "New Applications of Digital Signal Processing in Communi-
cations," IEEE ASSP Magazine, pp. 6-11, Jul. 1986.

[7] M. G. Bellanger, Digital Processing of Signal: Theory and Practice. John Wiley
& Sons, 1984.

[8] N. Bershad and P.L, Feintuch, "A Normalized Frequency Domain LMS Adaptive
Algorithm ", IEEE Trans. ASSP., vol. ASSP-34, No.3, pp. 452-461, June 1986.

[9] G. Clark, S. Mitra and S. Parker, "Block Implementation of Adaptive Digital
Filters" IEEE TRans. CAS, vol. CAS-28, No. 6, pp. 584-592, June, 1981.

[10] G. Clark, S. Parker and S. Mitra, "A Unified Approach to Time- and Frequency-
Domain Realization of FIR Adaptive Digital Filters", IEEE TRans. ASSP, vol.
ASSP-31, No. 5, pp.1073-1083, Oct., 1983.

[11] R.E. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing. Prentice-
Hall, 1983.

101

[12] R.E. Crochiere and L.R. Rabiner, "A Program for Multistage Decimation, Inter-

polation, and Narrow-Band Filtering," Programs for Digital Signal Processing.
IEEE Press, 1979.

[13] M. Dentino, J. McCool and B. Widrow, " Adaptive Filtering in the Frequency
Domain", Proc. of the IEEE, vol. 66, No. 12, pp. 1658-59, Dec. 1978.

[14] P.M. Embree and B. Kimble, C Language Algorithm for Digital Signal Processing.

Prentice-Hall, 1991.

[15] , E.E. Ferrara, "Fast Implementation of LMS Adaptive Filters", IEEE Trans.

ASSP. vol. 28, no.4, pp. 474-475, Aug. 1980.

[16] A. Gilloire, "Experiments with Subband Acoustic Echo Cancellers for Telecon-

ferencing," in Proc. IEEE ICASSP'87 (Dallas, TX), pp. 2141-2144.

[17] A. Gilloire and M. Vetterli, "Adaptive Filtering in Subbands," in Proc. IEEE

ICASSP'88 (New York, NY), pp. 1572-1575.

[18] A. Gilloire and M. Vetterli, "Adaptive Filtering in Subbands with Critical Sam-

pling: Analysis, Experiments, and Application to Acoustic Echo Cancellation,"

IEEE Trans. on Signal Process., vol. 40, no. 8, pp. 1862-1875, Aug. 1992.

[19] R. D. Gitlin and S. B. Weinstein, "Fractionally-Spaced Equalization: An Im-

proved Digital Transversal Equalizer," The Bell System Technical Journal, vol.

60, no. 2, pp. 275-296, Feb. 1961.

[20] R. A. Haddad and T. W. Parsons, Digital Signal Processing. Theory, Applica-

tions, and Hardware. W.H. Freeman and Company, 1991.

[21] S. Haykin, Adaptive Filter Theory. Prentice-Hall, 1986.

[22] M. L. Honig and D. G. Messerschmitt, Adaptive Filter: Structures, Algorithms,

and Applications. Kluwer Academic Publishers, 1984.

[23] N.K. Jablon, "On the Complexity of Frequency-Domain Adaptive Filtering",

IEEE Trans. ASSP, vol.39, no.10, pp. 2331-34.

[24] W. Kellermann, "Analysis and Design of Multirate Systems for Cancellation
of Acoustical Echoes," Proc. IEEE Intl. Conf. Acoustics, Speech, and Signal

Processing. New York, NY, pp. 2570-2573, Apr. 1988.

[25] J. C. Lee and C. K. Un, "Block Realization of Multirate Adaptive Digital Filters,"

IEEE Trans. ASSP, vol. ASSP-34, no. 1, pp. 105-117, Feb. 1986.

[26] J. S. Lim and A. V. Oppenheim ed., Advanced Topics in Signal Processing.

Prentice-Hall, 1988.

[27] D. Mansour and A. Gray, "Unconstrained Frequency-Domain Adaptive Filter",
IEEE Trans. ASSP., vol. ASSP-30, No.5, pp. 726-734, Oct. 1982.

102

[28] A. V. Oppenheim and R. W. Schafer, Discrete- Time Signal Processing. Prentice-
Hall, 1989.

[29] F. Reed and P. Feintuch, "A Comparison of LMS Adaptive Cancellers Imple-
mented in the Frequency Domain and the Time Domain", IEEE Trans. CAS,
vol. 28, no.6, pp. 610-615, June 1981.

[30] T. Saramaki et al., "Design of Computationally Efficient Interpolated FIR Fil-
ters," IEEE Trans. on Circuits and Systems, vol. 35, no. 1, pp. 70-87, Jan. 1988.

[31] R. R. Shively, "On Multistage FIR Filters with Decimation," IEEE Trans. ASSP,
vol. ASSP-23, no. 4, pp. 353-357, Aug. 1975.

[32] J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal
Processing Magazine, pp. 14-37, Jan. 1992.

[33] W. M. Siebert, Circuits, Signals, and Systems. The MIT Press, 1986.

[34] P. Sommen, P. van Gerwen, H. Kotmans and A. Janssen, "Convergence Analysis
of a Frequency-Domain Adaptive Filter with Exponential Power Averaging and
Generalized Window Function", IEEE Trans. CAS, vol. CAS-34, No. 7, pp. 788-
798, July 1987.

[35] S. D. Stearns and Don R. Hush, Digital Signal Analysis. Prentice Hall, 1990.

[36] G. Strang, Linear Algebra and its Application, Third Edition, 1988.

[37] V. S. Somayazulu, "Adaptive Filtering in Subbands," Ph.D. Thesis at U. C.,
Santa Barbara. October, 1990.

[38] V. Sathe, "Multirate Adaptive Filtering Algorithms: Analysis and Applications,"
Ph.D. Thesis at California Institute of Technology. May, 1991.

[39] V. Sathe and P. P. Vaidyanathan, "Efficient Adaptive Identification and Equal-
ization of Bandlimited Channels Using Multirate/Multistage FIR Filters," Con-
ference Record of the Twenty-Fourth Asilomar Conference on Signals, Systems
and Computers. Pacific Grove, CA. November, 1990.

[40] P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Net-
works, and Applications: A Tutorial," Proc. of the IEEE, vol. 78, no. 1, pp. 5 6 -9 3 .

[41] G. Ungerboeck, "Fractional Tap-Spacing Equalizer and Consequences for Clock
Recovery in Data Modems," IEEE Trans. on Communications, vol. COM-24,
no. 8, pp. 856-864, Aug. 1976.

[42] R. B. Wallace and R. A. Goubran, "Noise Cancellation Using Parallel Adaptive
Filters," IEEE Trans. on Circuits and Systems, vol. 39, no. 4, pp. 2 3 9-2 4 3 .

[43] T. Walzman and M. Schwartz, "Automatic Equalization Using the Discrete Fre-
quency Domain", IEEE Trans. IT, vol. IT-19, No. 1, pp. 59-68, Jan. 1973.

103

[44] B. Widrow and S.D. Stearns, Adaptive Signal Processing. Prentice-Hall, 1985.

104

