1,712 research outputs found

    Advances in multispectral and hyperspectral imaging for archaeology and art conservation

    Get PDF
    Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed

    PRISMS: a portable multispectral imaging system for remote in situ examination of wall paintings

    Get PDF
    We present a proto-type portable remote multispectral imaging system, PRISMS (Portable Remote Imaging System for Multispectral Scanning), that is light-weight, flexible and without any cumbersome mechanical structure for in situ high resolution colour and spectral imaging of large and inaccessible paintings such as wall paintings. This is the first instrument to be able to image paintings at inaccessible heights in situ from ground level to produce not only high resolution colour images but also multispectral images

    Remote multispectral imaging with PRISMS and XRF analysis of Tang Tomb paintings

    Get PDF
    PRISMS (Portable Remote Imaging System for Multispectral Scanning) is a multispectral/hyperspectral imaging system designed for flexible in situ imaging of wall paintings at high resolution (tens of microns) over a large range of distances (less than a meter to over ten meters). This paper demonstrates a trial run of the VIS/NIR (400-880nm) component of the instrument for non-invasive imaging of wall paintings in situ. Wall painting panels from excavated Tang dynasty (618-907AD) tombs near Xi’an were examined by PRISMS. Pigment identifications were carried out using the spectral reflectance obtained from multispectral imaging coupled with non-invasive elemental analysis using a portable XRF

    Multispectral oximetry of murine tendon microvasculature with inflammation

    Get PDF
    We report a novel multispectral imaging technique for localised measurement of vascular oxygen saturation (SO2) in vivo. Annular back-illumination is generated using a Schwarzchild-design reflective objective. Analysis of multispectral data is performed using a calibration-free oximetry algorithm. This technique is applied to oximetry in mice to measure SO2 in microvasculature supplying inflamed tendon tissue in the hind leg. Average SO2 for controls was 94.8 ± 7.0 % (N = 6), and 84.0 ± 13.5 % for mice with inflamed tendon tissue (N = 6). We believe this to be the first localised measurement of hypoxia in tendon microvasculature due to inflammation. Quantification of localised SO2 is important for the study of inflammatory diseases such as rheumatoid arthritis, where hypoxia is thought to play a role in pathogenesis

    Multi texture analysis of colorectal cancer continuum using multispectral imagery

    Get PDF
    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images
    corecore