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Abstract: We report a novel multispectral imaging technique for localised measurement of
vascular oxygen saturation (SO) in vivo. Annular back-illumination is generated using a
Schwarzchild-design reflective objective. Analysis of multispectral data is performed using a
calibration-free oximetry algorithm. This technique is applied to oximetry in mice to measure
SO, in microvasculature supplying inflamed tendon tissue in the hind leg. Average SO, for con-
trolswas94.8 + 7.0 % (N = 6), and 84.0 + 13.5 % for mice with inflamed tendon tissue (N = 6).
We believe this to be the first localised measurement of hypoxia in tendon microvasculature
due to inflammation. Quantification of localised SO, isimportant for the study of inflammatory
diseases such as rheumatoid arthritis, where hypoxiais thought to play arolein pathogenesis.
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1. Introduction

An adequate supply of oxygen is critical to the normal and healthy function of cells and tis-
sues. The microvasculature, comprised of the smallest blood vessels in the body, is the means
by which oxygen is delivered. Hypoxia, a state of insufficient oxygen, may be caused either by
a decreased supply of oxygen delivered by the vasculature, or increased demand in the tissue.
Thelink between inflammation and tissue hypoxiaiswell established [1], with molecular mark-
ers for hypoxia and associated angiogenesis linked to chronic immune-related disease such as
rheumatoid arthritis (RA) [2]. It is not known, however, what role hypoxia plays in the progres-
sion of RA, where hypoxia originates in the affected joint, or to what extent hypoxia may be
suitable as a proxy biomarker of RA and inflammation for diagnostic purposes.

Multispectral oximetry can provide highly localised quantification of blood oxygen satu-
ration (SO;), owing to the distinct spectral characteristics of oxygenated and deoxygenated
haemoglobin [3,4]. Much of the research to date into techniques for in vivo vascular oximetry
have focused on the eye, specifically the retinawhere it is of interest in the study of conditions
such as glaucoma, diabetic retinopathy and retinopathy of prematurity [5-9]. These diseases
are often related to dysfunctional supplies of blood oxygen, and as such the study of SO, in
retinal vasculature can provide useful information regarding the health of the individual. The
prevalence of oximetry in the eye is perhaps owed to the ease with which retinal vessels can
be imaged non-invasively, using modified slit lamps and ophthalmoscopes, for example [10].
Hypoxia associated with inflammatory disease is generally localised to the affected area; in the
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case of RA, it is the tendons and joints which become inflamed and hypoxic [1]. Obtaining
localised in vivo measurements of SO, in tendon tissue is naturally more challenging asit is not
optically accessible due to overlaying layers of skin and other tissue. Bulk oximetry modalities
such as Clark electrodes and fibre-optic oxygen probes may be used for interrogation of oxy-
gen levelsin deep tissue [11, 12]. Previous studies of joints affected by RA carried out using
diffuse optical spectroscopy (DOS) and diffuse optical tomography (DOT) [13, 14] used trans-
mitted illumination to measure the absorption and scattering properties of the joint, to hence
distinguish between healthy and affected joints. However, the resolution of the measurementsis
poor and does not provide absolute values of vascular oxygen saturation. Multispectral imaging
oximetry provides highly localised SO, information specific to individual blood vessels, at a
much higher resolution than achievable with bulk probe or DOT measurements. Future work
will investigate what the potential diagnostic advantages are to using these highly localised
measurements compared with bulk measurements. Regardless, localised oximetry is desirable
for helping to provide a greater understanding of the spatiotemporal manifestation of hypoxia
ininflamed or diseased tissue.

In this paper, we describe multispectral imaging oximetry and analysis of oxygen saturation
in the tendon microvasculature of the mouse hind leg, comparing control and inflamed mouse
tendons. In this case, optical access was achieved by surgical excision of the skin overlying
tendon tissue in the mouse hind leg. This study provides a basis upon which to further develop
minimally invasive oximetry techniques using microendoscopic probes, which will be highly
transferable for arange of in vivo applications.

2. Multispectral imaging and analysis technique
2.1. Imaging system and illumination

A schematic for the imaging system is shown in Fig. 1. Spectrally tunable illumination is pro-
vided by a white-light supercontinuum source (Fianium SC400) coupled to an acousto-optic
tunable filter (AOTF). An oscillating polymer membrane (Optotune Laser Speckle Reducer
3005) was used to reduce spatial coherence and associated image speckle.

A Schwarzchild-type reflective objective [15] (Thorlabs LMM-40X-UVV) and imaging lens
(f = 200 mm) provided 40X magnification, corresponding to 0.165um per pixel. The reflec-
tive objective provides achromatic imaging and also a means to simultaneously employ annular
illumination as is commonly used in capillaroscopy. Annular illumination simplifies and im-
proves the accuracy of the oximetry algorithm; with annular illumination, back-scattered light
is eliminated and detected light arises only from single-pass absorption through a blood vessel.
This concept has been validated for retinal vessels by Rodmell et a [16]. Simplification and im-
provement in the accuracy of the oximetry algorithm is hence achieved as described in section
2.2,

Using a reflective objective to generate annular illumination is straightforward. When colli-
mated light is incident on the back aperture of a Schwarzchild-type reflective objective, as with
any lens, afocused spot is formed at the focal plane of the objective. If the illumination focus
is offset from this focal plane, however, the defocused spot is approximately annular in shape.
The central portion of the beam is blocked by the primary mirror of the objective, resulting in
a shadow which creates an illumination pattern as shown in Fig. 1(C). A planoconvex lens (f
=80mm, L3 in Fig. 1(A), was used to offset the focus of the illumination such that this annu-
lus was just larger than the field of view. This resulted in an inner diameter of the annulus of
approximately 240 um.

Most of the light incident on the primary mirror of the objective is deflected towards the
secondary mirror before coming to a focus. However, a small central portion of the incident
beam is directly back-reflected from the centre of the primary mirror, causing loss of contrast
and interference patterns in the image. To prevent this, a beam block was introduced at the
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Fig. 1. A. Schematic of imaging setup. Theillumination path is shown in blue, and imaging
path in red. Image acquisition and AOTF switching was controlled by means of a National
I nstruments data acquisition toolbox (NI-DAQmMX) and custom Labview interface. SC = su-
percontinuum; AOTF = acousto-optic tunablefilter; L1, L2, L3 = lenses 1, 2, 3respectively;
L4 = imaging lens. The partial beam block prevents the central region of the illumination
path being back-reflected toward the CCD and interfering with the imaging path. B. Illus-
tration of annular light diffusion through tissue for back-illumination of the vasculature. C.
Image of illumination pattern generated by off-setting the focus of the illumination from
the focal plane of the reflective objective. For imaging, the optics are configured such that
the central dark region of the pattern isjust larger than the field of view.
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centre of the illumination beam, which was placed directly above lens L3 (as depicted in Fig.
1(A)). This effect is less of an issue for reflective objectives with anti-reflective coating at the
centre of the primary mirror.

For multispectral imaging of the microvasculature, an isosbestic wavelength (420 nm) and 5
oxygen-sensitive wavel engths were chosen; 410 nm, 430 nm, 435 nm, 440 nm and 450 nm. The
extinction coefficients of haemoglobin are highest in this visible blue region, which is desirable
to provide sufficient contrast when imaging the smallest blood vessels. The strong absorption
of light by blood in this wavelength range offers sufficient contrast even through thin layers of
overlaying tissue. Further, the difference between the coefficients for oxygenated and deoxy-
genated haemoglobin at these wavelengths is large enough to allow for accurate oximetry of
these small vessels; optical densities of the vasculature will change significantly with oxygen
saturation over thisrange. Previous oximetry studies performed on retinal blood vesselsin vivo
have employed wavelengths in the green and red regions [6, 7], however the microvasculature is
highly transparent in this region due to lower extinction coefficients. A multispectral dataset of
asingle scene consists of a set of images recorded at each waveband. Data acquisition was con-
trolled by acustom LabVIEW interface, which switched the waveband being transmitted by the
AOTF, and triggered the CCD image capture. The total acquisition time for one dataset was less
than 2 seconds. The CCD exposure at each waveband (200 msfor 410 nm - 440 nm, 100 msfor
450 nm because of source brightness) contributes to this time, as well as the read-write speed
of the computer hard drive.

2.2. Oximetry algorithm

Although relative oximetry is possible with just two wavelengths, the algorithm used here for
multispectral dataanalysisisinsensitiveto vessel diameter, pigmentation and scattering. Asmul-
tispectral imaging provides more measurements than unknowns, aleast-squares error fit enables
absolute oxygenation measurements. The algorithm first involves co-registering the six images
at each waveband. Semi-automatic vessel tracking is then performed to determine coordinates
along vessels appropriate for analysis. To quantify light transmission through the blood vessels
at each waveband, multiple line profiles are taken across each vessel in an image, perpendicular
to each pair of successive image coordinates along the vessel. The transmission of light through
the vessdl is defined as T = Ii where |,, is the background intensity and | is the intensity
of light transmitted through the vessel. An estimate of |, is obtained from a linear fit to each
line profile, ignoring the central vessel pixels. A second order polynomial fit is then applied to
the central region of the line profile, from which the minimum, I, is estimated. Transmission is
calculated at every point along the vessel, and at every waveband, producing an experimental
transmission profile T (1). The diameter of the vessel isalso determined using these line profiles
and the method described by Fischer et a., (2010) [17].

To determine values for SO, weimplemented an analytical model for optical transmission of
light through blood vessels. The data would then be applied to the model in a series of iterative
nonlinear least-squaresfitsin order to extract unknown parameters, including SO,. Based on the
modified Lambert-Beer law, previous work by van der Putten et al. [18] and Smith et al. [19],
the optical transmission of a blood vessel can be written as:

T(A) =s(1-K)- 10~ (CHb(/l)Tld[(Eﬁboz(/l)—SHb(/l))502+8Hb(/1)]+
1

(15200, (D =31y (1)) SO2+ 7y, (D] 0d) | ¢

where d is vessel diameter; enpo,(2) and g, (1) are molar extinction coefficients of oxy-
genated and deoxygenated haemogl obin respectively; and u/,, 0» (1) and pf,;, (1) are empirical
values for the reduced scattering coefficients. In this work we take values for extinction coeffi-
cients from Prahl (1999) [20] and scattering coefficients from Friebel et al., 2009 [21]. These
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coefficients have been derived empirically using ex vivo blood, and therefore our technique is
accurate across al oxygen saturation values, unlike traditional pul se oximetry techniqueswhich
are calibration-based and typically unreliable below oxygenations of 70% [22]. In theory it is
necessary to integrate over the illumination spectrum to achieve effective values for extinction
and reduced scattering coefficients for oxygenated and deoxygenated haemoglobin. However,
the nominal bandwidth of the AOTF is 2 nm, and for the purposes of the analysis the illumina-
tion is considered to be monochromatic. The cal culated concentration of haemoglobin in blood,
Cup, Was adlowed to vary from an accepted average value of 160 M/liter, as vessel size and
shape is likely to influence haemoglobin concentration [23]. K is an unknown parameter, be-
tween 0 and 1, which is introduced to compensate for contrast reduction which can occur due
to changes in tissue thickness above the vessel, and optical scattering in the imaging system.
Contrast reduction is modelled as an additive intensity component 1. to both | and 1,,, where K

IU’;‘ T The unknown parameter s accounts for the light collection geometry [24].

The factor n represents the proportion of single-pass and double-pass illumination [19]. For
purely single-pass absorption, n will be 1, whilst for double-pass absorption,  would be equal
to 2. Theannular illumination configuration previously described ensured that light illuminating
the field of view will be diffuse, having scattered through the tissue from the surrounding annu-
lus of illumination. We assume that only light having undergone a single transmission will reach
the detector and so 7 = 1, reducing the number of free variables. Thisillumination configuration
also ensures that negligible back-scattered light would be detected, and so this component was
not included in the model.

The iterative fits of the model to the data were employed using a trust-region reflective algo-
rithm [25]. The fits were performed by first averaging the experimentally obtained transmission
profile T (1) over thelength of the vessel, and performing aninitial fit to give preliminary values
for s, SOy, K, and Cg,,. Three further fits were applied in which s, K and SO, were allowed to
vary respectively, with all other parameters held constant to its most recently determined value.
This method proved to be robust with calculated SO, approximately constant along each vessel;
the average standard deviation of SO, for all vessels was determined to be 2.3 %. The goodness
of fit was assessed by quantifying the coefficient of determination (R?) of the final fit producing
the SO, parameter. The results for particularly noisy data, where R? < 0.9, were excluded from
further analysis.

3. Invivo imaging of tendon microvasculature
3.1. Methods

All procedures involving the use of living animals were carried out in accordance with UK
Home Office guidelines. The study involved 13 female inbred BALB/c mice (18-25 g, 6-8
weeks old, Harlan). Six mice were used as controls, and inflammation was induced in an-
other six mice using A-carrageenan [26]. The remaining mouse was used for a kinetic study
of SO, as afunction of inflammation. Carrageenan is a group of complex polysaccharides, the
lambda form of which is injectable and induces an acute inflammatory response, peaking 5
hours post-inoculation [27]. 25ul of 1% A-carrageenan solution in sterile phosphate-buffered
saline was injected into the mouse footpad of the left hind leg. Inflammation of the footpad was
validated by measuring footpad thickness prior to injection, and again 5 hours post-injection,
prior to imaging. Footpad thickness increased in this time from an average of 1.6 £ 0.1 mm to
3.0+ 0.3 mm.

All mice were anaesthetized prior to surgery with fentanyl-fluani sone (Hypnorm), midazolam
(Hypnovel) and water (1:1:2 by volume) at a dose of 10ul/g injected intraperitoneally. The
peroneus longus tendon, proximal to the calcaneus in the hind leg, was then surgically exposed
by removal of superficial skin layers, which can enable diffusion of oxygen into the blood
vessels through air. We used a layer of oxygen-impermeable plastic film placed in contact with
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the exposed tendon tissue to prevent oxygen diffusion, as used in previous studies to isolate
blood vessels from oxygen in the atmosphere [28]. This is an important issue for invasive in
vivo oximetry; exposure of blood vesselsto air will result in an increase in SO, with respect to
normal values, as has previously been observed in the human sclera[29]. Thefilm also prevents
the tissue from drying out over the course of the experiment.

The mouse was placed on the microscope stage and heat pad, which was kept at approxi-
mately 37°C. The hind leg was secured to a small block using surgical tape and Vetbond tissue
adhesive. To reduce motion artefacts due to mouse breathing, the leg was kept mechanically
stabilised with respect to the body using a custom, 3D-printed bridge. Setting up the mouse in
this manner reduced motion to an acceptable degree required for time-sequential multispectral
imaging. A series of spectral datasets were recorded for each mouse tendon over the course of
several minutes.

3.2. Results and discussion

Image data was processed using the algorithm described in section 2.2. For each mouse, arange
of vessels were selected for analysis. Fig. 2 shows an illustrative example of a tendon micro-
vasculature image and the calculated SO, map. The average values for SO, produced for each
mouse are shown in Fig. 3, along with the overall average of al results for control and inflamed
mice. These values were determined to be 94.8 + 7.0 % for control SO, and 84.0 + 13.5 %
for inflamed SO, respectively (average + standard deviation). Performing a two-sample t-test,
the differenceis highly significant (p < 0.001). This suggests that average SO, levels are lower
in the inflamed tendon vasculature than for the controls. The link between inflammation and
hypoxia is well established, so this result is not surprising, however we believe this to be the
first quantification of localised hypoxiain the vasculature of inflamed tendons.

200 400 600 800 1000 1200

Fig. 2. Illustrative image of tendon microvasculature and SO, map. The colour bar repre-
sents SO,, and each vessel length analysed is numbered and labelled on the image. The
scale bar represents 20 um.

As well as a comparison of control and inflamed tendons, an additional oximetry study
was performed on a mouse tendon post mortem as validation that the technique is sensitive
to changesin blood oxygenation. It is known that rapid deoxygenation of the vasculature occurs
post mortem due to local metabolism of oxygen by cells which continues after death [30]. For
one case, a mouse was euthanised whilst secured to the imaging stage, and data was acquired 5
minutes post mortem, at which point the blood vessels are assumed to be highly deoxygenated.
It was found, as shown in Fig. 4, that calculated SO, decreased in thistime from 71.9 + 7.4 %
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Fig. 3. Oximetry of control and inflamed (5-6 hours post 1-carrageenan inoculation) mouse
tendon vasculature, shown as values for individual tendons averaged over multiple vessels.
The overall average for control and inflamed tendons are shown in red and blue respectively
+ standard deviation between tendons.

t048.2 + 8.2 %, further supporting the responsivity of the technique to oxygen saturation.
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Fig. 4. Comparison of overall control SO, (average over al tendons + standard deviation),
average inflamed SO5 for an individual mouse , and SO, of the same tendon post mortem
(both averaged over all vessels within tendon + standard deviation)

Finally, for one additional mouse, a kinetic analysis was performed to investigate SO, as a
function of time after inoculation with A-carrageenan. Astheinflammatory response peaks after
5 hours, oximetry was conducted every half hour between 1 and 5 hours post inoculation, assum-
ing that there is a correlation between hypoxia and degree of inflammation. The results shown
in Fig. 5 indicate that whilst there was considerabl e scatter between individual measurements at
each time point, there was an overall downward trend in average SO, val ue as expected, with the
Pearson correlation coefficient r = -0.63. For this correlation, the corresponding p-value = 0.095
is not low enough to be considered highly statistically significant. It may be possible that the
linear correlation we have assumed between hypoxia and time since inoculation is not a valid
model. As a number of vessels were analysed at each time point, the scatter seen in the figure
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most likely reflects the natural biological variation of SO, in distributed blood vessels. Previ-
oudly it has not been possible to measure the variability of SO, between individual blood vessels
in the tendon, and it may be the case that it is an inhomogeneous environment. The technical ap-
proach described here, does however provide evidence to correlate hypoxia with inflammatory
disease, and provides atool which will enable this relationship to be investigated in more detail
with longitudinal studiesin animal models of inflammatory disease [31].

. . . . . . . . . . . |
60 80 100 120 140 160 180 200 220 240 260 280
Time elapsed since inoculation (mins)

Fig. 5. Kinetic analysis of SO, as a function of increasing inflammation after inoculation
with A-carrageenan, mean + standard error, r = -0.63, p = 0.095

4. Conclusion

We have developed and demonstrated a novel multispectral imaging system and analysis tech-
nique capable of performing oximetry in the microvasculature in vivo. We have performed the
first measurements of localised microvascul ature oxygen saturation in tendon tissue, and quan-
tified hypoxia associated with an acute model for inflammation. Previously, it had been shown
through bulk measurement and histological analysisthat inflamed tendon tissueis hypoxic[1,2].
We have now ascertained that hypoxiais present not only in the tissue, but have also quantified
it in the associated microvascul ature.

We obtained physiologically plausible values for SO, of healthy microcirculation, and a de-
crease in SO, associated with hypoxia, as expected. We also measured reductions in SO, over
a time course following inoculation, as the degree of inflammation increased. Additionaly, a
marked decrease in SO, of blood vessels immediately post mortem indicates that the technique
is sensitive to changes in localised SO,. However, accurate validation of the absolute values
produced by the algorithm remains a challenge. There was significant scatter between individ-
ual measurements of blood vessel s between different tendons, and indeed al so between different
blood vessel s of the same tendon; the standard deviation for all control measurementswas 7.0 %,
and 13.4 % for the inflamed measurements. As we have studied the smallest vessels of the mi-
crovasculature, there will naturally be a spread in true oxygen saturation val ues across different
vessels which is likely the cause of this high standard deviation. However, it is difficult to as-
sess the extent to which this spread is caused by physiological differences or in fact caused by
potential inaccuracies in the imaging and analysis process. Due to the highly localised nature of
these measurements, no other methods exist for localised determination of SO, in the microvas-
culature, with which our results could potentially be compared. Options for in vitro validation
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exist, using phantoms that mimic blood vesselsin tendon tissue; in vitro blood can be accurately
deoxygenated using sodium dithionite [32]. However, this introduces problems such as increas-
ing the osmolarity of blood, which has been shown to affect its optical properties [33]. Such
amethod of validation is hence questionable, as the extinction and reduced scatter coefficients
employed in our model would not be correct in this case. Further work is required for accurate
validation and assessment of the accuracy of the oximetry algorithm.

Thisisan invasive technique, with surgical removal of the skin necessary in order to achieve
optical accessto the tendon. Future work will pursue the incorporation of a minimally-invasive
microendoscope, using a similar illumination scheme and analysis technique as presented in
this paper. The microendoscope will act as an optical relay from the vasculature within the
tendon to the focal plane of the microscope described here. Initial tests with this probe setup
ex vivo indicate that the vasculature remains detectabl e through tissue at a working distance of
100 um, however challenges remain in order to ensure oximetry measurements are not adversely
affected by potential contact pressure. Minimally-invasive oximetry will circumvent the need
for invasive surgery, and allow for the longitudina study of SO, in more realistic models of
RA, looking at the same mouse and vasculature over the course of several weeks. It will then
be possible to determine whether correlates exist between hypoxia and conventional disease-
scoring approaches. It is hoped that a greater understanding of the role that hypoxia plays in
disease progression and inflammation will be gained, with the availability of localised SO,
information previously inaccessible using bulk oximetry probes. Looking forward, with such
minimally-invasive localised oximetry techniques now in development, it may be possible to
perform localised measurement of SO, of deep tissue in humans - using hypoxia as a proxy
biomarker for arange of inflammatory diseases.
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