109 research outputs found

    3D registration of MR and X-ray spine images using an articulated model

    Get PDF
    PrĂ©sentation: Cet article a Ă©tĂ© publiĂ© dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertĂšbres extraites Ă  partir d’images RM avec des vertĂšbres extraites Ă  partir d’images RX pour des patients scoliotiques, en tenant compte des dĂ©formations non-rigides due au changement de posture entre ces deux modalitĂ©s. À ces fins, une mĂ©thode de recalage Ă  l’aide d’un modĂšle articulĂ© est proposĂ©e. Cette mĂ©thode a Ă©tĂ© comparĂ©e avec un recalage rigide en calculant l’erreur sur des points de repĂšre, ainsi qu’en calculant la diffĂ©rence entre l’angle de Cobb avant et aprĂšs recalage. Une validation additionelle de la mĂ©thode de recalage prĂ©sentĂ©e ici se trouve dans l’annexe A. Ce travail servira de premiĂšre Ă©tape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vĂ©rifie l’hypothĂšse 1 dĂ©crite dans la section 3.2.1.Abstract This paper presents a magnetic resonance image (MRI)/X-ray spine registration method that compensates for the change in the curvature of the spine between standing and prone positions for scoliotic patients. MRIs in prone position and X-rays in standing position are acquired for 14 patients with scoliosis. The 3D reconstructions of the spine are then aligned using an articulated model which calculates intervertebral transformations. Results show significant decrease in regis- tration error when the proposed articulated model is compared with rigid registration. The method can be used as a basis for full body MRI/X-ray registration incorporating soft tissues for surgical simulation.Canadian Institute of Health Research (CIHR

    Segmentierung medizinischer Bilddaten und bildgestĂŒtzte intraoperative Navigation

    Get PDF
    Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen AufnahmemodalitĂ€ten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernĂŒnftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen fĂŒr die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei ĂŒbergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur UnterstĂŒtzung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine wĂŒrfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von ProstatadrĂŒsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen ProstatadrĂŒsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung interaktiv durch zusĂ€tzliche Saatpunkte verfeinern. Dadurch wird es möglich, eine semi-automatische Segmentierung auch in schwierigen FĂ€llen zu einem zufriedenstellenden Ergebnis zu fĂŒhren. Im Bereich Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen wurden verschiedene frei verfĂŒgbare Segmentierungsalgorithmen anhand von Patientendaten aus der klinischen Routine getestet. Dazu gehörte die Evaluierung der semi-automatischen Segmentierung von Hirntumoren, zum Beispiel Hypophysenadenomen und Glioblastomen, mit der frei verfĂŒgbaren Open Source-Plattform 3D Slicer. Dadurch konnte gezeigt werden, wie eine rein manuelle Schicht-fĂŒr-Schicht-Vermessung des Tumorvolumens in der Praxis unterstĂŒtzt und beschleunigt werden kann. Weiterhin wurde die Segmentierung von Sprachbahnen in medizinischen Aufnahmen von Hirntumorpatienten auf verschiedenen Plattformen evaluiert. Im Bereich Navigation zur UnterstĂŒtzung intraoperativer Therapien wurden Softwaremodule zum Begleiten von intra-operativen Eingriffen in verschiedenen Phasen einer Behandlung (Therapieplanung, DurchfĂŒhrung, Kontrolle) entwickelt. Dazu gehört die erstmalige Integration des OpenIGTLink-Netzwerkprotokolls in die medizinische Prototyping-Plattform MeVisLab, die anhand eines NDI-Navigationssystems evaluiert wurde. Außerdem wurde hier ebenfalls zum ersten Mal die Konzeption und Implementierung eines medizinischen Software-Prototypen zur UnterstĂŒtzung der intraoperativen gynĂ€kologischen Brachytherapie vorgestellt. Der Software-Prototyp enthielt auch ein Modul zur erweiterten Visualisierung bei der MR-gestĂŒtzten interstitiellen gynĂ€kologischen Brachytherapie, welches unter anderem die Registrierung eines gynĂ€kologischen Brachytherapie-Instruments in einen intraoperativen Datensatz einer Patientin ermöglichte. Die einzelnen Module fĂŒhrten zur Vorstellung eines umfassenden bildgestĂŒtzten Systems fĂŒr die gynĂ€kologische Brachytherapie in einem multimodalen Operationssaal. Dieses System deckt die prĂ€-, intra- und postoperative Behandlungsphase bei einer interstitiellen gynĂ€kologischen Brachytherapie ab

    Fusion multimodale d'images pour la reconstruction et la modélisation géométrique 3D du tronc humain

    Get PDF
    RÉSUMÉ La fusion multimodale d'images est un sujet de grand intĂ©rĂȘt dans le domaine de la vision par ordinateur et a des applications dans divers domaines tels que la surveillance et l'imagerie mĂ©dicale. En imagerie mĂ©dicale, la fusion multimodale d'images est une Ă©tape importante, car les diffĂ©rentes images utilisĂ©es offrent de l'information complĂ©mentaire et utile pour la planification du traitement d'un patient. Par exemple, le recalage entre diffĂ©rentes modalitĂ©s d'images Ă  rĂ©sonance magnĂ©tique (RM) du cerveau rĂ©sulte en une superposition d'information morphologique et fonctionnelle. En cardiologie, le recalage multimodal permet une mise Ă  jour d'un modĂšle prĂ©opĂ©ratoire de la vascularisation des patients, obtenu Ă  partir d'images RM ou tomographiques, avec des angiographies acquises dans la salle d'opĂ©ration. Le recalage d'images multimodales permet aussi la construction d'un modĂšle complet du tronc pour la simulation numĂ©rique de traitements orthopĂ©diques de dĂ©formations scoliotiques. La scoliose idiopathique est une maladie caractĂ©risĂ©e par une courbure complexe de la colonne vertĂ©brale qui peut affecter les fonctions physiques du patient nĂ©cessitant parfois une chirurgie. Les chirurgiens se fient sur des mesures obtenues Ă  partir d'images radiographiques pour planifier la correction de la colonne. Par contre, suite Ă  cette correction, une asymĂ©trie du tronc peut persister. Il est donc utile de concevoir un simulateur de chirurgie afin de prĂ©dire l'effet de la correction chirurgicale sur l'apparence externe du tronc. Des travaux de recherche en cours visent Ă  vĂ©rifier si la rĂ©action de l'ensemble des structures anatomiques incluant les tissus mous face Ă  une correction de la courbure de la colonne a un impact sur le rĂ©sultat obtenu Ă  la surface externe du tronc. Ces travaux nĂ©cessitent la gĂ©nĂ©ration d'un modĂšle gĂ©omĂ©trique du tronc entier y incluant les tissus mous afin de permettre la simulation de la propagation de l'effet d'une chirurgie de la colonne sur l'apparence externe du patient, fournissant ainsi aux chirurgiens un modĂšle pour la planification d'une chirurgie. Par consĂ©quent, il est nĂ©cessaire de gĂ©nĂ©rer un modĂšle gĂ©omĂ©trique du tronc qui pourrait intĂ©grer les structures osseuses extraites Ă  partir d'images radiographies (RX), les tissus mous extraits Ă  partir d'images RM et la surface externe du tronc obtenue Ă  partir d'images de topographie de surface (TP) acquise Ă  l'aide de camĂ©ras 3D. Ce modĂšle nĂ©cessite un recalage entre ces diffĂ©rentes modalitĂ©s d'images. Le recalage entre les images RM, RX et TP du tronc humain implique plusieurs difficultĂ©s. PremiĂšrement, les images sont acquises Ă  des moments ainsi qu'avec des postures diffĂ©rentes. Par exemple, les images RM sont acquises en position couchĂ©e, tandis que les images RX et TP sont acquises en position debout. Cette diffĂ©rence de posture entraĂźne des dĂ©formations non-rigides dans les structures anatomiques du tronc dont le recalage doit en tenir compte. De plus, les structures contenues dans le tronc humain n'ont pas toutes les mĂȘmes caractĂ©ristiques physiques et, par consĂ©quent, ne se dĂ©forment pas toutes de la mĂȘme façon. En particulier, les vertĂšbres sont des structures rigides tandis que les tissus mous se dĂ©forment de façon non-rigide. DeuxiĂšmement, il y a un manque de repĂšres anatomiques correspondants entre les diffĂ©rentes images, puisque ces images montrent des informations complĂ©mentaires. Finalement, l'acquisition des images RM n'est pas toujours possible pour les patients scoliotiques Ă  cause du manque de disponibilitĂ© des systĂšmes en clinique. De plus, la longue durĂ©e des acquisitions cause un manque de confort auprĂšs des patientes. En effet, aucune des mĂ©thodes de recalage existantes n'effectue le recalage entre les images RM et RX tout en tenant compte du changement de posture entre les acquisitions, et aucune des mĂ©thodes n'effectue le recalage d'images TP, RX et RM du tronc humain. Ce document propose une mĂ©thodologie pour la gĂ©nĂ©ration d'un modĂšle gĂ©omĂ©trique du tronc complet d'un patient scoliotique. Le modĂšle gĂ©omĂ©trique sera gĂ©nĂ©rĂ© en fusionnant, par recalage Ă©lastique, des images RX, des images RM et des images TP d'un patient, tout en tenant compte du manque de correspondances anatomiques ainsi que des dĂ©formations dues au changement de posture entre les acquisitions d'images. Dans une premiĂšre phase, un recalage est effectuĂ© entre la colonne vertĂ©brale extraite Ă  partir des images RM et celle extraite Ă  partir des images RX en compensant pour les changements dus Ă  la diffĂ©rence de posture. La transformation semi-rigide de la colonne vertĂ©brale est effectuĂ©e Ă  l'aide d'un modĂšle articulĂ©, ce dernier Ă©tant dĂ©fini de la façon suivante: pour chaque vertĂšbre, un systĂšme de coordonnĂ©es local est construit Ă  partir de repĂšres vertĂ©braux. Des transformations intervertĂ©brales locales et rigides sont ensuite obtenues en calculant les transformations entre les systĂšmes de coordonnĂ©es locaux des vertĂšbres adjacentes. Finalement, la transformation globale entre chaque vertĂšbre extraite Ă  partir de l'image RM et la vertĂšbre correspondante extraite Ă  partir de l'image RX est obtenue en concatĂ©nant les transformations locales. La validation a Ă©tĂ© effectuĂ©e sur 14 patientes scoliotiques en comparant la mĂ©thode proposĂ©e avec un recalage rigide. La prĂ©cision du recalage des vertĂšbres thoraciques et lombaires est validĂ©e en calculant l'erreur cible entre des points de repĂšre extraits Ă  partir des corps vertĂ©braux. L'erreur moyenne cible a diminuĂ© de 10,73 mm dans le cas du recalage rigide jusqu'Ă  4,53 mm dans le cas du recalage avec modĂšle articulĂ©. De plus, les angles de Cobb obtenus Ă  partir des images RM sont comparĂ©s Ă  ceux obtenus Ă  partir des images RX dans le plan latĂ©ral et frontal, au niveau thoracique et lombaire, ceci avant et aprĂšs le recalage. Les diffĂ©rences entre tous les angles de Cobb des deux modalitĂ©s d'images Ă©taient toujours au-delĂ  de 10,0° suite au recalage rigide, tandis que ces diffĂ©rences ont baissĂ© en dessous de 1,0° suite au recalage avec la mĂ©thode proposĂ©e. Finalement, en comparant les courbures de la colonne entre les positions couchĂ©e et debout, nous avons remarquĂ© une diminution significative dans l'angle de Cobb lorsque le patient est en position couchĂ©e. Cette diminution Ă©tait au-delĂ  de 10,0° dans les deux plans et dans les deux rĂ©gions de la colonne. Ces diffĂ©rences d'angles confirment les rĂ©sultats obtenus dans la littĂ©rature montrant que la courbure de la colonne est attĂ©nuĂ©e lorsque le patient est en position couchĂ©e. De plus, la diminution dans les erreurs de recalage lorsque la mĂ©thode proposĂ©e est utilisĂ©e dĂ©montre que cette mĂ©thode rĂ©ussit Ă  recaler les structures vertĂ©brales entre les images RM et RX tout en compensant pour le changement de posture qui se fait entre les deux acquisitions. Dans une deuxiĂšme phase, les images RM, RX et TP d'un mĂȘme patient sont recalĂ©es afin d'obtenir un modĂšle gĂ©omĂ©trique complet d'un patient qui incorpore les structures osseuses, les tissus mous, ainsi que la surface externe du tronc. Tout d'abord, les images TP sont recalĂ©es aux images RX en utilisant une fonction spline plaque-mince et Ă  l'aide de points correspondants placĂ©s sur la surface du tronc du patient avant l'acquisition des deux modalitĂ©s d'images. Ensuite, les images RM sont incorporĂ©es en se servant d'une transformation du modĂšle articulĂ© suivi d'un recalage avec une spline plaque-mince contrainte afin de tenir compte de la rigiditĂ© des vertĂšbres. La qualitĂ© du recalage entre les images RM et TP est quantifiĂ©e pour trois patients scoliotiques avec l'indice DICE, celui-ci mesurant le chevauchement entre les tranches d'images RM et l'espace contenu dans l'image TP, et Ă©tant dĂ©fini comme le ratio entre le double de l'intersection et l'union. L'indice DICE varie entre 0 et 1, oĂč la valeur de 0 indique qu'il n'y a aucun chevauchement et une valeur de 1 indique qu'il y a un chevauchement parfait. Une valeur de 0,7 est considĂ©rĂ©e comme un chevauchement adĂ©quat. Le recalage avec la mĂ©thode proposĂ©e est comparĂ© au recalage rigide ainsi qu'au recalage articulĂ© simple. Une valeur DICE moyenne de 0,95 est obtenue pour la mĂ©thode proposĂ©e, dĂ©montrant un excellent chevauchement et une amĂ©lioration comparativement Ă  la valeur de 0,82 dans le cas du modĂšle articulĂ© simple et de 0,84 dans le cas du recalage rigide. Donc, la mĂ©thode de recalage proposĂ©e rĂ©ussit Ă  fusionner les donnĂ©es sur les structures osseuses, les tissus mous, ainsi que la surface externe du tronc Ă  partir des images RM, RX et TP, tout en compensant pour le changement de posture entre ces acquisitions. Dans une troisiĂšme phase, un recalage inter-patient permet de complĂ©ter un modĂšle tridimensionnel partiel personnalisĂ© du tronc d'un patient Ă  partir d'une fusion des images RX et TP du patient et des images RM d'un modĂšle gĂ©nĂ©rique obtenu en suivant la mĂ©thodologie proposĂ©e. PremiĂšrement, un patient ayant un modĂšle gĂ©omĂ©trique complet qui incorpore les structures osseuses, les tissus mous, ainsi que la surface externe du tronc est dĂ©signĂ© en tant que modĂšle gĂ©nĂ©rique. DeuxiĂšmement, un modĂšle personnalisĂ© partiel d'un autre patient est obtenu en recalant les images TP aux images RX Ă  l'aide d'une fonction spline plaque-mince. TroisiĂšmement, les images RM du modĂšle gĂ©nĂ©rique sont incorporĂ©es dans le modĂšle personnalisĂ© partiel de ce patient Ă  l'aide du modĂšle articulĂ© ainsi que de la dĂ©formation spline plaque-mince contrainte. L'indice DICE est utilisĂ© afin de mesurer le chevauchement entre les images TP du patient et les images RM incorporĂ©es suite au recalage inter-patient Ă  partir du modĂšle gĂ©nĂ©rique. De plus, le chevauchement est calculĂ© entre les images RM incorporĂ©es suite au recalage inter-patient Ă  partir du modĂšle gĂ©nĂ©rique et les images RM rĂ©elles du patient suite au recalage intra-patient. Les rĂ©sultats montrent une diminution gĂ©nĂ©rale significative de l'indice DICE comparativement au recalage intra-patient. Par contre, les valeurs obtenues sont plus Ă©levĂ©es que 0,7, ce qui est adĂ©quat. Le chevauchement a aussi Ă©tĂ© mesurĂ© entre le gras segmentĂ© Ă  partir des images RM suite au recalage inter-patient et les images RM rĂ©elles du patient suite au recalage intra-patient, et des valeurs infĂ©rieures Ă  0,7 sont obtenues. Ceci peut ĂȘtre expliquĂ© par le fait que ratio faible entre la circonfĂ©rence et l'aire des structures analysĂ©es a pour effet de diminuer les valeurs DICE. La mĂ©thodologie proposĂ©e fournit un cadre qui permet de construire un modĂšle complet du tronc sans avoir besoin d'une acquisition d'images RM pour chaque patient. Le modĂšle complet obtenu inclut les structures osseuses, les tissus mous ainsi que la surface du tronc complet d'un patient scoliotique. Ce modĂšle peut ĂȘtre incorporĂ© dans le simulateur chirurgical qui est en cours de dĂ©veloppement, afin de tenir compte des tissus mous dans la simulation de l'effet d'un traitement de la colonne vertĂ©brale sur la surface du tronc d'un patient. Cependant, la prĂ©cision du recalage pourrait ĂȘtre amĂ©liorĂ©e en se servant d'un maillage adaptatif tridimensionnel des tissus mous tout en incorporant des indices de rigiditĂ© pour chacun des tissus.---------ABSTRACT Multimodal image fusion is a topic of great interest in the field of computer vision and has applications in a wide range of areas such as video surveillance and medical imaging. In medical imaging applications, multimodal image fusion is an important task since different image modalities can be used in order to provide additional information and are thus useful for the treatment of patients. For example, the registration between different magnetic resonance (MR) image modalities of the brain results in a model that incorporates both anatomical and functional information. In cardiology, the multimodal registration allows an up-to-date 3D preoperative model of patients, obtained from computed tomography or MR images, with angiograms acquired in the operating room. The multimodal image registration also allows for the construction of a complete model of the trunk for the simulation of orthopedic treatments for scoliotic deformations. Idiopathic scoliosis is a disease characterized by a complex curvature of the spine which can affect the physical functioning of the patient, sometimes requiring surgery. Surgeons rely on measurements obtained from radiographic images in order plan the surgical correction of the vertebral column. However, following such a correction, an asymmetry of the trunk may persist. It would therefore be useful to develop a surgical simulator in order to predict the effect of a surgical correction on the external appearance of the trunk. Research is underway that aims to verify whether the reaction of all anatomical structures including the soft tissues following a correction of the curvature of the spine has an impact on the result obtained at the external surface of the torso. This research requires the design of a geometric model of the entire trunk that also incorporates soft tissues in order to allow for the simulation of the propagation of the effect of spine surgery on the external appearance of the patient, thus providing surgeons with a model for surgical planning. Therefore, it is necessary to obtain a geometric model of the trunk that would integrate the bone structures extracted from X-ray images, soft tissues extracted from MR images and the trunk surface obtained from surface topography (TP) data acquired using 3D cameras. This complete model requires the registration between the different imaging modalities. The registration between the MR, X-ray and TP images is subject to several difficulties. Firstly, these images are acquired at different times and in different postures. For example, MR images are acquired in prone position, whereas the TP and X-ray images are acquired in standing position. This difference in posture causes non-rigid deformations in the anatomical structures of the trunk that must be taken into consideration during registration. Moreover, the structures contained in the human body do not have the same physical characteristics, and therefore do not deform all in the same manner. In particular, the vertebrae are rigid structures, while soft tissues deform non-rigidly. Secondly, there is a lack of corresponding anatomical landmarks between the different images, as these images contain non-overlapping anatomical information. Thirdly, the acquisition of MR images is not always possible for patients with scoliosis due to the lack of availability of such acquisition systems in clinical settings. In addition, the lengthy acquisition time causes patient discomfort. In fact, none of the existing registration methods registers X-ray and MR images while taking into account the change in posture between acquisitions, and none of the methods registers TP, MR and X-ray images of the human trunk. This document proposes a methodology for generating a complete geometric model of the trunk of a patient with scoliosis. The geometric model is developed using the non-rigid registration of X-ray, TP and MR images, while taking into account the lack of anatomical correspondences between the image modalities, and the non-rigid deformation that occurs due to a posture change between the image acquisitions. In the first phase, the shape of the spine extracted from MR images is registered to that extracted from the X-ray images all while compensating for spine shape changes that are due to the difference in posture between the acquisition of the two modalities. The semi-rigid transformation of the spine is obtained by means of an articulated model registration which is defined as follows: For each vertebra, a local coordinate system is constructed from vertebral landmarks. Local rigid inter-vertebral transformations are then obtained by computing the transformations between the local coordinate systems of adjacent vertebrae. Finally, the global transformation between each vertebra extracted from the MR images and the corresponding vertebra extracted from the X-ray images is obtained by concatenating the local transformations. The validation is performed using 14 patients with scoliosis by comparing the proposed method with rigid registration. Registration accuracy in the thoracic and lumbar areas is validated by calculating the target registration error between correspondence points extracted from the vertebral bodies. The average error decreased from 10.73 mm in the case of rigid registration to 4.53 mm in the case of registration using the proposed articulated model. In addition, Cobb angles obtained from MR image reconstructions are compared with those obtained from X-ray image reconstructions in the lateral and frontal views and in the thoracic and lumbar areas of the spine, both before and after registration. The differences between all Cobb angles of the two imaging modalities were above 10.0° following rigid registration, whereas these differences fell below 1.0° following registration using the proposed method. Finally, when comparing the curvatures of the spine between the prone and standing postures, we noticed a significant decrease in the Cobb angle when the patient is lying down. This decrease was above the 10.0° in both views and in both regions of the spine. These angle differences confirm the results obtained in the literature showing that the curvature of the spine is attenuated when the patient is lying down. Moreover, the decrease in registration errors when the proposed method is used shows that this method successfully aligns the spine between MR and X-ray images all while compensating for the change in posture that occurs between the two acquisitions. In the second phase, the TP, X-ray and MR images of the same patient are registered in order to obtain a full geometric model of the entire torso which incorporates the bone structures, soft tissue, as well as the external surface of the trunk. Firstly, the TP and X-ray images are aligned using a thin-plate spline and landmarks placed on the surface of the trunk of the patient prior to the acquisition of the two imaging modalities. Secondly, MR images are incorporated into the model using the articulated model followed by a thin-plate spline registration constrained in order to maintain the stiffness of the vertebrae. The quality of registration between the MR and the TP images is verified for 3 patients with scoliosis with the DICE index Ă , which measures the overlap between the MRI slices and the space contained within the TP image. The DICE index varies between 0 and 1, where the value of 0 indicates that there is no overlap and a value of 1 indicates a perfect overlap. A value of 0.7 is considered suitable overlap. The proposed method is compared to rigid registration and registration a simple articulated model. An average DICE value of 0.95 is obtained when the proposed method is used, showing excellent overlap and a significant improvement compared to 0.82 in the case of simple articulated model registration and 0.84 in the case of rigid registration. Therefore, the proposed registration method succeeds in incorporating bone structures, soft tissues, and the external surface of the trunk using MR, X-ray and TP images all while compensating for the change in posture that occurs between these acquisitions. In the third phase, inter-patient registration allows for the completion of a personalized three-dimensional partial model of the trunk of a patient by registering TP and X-ray images of the patient with the MR images of a generic model that is obtained by following the proposed methodology. Firstly, a patient having a full geometric model which incorporates the bone structures, soft tissues, as well as the external surface of the trunk is designated as the generic model. Secondly, a partial personalized model of another patient is obtained by registering the X-ray and TP images of the patient using a thin-plate spline function. Thirdly, MR images of the generic model are incorporated into the partial personalized model of the test patient using the articulated model transformation and the constrained thin-plate spline deformation. The DICE index is used in order to measure the overlap between the TP images of the patient and the MR images from the generic model following inter-patient registration. Moreover, the overlap between the MR images from the generic model following inter-patient registration and the patient's real MR images is measured. The results show a significant overall decrease in the DICE index compared to intra-patient registration. However, the values obtained are higher than 0.7, which is considered adequate. The overlap was also measured between fat tissues segmented from MR images registered from the generic model and the patient's own registered MR images, and values below 0.7 are obtained. However, this lack of overlap can be explained by the fact that the low circumference to area ratio of the structures being analysed leads to inherently lower DICE values. The methodology proposed here allows for a framework in which, upon the use of a larger database of patients, a complete model of the trunk can be built without the need for MR image acquisition for each patient. The complete model obtained includes the bone structures, soft tissues and the complete surface of the trunk of scoliotic patients. This model can be incorporated into the surgical simulator which is under development, in order to take soft tissues into account while simulating the effect of spine instrumentation on the external surface of the patient's trunk. However, the precision of the registration can be improved by using a 3 dimensional adaptive mesh of the soft tissues all while incorporating tissue-specific stiffness factors

    Quantitative MRI and 3D-Printing for Monitoring Periprosthetic Joint Infection

    Get PDF
    Joint replacements are becoming increasingly commonplace with over 130,000 joint arthroplasties being performed annually in Canada. Although joint replacement surgery is highly successful, implants do occasionally fail and need to be replaced via costly and difficult revision surgery. Periprosthetic joint infection (PJI) has recently become the leading reason for revision of both hip and knee replacements, which is unfortunate because PJI is difficult to diagnose and treat effectively; diagnosis is made particularly difficult by the lack of established non-invasive (imaging) means of evaluating PJI. This thesis aims to demonstrate that magnetic resonance imaging (MRI) has potential for diagnosing and monitoring PJI through advances in implant design and novel application of quantitative imaging. The recent proliferation of metal 3D-printing has already inspired the clinical use of 3D-printed porous metal devices due to their favorable osseointegration and mechanical properties. This thesis explores an important MRI benefit to porous implants: their decreased effective magnetic susceptibility and proportional decrease in imaging artifacts. This is relevant to PJI because MRI is already well-established in diagnosing musculoskeletal infections, but metals cause image obscuring signal loss. This work shows that 3D-printed porous metal structures are likely to avoid this limitation, as their effective magnetic susceptibility is linearly proportional to porosity; if true, MRI will be able to diagnose PJI as easily as non-prosthetic joint infections. This thesis describes a novel use for two important parameters measured by quantitative MRI: effective relaxation rate (R2*) and magnetic susceptibility (QSM; quantitative susceptibility mapping). This work seeks to address an important unmet need in PJI treatment – the ability to monitor drug release during localized antibiotic delivery – by exploiting these parameters’ proportionality to gadolinium concentration. This idea is centered around using gadolinium-based MRI contrast agents as a surrogate small-molecule that acts as a proxy for drugs to study diffusion-controlled release. An initial implementation of this concept showed promising results, including the ability to fit the data to a mathematical model of drug release. This shows the potential of MRI as a non-invasive means of monitoring localized antibiotic treatment of PJI post-revision

    Radiological perspective of the formation of pressure ulcers - a comparison of pressure and experience on two imaging surfaces

    Get PDF
    Introduction: Pressure ulcers are a high cost, high volume issue for health and medical care providers, affecting patients’ recovery and psychological wellbeing. The current research of pressure on support surfaces as a risk factor in the development of pressure ulcers is not relevant to the specialised, controlled environment of the radiological setting. Method: 38 healthy participants aged 19-51 were positioned supine on two different imaging surfaces (X-ray Table & Mattressed Table). Interface pressure data was acquired using the XSENSOR pressure mapping over a time of 2073 minutes, preceded by 6 minutes settling time to reduce measurement error. Qualitative data regarding participants’ opinion of pain and comfort was recorded using a questionnaire. Data analysis was performed using SPSS 22. Results: Data was collected from 30 participants aged 19 to 51 (mean 25.77, SD 7.72), BMI from 18.7 to 33.6 (mean 24.12, SD 3.29), for both imaging surfaces, following eight participant exclusions. Total average pressure, average pressure for jeopardy areas (head, sacrum & heels) and peak pressure for jeopardy areas were calculated as interface pressure in mmHg. Qualitative data showed that a significant difference (P<0.05) in experiences of pain and discomfort between the two surfaces. A significant difference is seen in average pressure between the two surfaces. Conclusion: Pain and comfort data also show a significant difference between the surfaces. All findings support the proposal for further investigation into the effects of radiological surfaces and overlays as a risk factor for the formation of pressure ulcers

    Unveiling healthcare data archiving: Exploring the role of artificial intelligence in medical image analysis

    Get PDF
    Gli archivi sanitari digitali possono essere considerati dei moderni database progettati per immagazzinare e gestire ingenti quantità di informazioni mediche, dalle cartelle cliniche dei pazienti, a studi clinici fino alle immagini mediche e a dati genomici. I dati strutturati e non strutturati che compongono gli archivi sanitari sono oggetto di scrupolose e rigorose procedure di validazione per garantire accuratezza, affidabilità e standardizzazione a fini clinici e di ricerca. Nel contesto di un settore sanitario in continua e rapida evoluzione, l’intelligenza artificiale (IA) si propone come una forza trasformativa, capace di riformare gli archivi sanitari digitali migliorando la gestione, l’analisi e il recupero di vasti set di dati clinici, al fine di ottenere decisioni cliniche più informate e ripetibili, interventi tempestivi e risultati migliorati per i pazienti. Tra i diversi dati archiviati, la gestione e l’analisi delle immagini mediche in archivi digitali presentano numerose sfide dovute all’eterogeneità dei dati, alla variabilità della qualità delle immagini, nonché alla mancanza di annotazioni. L’impiego di soluzioni basate sull’IA può aiutare a risolvere efficacemente queste problematiche, migliorando l’accuratezza dell’analisi delle immagini, standardizzando la qualità dei dati e facilitando la generazione di annotazioni dettagliate. Questa tesi ha lo scopo di utilizzare algoritmi di IA per l’analisi di immagini mediche depositate in archivi sanitari digitali. Il presente lavoro propone di indagare varie tecniche di imaging medico, ognuna delle quali è caratterizzata da uno specifico dominio di applicazione e presenta quindi un insieme unico di sfide, requisiti e potenziali esiti. In particolare, in questo lavoro di tesi sarà oggetto di approfondimento l’assistenza diagnostica degli algoritmi di IA per tre diverse tecniche di imaging, in specifici scenari clinici: i) Immagini endoscopiche ottenute durante esami di laringoscopia; ciò include un’esplorazione approfondita di tecniche come la detection di keypoints per la stima della motilità delle corde vocali e la segmentazione di tumori del tratto aerodigestivo superiore; ii) Immagini di risonanza magnetica per la segmentazione dei dischi intervertebrali, per la diagnosi e il trattamento di malattie spinali, così come per lo svolgimento di interventi chirurgici guidati da immagini; iii) Immagini ecografiche in ambito reumatologico, per la valutazione della sindrome del tunnel carpale attraverso la segmentazione del nervo mediano. Le metodologie esposte in questo lavoro evidenziano l’efficacia degli algoritmi di IA nell’analizzare immagini mediche archiviate. I progressi metodologici ottenuti sottolineano il notevole potenziale dell’IA nel rivelare informazioni implicitamente presenti negli archivi sanitari digitali

    The rotterdam study: 2014 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    Machine Learning in Medical Image Analysis

    Get PDF
    Machine learning is playing a pivotal role in medical image analysis. Many algorithms based on machine learning have been applied in medical imaging to solve classification, detection, and segmentation problems. Particularly, with the wide application of deep learning approaches, the performance of medical image analysis has been significantly improved. In this thesis, we investigate machine learning methods for two key challenges in medical image analysis: The first one is segmentation of medical images. The second one is learning with weak supervision in the context of medical imaging. The first main contribution of the thesis is a series of novel approaches for image segmentation. First, we propose a framework based on multi-scale image patches and random forests to segment small vessel disease (SVD) lesions on computed tomography (CT) images. This framework is validated in terms of spatial similarity, estimated lesion volumes, visual score ratings and was compared with human experts. The results showed that the proposed framework performs as well as human experts. Second, we propose a generic convolutional neural network (CNN) architecture called the DRINet for medical image segmentation. The DRINet approach is robust in three different types of segmentation tasks, which are multi-class cerebrospinal fluid (CSF) segmentation on brain CT images, multi-organ segmentation on abdomen CT images, and multi-class tumour segmentation on brain magnetic resonance (MR) images. Finally, we propose a CNN-based framework to segment acute ischemic lesions on diffusion weighted (DW)-MR images, where the lesions are highly variable in terms of position, shape, and size. Promising results were achieved on a large clinical dataset. The second main contribution of the thesis is two novel strategies for learning with weak supervision. First, we propose a novel strategy called context restoration to make use of the images without annotations. The context restoration strategy is a proxy learning process based on the CNN, which extracts semantic features from images without using annotations. It was validated on classification, localization, and segmentation problems and was superior to existing strategies. Second, we propose a patch-based framework using multi-instance learning to distinguish normal and abnormal SVD on CT images, where there are only coarse-grained labels available. Our framework was observed to work better than classic methods and clinical practice.Open Acces

    Bayesian generative learning of brain and spinal cord templates from neuroimaging datasets

    Get PDF
    In the field of neuroimaging, Bayesian modelling techniques have been largely adopted and recognised as powerful tools for the purpose of extracting quantitative anatomical and functional information from medical scans. Nevertheless the potential of Bayesian inference has not yet been fully exploited, as many available tools rely on point estimation techniques, such as maximum likelihood estimation, rather than on full Bayesian inference. The aim of this thesis is to explore the value of approximate learning schemes, for instance variational Bayes, to perform inference from brain and spinal cord MRI data. The applications that will be explored in this work mainly concern image segmentation and atlas construction, with a particular emphasis on the problem of shape and intensity prior learning, from large training data sets of structural MR scans. The resulting computational tools are intended to enable integrated brain and spinal cord morphometric analyses, as opposed to the approach that is most commonly adopted in neuroimaging, which consists in optimising separate tools for brain and spine morphometrics
    • 

    corecore