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Abstract

Machine learning is playing a pivotal role in medical image analysis. Many algorithms based on ma-

chine learning have been applied in medical imaging to solve classification, detection, and segmenta-

tion problems. Particularly, with the wide application of deep learning approaches, the performance

of medical image analysis has been significantly improved. In this thesis, we investigate machine

learning methods for two key challenges in medical image analysis: The first one is segmentation of

medical images. The second one is learning with weak supervision in the context of medical imaging.

The first main contribution of the thesis is a series of novel approaches for image segmentation. First,

we propose a framework based on multi-scale image patches and random forests to segment small-

vessel disease (SVD) lesions on computed tomography (CT) images. This framework is validated

in terms of spatial similarity, estimated lesion volumes, visual score ratings and was compared with

human experts. The results showed that the proposed framework performs as well as human experts.

Second, we propose a generic convolutional neural network (CNN) architecture called the DRINet for

medical image segmentation. The DRINet approach is robust in three different types of segmentation

tasks, which are multi-class cerebrospinal fluid (CSF) segmentation on brain CT images, multi-organ

segmentation on abdomen CT images, and multi-class tumour segmentation on brain magnetic reso-

nance (MR) images. Finally, we propose a CNN-based framework to segment acute ischemic lesions

on diffusion weighted (DW)-MR images, where the lesions are highly variable in terms of position,

shape, and size. Promising results were achieved on a large clinical dataset.

The second main contribution of the thesis is two novel strategies for learning with weak supervi-

sion. First, we propose a novel strategy called context restoration to make use of the images without

annotations. The context restoration strategy is a proxy learning process based on the CNN, which

extracts semantic features from images without using annotations. It was validated on classification,

localization, and segmentation problems and was superior to existing strategies. Second, we propose

a patch-based framework using multi-instance learning to distinguish normal and abnormal SVD on

CT images, where there are only coarse-grained labels available. Our framework was observed to

work better than classic methods and clinical practice.
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Chapter 1

Introduction

1.1 Medical Imaging Overview

Medical imaging techniques can generate detailed images representing the human anatomy in vivo

[16]. The generated images reveal structural and functional information about organs and tissue. This

information can be used to assist clinical diagnosis and interventions. The process of medical imaging

is typically noninvasive. This means no instrument cuts the skin and is inserted into the patient’s body.

However, in some cases contrast agents are administered to reveal structural or functional information.

The most common medical imaging modalities of interest for this thesis include radiography, CT,

MRI and ultrasonography (ultrasound).

1.1.1 Imaging Modalities

Radiography: Radiography uses X-rays to visualize the human anatomy [17]. Specifically, a gen-

erator produces beams of X-rays and projects them to human bodies. Different organs and tissue

absorb different amount of energy of the X-rays depending on their densities and compositions. The

remaining X-ray energy is then captured by a detector and used to create an 2D image.

There are two types of radiographic images, namely projection radiography and fluoroscopy. Pro-

jection radiographs are also known as X-rays. They are widely used to diagnose and assess mus-

1
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culoskeletal diseases as well as lung diseases. In fluoroscopy, dynamic projection radiographs are

required. This can be used to visualize vessels via contrast agents that have been injected, as well as

instruments such as catheters which are used to guide interventions.

Even though radiography is the oldest medical imaging technique developed, it is widely used because

of its wide availability and low cost. However, radiography exposes patients and staff to harmful X-

ray radiation.

CT: X-ray CT is based on the same principle as the projection radiography. However, in CT, a series

of projectional X-ray images is acquired while the X-ray source and detector rotate around the patient

[18]. The acquired data can be used to measure the X-ray attenuation coefficient at every point within

a cross-section through the patient’s anatomy. Subsequently, the coefficient is linearly transformed to

the Hounsfield unit (HU). The HU provides a quantitative scale for radiodensity description. For a

CT image, HU values are defined as:

HU =
µ− µwater
µwater − µair

× 1000. (1.1)

Here, µ is the average linear attenuation coefficient of the voxel; µwater and µair are radiodensities of

distilled water and air at standard pressure and temperature, respectively. µwater is defined as 0 and

µair is defined as −1000. As a result, the intensities of voxels in a CT image typically range from

−1000 to 1000.

CT is used in diagnosis in pathologies of a number of organs, including brain, heart, and lung. This is

because CT images provide high resolution as well as good soft tissue contrast. Figure 1.1(a) shows

a brain CT image.

MRI: MRI uses magnetic fields, gradients, and radio waves to create tomographic images of the

patient’s anatomy [19]. Briefly, pulses of radio waves excite the nuclear spin energy transition in

hydrogen atoms and this is spatially localized by magnetic field gradients. Changing the parameters of

the pulse sequence can generate different contrast mechanisms between tissues. The most commonly

used imaging sequences include: T1-weighted, T2-weighted, DWI, dynamic contrast enhancement,

and spectroscopy.
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Figure 1.1: Examples of brain CT and MR images. The MR images include T1-weighted, T2-FLAIR,
and T2-DWI sequences.

Compared with CT, MRI does not use X-rays or ionizing radiation, which is not harmful to human

bodies. However, the acquisition of MRI is usually slower than CT imaging. MRI cannot be used

in patients with non-removable metal implants as this causes safety issues. In addition, MRI offers

better and more detailed soft tissue contrast than CT while the contrast between soft tissue and bone

is higher in CT images. Figure 1.1 compares brain images acquired using different modalities. It is

obvious that MR scans show better contrast between different brain tissues compared to the CT scan.

Ultrasound: Ultrasonography uses high frequency sound waves to generate 2D or 3D images [20].

Pulses of ultrasound waves are generated and sent into the patient’s body by the ultrasound probe.

The sound waves are reflected at the interface between different tissues. The ultrasound probe then

records the reflected soundwaves in order to reconstruct images from them.
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Ultrasound is widely used in imaging fetus in pregnant women, abdominal organs and the heart,

because there is no harmful radiation and the cost is low. Furthermore, ultrasound images can be

acquired in real-time. However, ultrasound images are usually of poor quality because of noise,

artefacts, and shadows. Figure 1.2 shows an ultrasound image of a fetal brain.

Figure 1.2: An example of ultrasound fetal brain image.

Others: There are many other medical imaging modalities which are used in diagnosis and interven-

tions: positron emission tomography (PET), single-photon emission computed tomography (SPECT),

elastography, endoscopy, tactile imaging, thermography as well as optical imaging. As this thesis

does not use these techniques, they are not discussed in detail here. For more details on these medical

imaging techniques, see [21].

1.1.2 Image Analysis and Interpretation

In clinical practice, the acquired images are subsequently interpreted by radiologists and clinicians.

According to the features they identify in the images, different diseases can be diagnosed and treat-

ments can be planned. The features of interest can be divided into two types, namely background
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features and disease-specific features. For instance, when reading a brain CT scan of a stroke patient,

a radiologist pays attention to background features, including white matter lesions (WMLs), atrophy

as well as old lesions. The radiologist then focuses on disease-specific features (in this case stroke)

such as acute ischemic lesions. These features are usually interpreted as scores, which indicate the

severity of the disease. For instance, the Wahlund [22] and van Swieten [23] proposed scoring systems

which include four and three grades of WML severity, respectively.

The process of clinical image analysis can be separated into three steps: First, identify regions of

interest, e.g. identifying CT image slices with lesions. Second, delineate the target structures of

interest, e.g. lesions. Finally, quantitative or qualitative measurements can be derived from the target

structures of interest (e.g. size, shape or texture).

Analysing medical images automatically has three major advantages: First, compared to manual im-

age analysis, automated algorithms can run faster, particularly those based on deep learning technolo-

gies, e.g. CNNs. For instance, the segmentation of acute ischemic lesion as developed in this thesis

takes only seconds when performed automatically [24]. Second, inter- and intra-rater consistency of

human experts can be low in challenging segmentation problems, e.g. WML segmentation in CT

images [25]. Especially in the case of images with low signal-to-noise ratio or images with artefacts,

automated methods can be derived from annotations provided by a committee of experts. Therefore,

the results given by automated methods can be more reliable than those obtained from individual

experts. Finally, it is expensive in terms of man power to annotate medical images by experts while

automated analysis is more scalable.

Machine learning techniques have been used in automatic medical image analysis for decades. Tra-

ditionally there were only limited computational resources. In addition, there have been a small

number of images available. Hand-crafted features such as the scale-invariant feature transform key-

points [26], were used as the input to machine learning models. The output of the models were

targeted outcomes (e.g. labels, images) in supervised and weakly supervised learning or data intrinsic

structures in unsupervised learning. In recent years, many more images and annotations as well as

computational resources have become available. Image intensities can be input to machine learning

models, particularly deep neural networks. The deep neural networks can learn image features and
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subsequent tasks end to end, which improves the performance significantly.

1.2 Objective and Challenges

The main objective of this thesis is to develop machine-learning-based models to solve the classifica-

tion and segmentation problems assisting stroke clinics. The developed methods can also be applied

to other medical imaging problems.

1.2.1 Medical Images

The nature of medical images leads to three major challenges in medical image analysis. First, in some

cases, the acquired images have poor quality. Specifically, clinical images are usually optimized for

diagnostic purposes, e.g. to minimize the radiation burden for patients or maximize the acquisition

speed. This can result in images with low signal-to-noise ratio. In addition, clinical images are often

degraded by artefacts, e.g. due to patient movement or natural motion (e.g. respiratory or cardiac

motion).

Second, the diversity of medical images is enormous. More precisely, there are many different image

modalities mentioned above which lead to very different images in terms of appearance and intensity

distributions. Even for a single modality, such as CT, images of different organs are likely to have very

different intensity distributions. However, common problems happen in different medical images.

For instance, segmentation is a common problem in medical image analysis, e.g. brain segmentation

in CT and MR images. Developing individual models for each case based on machine learning is

problematic and redundant. It is significant to develop generic models for common problems.

Finally, the human anatomy and its appearance in medical images can be complex and highly variable

in terms of structure, position, size, and shape. In terms of structure, some anatomies can be seen as a

cluster of pixels (or voxels), i.e. blobs, such as tumours [27], while some of them look like a mass of

pixel (or voxel) dots, such as micro-bleeds [28]. In terms of position, lesions, e.g. ischemic infarcts,

can occur everywhere in the brain [24]. In terms of size, some organs are small, e.g. pancreas, while
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some organs are large, e.g. liver. In terms of shape, it depends on anatomy itself and the pose it is

scanned.

1.2.2 Annotations

Annotations on medical images can exist across three levels: image level, object level, and pixel

(or voxel) level. From image level to pixel (or voxel level), the annotation becomes more and more

expensive in terms of human resource and time. Because of this, two challenges raise in terms of

image annotations.

First, only a small portion of images can be annotated. Acquiring a large number of clinical scans

from hospitals is not difficult but annotating them at pixel (or voxel) level is often not possible due

to resource constraints. For segmentation problems, it is common that experts only annotate a small

number of images for model development and validation. This means that many images remained

unlabelled. It is challenging to make use of these images without annotations to boost the model

performance.

Second, the images can often be weakly annotated. This means only course-grained annotations are

provided to solve fine-grained problems. For instance, only image-level annotations are given for

detection or segmentation problems. In this case, there are two possible solutions: One is to derive

fine-grained annotations from course-grained annotations; the other is to transform the fine-grained

problem to a course-grained problem. Both of them pose significant challenges.

1.2.3 Clinical Applications

Stroke is a cerebrovascular accident which is the loss of brain function caused by the lack of blood

supply [29]. It is one of the major causes of long-term disability and death globally [30]. Ischemic

stroke and hemorrhagic stroke are two different categories of strokes that require different treatments

[31]. Ischemic stroke accounts for approximately 80% of all strokes [32]. A number of factors such

as energy depletion and cell death are thought to result in ischemic brain injuries [33]. Intravenous
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thrombolysis with recombinant tissue plasminogen activator is the recommended therapy for acute

ischemic stroke that reduces severe disability but causes deterioration due to symptomatic intracranial

hemorrhagic (ICH) in approximately 6% [34]. In order to reduce the rate of ICH which is associated

with the worst outcome of stroke, management of ischemic stroke is pivotal.

Advanced neuroimaging techniques have been widely used in the diagnosis of stroke. It is normally

recommended that patients should undergo either MRI or CT [35]. DWI and T2-FLAIR should

be included in the MR sequences which are able to show acute and chronic lesions, respectively.

Although MRI is regarded as the gold standard, CT is more frequently used in the acute phase of

stroke treatment since CT is more widely applicable and faster.

In this thesis, a number of key biomarkers associated with ischemic stroke are identified and analyzed,

including the SVD, atrophy, and acute ischemic lesions. In stroke clinics, the SVD and atrophy

are recognized as background biomarkers while the acute ischemic lesions are the acute biomarkers

[34, 36]. Cerebral SVD refers to a group of pathological aetiologies that affect the brain [37]. In

this thesis we will use this term to describe ischemic consequences of WMLs. The CSF volume is

a biomarker of atrophy. Quantifying CSF volume within ventricles and cortical sulci is significant

for distinguishing hydrocephalus from central atrophy [38], for prognostication after stroke [39], and

for estimating cerebral hemorrhage risk [40, 41]. In addition, accurately detecting the acute ischemic

lesions in medical images directly contributes to the stroke diagnosis. For instance, small ischemic

lesions which are likely to be missed by clinical observers can be highlighted. The efficiency of scan

reviewing can be boosted as well.

Therefore, the methods developed in this thesis are applied in the following stroke-related problems:

1) rapid identification of cerebral SVD on CT images (Chapter 7), 2) accurate segmentation of cere-

bral SVD on CT images (Chapter 3), 3) multi-class segmentation of CSF on CT images (Chapter 4),

and 4) acute ischemic lesion segmentation on DW images (Chapter 5).
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1.3 Contributions

In this thesis, we propose novel solutions based on machine learning techniques to address the chal-

lenges mentioned above.

A fully automated framework is developed for the segmentation of the WMLs in brain CT

images with often poor quality. Assessment of cerebral ischemic WMLs (or leukoaraiosis) using

CT is important for the practical management of acute stroke, traumatic head injury and cognitive

impairment, but limited by visual rating systems that are often used but prone to ambiguity and high

inter-rater variability. We propose a framework based on the random forests algorithm to segment

the WMLs so that the lesions can be quantified reliably. Image patches across multiple scales are

used to address the challenge that CT images can exhibit poor quality. We demonstrate that the

automatically calculated WML volumes strongly correlate to WML volumes derived from expert

drawings on MRI and CT (r2 = 0.85, 0.71, respectively; p < 0.001). Expert CT-WML drawing

volumes correlated with each other (r2 = 0.85), but ranged widely between experts (range: 91%

of mean expert estimate). Agreements between automatic and consensus-expert score ratings were

superior or similar to agreements between pairs of experts. Accuracy was unaffected by co-existent

old or acute ischemic changes, or atrophy. Automatic rating errors (scores > 1 point from expert

consensus) occurred in 4% cases.

A generic CNN architecture is proposed for segmentation problems in medical imaging. The

U-Net architecture [6] is one of the most well-known CNN architectures for semantic segmentation

and has achieved remarkable successes in many different medical image segmentation applications.

It consists of standard convolution layers, pooling layers, and upsampling layers. These convolution

layers learn representative features of input images and construct segmentations based on the features.

However, the features learned by standard convolution layers are not distinctive when the differences

among different categories are subtle in terms of intensity, location, shape, and size. We propose

a novel CNN architecture, called Dense-Res-Inception Net (DRINet) with deeper and wider layers,

which addresses this challenging problem. The proposed DRINet consists of three blocks, namely

a convolutional block with dense connections, a deconvolutional block with residual Inception mod-

ules, and an unpooling block. Our proposed architecture outperforms the U-Net architecture [6] in
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three different challenging applications, namely multi-class segmentation of CSF on brain CT images,

multi-organ segmentation on abdominal CT images, multi-class brain tumour segmentation on MR

images.

A CNN-based framework is developed for the segmentation of the complex ischemic lesions in

brain DW images. Stroke is an acute cerebral vascular disease, which is likely to cause long-term

disabilities and death. Acute ischemic lesions occur in most stroke patients. These lesions are treat-

able using drugs provided that an accurate diagnosis is available. Although DWI is sensitive to these

lesions, localizing and quantifying them manually is costly and challenging for clinicians since the

lesions significantly vary in location, size, and shape. We propose a novel framework to automati-

cally segment stroke lesions in DWI. Our framework consists of two CNNs: one is an ensemble of

two DeconvNets [2], which we term EDD Net; the second CNN is the multi-scale convolutional label

evaluation net (MUSCLE Net), which aims to evaluate the lesions detected by the EDD Net in order

to remove potential false positives. Our proposed framework is validated on a large dataset compris-

ing clinical acquired images from 741 subjects. A mean accuracy of Dice coefficient obtained is 0.67

in total. The mean Dice scores based on subjects with only small and large lesions are 0.61 and 0.83,

respectively. The lesion detection rate (DR) achieved is 0.94.

A self-supervised learning strategy is proposed for CNN pretraining, which improves the per-

formance of CNN. Machine learning, particularly deep learning has boosted medical image analysis

over the past years. Training a good model based on deep learning requires large amount of labelled

data. However, as mentioned above it is often difficult to obtain a sufficient number of labelled im-

ages for training. In many scenarios, the dataset in question consists of more unlabelled images than

labelled ones. Therefore, boosting the performance of machine learning models by using unlabelled

as well as labelled data is an important but challenging problem. Self-supervised learning presents

one possible solution to this problem. However, existing self-supervised learning strategies applicable

to medical images do not result in significant performance improvement. In this thesis, we propose

a novel self-supervised learning strategy based on context restoration, i.e. restoring randomly disor-

dered image context, in order to better exploit unlabelled images. The context restoration strategy

has three major features: 1) it learns meaningful image semantics; 2) it is useful for different types

of subsequent image analysis tasks; and 3) its implementation is simple. We validate the context
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restoration strategy in three common problems in medical imaging: classification, localization, and

segmentation. For classification, we apply and test it to scan plane detection in fetal 2D ultrasound

images; to localise abdominal organs in CT images; and to segment brain tumours in multi-modal MR

images. In all three cases, the proposed self-supervised learning based on context restoration learns

meaningful semantic features and leads to improved machine learning models for the above tasks.

A multi-instance learning (MIL)-based method is proposed for the identification of cerebral

SVD with weak labels. Cerebral SVD is a common cause of ageing-associated physical and cogni-

tive impairment. Identifying SVD is important for both clinical and research purposes but is usually

dependent on radiologists’ evaluation on brain scans. CT is the most widely used brain imaging

technique but for SVD it usually has a low signal-to-noise ratio, and consequently low inter-rater reli-

ability. The SVD is only related to regions affected by the disease but these regions are not annotated.

The annotations are based on image level, i.e. absent/mild SVD or moderate/severe SVD. We pro-

pose a novel framework based on MIL to distinguish between absent/mild SVD and moderate/severe

SVD. Intensity patches are extracted from regions with high probability of containing lesions using an

atlas-based approach. These are then used as instances in MIL for the identification of SVD. A large

baseline CT dataset, consisting of 590 CT scans, was used for evaluation. We achieved approximately

75% accuracy in classifying two different types of SVD, which is high for this challenging problem.

Our results outperform those obtained by either standard machine learning methods or current clinical

practice.

1.4 Structure of Thesis

The remainder of this thesis is structured as follows: Chapter 2 introduces those machine learning

techniques that relevant to the work in this thesis. In Chapter 3, we propose a framework based on RF

to segment and quantify the WMLs in clinical CT images. In Chapter 4, a generic CNN architecture

is proposed for medical image segmentation problems, which is shown to be robust across image

modalities and different segmentation problems. In Chapter 5, we propose a CNN-based framework

for acute ischemic lesion segmentation. In this application, the lesions vary in position, size, and
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shape, making this a challenging problem. In Chapter 6, a novel self-supervised learning strategy is

proposed. The proposed strategy improves the performance of CNNs where only limited annotated

images are available. In Chapter 7, a framework based on MIL is proposed to distinguish different

types of SVD in CT images. In this case, the SVD is only related to regions affected by the disease but

the regions are not annotated. Finally, we conclude our work and discuss the limitations and future

plans in Chapter 8.



Chapter 2

Background

2.1 Introduction

Machine learning (ML) is a subject which uses empirical data X and computational models M to

approximate a function, e.g. f(·). The empirical data X = {x1,x2, . . . ,xm} consists of m instances

and each data instance xi = {x1, x2, . . . , xn}, i = 1, 2, . . . ,m, can be viewed as a vector of n feature

attributes. The function to be approximated is usually highly complex and implicit. According to

whether the training data has associated labels Y available, ML techniques can be categorized into

two categories, namely supervised learning and unsupervised learning. In supervised learning, the

training data has associated labels Y = {y1,y2, . . . ,ym} while in unsupervised learning the data

is unlabelled, i.e. Y = X. If only a portion of data (mp/m instances) is annotated, i.e. Y =

{y1,y2, . . . ,ymp},, the learning process is called weakly supervised learning. Commonly the learning

process aims to find an approximation of function f : X 7→ Y.

The major problems in supervised learning are classification and regression. In the classification prob-

lems, yi, i = 1, 2, . . . ,m, is discrete and categorical while in regression problems, yi, i = 1, 2, . . . ,m,

is usually continuous. The main application for unsupervised learning are clustering and dimension-

ality reduction. In clustering problems, the result of the learning process is a set of clusters while in

dimensionality reduction problems, the result of the learning process is a representation of original

data instances in a lower dimensional space. In weakly supervised learning, the aim is to make use of

13
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data without labels to improve the performance of supervised learning tasks. In reinforcement learn-

ing, the goal is to achieve maximum rewards via an optimized policy. The challenge is that there is

no “instance-label” pairs for policy learning. A reward is only available after a sequence of actions.

In medical image analysis, the most common and challenging problem is classification, e.g. clas-

sifying subjects into disease categories or classifying image pixels (or voxels) into different classes

according to tissue types or organs. In cases where all images are labelled (or annotated), super-

vised learning algorithms are applicable. However, in classification problems, there are many images

which are not labelled because of prohibitive costs of annotating images. Therefore, weakly super-

vised methods are utilized to make use of these unannotated images.

2.2 Supervised Learning

2.2.1 Basic Models

In terms of supervised learning algorithms, linear models such as the logistic regression and proba-

bilistic models such as the naive Bayes classifier are basic building blocks often used in classification

tasks [42]. A linear model

z = wTxi + b, (2.1)

predicts z as a linear function of xi Here, w and b are learned parameters of the linear model. The

predicted variable z could be converted to a categorical number yi using the unit step function

yi =


0, z < 0;

1, z ≥ 0.

(2.2)

However, the unit step function is not continuous. Therefore, the logistic function:

yi =
1

1 + e−z
(2.3)
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is usually used to replace the unit step function. Instead of predicting the classes directly, the logistic

function aims to predict the odds of each class, which can be more useful. This linear model is a

discriminative model, which estimates the posterior probability of X and Y, i.e. P (Y | X) directly.

This can also be achieved via generative models. Generative models estimate the joint distribution of

X and Y, i.e. P (X,Y) and

P (Y | X) =
P (X,Y)

P (X)
. (2.4)

According to Bayes’ theorem,

P (Y | X) =
P (Y)P (X | Y)

P (X)
. (2.5)

Here, P (Y) is the prior probability of Y; P (X | Y) is the likelihood of X belonging to Y class;

and P (X) is the normalization evidence. However, it is difficult to estimate the likelihood P (X | Y)

via limited training instances. The naive Bayes classifier assumes all attributes are conditionally

independent given Y. Therefore,

P (Y | X) =
P (Y)

P (X)

M∏
i=1

P (xi | yi). (2.6)

2.2.2 SVM

Another approach for classification is based on support vector machines (SVM) [43]. The standard

SVM solves the binary classification problem, where yi ∈ {−1,+1}, i = 1, 2, . . . ,m. It aims to find

a hyper-plane

wTx + b = 0, (2.7)

which separates the data instances into two classes. Here, w = {w1, w2, . . . , wn} is the normal vector

and b is the bias. The optimal hyper-plane should be at the centre of the maximum margin between

instances of difference classes. Figure 2.1 demonstrates the maximum margin in a 2D example.



16 Chapter 2. Background

Therefore, the problem to solve can be written as:

max
w,b

2

‖w‖
(2.8)

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, . . . ,m. (2.9)

This optimization problem equals to

min
w,b

1

2
‖w‖2 (2.10)

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, . . . ,m. (2.11)

This can be solved using the method of Lagrange multipliers.

Figure 2.1: A demonstration of margins and support vectors in the SVM approach. Here, the circles
and stars represent positive and negative instances belonging to different classes, respectively. The
instances in red are support vectors.

Note that the model of the hyper-plane in the SVM is linear:

f(x) = wTx + b. (2.12)

However, these models cannot solve problems which are not linearly separable (e.g. the XOR prob-
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lem). If there is a function φ(·), which can map the data into a latent space, where the results are

linearly separable, the SVM model still can be used. In this case, the model of the hyper-plane is:

f(x) = wTφ(x) + b. (2.13)

This is known as the kernel trick which maps a linear classifier to a non-linear classifier via a kernel

function φ(·).

To alleviate the effect of overfitting, soft margins are usually applied, which means some errors are

allowed. In this case, the constraints in Equation 2.11 can be relaxed and the optimization problem

becomes:

min
w,b,ξi

1

2
‖w‖2 + C

m∑
i=1

ξi (2.14)

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, 2, . . . ,m, ξi ≥ 0. (2.15)

Here, C is a constant greater than 0 and ξi are referred to as slack variables, which quantify the degree

that data instances do not satisfy the constraints 2.11.

2.2.3 Random Forests

Random forest is an ensemble method based on decision trees [44]. Decision trees are a type of pop-

ular machine learning method which are regarded as weak learners in RF. Figure 2.2 shows examples

of a decision tree and a random forest. Generally, a decision tree consists of one root node and a

number of internal nodes and leaf nodes. Each leaf node corresponds to a decision while all the other

nodes correspond to feature thresholding. Each non-leaf node contains a subset of data samples. The

data samples are then divided to its child nodes according to the feature thresholding results. The root

node contains the whole dataset. The key of developing a decision tree is the strategy to divide the

feature space. The goal of feature dividing is to maximize the purity of each non-leaf node, which

means as many data samples as possible belonging to one non-leaf node are from one category.

Ideally, different weak learners should be independent in order to achieve the best performance after
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combination. In practice, it is impossible to ensure the independence among weak learners. The

alternative is to make weak learners as diverse as possible. One strategy is sampling subsets of

data when training the different weak learners. In addition, the RF introduces another strategy to

create diversities among weak learners: Specifically, for each node in a decision tree, the optimal

criterion for division is obtained from k randomly selected attributes among all feature attributes

xi, i = 1, 2, . . . , n. If k = n, then the tree construction is equal to standard decision tree construction;

while if k = 1, then the selection of attribute for division is completely random. This means k controls

the randomness and usually k = log n or k =
√
n [44]. There are several methods for combining

weak decision trees in form of RF, including averaging [45], majority voting, and learning-based

methods [46–48].

Figure 2.2: Comparison between a decision tree and a random forest. A random forest consist of
a number of decision trees. The output of the random forest (the rounded rectangle in red) is a
combination of the outputs of its decision trees. In each decision tree, rectangles and circles represent
internal nodes and leaf nodes, respectively. Rectangles in different colours suggest different attribute
sets. Circles in red indicate the outputs of decision tress.
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2.2.4 Neural Networks

The Origin

In 1943, McCulloch and Pitts (M-P) proposed a type of neural networks, the M-P neuron model [49],

shown in Figure 2.3. In the M-P neuron model, n input signals xj, j = 1, 2, . . . , n are summed

with associated weights wj . The weighted sum is then compared with a threshold θ. The result

is subsequently processed by a activation function g(·), leading to the output yi, i = 1, 2, . . . ,m.

Formally,

yi = g

(
n∑
j=1

wjxj − θ

)
. (2.16)

Figure 2.3: M-P neuron model

The activation function is the step function:

g(x) =


0, x < 0;

1, x ≥ 0.

(2.17)

However, the step function is not continuous so the sigmoid function [50] is usually used instead. A

sigmoid function has a characteristic “S”-shaped curve, which is bounded and differentiable.

In 1958, Rosenblatt invented the perceptron [51], which consists of two layers of neurons, namely

the input layer and the output layer. The input layer receives input signals and the output layer is a

M-P neuron model. In the perceptron, the weights wj and the threshold θ can be learned. Since the

threshold can be viewed as a fixed value xn+1 = 1 with weight wn+1, the target is to learn all the

weights of the model. The rule of learning is fairly simple: Let the output of perceptron is ȳi given



20 Chapter 2. Background

the input (xi, yi). If ȳi = yi, then the weights do not change; otherwise,

wj ← wj + α(yi − ȳi)xj. (2.18)

Here, α ∈ (0, 1) is the learning rate. The perceptron is able to handle linearly separable problems be-

cause it only has one layer of functional neuron. To solve the XOR problem and non-linear problems,

more layers of functional neurons are needed. However, in this case Equation 2.18 is no longer appli-

cable. The backpropagation (BP) algorithm is the most successful algorithm to solve the multi-layer

network learning problem. The BP algorithm was first proposed by Werbos [52] and popularized by

Rumelhart et al. [53]. The BP algorithm computes the weights based on the chain rule to find the

gradients of the loss function.

Modern Neural Networks

In theory, neural networks with large number of neurons can solve highly complex problems. Par-

ticularly, increasing hidden layers leads to better results than increasing neurons in existing hidden

layers. This is because more hidden layers lead to deeper embeddings of non-linear activations. In

practice, training complex neural networks is difficult due to the problem of vanishing gradients with

increasing network depth [54]. One successful strategy to solve this problem is weight sharing, which

means a groups of neurons share the same weights, leading to the development of CNN. In a CNN,

one filter works on a pair of connected feature maps with a number of neurons [55].

In CNNs, convolutions and poolings are two key components of the neural network. The idea of

convolutions and poolings was inspired by a study on the visual system of cats [56]. Fukushima and

Miyake first proposed to use convolutions and poolings in neural networks [57, 58]. Modern CNNs

were proposed in [55] which applied the BP algorithm on neural networks. A CNN usually consists

of stacks of convolutional layers and pooling layers. In each convolution layer, there are a number

of feature maps, which are groups of neurons. The features are extracted by convolution filters. The

feature maps are downsampled in pooling layers, which are based on local features in feature maps.

The pooling layers remove redundancies in feature maps, which improves the learning efficiency.
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The convolution and pooling layers extract features from the input layer-by-layer, resulting in more

and more representative features. Ultimately, these features can be used for classification via simple

classifiers.

In 1998, LeCun et al. proposed the LeNet-5, which achieved a great success in the hand-written

document recognition task [7]. Figure 2.4 shows the architecture of the LeNet-5. Details about the

implementations including the weight updating in the CNN can be found in [59]. In the following

years, a number of techniques were proposed to improve the CNN architectures. In terms of the

activation function, the ReLU

g(x) = max(0, x) (2.19)

was proposed to replace the sigmoid function to avoid gradient vanishing and accelerate the gradi-

ent computation [60]. To prevent neural networks from overfitting, a technique called dropout was

proposed [61,62]. The dropout technique sets the outputs of hidden neurons to 0 with a certain proba-

bility, e.g. 0.5. The dropped out neurons are not involved in the forward inference pass or during BP.

This means the whole network samples different architectures for training and all these architectures

share weights. This strategy prevents overfitting since the learned weights need to adapt different

structures, which forces the network to be robust.

Figure 2.4: The architecture of the LeNet-5. The figure is from [7].

Applications

Using these techniques, Krizhevsky et al. proposed the AlexNet [8], shown in Figure 2.5, which won

the ImageNet large scale visual recognition challenge (LSVRC)-2010 contest [63] with a significantly

increased accuracy (top-5 error rate of 15.3%). The AlexNet has five convolution layers and three
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fully-connected layers. Later, the VGGNet was proposed [64], which has two similar architectures

with 16 layers and 19 layers, respectively. The configuration of these VGGNet architectures is shown

in Table 2.1. The VGGNet achieved the top-5 error of 6.8% on the classfication problem of LSVRC-

2014. This result suggested deeper networks lead to better results. The GoogLeNet [9] achieved

similar accuracies to the VGGNet but its architecture is deeper and wider. The architecture of the

GoogLeNet is shown in Figure 2.6. The increase of depth and width of network architecture does not

add many more parameters because of the careful design of the inception modules proposed. In the

inception module, convolutions with 1× 1 kernels are used, which limits the number of feature maps

(see details in Chapter 4).

Figure 2.5: The architecture of the AlexNet. The figure is from [8].

Figure 2.6: The architecture of the GoogLeNet. The blocks in blue, red, yellow, and green represent
convolutions, poolings, softmax, and concatenations and normalization, respectively. The figure is
from [9].

In 2016, a CNN with residual connections was proposed, termed ResNet [10]. The ResNet extends the

VGGNet’s depth to 34, 52, and 101 layers without introducing extra parameters. The architecture of

the ResNet-34 is shown in Figure 2.7. The residual connections solve two training problems resulting
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Table 2.1: The configuration of the VGGNets with 16 and 19 weight layers.

16 weight layers 16 weight layers 19 weight layers
input images

conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64

max pool
conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128

max pool
conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256
conv1-256 conv3-256 conv3-256

conv3-512
max pool

conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512

conv3-512
max pool

conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512

conv3-512
max pool
fc-4096
fc-4096
fc-1000
softmax

in good performance: One problem is that of vanishing gradients, which means the errors in high

layers are likely to vanish when backpropagating to low layers (layers close to the input are usually

referred to as low layers while layers close to the output are referred to as high layers). The other

problem is the degradation of training accuracy which is not caused by overfitting. The degradation

is due to the difficulty in function approximation. If the optimal function is more likely to be an

identity mapping than a zero mapping, it is easier to find the pertubations with reference to an identity

mapping than to learn the function from scratch. The residual connections make the input feature

maps as the reference. Hence, the learning process becomes easier. Similarly, there are convolutions

with 1 × 1 filters within the residual connection blocks, which control the parameter space. Later,

the DenseNet architecture [11] was proposed to improve the performance of the ResNet, where all

preceding layers are connected to the following layers via concatenation to avoid vanishing gradients.
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In the DenseNet architecture (Figure 2.8), the size of the output channel of a convolution layer is

typically small (e.g. 12, 24). This is also referred to as the growth rate of the network which controls

the parameter space. The dense connection pattern is demonstrated in Figure 2.9.

More recently, Sabour et al. proposed the CapsuleNet [12] to address the shortcomings of CNNs. This

architecture is based on the observation that CNNs are not a good representation of the human visual

system. The CNNs are translation invariant and require big data to generalize. The CapsuleNet learns

a global linear manifold between a whole object and its pose in an unsupervised learning manner.

In addition, in the CapsuleNet architecture, routing is dynamic, instead of using pooling layers. The

dynamic routing means feature maps are forwarded to capsules which are the best at processing

them. As such, the CapsuleNet is able to generalize better with less training data. A simple 3-layer

CapsuleNet is demonstrated in Figure 2.10.

Figure 2.7: The architecture of the ResNet-34. The figure is derived from [10].

Figure 2.8: The architecture of the DenseNet. The figure is from [11].

Figure 2.9: The demostration of the dense connection in the DenseNet. The figure is from [11].
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Figure 2.10: The architecture of a 3-layer CapsuleNet. The figure is from [12].

CNNs are often used to solve image classification problems, where a label is assigned to an image.

In semantic segmentation problems, where a label is assigned to each pixel (or a voxel), CNNs can

also be used. A CNN solving classification problems consists of two parts: The first part comprises

convolution layers and pooling layers while the second part comprises fully-connected layers and a

classifier. A modified CNN architecture suitable for semantic segmentation problems inherits the first

part of the classification CNN while the second part usually consists of convolution layers, upsampling

layers, and a classification layer, which generate a semantic segmentation map. The first part of the

segmentation CNN is also referred to as the analysis path, extracting representative features from

input images while the second part of it is referred to as the synthesis path, upsampling the feature

maps from the analysis path and creating segmentation maps.

Long et al. [13] proposed the first CNN to address the segmentation problem, called FCN, shown in

Figure 2.11. The FCN’s analysis path is derived from the AlexNet, the VGGNet, and the GoogLeNet,

respectively. The FCN’s synthesis path combines feature maps from the analysis path across multiple

scales. This is because high-level feature maps lose fine structures, which can be compensated for by

using feature maps at lower levels.

Figure 2.11: The architecture of the FCN proposed by Long et al. [13]. The figure is from [13].

The DeepLab architecture [14] is another commonly used CNN architecture for addressing segmenta-
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tion problems. The VGGNet was employed as the backbone of its analysis path. However, to extract

deeper features from input images without adding more parameters, convolutions with dilations were

used to enlarge the field of view. In addition, atrous spatial pyramid pooling (ASPP) was proposed to

aggregate feature maps achieved by convolutions with different atrous rates. As a result, the feature

maps at the highest level of the DeepLab’s analysis path assemble highly representative features of

input images. These representative feature maps are then upsampled to the same size of the input

image using bilinear interpolation, resulting in the raw segmentation map. Since the raw segmen-

tation map is fairly coarse, a conditional random field (CRF) model is proposed to create the fine

segmentation map. Figure 2.12 illustrates the DeepLab model. Note that the CRF refinement is not

part of the end-to-end training process. Zheng et al. [65] formulated the iterations in CRF models as

recurrent operations, which enables the end-to-end network training. This end-to-end training enables

increased segmentation accuracy. Recently, the DeepLabV3 [66] was proposed. The atrous convolu-

tions with multiple atrous rates were adopted, which encode objects in images at multiple scales. The

ASPP was extended to include the image global features. These two major improvements boost the

performance of the DeepLab model significantly.

Figure 2.12: The illustration of the DeepLab model. Figure from [14].

The encoder-decoder architecture is another commonly used CNN architecture for semantic segmen-

tation. This architecture is derived from the auto-encoder [3], where the analysis path and the syn-

thesis path have symmetric convolution and deconvolution layers and pooling and upsampling layers.

The SegNet [67] and the DeconvNet [2] are two representatives of this type of CNNs. Figure 2.13

shows the architecture of the DeconvNet. Unlike an auto-encoder, which reconstructs input images

at the end, the SegNet and the DeconvNet create segmentation maps. Instead of using bilinear inter-
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polation or deconvolution, the SegNet and the DeconvNet proposed a novel upsampling layer called

unpooling layer. The unpooling layer records the locations of max activations in feature maps in

max pooling layers and uses the recorded masks to guide the upsampling. This strategy improves the

segmentation of object structures, which results in the improvement of total accuracies.

Figure 2.13: The architecture of the DeconvNet. The figure is from [2].

In addition to the encoder-decoder architecture, the U-Net architecture [6] proposes to connect the

associated feature maps in the analysis path and the synthesis path via concatenation, which is il-

lustrated in Figure 2.14. As such, gradients at high layers can be propagated to low layers directly,

which alleviates gradient vanishing. Therefore, the overall performance of the network improves. In

the conventional U-Net, the synthesis path comprises convolution layers and deconvolution layers.

The deconvolution layers with a stride of 2 are used to upsample the feature maps. Beyond the stan-

dard U-Net, a number of variants were proposed. Firstly, the U-Net architecture was extended to 3D

using 3D convolutions and poolings [68]. Secondly, residual connections can be added in convolution

layers of the U-Net [69]. Finally, blocks of dense connections in the DenseNet [11] can replace the

standard convolutions in the U-Net, which leads to the most recent Tiramisu Net [70].

2.3 Weakly Supervised Learning

2.3.1 Overview

Supervised learning methods are based on well-established datasets and the models trained on these

datasets have been shown to be able to make accurate predictions. Here, a well-established dataset
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Figure 2.14: The architecture of the U-Net. The figure is from [6].

means each instance in the dataset has a ground truth label. However, it is usually difficult to establish

such a dataset because of two major challenges: 1) Preparing labels for all instances is expensive, es-

pecially when the dataset is large; 2) Sometimes ground truth labels are not available and annotations

by human experts are used instead. As such, disagreement is likely to occur among human experts.

A dataset without complete ground truth labels is known as a weak dataset.

There are three types of weaknesses regarding instance labels. First, the labels can be incomplete,

which means labels are only available for a subset of data. Second, the labels can be inexact, which

means labels available are not as exact as expected, e.g. only coarse-grained labels are available.

For instance, labels for pixels (or voxels) are needed to address the image segmentation problems.

However, it is too expensive to annotate images at pixel (or voxel) level. Instead, labels at image level

can be obtained. Third, the labels can be inaccurate. This may because of a few reasons including

noise and the disagreement among human experts. In reality, these weaknesses happen individually

or jointly, which makes it difficult to develop machine learning models.
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2.3.2 Incomplete Supervision

There are two main strategies addressing incomplete supervision problems, namely active learning

[71] and semi-supervised learning [72,73]. The difference between them lies in the human interaction.

Human interactions are involved in active learning methods while semi-supervised learning methods

are not based on human interaction.

Active Learning: A typical active learning approach works as follows [71]: First, build a model

based on the limited data with labels; Second, query a label with human experts for an unlabelled

data instance and retrain the model. Repeating the second step results in a good model. To mini-

mize human interactions, the target is to raise minimum queries. Therefore, the key of active learning

methods is selecting unlabelled data instances, which contribute the most to improve the model per-

formance. Obviously, extra human resource is essential to active learning methods but it is not always

available in practice.

Semi-supervised Learning: Semi-supervised learning [72,73] is an alternative, which can make use

of unlabelled data. It does not require extra human resource. The fact is that all the data instances

are collected from the same source so that they obey the same distribution. Based on this fact, it is

assumed that similar data instances have similar labels. The similarity can be measured by the distance

between data instances. The distance is defined on the manifold representing the data distribution.

There are four classic categories of methods of semi-supervised learning.

• Generative methods [74, 75]. These methods assume all the data instances are generated from

the same model, e.g. Gaussian mixture model (GMM). Therefore, both labelled and unlabelled

data are used to estimate the parameters of the model. The key to the generative methods is the

accurate determination of models.

• Graph-based methods [76, 77]. Given a dataset, all the data instances are used to construct

a graph. Each node in the graph corresponds to a data instance. The strength of an edge

between two nodes represents their similarity. As such, labels of unlabelled data instances can

be inferred via label propagation algorithms [76]. The implementation of algorithms is based

on matrix computation, which is not efficient in terms of memory and computation.
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• SVM-based methods [78–81]. The classic SVM can be extended to deal with unlabelled data.

It is assumed that there is a low-density separation between data of different classes. Semi-

supervised SVM aims to find hyper-planes which separates data instances through regions with

less dense instances.

• Disagreement-based methods [82–84]. Multiple learners are employed by disagreement-based

methods while other types of methods rely on single learners. These methods use the disagree-

ment among learners to improve the performance of each learner. Therefore, the disagreement

is the key to this type of methods. The disagreement is derived from the difference from the

data and/or learners. Specifically, if a data instance has multiple attribute sets and each of

them sufficiently represents the dataset and they are conditionally independent, then learners

can learn different views from different attribute sets [82]. Alternatively, different learners can

be employed [83]. In the learning process, each learner picks up unlabelled instances on which

it has high confidence in terms of label assignment. Pseudo labels are then assigned to these

instances and other learners will regard them as labelled instances in the next iteration. This

means learners making different predictions on unlabelled instances teach and learn from each

other until they make same predictions. This learning process promotes the performance of

each learner.

Self-supervised Learning: Self-supervised learning is a generic learning strategy, which handcrafts

supervised learning on unlabelled data to promote the learning accuracy on labelled data [4, 85].

Unlike the semi-supervised learning methods, in which unsupervised learning methods are usually

involved, self-supervised learning handcrafts labels for the unlabelled data instances, enabling super-

vised learning on them. The handcrafted supervised learning approach learns critical features from

the unlabelled data. The learned features are then transferred to models to be trained on the labelled

data, which improves the learning efficiency and effectiveness.

The deep neural network (DNN) is a good model to work with self-supervised learning strategy.

Specifically, training a DNN requires a large set of data with labels, which is expensive to obtain;

otherwise the trained DNN cannot be generalized well. However, the majority of data instances are

not labelled in practice. Training an extra DNN on the unlabelled data with handcrafted labels results
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in representative features of the unlabelled data [5, 86, 87]. The learned weights of this extra DNN

can be used to initialize the DNN to be trained on labelled data, which inherits the learned features

of unlabelled data. The initialization enables the DNN to learn from the small dataset with labels. In

addition, the initialization speeds up the subsequent training process.

Therefore, handcrafting labels for unlabelled data is the key to self-supervised learning. If the data

consists of multiple modalities, handcrafting labels is fairly easy. For instance, videos can be viewed

as image sequences. The temporal information is a good option to be used as self-supervised labels

[88–90]. In terms of data with single modalities, self-supvervision labels may also be available.

For instance, predicting local context of a static image can be regarded as self-supervised feature

learning [5]. In this case, it is important to ensure the self-supervised DNN does learn semantic

features of images instead of trivial features. If the local context to be predicted has a fixed position

in all unlabelled images, the DNN is likely to only focus on the context around the fixed position.

2.3.3 Inexact Supervision

A dataset usually has some annotations. However, the annotated labels may not be as exact as needed.

For instance, a dataset of images is labelled at image level while pixel (or voxel) level annotations are

desired. This means there are only coarse-grained labels available. Therefore, the task in this scenario

is to predict coarse-grained labels. Formally, a group of instances {xi1,xi2, . . . ,xi,mi
} comprise an

instance bag Xi. mi is the number of instances. Labels of individual instances xi,j, j = 1, 2, . . . ,mi

are unknown. If there is one instance xi,p, p ∈ {1, 2, . . . ,mi} in the bag is positive, then the bag is

positive; otherwise the bag is negative. The target is learning a mapping f : {X1,X2, . . . ,Xm} 7→

{−1,+1}. m is the number of bags in the dataset. This type of learning is called multi-instance

learning [91].

In multi-instance learning, the proposed algorithms focus on learning at both bag level and instance

level. Learning at bag level is similar to supervised learning. Therefore, existing supervised learning

methods can be adapted to address the multi-instance learning problems. For example, the classic

SVM approach can be extended as mi-SVM [92]. Ensemble methods including boosting and RF
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can be adapted as MIS-Boost [93] and MIForests [94]. Learning at instance level, unsupervised

learning methods are more suitable since labels for bag instances are not assigned [95]. Specifically,

unsupervised methods can be applied for identifying distinctive instances, which make bags positive.

This is based on the assumption that there must be at least one positive instances in positive bags.

In terms of applications, multi-instance learning is widely used, particularly where instances reside

in high dimensional spaces as in the case of images [96–98]. More precisely, a high-dimensional in-

stance could be regarded as sub-instances in lower dimension. For instance, an image can be regarded

as a group of patches. Sub-instances of interest can be gathered in a bag, representing the instance.

Different bags are likely to contain different numbers of sub-instances. Based on this setting, super-

vised learning algorithms are applicable to distinguish bags in different types. For the image example,

distinguishing bag types means image classification, which is based on bags of patches.

2.3.4 Inaccurate Supervision

The basic idea to address problems of inaccurate labels is identifying these labels and correcting them

[99]. Identifying an inaccurate label usually requires multiple experts to assign labels for the instance.

Then the ground truth label of this instance can be inferred from multiple labels. Crowdsourcing

[100] is a typical approach of collecting multiple labels for each instance. However, it is not always

applicable. For instance, only human medical experts are able to interpret medical images. It is too

expensive to employ a large cohort of medical experts. Ideally, a small number of data instances can

be labelled by multiple experts. As such, a consensus label can be achieved based on multiple labels

via ensemble techniques [101] Alternatively, training a model based on each expert’s labelling results

in multiple weak models [102]. A strong and robust model can be built by combining these weak

models.
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2.4 Summary

In the following chapters, several supervised and weakly supervised learning algorithms are used to

develop novel approaches to solve medical image classification and segmentation problems. More

precisely, in Chapter 3, a framework based on random forests is proposed to segment WMLs on CT

images. In Chapters 4, 5, 6, CNNs are extensively used to develop methods for segmentation and

classification problems. Finally, in Chapter 7, the SVD identification task is addressed based on a

multi-instance boosting algorithm.



Chapter 3

Quantification of Cerebral Leukoaraiosis on

CT

The work in this chapter is based on the following papers:

• L. Chen, A. Jones, G. Mair, R. Patel, A. Gontsarova, J. Ganesalingam, N. Math, A.C. Dawson,

A. Basaam, D. Cohen, A. Mehta, J. Wardlaw, D. Rueckert, and P. Bentley, “Rapid automated

quantification of cerebral leukoaraiosis on CT,” Radiology, vol. 288, no. 2, pp. 573–581, 2018.

• O. Maier, B.H. Menze, J. von der Gablentz, L. Häni, M.P. Heinrich, M. Liebrand, S. Winzeck,

A. Basit, P. Bentley, L. Chen, and others, “ISLES 2015-A public evaluation benchmark for

ischemic stroke lesion segmentation from multispectral MRI,” Medical Image Analysis, vol.

35, pp. 250–269, 2017.

• L. Chen, P. Bentley, and D. Rueckert, “A novel framework for sub-acute stroke lesion segmen-

tation based on random forest,” Ischemic Stroke Lesion Segmentation Workshop, 2015.

3.1 Introduction

Cerebral SVD – a major cause of age-related physical and cognitive morbidity – is most sensitively

detected by FLAIR-MRI [28], typically as leukoaraiosis, i.e. WMLs, and lacunar infarcts. In practice,

34



3.1. Introduction 35

WMLs are most commonly observed on CT images [103], rather than MR images, because of scan-

ner availability and accessibility considerations in target populations. In acute stroke and traumatic

head injury, CT is the first-line imaging modality of choice [104]; yet WML burden is an important

variable, being a prognostic marker of functional outcome [39, 105, 106] and hemorrhagic transfor-

mation of ischemia [39, 107, 108]. For dementia, even though MRI is well-recognised to be superior

in contributing towards diagnosis, hospital audits suggest that CT is used exclusively in the majority

of cases [109–111].

Assessment of cerebral WML on CT images, is more challenging than using MRI, because signal

characteristics of WML (hypoattenuation) are less distinctive relative to background white matter

(WM) on CT images [22]. Moreover, sensitivity of CT decreases with smaller WML volumes [22,

112], and varies between brain regions [22]. Studies measuring inter-rater reliability of expert-based

WML ratings show poorer agreement using CT than MRI [112, 113] (kappa coefficients from 0.5

to 0.6 for CT, versus 0.7 to 0.8 for MRI [22, 23]). Furthermore, WML scoring systems typically

allow for only a small number of ordinal ratings (4–6 [114]), and use visual criteria (e.g. restricted to

periventricular regions versus extending to cortex) that are imprecise, and do not convert directly to

an estimate of total WML load [113]. As such, visual estimates of WML severity, although providing

valuable prognostic information [39], have limited sensitivity as diagnostic markers, for monitoring

disease progression, or in research.

In this study, we propose a novel framework to delineate WMLs on CT images and validate this

method comprehensively, comparing the automated output with expert delineations on CT and MRI

(i.e. gold standard), and ratings in about 1000 stroke patients, using images originating from a wide

range of scanner types, thus reflecting typical populations that the technique is likely to be used in.
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3.2 Methods

3.2.1 Study Populations

Since one of the primary applications for automated WML estimation is prognostication of acute

ischemic stroke, the study focuses on this patient population. The cohorts (Figure 3.1) comprise : 1)

all acute ischemic stroke patients presenting to ICL Hyperacute Stroke Unit between 2010 and 2014

who subsequently received thrombolysis treatment (ICL-thrombolysed cohort); 2) all acute ischemic

stroke patients from ICL in the same time-period who underwent both CT and MRI within 1 week

of each other (ICL CT-MRI cohort), excluding ICL-thrombolysed subjects; 3) a random sample of

patients (N = 200) recruited to the IST-3 cohort [115], from which patients with obvious extensive

acute ischemic changes are first excluded. This subset therefore is more typical of patients who might

also present to a cognitive impairment clinic.

Figure 3.1: Flow chart of the cohorts involved in this study. In the cohort of ICL non-thrombolysed
CT-MRI pairs, there was class imbalance so random subsets were used.

Testing of the automated WML quantification method is assessed by comparison with experts: 1)

drawings of WML outlines on CT images and co-registered FLAIR-MR images (the latter is consid-

ered to be a ground truth), and 2) ratings using two conventional ordinal qualitative WML scoring

systems [22, 23]. The Wahlund and van Swieten scoring systems are the most widely used sys-

tems for WML ratings. For the drawing study, 60 CT images are selected randomly from the ICL-

thrombolysed cohort, and 60 from the ICL CT-MRI cohort, whilst ensuring that there are equal pro-
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portions of absent/mild, moderate and severe SVD (based upon expert ratings). For the ratings study,

ratings are obtained on all subjects from ICL-thrombolysed cohort, CT-MRI pairs and the IST-3 sub-

sets. Table 3.1 describes subject characteristics, including imaging features, for each study.

Table 3.1: Sample characteristics of four validation studies. N denotes the numbers able to be pro-
cessed by automated WML quantification method (i.e. excluding image processing failures). Atrophy
studies were using atrophy grading system described in [1]. Other lesions include hydrocephalus,
arachnoid cyst, meningioma, aneurysm, haemorrhage. In the IST-3, patients with acute ischemic
parenchymal changes were excluded in advance.

Drawing volume studies Ordinal rating studies
CT only CT-MRI pairs Wahlund Score van Swieten

Score
N 120 60 650 196
Population description Random selection of pa-

tients presenting to acute
stroke ward; equal pro-
portions of SVD severity:
absent-mild/moderate/severe

All, unselected
thrombolysed pa-
tients (+ CT-MRI
pairs cohort)

Random se-
lection of
participants
from, throm-
bolysis IST-3

Age (median, in-
terquartile range
(IQR))

76 (66-85) 76 (67-84) 75 (63-82) 82 (77-86)

Male (%) 52 58 54 45
CT features:
acute parenchymal is-
chemia (%)

19 22 36 0

old infarcts (%) 38 38 42 59
central atrophy (%) 72 75 67 87
peripheral atrophy (%) 82 87 75 85
other lesions (%) 6 8 5 0
Expert raters (N ):
pool number 3 3 6 13
per scan 3 3 3 3

CT images used from ICL were derived from two types of CT scanners (GE, Siemens); comprised

a range of slice thicknesses (voxel resolutions: about 0.4 × 0.4 × [1 − 7] mm), that in 70% of cases

differed between the top- and bottom-halves of the brain (i.e. two image files per patient); and in the

remainder were uniform volumetric images. The IST-3 cohort CT images comprised an even more

heterogeneous set (details provided in original report [115]). The study was ethically approved by the

ICL Joint Research Compliance Office.
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3.2.2 Expert Drawings and Ratings

Experts are neuroradiologists or stroke physicians with more than 5 years of regular stroke experience.

Those who performed testing drawings or ratings of WML are different to those who contributed to

model training. Experts were trained in WML rating scores and/or digital lesion drawings prior to

their assessments. Digital drawings (see Column 3 in Figure 3.4) were performed using the MRI-

Cron software1. FLAIR-MR images were also annotated for WML, after first being aligned with each

patient’s contemporaneous CT [116], so as to minimise CT/MRI differences in WML appearances

caused by variations in slice orientation. CT WML ratings used either the Wahlund [22] or van Swi-

eten [23] scoring systems, reflecting 4 or 3 grades of WML severity, respectively. For the Wahlund

system, experts recorded the median WML score across frontal, parieto-occipital and temporal re-

gions [22]. For the van Swieten system, anterior and posterior scores [23] (3 grades each) were

averaged and rounded. CT drawings and ratings were performed by 3 experts for each case, drawn

from a pool of 3–13 for each experiment, allowing a consensus to be deduced for WML volume and

rating score (mean and median respectively). Comparisons between each combination of rater pairs

was performed to identify any experts who differed significantly (p < 0.05) in their performance.

3.2.3 Automated SVD Quantification

Overview: We propose to segment cerebral WMLs, which is leukoaraiosis including areas with

lacunar infarcts [103], on CT images using RF [44]. Specifically, 2D image patches across multiple

scales are extracted from CT images, WMLs on which have been manually annotated. The patch

extraction is guided by a prior mask defining the ROIs of WMLs. An RF model is then trained based

on the patches, classifying if the central pixel in the patch represents a WML.

Training Data: There are 90 representative CT slices, which are used for model development. These

slices are selected from 50 subjects showing moderate or severe WMLs. The subjects involved are

patients suffering from acute ischemic stroke (less than 4.5 hours from symptom onset). The scans

used in training is from a separate stroke centre (Northwick Park Hospital).

1www.mccauslandcenter.sc.edu/crnl/mricron/
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The 90 slices are randomly splitted into training and validation sets, which consist of 70 and 20 slices,

respectively. Training and validation slices are from separate subjects.

Patch Extraction: Patches are extracted under guidance of a mask, which defines the ROIs of WMLs.

This mask is achieved by Chen et al. [117]. More precisely, 277 FLAIR images with moderate or

severe WMLs are collected and the lesions are annotated by experts. These FLAIR images are then

registered to a common space, along with annotated lesions. As a result, an average lesion mask

is obtained showing approximate probability of lesion occurrence at each voxel. Given any unseen

CT image, a template in the common space can be registered to its native space. The transformation

information is applicable to the lesion mask. Therefore, a lesion mask in the native space is obtained.

Thresholding the lesion mask in native space creates the corresponding binary lesion mask. Extracting

patches within the binary lesion mask has two major advantages: 1) other types of lesions outside of

the ROIs can be excluded naturally; and 2) applying this algorithm is much faster.

Within the lesion mask in a native space, patches across multiple scales are extracted, which is shown

in Figure 3.2. This follows the intuition that image features aggregating from multiple scales improve

the performance of models [9]. In terms of implementation, original CT images are blurred using

multiple Gaussian kernels, which results in images at multiple scales. As such, patches extracted at

the same position from images at multiple scales represent local features across multiple scales. In

this work, we set the patch size as 15× 15 pixels.

The image blurring has another advantage in this case. Since CT images tend to have low signal-to-

noise ratio, blurring removes some noise. Particularly, if the noise is so heavy that brain structures

are damaged, denoising could highlight the brain structures, which makes the image features more

robust. Figure 3.3 shows such an example.

WML Segmentation: We propose the intensities of pixels in the multi-scale patches as features.

These features are then used to train a standard RF model. There are k decision trees build in a RF.

In this study, we set k = 100 according to the model performance on the validation set. The output of

the trained forest is the approximate probability of lesion occurrence at the central pixel of the patch.

Applying the trained RF model to each pixel within the mask generates the approximate probability
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Figure 3.2: At each pixel of CT images, surrounding patches at multiple scales are extracted. Com-
bining these patches results in the input to the following classifier.

Figure 3.3: An example of CT image with heavy noise. Blurred by Gaussian multiple kernels, the
image has higher signal-to-noise ratios. σ is the variance of the Gaussian filter.

map showing potential WMLs. Thresholding this probability map results in a binary WML map. The

threshold of 0.2 is achieved based on the validation image set. Counting voxels in the binary lesion

map and multiplying the voxel size result in the volume of WMLs.

Ordinal Rating Score Inference:

For comparison with ordinal rating scores, automated WML volumes are thresholded into ranks

equivalent in number to the score systems [22, 23] used by experts (4 or 3). The thresholds are

derived from the k-means clustering of estimated volumes.
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3.2.4 Evaluation Methods

Drawings of WML on CT and MRI are compared for spatial similarity with automated segmentations

using the patch-based evaluation of imaging similarity (PEIS) [118,119], which is a metric similar to

but more robust than the Dice score; and tested for group differences with the rank-sum test.

From expert drawings of cerebral WML on CT or MRI, total lesion volume is calculated, and corre-

lated with automated WML volume, using Spearmans correlation. Comparisons of Spearman corre-

lation coefficients are performed using an appropriate Fisher Z-Transformation [120].

Agreements between automated ratings versus expert ratings are assessed with linear weighted-kappa

scores (κw), while comparisons between agreements are tested with validated bootstrap methods

[121].

3.3 Results

3.3.1 Image Pre-processing

Image pre-processing consists of joining two halves of brain scans where applicable and registration

from the template space to each native space. Image pre-processing failures occurred in 39 out of

882 hospital-derived CT images, and 4 out of 200 IST-3-derived CT images (3.98% total failure rate).

Inspection of these cases identifies poor image quality, due to inappropriate intensity windowing, in-

complete brain coverage, extensive movement, beam-hardening artefact, or extreme head tilt. Images

in poor quality, which failed in pre-precessing, account for 42% of all failed cases (18 out of 43).

Pre-processing takes 77.3 seconds in average (std of 25 seconds).

3.3.2 Lesion Segmentation

The median spatial similarity (PEIS) between automated WML delineations and expert MRI-WML

drawings is 0.53 (IQR: 0.48–0.57) while the median PEIS between expert CT-WML and MRI-WML
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drawings is 0.54 (IQR: 0.49–0.58). Strength of correlation between automated CT segmentations

and expert drawings (CT or MRI) are not significantly influenced by age, sex, or co-existence of the

following commonly-associated CT features: acute ischemic change, old infarct, central or peripheral

atrophy, or other lesion. Therefore, the automated WML segmentations and expert CT-WML is not

significantly different.

Figure 3.4 shows some visual examples of the WML segmentation, where the FLAIR-MR images are

co-registered as reference. The last example in the figure has co-existing old territorial infarct and it

is properly avoided by the automated algorithm.

Expert drawings take a median of 7.9 minutes per scan (range: 6.9–9.4), whereas automated method

takes a median of 32 seconds (95% confidence interval (CI): 31–33 seconds) per scan. Correlation

coefficients between rater pairs (CT-CT or CT-MRI) are not significantly different from one another.

3.3.3 Lesion Volume Estimation

Results displayed on Table 3.2 suggest that WML volumes estimated using automated method cor-

relate closely with those derived from expert CT-drawings. The volume correlation between the

automated estimation and censensus-Expert CT lesion volume is fairly strong (r2 = 0.71) based on

the 120 subjects involved in this test. It is tested that the expert CT-volumes are statistically different

(∆r: Z = 3.1, p < 0.01). Correlation between expert CT-volumes themselves is higher (r2 = 0.85).

However, vertical lines in Figure 3.5(a) are long, which means that the range of expert CT-volumes

per scan is wide. More precisely, the median expert estimate is 91% of mean estimate and the IQR is

55%–148%.

When we compare automated WML volumes with expert drawings of co-registered FLAIR-MRI,

the correlation is stronger (r2 = 0.85) and it is statistically significant (∆r: Z = 3.8; p < 0.001).

The correlation between expert-CT versus expert-MRI WML volumes is also strong (r2 = 0.82).

The WML volumes of expert CT and MRI drawings are not from the same distribution. Therefore,

automated WML volumes is comparable to expert-CT estimates in this sense. In addition, according

to Figure 3.5(b), automated volumes of WML are more conservative than experts. Specifically, the
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Figure 3.4: Examples of CT-WML delineations by automated method and Expert drawings (three col-
ors represent specific experts annotations). The final column shows WML on co-registered FLAIRs,
that are also delineated by experts (not shown here) and provided the ground truth.

automated WML volumes are lower than the lowest of three expert estimates in 43% (p < 0.001)

cases and take 61% the value of mean expert CT-volumes (IQR: 40%–112%).

3.3.4 Ordinal Rating

Table 3.3 displays the agreements between automated ratings (i.e. thresholded WML-volume es-

timates) and individual experts ratings. In the Wahlund scoring system [22], agreement between
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Table 3.2: Correlations between expert drawing and automated volumes. Range here refers to auto-
mated volumes vs individual expert drawing volumes. All correlations are significant at p < 0.001.

Study Correlation of lesion volume between: r2 Range

CT only
automated volumes versus consensus-Expert CT lesion vol-
umes (mean of 3)

0.710 0.645–0.713

Expert CT drawings between themselves (×3) 0.845 0.813–0.867

CT-MRI
pairs

automated volumes versus consensus-Expert MR lesion vol-
umes (mean of 2)

0.850 0.823–0.833

Expert CT drawings with Expert MRI drawings 0.819 0.767–0.856
Expert MR drawings between each other (×2) 0.937 –

automated ratings and individual experts ratings is moderate (κw= 0.529). The ratings of experts are

tested that they are not from the same distribution. Agreement between expert pairs is also moder-

ate (κw= 0.506). In addition, agreement between automated ratings and expert consensus ratings is

higher (κw= 0.599, ∆κwp < 0.001), which is also shown in Figure 3.6(a). Correlations of automated

WML volume with expert ratings is also greater using consensus (r2 = 0.582), than individual expert

ratings (r2 = 0.506, ∆r: Z = 2.05, p < 0.05). Therefore, the automated ratings are comparable to

experts ratings in the Wahlund scoring system.

Using the alternative van Swieten grading system [23], inter-expert agreements are higher (κw=

0.665) than using the Wahlund system (∆κwp < 0.01), and also higher than the agreement between

automated method and individual experts (κw= 0.571; ∆κwp < 0.05). This because the van Swieten

system has three grades, which is one less than the Wahlund system so there are less disagreement

between experts. However, inter-expert agreement is not significantly different to the agreement

between automated method and expert consensus. Correlations between automated WML volume

and expert consensus van Swieten ratings (r2 = 0.629) do not differ to that between automated

and expert-consensus Wahlund ratings, and individual-expert van Swieten ratings. Therefore, the

automated ratings are also comparable to experts’ ratings in the van Swieten scoring system.

There are no clear boundaries, which can separate WML into different severity groups quantitatively.

It is acceptable that the ratings by experts or other methods differ within 1 point. The proportion of

cases in which automated rating is > 1 point different from expert consensus (i.e. strong disagree-

ment) is 0.046, and 0.02, for Wahlund and van Swieten rating systems, respectively. Figure 3.6 shows
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Figure 3.5: (a) Correlations of automated WML volumes with Expert drawings on CT. Each of three
experts is indicated by a “×”, with a connected line showing range of expert values. (b) Correlations
of gold-standard WML volumes (expert drawings on FLAIR-MRI) with automated volumes (blue
squares), and expert drawings on CT (each of 3 experts marked by “×”; range shown by vertical
line). Dashed line of equality shown in each case, indicating that estimated WML volumes for any
one patient tend be in order: automated WML < expert CT-WML < expert MRI-WML.

these outliers.

Inter-rater agreements between any particular expert pairs, using either rating system, do not differ

significantly from one another. Time charts of raters (for Wahlund ratings) suggest that 30 scans took



46 Chapter 3. Quantification of Cerebral Leukoaraiosis on CT

Figure 3.6: Agreement plots of expert-expert and automated-expert consensus for two CT-WML
scoring systems. Automated score based upon thresholding of automated WML volumes.

about 45–60 minutes to rate, i.e. about 1.5 to 2 minutes each in total. The human rating process

includes image-file selection, contrast adjustment, and judgements of three cerebral locations.

3.4 Discussion and Conclusion

We propose a novel framework, enabling accurate, fully-automated, and rapid quantification of cere-

bral leukoaraiosis (WML) on CT, in a large, multi-centre dataset. The automated method performs

similarly to expert CT WML delineations in terms of lesion volume and spatial similarity, relative to

a gold-standard of expert delineations of WM hyperintensities on co-registered T2-FLAIR [28]. Ad-

ditionally, by converting automated WML volumes into ratings, agreements with experts’ CT-WML

visual ratings are similar to those comparing agreements between expert pairs themselves. In the
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Table 3.3: Agreements and correlations between expert and automated scores or volumes.

Study Agreement (κw) of SVD score ratings between:- κw Range

Wahlund
Score (0-3)

Experts amongst themselves (×6) [see Figure 3.6(a)] 0.506 0.473–0.552
Auto versus Experts (individuals) 0.529 0.465–0.579
Auto versus Expert (consensus) [see Figure 3.6(b)] 0.599 0.586–0.611
Correlation of Expert SVD score rating and Auto volume r2 Range
Expert individuals 0.506 0.462–0.549
Expert consensus 0.582 –

van
Swieten
Score (0-4)

Agreement (κw) of SVD score ratings between:- κw Range
Experts amongst themselves (×3) [see Figure 3.6(c)] 0.665 0.648–0.674
Auto versus Experts (individuals) 0.571 0.534–0.597
Auto versus Expert (consensus) [see Figure 3.6(d)] 0.636 0.517–0.747
Correlation of Expert SVD score rating and Auto volume r2 Range
Expert individuals 0.571 0.522–0.614
Expert consensus 0.629 –

largest cohort, agreement is greater for comparisons of automated versus expert consensus ratings,

than versus individual expert ratings (or agreements between expert individuals themselves), which

supports automated method, given that consensus opinions generally lie closer to the truth [122]. Im-

ages comprise a range of image resolutions, scanner qualities, and hospital origins, and are derived

from centres separate to that which contributed training images, indicating the technique’s robust-

ness. Furthermore, accuracy of automated WML estimation is not hindered by common, co-existing

hypoattenuating lesions e.g. acute or chronic ischemia, or atrophy.

At the same time, our study confirm previous findings that standard visual inspection methods for CT-

WML estimation result in relatively modest interrater agreement: with kappa values of 0.5–0.6 being

typical for common rating systems [22,23,112,113]. This is also shown by the finding that expert CT

delineations resulted in a wide range of estimated WML-volumes, even though they correlate strongly

with each other (r2 = 0.85). By contrast, the automated method always results in the same estimate of

WML volume, once model parameters have been set. Importantly, the parameters of the model tested

here do not alter, and are based upon an independent training dataset. Thus the automated method

allows for a reduction in variable noise compared to existing WML scoring techniques, potentially

enabling more reliable diagnostic and prognostic models to be developed.

A further asset of the automated method is that processing time averaged 109s including image pre-
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processing, with the range being less than 3 minutes, which is similar to experts performing visual

ratings. Considering that images originated from a number of centres, and CT scanners, this per-

formance metric suggests that the automated method could be used widely in emergency rooms for

rapid estimation of background WML from CT. The technique’s option of superimposing machine-

identified WML (Figure 3.4) can provide extra physician reassurance regarding the algorithm’s out-

put, and assist imaging interpretation by clinicians who are not so experienced in this.

Notwithstanding the automated method’s advantages, we also draw attention to its limitations. CT

images can not be processed in approximately 4% of cases, that are only partially accountable by poor

image-quality issues. Additionally, among images that are processed, significant errors are made (> 1

point from consensus rating) in approximately 4%. Although small discrepancies with consensus

are made in approximately 30% of cases, it is important to note that expert ratings are based upon

judging categorical features (e.g. focal versus confluent lesions; extension to cortex or not) that are

not directly proportional to lesion volume. Hence a better judge of automated method’s accuracy is

measuring discrepancy of automated estimates from volumes of expert drawings. In this regard, while

automated-versus-expert drawing correlations are strong, there is also a consistent underestimation of

automated WML volume relative to expert volumes (Figure 3.5). Threshold on the lesion probability

map has a significant impact on the final binary lesion maps. According to the validation set, the

optimal threshold was set as 0.2. However, we drew the ROC curve (Figure 3.7) based on the testing

set with expert annotations on CT images and found a smaller threshold (i.e. 0.1) can result in better

estimation. To this end, the threshold could be set as 0.1 in the future. Alternatively, drawings on MRI

can be mapped to CT and used for model development. Furthermore, the fact that automated WML

segmentations spatial similarity to MRI-WML is not significantly different to experts CT annotations,

despite the former being smaller, indicates that the additional areas annotated by experts are not as

accurate as the core areas identified by both automated method and expert.

The main reason for quantifying WML on CT, rather than MRI, is practicality. CT is the principle

neuroimaging modality for emergencies such as acute stroke [104], and head trauma; and is often

the sole imaging technique for investigation of dementia [109–111]. CT-analytic approaches have

been developed recently to try to delineate chronic [123], and acute ischemia [124], as well as to

predict hemorrhagic transformation after ischemic stroke [125]. One promising application for WML
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Figure 3.7: The ROC curve of the proposed model performance based on the testing CT image set
with expert drawings. It shows that the optimal threshold is 0.1.

quantification is treatment-selection for acute ischemic stroke, given that cerebral WML load predicts

poor functional outcome [39, 105] and ICH transformation [107, 108]. Currently this CT imaging

predictor and others, e.g. acute ischemia extent, have not been found to interact with thrombolysis

(or thrombectomy) treatment in their association with ICH so they are not recommended for hyper-

acute treatment stratification [39, 126]. Since automated CT feature extraction, as presented here for

WML, offers a reduction in variable noise relative to expert ratings, it would be interesting to explore

whether such methods can identify treatment-specific ICH or functional outcomes. A related appli-

cation would be to see if CT WML quantification could be used to predict anticoagulant-associated

ICH [127] or hematoma growth and early deterioration after primary ICH [128]. More generally,

WML quantification may be important in diagnosing, grading and monitoring vascular dementia (and

possibly other types of dementia); and for prognosis after head injury [106].

In summary, automated CT-WML quantification enables reliable parameterization of a common

biomarker of cerebral SVD. Clinical decision-making or research, in which WMLs are relevant, and

where CT is the predominant imaging modality, may benefit from the method more than existing

observer-dependent visual ratings.



Chapter 4

DRINet for Medical Image Segmentation

The work in this chapter is based on:

• L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, and D. Rueckert, “DRINet for medical

image segmentation,” IEEE Transactions on Medical Imaging, 2018.

4.1 Introduction

Chapter 3 shows an example of medical image segmentation. Significant progress has been achieved

in the field of medical image analysis in recent years due to the advent of CNNs [129]. Among

the different approaches that use CNNs for medical image segmentation, the U-Net architecture [6]

and its 3D extension [68] are widely used because of their flexible architectures. In the first part of

the U-Net architecture (analysis path), deep features are learned while the second part of the U-Net

architecture (synthesis path) performs segmentation based on these learned features. Training the two

parts of the network in an end-to-end fashion yields good segmentation results. As the number of

features in the first part of network is reduced because of convolutions and poolings, skip connections

are used to allow dense feature maps from the analysis path to propagate to the corresponding layers

in the synthesis part of the network, which improves the performance significantly.

50
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However, the limitation of the U-Net architecture is its scalability. Specifically, deeper networks learn

more representative features and result in better performance. The most straightforward way to make

the U-Net architecture deeper is to add more layers. Adding more layers to the network enlarges the

parameter space, which allows the network to learn more representative features. However, this also

increases the difficulties in training the network because gradients are likely to vanish during training.

Therefore, the challenge is to make the network wider and deeper without gradient vanishing.

In computer vision, the state-of-the-art CNN architectures (until 2017) include the densely connected

convolutional network (DenseNet) [11, 130] and the Inception-ResNet [15]. The DenseNet approach

consists of a number of dense blocks with pooling layers between them to reduce the size of the feature

maps. Within each dense block, layers are directly connected with all of their preceding layers, which

is implemented via concatenation of feature maps in subsequent layers. This dense architecture has

a number of advantages: Firstly, the concatenation of feature maps enables deep supervision so that

gradients are propagated more easily to preceding layers, which makes the network training easier.

Secondly, bottleneck layers (convolution layers with 1-by-1 kernels) are used to control the growth

rate of parameters in the network. Finally, in the DenseNet architecture the final classifying layer uses

features from all layers (instead of only features from the last layer as in standard CNN approaches),

leading to improved classification performance.

The Inception [9] is a CNN architecture which uses the Inception modules and allows for very deep

networks. The main purpose of the Inception modules are: 1) to increase the depth and width of

networks without adding more parameters; and 2) to achieve multi-scale features for processing. This

is achieved by carefully designing structures of the Inception modules. The latest version of the

Inception architecture [15] also uses residual connections, i.e. Inception-ResNet. Figure 4.1 shows

an overview of the Inception-ResNet: a stem convolution block, stacks of Inception and reduction

blocks, and the classifier. The stem block consists of a number of standard convolution and pooling

layers, reducing the size of feature maps in lower layers (the ones close to the input). This aims to be

memory efficient in training but it is not strictly necessary. Each Inception block consists of a number

of Inception modules. The Reduction blocks are Inception modules with dimension reduction. An

Inception module consists of a number of branches of convolution layers. In each branch, a bottleneck

layer reduces the number of feature maps. The feature maps are then processed by convolution layers
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Figure 4.1: The overall schema of the Inception-ResNet [15]. The whole architecture consists of some
Inception and Reduction blocks. Each block contains a number of modules. The detailed structures
in different blocks vary slightly.

with different sizes of kernels in different branches. The outputs of all branches are finally aggregated

as the output of the Inception module.

Inspired by the DenseNet and the Inception-ResNet, we propose an architecture consisting of dense

connection blocks, residual Inception blocks, and unpooling blocks. We term this architecture Dense-

Res-Inception Net (DRINet). We apply the proposed DRINet architecture for three challenging clin-

ical segmentation problems, namely multi-class segmentation of brain CSF in CT images, abdominal

multi-organ segmentation in CT images, and brain tumour segmentation (BraTS) in multi-modal MR

images. They are based on clinical datasets and particularly the last problem is based on a publicly

benchmark dataset. Our main contributions are: 1) a novel combination of the dense connections

with the Inception structure to address segmentation problems. The use of dense connection blocks,

residual Inception blocks, and the unpooling blocks achieves high performance while maintaining

computational efficiency; 2) easy and flexible implementation of the proposed network architecture;

3) state-of-the-art segmentation performance for challenging image segmentation tasks.
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4.2 Related Work

The basic CNN architecture for many semantic segmentation problems is the FCN, shown in Figure

4.2(a), which consists of cascaded convolution, pooling, and deconvolution layers. The convolution

and pooling layers form the analysis path while the convolution and deconvolution layers form the

synthesis path. The analysis path and the synthesis path are usually symmetric.

The U-Net (Figure 4.2(b)) is the FCN with skip layers between layers in analysis path and synthesis

path. The skip layers are implemented via concatenations and they allow deep supervision for the

network. Therefore, the skip layers improve the network performance. In addition, residual connec-

tions can be used in the U-Net, which results in the Res-U-Net (Figure 4.2(3)). In the Res-U-Net,

the residual learning is implemented using the bottleneck building blocks with residual connections,

which were used in the ResNet-50/101/152 architectures [10].

The DeepLab approach [14] involved atrous convolutions and poolings within the CNN architecture

to solve segmentation problems, as well as CRF models for post processing. Based on the DeepLab

architecture, Chen et al. [66] proposed the latest DeepLabV3 architecture. In DeepLabV3, a simple

synthesis path is used. This synthesis path only consists of very few convolution layers, which is

different from the synthesis path used in the FCN and the U-Net architectures. Skip connections are

used to connect the analysis path and the synthesis path.

Finally, the DenseNet was extended in a fully convolutional fashion so that it fits segmentation

tasks [70]. Specifically, an upsampling transition module was proposed in correspondence to the

downsampling transition module in the original DenseNet. In addition, the macro architecture of the

fully convolutional DenseNet is similar to the U-Net where skip connections are used.

The pyramid scene parsing network (PSPNet) [131] was proposed to solve the challenging scene

parsing problem. In the scene parsing problem, prior knowledge could be incorporated in CNNs to

improve performance. For example, cars are likely to be on the road while they should not be in

the sky. Global context is required to incorporate these priors. The pyramid pooling module in the

PSPNet investigate features in multiple levels, achieving the state-of-the-art performance.
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4.3 DRINet

4.3.1 Overview

Figure 4.2(d) demonstrates our proposed DRINet architecture. Similar to the FCN, the DRINet has an

analysis path and a synthesis path. Stacks of dense connection blocks, instead of standard convolution

layers make up the analysis path, which is inspired by the DenseNet. The synthesis path consists of

residual Inception blocks and unpooling blocks, which are inspired by the Res-Inception Net. To be

more efficient in terms of memory, the DRINet has no skip connections. In this work, we show the

DRINet architecture in 2D but it is straightforward to extend it to 3D.

4.3.2 Dense Connection Block

We employ convolutional dense connection blocks [11] in the analysis path, which are shown in

Figure 4.3. Formally, let us assume xl is the output of the lth layer and f(·) is a convolution function

followed by BN [132] and ReLU. In the standard convolution layer, we have:

xl+1 = f(xl) (4.1)

while in the dense connection block [11] we have

xl+1 = f(xl) ◦ xl. (4.2)

Here ◦ indicates concatenation.

The number of output channels from standard convolution layers are usually fixed and typically 64

or 128. As a result, it is expensive in terms of memory to concatenate the outputs of preceding

convolution layers. In addition, the concatenation also leads to many redundant features. Therefore,

Huang et al. [11] propose to heavily reduce the output size via 1×1 convolutions. As shown in Figure

4.3, within a dense connection block, the size of the output channel for each convolution layer ki is

typically small, e.g. 12 or 24 and this is commonly referred to as the growth rate of the network.
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Figure 4.3: A dense connection block contains m convolution layers. The output channel number
of each convolution layer ki is the growth rate. The numbers (e.g. c0 + k1) above rectangles are the
resulted number of channels in each layer. BN and ReLU apply on every convolution layer. The input
and output of a convolution layer is concatenated so deep supervision is allowed.

Using dense connection blocks in the analysis path leads to three major advantages: 1) Gradient prop-

agation through the network is more efficient. Conventionally, it is difficult to ensure that gradients

backpropagate to lower layers in the network. Therefore, it is important to use dense connection

blocks to alleviate the effect of vanishing gradients. 2) The input to the synthesis path consists of

feature maps output from all preceding layers, instead of only the last layer. These feature maps lead

to better segmentation results. 3) It is easy to use the growth rate to control the parameter space,

resulting in good network performance.

4.3.3 Residual Inception Block

Figure 4.4: A residual Inception block is an Inception module with residual connections. An Inception
module is a weighted combination of features maps from a few branches. Each branch process the
input feature maps using deconvolutions with different kernel sizes.

In the synthesis path of the DRINet, we propose to use the residual Inception blocks, which is depicted
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in Figure 4.4. Similar to the original Inception modules [9], the idea is to aggregate feature maps from

different branches, where the input feature maps are convolved using kernels in different sizes. The

residual connections make the learning easier since a residual inception block learns a function with

reference to the input feature maps, instead of learning an unreferenced function.

In terms of the kernel sizes in convolutions, it is difficult to determine the optimal size for each con-

volution. In the FCN and the U-Net, the kernel size of convolutions is fixed as 3× 3. In the inception

module, convolutions of different kernel sizes are used in parallel. The weights can be learned in

each inception module. In implementation, the feature maps are combined using concatenation and

a deconvolution layer with 1 × 1 kernel learns the combination weights. The deconvolutions in the

proposed Inception modules work the same as the convolutions. The purpose of this is to differentiate

with convolutions in the analysis path in symbols.

Unlike the Inception Res-Net [15] having various Inception modules, we propose to use identical

Inception blocks in the DRINet, which is easy to implement. We propose to aggregate feature maps

convolved by three kernels, namely 1 × 1, 3 × 3, and 5 × 5. Inspired by the DeepLab [24], the

deconvolution with a 5× 5 kernel is replaced by a dilated deconvolution with a 3× 3 kernel, which is

more efficient in memory. To further limit the parameter space, a bottleneck deconvolution is used in

each branch.

Formally, let g(·) denotes a deconvolution function followed by BN and ReLU and gb(·) and gd(·)

represent bottleneck and dilated deconvolution respectively. As a result we obtain

xl+1 = gb(gb(xl) ◦ g(gb(xl)) ◦ gd(gb(xl))) + xl. (4.3)

4.3.4 Unpooling Block

We propose an unpooling block shown in Figure 4.5 to upsample the feature maps in the synthesis

path. The unpooling block can be viewed as a mini Inception module, which combines upsampled

feature maps from two branches. In each branch, the input feature maps are convolved using kernels

in different sizes, namely 1 × 1 and 5 × 5. The resulting feature maps are then upsampled using
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Figure 4.5: An unpooling block is a mini Inception module and it upsamples the input feature maps.

a deconvolution layer with stride 2. Again, the deconvolution with a 5 × 5 kernel is replaced by a

dilated deconvolution with a 3 × 3 kernel in order to ensure memory efficiency. Also, to limit the

parameter space, the input feature maps are firstly convolved by a bottleneck layer in each branch,

which is similar to it in the residual Inception block. The combination of upsampled feature maps is

achieved via concatenation. Formally, let g2(·) denotes the deconvolution function with stride 2. The

upsampled feature maps are therefore:

xl+1 = g2(gb(xl)) ◦ g2(gd(gb(xl))). (4.4)

The major advantage of the proposed unpooling block is the aggregation of different upsampled fea-

ture maps. Specifically, simply upsampling the input feature maps using a deconvolution layer is

likely to produce errors. For instance, a small error in the input feature maps is likely to be enlarged,

which finally results in errors in the segmentation results. In contrast, convolving the input feature

maps with different kernels leads to different intermediate feature maps. Upsampling these feature

maps separately and combining them together reduce the effect of errors. This is the idea of ensemble.

4.3.5 Evaluation Metrics

In multi-class segmentation on brain CSF and abdominal organs, we use the well-known Dice co-

efficient as well as sensitivity (SE) and precision (PR) for evaluation. In evaluation in the BraTS

challenge, we use the same metrics used in the challenge, namely the Dice coefficient, the SE, the

specificity (SP), and the Hausdorff95 distance. The Hausdorff95 distance is a robust version of the
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standard Hausdorff distance, which measures 95 quantile of the distance between two surfaces, in-

stead of the maximum.

4.3.6 Implementation Details

In this work, we use cross-entropy as the loss function for all networks. We use the Adam method

[133] for optimization with the following parameters: β1 = 0.9, β2 = 0.999, ε = 1e − 8. An initial

learning rate of 1e−3 is utilized. The weights are all initialised from a truncated normal distribution of

standard deviation of 0.01. BN [132] layers are employed in all convolution and deconvolution layers

except the last convolution/deconvolution layer. There are three convolution layers in each dense

connection block and the kernel size is 3×3 with stride 1. There are three residual Inception modules

in each residual Inception block. For the standard deconvolution layers in the residual Inception

module, the kernel size is 3× 3 and the stride is 1. All networks used in this chapter are implemented

on the Tensorflow1 platform.

4.4 Experiments and Results

4.4.1 CSF Segmentation in CT Images

Overview: Assessment of CSF volume, within ventricles and cortical sulci, is important for numer-

ous neurological and neurosurgical applications. In many applications where rapid assessment is

required (e.g. stroke), CT is preferred over MRI [134]. A common condition requiring the quantifica-

tion of CSF is hydrocephalus (ventricular enlargement), a potentially life-threatening, but reversible

condition; caused by a wide range of pathologies including hemorrhage, edema or tumours [135]. In

these cases, CSF space quantification, especially comparison of ventricular to sulcal compartments,

is important for distinguishing hydrocephalus from atrophy (due to age-related ischemia or degenera-

tion) [38]. Standard quantification methods rely upon simple measurement of ventricular spans [136].

1https://www.tensorflow.org/
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However, given the complex ventricular shape, these are imprecise, vary between observers and do

not allow for accurate estimation of sulcal CSF [137].

The challenges for multi-class CSF segmentation in CT are three-fold: 1) clinical CT images are often

acquired as stacks of 2D image slices with large slice thickness. Thus, each slice is usually separately

analyzed, however the position of the patient’s head is usually highly variable. Therefore, the CSF on

each 2D image slice can vary significantly in terms of its configuration and shape; 2) patients often

have background disease (e.g. old infarcts) which can have similar intensities to the CSF. It is not

easy to distinguish between them as they are likely to mix together; 3) at the borders of different

categories of CSF, segmentation errors often occur. Many existing methods [138–146] are not robust

to these problems. To the best of our knowledge, this is the first attempt to solve the multi-class CSF

segmentation problem in CT images.

Dataset: CT scans from 133 stroke patients were collected from two local hospitals. All clinical CT

scans were collected retrospectively from local PACS databases and anonymized before performing

research. Ethical approval was obtained from the ICL Joint Research Office. The scans were acquired

on three types of CT scanners (GE, Siemens, and Toshiba). The thicknesses of image slices range

from 1mm to 7mm and the voxel spacing in plane is approximately 0.4 × 0.4mm. The image size is

512× 512. Table 4.1 displays the demographic information of the patients.

The training and validation datasets consist of 781 2D image slices randomly chosen from 101 sub-

jects. 500 of these images were used for training and 281 for validation. There is no patient overlap

between training and validation images. A separate test set containing 32 subjects was used. The

training, validation, and testing datasets were manually annotated by a human expert. The CSF was

segmented into three categories: 1) CSF in the ventricles, 2) CSF in the cerebral cortical sulci, fis-

sures, arachnoid cysts, and 3) other CSF spaces, namely: basal and brainstem cisterns, cerebellar

sulci, infratentorial arachnoid cysts. For these image slices, a threshold was chosen to obtain a coarse

segmentation on the whole CSF and then the expert edited them using the MRICron software. The

suprasellar cistern was bisected, such that CSF anterior to a line joining the bilateral anterior most

parts of the cerebral peduncles/midbrain was classified within the cerebral compartment (reflecting

atrophy of medial temporal and orbitofrontal cortices, and including Sylvian cisterns); while CSF
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posterior to this line (including interpeduncular, crural and ambient cisterns) was classified within the

third “cisternal” compartment.

Table 4.1: Demographics of patients in the CSF segmentation experiment.

Age (years)
mean±std 71± 14
range 28–94

Gender male % 52.63

National Institutes of Health stroke score (NIHSS)
mean±std 10± 6.03
range 1–27

Preprocessing and augmentation: In this work, we do not perform resampling on the CT images.

This is because the thickness of the clinical CT images is large (up to 7mm) and resampling the images

can introduce inaccuracies and interpolation artefacts. In terms of the image intensity normalization,

we employed the similar strategy as described in [24]. We normalized CT images on a per slice basis.

This means for each slice, background (i.e. air, bone) was excluded and the remaining intensities (i.e.

the HU) were normalized to zero mean and unit deviation. Since we have limited number of image

slices for training and one slice is too large for the CNNs, we randomly cropped 128 × 128 patches

from the slice to construct the training set. In this way, the training set contains sufficient number of

patches. As our CNNs are fully convolutional, in the testing stage, the input can be the entire image

slice.

Baseline: We use the FCN, the U-Net, and the Res-U-Net as baselines. The baseline networks are

compared to the DRINet with various growth rates. The results are displayed in Table 4.2.

The FCN and the U-Net perform similarly well in terms of Dice. The results suggest that segmenting

the CSF in ventricles is relatively easy while segmenting CSF around brainstem is challenging. As

depicted in Figure 4.6, the CSF around brainstem is likely to be misclassified. In addition, the skip

connections in the U-Net do not improve the segmentation results in this case.

Changing the U-Net architecture into the Res-U-Net architecture makes the network deeper and re-

duces the number of training parameters. According to [10], this change should only marginally

influence on the results. However, the Dice score of the CSF around brainstem decreases under the

Res-U-Net architecture. This result indicates that reducing parameters is problematic although the
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network uses the residual connections.

The growth rate is the key hyper-parameter in the DRINet because it controls the network parame-

ter space and performance. Changing the growth rate allows to compare the performance between

baseline networks and the DRINets with a similar number of parameters. Table 4.2 shows the results

evaluating the effects of growth rate. The DRINet with a growth rate of 12 has a similar number of

parameters as the Res-U-Net. This DRINet segments the CSF around brainstem significantly better

than the Res-U-Net. The DRINet with a growth rate 24 is comparable to the FCN and the U-Net in

terms of the size of parameter space. It performs better than the FCN and the U-Net in terms of the

CSF in ventricles and around brainstem. If the growth rate increases to 48, the DRINet performs best

in all three parts of the CSF segmentation, as well as the whole CSF segmentation. When the growth

rate becomes very large (e.g. 64), the DRINet is likely to overfit and the performance decreases. In

the following experiments, a growth rate of 48 is used.

Huang et al. [130] noted that a larger growth rate in the higher layers is beneficial for the performance

of network. In our experiments, we evaluate this strategy using growth rates like 12, 24, 36, 48 in

each dense connection block. Comparing DRINets using identical growth rate and increasing growth

rates, which have similar number of parameters, the DRINets using increasing growth rates do not

perform significantly better in any part of CSF segmentations.

Run time: Pre-processing was performed on a desktop PC with an Core i7-3770 processor and

32GB RAM. CNNs were trained and tested on an NVIDIA TITAN XP GPU processor except for the

DRINets with large growth rates (e.g. 48, 64), which were trained on two GPUs to keep the batch

size sufficiently large. On average it took 44.46s for the DRINet to segment the CSF in one image.

The training time of the DRINet with the best performance was 21.37 hours. In contrast, the U-Net is

faster with 11.44 hours for training and 23.56s per image for testing. Although the DRINet is slower,

its run time is acceptable.
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Figure 4.6: The visual examples of multi-class CSF segmentations. The first column displays the orig-
inal images. The second column shows the manual references. The following columns demonstrate
the segmentations of the U-Net, the Res-U-Net, and the DRINet.

4.4.2 Multi-organ Segmentation

Overview: Segmenting abdominal organs is important for clinical diagnosis and surgery planning

[147]. For instance, focal lesions on the liver can be detected with the segmentation results [148]. The
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kidneys’ condition can be measured based on their sizes, which are derived from the segmentations. In

addition, diagnosing the dilated pancreatic ducts or inflamed pancreatic tissues requires the pancreas

segmentation [149]. There are two major challenges in the multi-organ segmentation problem: 1)

these organs have various shapes and sizes; 2) they are mixed together and the borders of organs are

weak.

Abdominal organ segmentation is a popular topic for which many solutions have been proposed.

Many methods were based on statistical shape models [150] or multi-atlas segmentation [150–154].

Using recent deep learning approaches the segmentation accuracy has significantly improved, partic-

ularly for smaller organs (e.g. pancreas). Furthermore, deep learning approaches are much faster than

conventional methods [155–157].

Dataset: 3D abdominal CT scans were used in this experiment to evaluate the performance of the

DRINet. These images were acquired at Nagoya University hospital using a Toshiba Aquilion 64

scanner and obtained under typical clinical protocols. The image resolution is 512 × 512 voxels in

plane and there are between 238 and 1061 slices per patient depending on the field of view and the

slice thickness. The voxel size ranges from 0.55 to 0.82mm and the slice thickness ranges between 0.4

and 0.8mm. All patients were scanned for the purpose of laparoscopic resection of the stomach and

gallbladder glands or colon. Three human experts manually segmented the pancreas, kidneys, liver,

and spleen on all the images, which was based on the interactive region growing. The demographics

of the patients is listed in Table 4.3.

Table 4.3: Patients involved in the multi-organ segmentation experiment.

# subjects
all 150
training 75
testing 75

Age (years)
mean±std 62.80± 12.00
range 26–84

Gender male % 76

Pre-processing and augmentation were carried out in similar manner to those for CSF segmentation.

The only difference is that in the CSF segmentation, the image intensity normalization is performed

per slice while in this multi-organ segmentation task, the image intensity is normalized per volume.
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We used the same the experimental settings and CNN configurations as in the previous experiments,

so no parameters tuning is performed in this experiment. The purpose is to validate the flexibility of

the DRINet so this experiment is still based on 2D and the 128 × 128 image patches were randomly

cropped to develop the training set. Therefore, we only split the whole dataset into a training set (75

subjects) and a separate testing set (75 subjects).

Baseline: Again, the U-Net and the Res-U-Net are used as baselines. Table 4.4 displays the seg-

mentation results. The performance of the U-Net and the Res-U-Net is comparable. The Res-U-Net

provides better PR but worse SE than the U-Net in segmenting the pancreas and kidneys. As men-

tioned above, the pancreas is the most challenging organ to segment because of its thin and various

structure. The strength of the proposed DRINet is demonstrated by the fact that it is able to segment

the challenging organs significantly better than the baseline CNNs approaches.

Comparison with existing methods: We compare the DRINet with existing methods evaluated on

the same dataset. [152] and [153] proposed methods based on conventional machine learning ap-

proaches. According to the results (displayed in Table 4.5) they have achieved fairly good segmenta-

tions in terms of kidneys, liver, and spleen. The method proposed by Tong et al. [153] is much faster

than the one proposed by Wolz et al. [152]. The 3D FCN proposed by Roth et al. [156] is the state-of-

the-art method based on deep CNNs. It is clear that the 3D FCN achieves significantly better results

in the pancreas segmentation. Furthermore the inference time is significantly reduced. However, in

terms of the other organs, namely the kidneys, liver, and spleen, the 3D FCN did not offer significant

improvements.

The DRINet outperforms the 3D FCN achieving the state-of-the-art based on this dataset. Specifically,

it improves the pancreas segmentation further from the 3D FCN. In addition, the DRINet promotes the

segmentation on other organs as well. Note that the DRINet is only based on 2D image slices without

using 3D contextual information. Therefore, this experiments verifies the DRINet is powerful and

robust in the multi-organ segmentation problem.

In addition, we compared the DRINet with the state-of-the-art CNNs, including the Dense V-Net [158]

for abdominal multi-organ segmentation on CT images on other datasets. Although the comparison

is not completely fair, the DRINet results in the best segmentation results.



4.4. Experiments and Results 67

Ta
bl

e
4.

4:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
am

on
g

th
e

U
-N

et
,t

he
R

es
-U

-N
et

an
d

th
e

D
R

IN
et

.T
he

D
R

IN
et

ou
tp

er
fo

rm
ed

th
e

ba
se

lin
e

C
N

N
s,

pa
rt

ic
ul

ar
ly

in
te

rm
s

of
th

e
pa

nc
re

as
.

D
ic

e
(%

)
SE

(%
)

PR
(%

)
Pa

nc
re

as
K

id
ne

ys
L

iv
er

Sp
le

en
Pa

nc
re

as
K

id
ne

ys
L

iv
er

Sp
le

en
Pa

nc
re

as
K

id
ne

ys
L

iv
er

Sp
le

en
U

-N
et

[6
]

80
.0

9
95

.8
0

94
.7

0
94

.7
2

74
.8

9
95

.8
6

92
.7

9
93

.1
3

87
.9

8
95

.8
5

96
.6

5
95

.9
8

R
es

-U
-N

et
79

.0
9

95
.4

1
96

.2
0

94
.7

1
72

.4
1

93
.7

2
96

.1
5

92
.9

2
89

.4
9

97
.2

8
96

.2
6

95
.9

4
D

R
IN

et
83

.4
2

95
.9

6
96

.5
7

95
.6

4
80

.2
9

95
.8

4
96

.6
9

95
.6

3
87

.9
5

96
.2

0
96

.4
7

96
.1

3



68 Chapter 4. DRINet for Medical Image Segmentation

Table 4.5: Performance comparison among different algorithms. It is clear that the DRINet is superior
to the existing methods.

Dice (%)
Time (h)

Pancreas Kidneys Liver Spleen
Wolz et al. [152] 69.60 92.50 94.00 92.00 51
Tong et al. [153] 69.80 93.40 94.90 91.90 0.5
Roth et al. [156] 82.20 – 95.40 92.80 0.07
Gibson et al. [158] 75.00 93.00 95.00 95.00 –
Zhou et al. [159] 62.00 91.00 95.00 92.00 –
Hu et al. [160] – 95.00 96.00 94.00 –
DRINet 83.42 95.96 96.57 95.64 0.02

Figure 4.7: The visual examples of abdominal multi-organ segmentations. The first column dis-
plays the original images. The second column shows the manual references. The following columns
demonstrate the segmentations of the U-Net, the Res-U-Net, and the DRINet.

4.4.3 Brain Tumour Segmentation

Overview: Brain tumours are routinely diagnosed using multi-modal MRI, including native T1-

weighted (T1), post-contrast T1-weighted (T1-Gd), T2-weighted (T2), and T2-FLAIR image se-
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quences [27]. Quantification of the tumours based on the multi-modal MRI benefits the diagnosis

and treatment [161]. Segmenting tumours into necrotic and non-enhancing tumours, the peritumoral

edema, and gadolinium enhancing tumours has been a popular research topic [162].

Dataset: We propose to use the training dataset of the BraTS 2017 challenge. There are 285 subjects

in total and we randomly select 50 ones for training and the remaining 235 ones for testing. Training

on a small number of images is easier to present performance differences between different networks;

otherwise different networks are likely to perform equally well. The segmentation is based on 2D

patches of size of 64 × 64. Since the training patch size is smaller compared to that in the previous

experiments, all CNNs in this experiments have two downsampling and upsampling process and all

the other network configurations are fixed. According to [162], the images have been preprocessed:

images were co-registered into the same anatomical template; skulls were stripped; voxels were re-

sampled to isotropic resolution (1mm3). We normalise the image intensities into zero mean and unit

deviation. No post-processing trick is used in any case. The evaluation is based on the whole tumour

region, the tumour core region, and the enhancing tumour core region, instead of individual tumour

structures.

Results: On this benchmark dataset, we evaluate the three key components of the DRINet: the dense

connection block, the residual Inception block, and the unpooling block. We set the FCN as the

baseline CNN and separately add one of the proposed blocks to verify its contribution. We also

compare their performance with the U-Net and the DRINet.

Table 4.6 shows the results: In terms of the whole tumour structure, the added blocks do not affect the

Dice scores significantly. The dense connection block and the residual Inception block increase the

sensitivity and the Hausdorff distances and decrease the specificity, which means they increase the

number of FPs. In contrast, the unpooling block decreases the sensitivity and Hausdorff distance and

increases the specificity, which means it reduces FPs but introduces FNs. Combining them together

results in a trade-off between FNs and FPs. Therefore, the overall performance increases.

In terms of the tumour core and enhanced core, the three blocks increase the Dice scores and speci-

ficity while decreasing their sensitivity and Hausdorff distances. This means the overall performance

for the segmentation of the tumour core and the enhanced core is improved. However, since their
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sizes are fairly small, some FNs occur.

The DRINet with three powerful blocks achieves better segmentation results than the U-Net in terms

of the dice scores, the sensitivity, and the Hausdorff distances. Regarding the Res-U-Net, since the

parameter space is small, it cannot perform as well as the U-Net in this case. Figure 4.8 shows that the

training error of the Res-U-Net is larger than that of the U-Net and the DRINet. Therefore, the dice

coefficients given by the Res-U-Net on tumours are the worst among all the CNNs. According to the

low sensitivity, the high specificity, and the low Hausdorff distance, it is clear that the segmentation

results by the Res-U-Net have many FNs but few FPs.

Figure 4.8: The training error comparisons among different CNNs.

4.5 Discussion and Conclusion

In this study, a novel CNN architecture, DRINet, is proposed. The DRINet has three key features,

namely the use of dense connection blocks, residual inception blocks, and the unpooling blocks.

These blocks deepen and widen the network significantly and the parameter space can be controlled

via the growth rate. The gradient propagation is improved due to the dense connections and residual

connections. As a result, the performance of the DRINet is significantly improved when compared

to the standard U-Net. In addition, the DRINet architecture is highly flexible: Within a block, the
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convolution/deconvolution layers can be changed adaptively. It is therefore easy to integrate the

blocks into other CNN architectures.

In this work, we focus on evaluating the performance of the proposed DRINet and each of its compo-

nents. The segmentation results of each problem can be improved using some domain knowledge and

post-processing. For instance, in the brain CSF segmentation problem, a brain mask could be added.

In the abdominal organ segmentation task, 3D contextual information could be included. In the BraTS

problem, the CRF model could be used to remove FPs. In both tasks, 3D volumetric convolution can

be used to improve the DRINet performance.

Among the three experiments, the multi-class CSF segmentation on CT images is novel. To the best

of our knowledge, we are the first to attempt on this problem and the proposed DRINet results in

good segmentation. In the future, we plan extend the proposed approach to segment lesions as well

as CSF using a single DRINet. This is useful in clinical settings for prognostication after stroke [39]

or estimating cerebral hemorrhage risk [40, 41].

In the context of abdominal multi-organ segmentation, the DRINet achieves very good results al-

though the segmentation is based on 2D CT image slices. Our results show that the DRINet improves

the segmentation on small and various organs like pancreas as well as big organs like liver. It is of

interest to extend its ability to segment more challenging organs such as arteries and veins, which

could make the DRINet more useful in clinics.

A limitation of the DRINet approach is that the increase of the growth rate results in many more

parameters, which may lead the training more difficult and testing slower. In the future, the research

could focus on simplifying the network structure while maintaining its ability.



Chapter 5

Acute Ischemic Lesion Segmentation on DWI

The work in this chapter is based on:

• L. Chen, P. Bentley, and D. Rueckert, “Fully automatic acute ischemic lesion segmentation in

DWI using convolutional neural networks,” NeuroImage: Clinical, vol. 15, pp. 633–643, 2017.

5.1 Introduction

In stroke imaging, the DWI has advantages in diagnosis of acute ischemic lesion in the early stage.

The detection and quantification of acute lesions in DWI is important for the diagnosis and treatment

of the ischemic stroke. It may allow for accurate estimation of acute lesion volumes. Lesion volume

estimation may be important for hyper-acute therapy decision-making, e.g. in determining the ratio

of reversible hypo-perfusion to irreversible infarct core [163]. Furthermore, acute lesions can be pro-

filed anatomically in terms of volumes of anatomical-functional regions of interest, by superimposing

standard atlas-derived or functional MRI-derived regions [164]. However, manual segmentation of

acute ischemic lesions is expensive in terms of time and human expertise. Several automatic and

semi-automatic methods have been proposed to assist clinicians to address this problem [165–171].

A common limitation of these models is that they were developed on small datasets which only con-

tain tens of subjects. Since the ischemic lesions can occur anywhere in the brain in various shapes and

73
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sizes (see Figure 5.1) [172], a small dataset makes it difficult to cover the large variation in position,

shape, and size. Most of these algorithms are based on multi-modal MRI including T1-weighted,

T2-weighted, FLAIR, DWI, and apparent diffusion coefficient (ADC) [168, 173]. Two of them only

based on DWI are semi-automatic: The first one is an adaptive thresholding algorithm incorporating

a spatial constraint [166]. The fully automatic adaptive thresholding segmentation is likely to fail in

cases where there are small lesions and/or lesions in low contract to the normal tissue. Therefore,

manual editing was introduced to refine the automatic segmentations. The second one is based on

active contours algorithms [167], where before applying the proposed algorithms, image slices with

artefacts are manually removed. In addition, human experts mark bounding boxes around the target

lesions to initialize the algorithm. To the best of our knowledge, Mah et al. [171] proposed the only

fully automated method to segment ischemic damage based on a large DWI dataset. However, their

approach was dependent on a reference set of normal brain images and it was only applied to lesions

in the occipital lobe.

Figure 5.1: Examples of acute ischemic lesions in DWI. The red circles indicate the acute ischemic
lesions and the yellow ones show the artefacts.

In clinical practice, semi-automatic methods are still too costly and fully automatic algorithms are
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preferred. Although multi-modal images provide rich information about lesions, pre-processing such

as resampling and co-registration are required which can lead to inaccuracies. In this study, we pro-

pose a fully automatic system (Figure 5.2) to segment acute ischemic lesions in a large DW image

dataset based on deep convolutional neural networks (CNNs). Compared to traditional image analysis

algorithms, CNNs have major advantages, including end-to-end training and feature learning [174].

Our system consists of two networks, namely the EDD Net and the MUSCLE Net. The EDD Net is

an ensemble of two DeconvNets [2] and the MUSCLE Net is the MUti-Scale Convolutional Label

Evaluation Net. The input to the proposed system are 2D slices consisting of DWI. The EDD Net

firstly outputs a primary segmentation probability map. The binary segmentation obtained by thresh-

olding the probability map contains both lesions and several FPs. The MUSCLE Net re-evaluates all

the detections by the EDD Net and excludes many FPs using both the probability map and the original

input image.

Figure 5.2: The overview of the proposed CNN based system to segment the acute ischemic lesions
in DWI. It comprises the EDD Net and the MUSCLE Net. The EDD Net conducts the semantic
segmentation on the input DWI. Based on the output of the EDD Net, patches containing small lesions
are extracted and they are evaluated by the MUSCLE Net so that many FPs are removed. The refined
segmentation is therefore obtained.

The acute ischemic lesion segmentation problem is formulated as a semantic segmentation task. How-

ever, the task of semantic segmentation of acute ischemic lesions is different from that of objects in

natural images. In natural images, the target objects of interest are dominant in images (e.g. images

in the PASCAL VOC [175] dataset) while several acute ischemic lesions can be so small (Figure 5.1

(b)) that they are easy to be overlooked by observers. In addition, it is also difficult to distinguish

the boundaries between ischemic lesions and normal tissue (Figure 5.1 (c) and (d)) while objects
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in natural images are often characterized by sharp edges to the background. Furthermore, there are

many artefacts which have similar appearance to the lesions in DWI (Figure 5.1 (b) and (c)). Air is

one of the main resources of these artefacts. They are the major sources of FPs for automated lesion

segmentation techniques.

In this study, we propose a novel system to address the ischemic lesion segmentation problem. A

key contribution is its ability to handle the lesions of various sizes and shapes while minimizing

the number of FPs. Our system achieves the state-of-the-art of the ischemic lesion segmentation

performance in DWI while being validated on a large clinical dataset from over 700 patients.

5.2 Related Work

In this section, we review two categories of related work: First, methods that address the BraTS

[162] and ischemic stroke lesion segmentation (ISLES) [173] challenges are reviewed. Secondly, we

review several CNN-based segmentation approaches that have been recently introduced into medical

imaging.

5.2.1 Brain Tumour and Lesion Segmentation

In the BraTS challenges held in 2016, the dataset contains a number of subjects with gliomas and the

task is to develop automatic algorithms to segment the whole tumour, the tumour core and the Gd-

enhanced tumour core based on multi-modal MR images. In the latest competition [162], over half of

the methods were based on DNNs and they achieved top results. For instance, the hyperlocal features

(original input image) are used prior to the final segmentation to improve the accuracy [176]. As a

pixel-level segmentation problem, there are much more non-tumour pixels than the ones belong to part

of the tumours, which means there is a significant label imbalance. To alleviate the imbalance, Lun et

al. [177] proposed a re-weighted loss function. Randhawa et al. [178] also modified the cross-entropy

loss function so that the segmentations at tumour edges could be improved. Instead of analysing

multi-modal MR images in 2D, the DeepMedic approach [179] performs tumour segmentation in
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3D while using extended residual connections. In addition to deep learning algorithms, machine

learning approaches based on the RF [180–183] also demonstrate good performance using hand-

crafted features.

The segmentation of sub-acute ischemic stroke lesion is one of the tasks in ISLES 2015 [173], which

attracted many entries. The challenge is to automatically segment sub-acute ischemic stroke lesions

based on multi-modal MR images. Compared with the dataset in the BraTS, the dataset used in the

ISLES is smaller. Similar to brain tumours, sub-acute ischemic stroke lesions are difficult to segment.

In terms of methods proposed, these range from machine learning based methods to deformation

based methods. Among the top ranked approaches, DeepMedic [184, 185] was the best, which is

a multi-scale 3D CNN with fully connected CRF models achieving a Dice score of 0.59 in testing.

The second best performing method used a modified level-set approach embedded with the fuzzy

C-means algorithm [186] while the third best method is based on random forests and contextual

clustering [187], which is a typical way of segmenting lesions like those in BraTS. They achieved

Dice scores of 0.55 and 0.47, respectively. The Dice scores reported by most other attendees ranged

from 0.3 to 0.5.

Most of the successful CNN-based methods in both BraTS and ISLES derive a problem specific CNN

architecture from generic ones. This is because in these cases, lesions are highly variable in terms

of position, size, and shape and artefacts occur frequently. To explore the distinctive lesion features,

specific domain knowledge is helpful.

5.2.2 Other CNN-based Approaches to Segmentation

In molecular imaging, a cascaded CNN called deep contour-aware network (DCAN) [188] has been

shown to be successful in the gland segmentation task. Prior to the final segmentation, a primary gland

object segmentation and a gland contour segmentation are produced separately. The final segmenta-

tion is then obtained by fusing the object and contour segmentations. The segmentations are based

on multi-level contextual features extracted from the fully convolutional layers. In cell segmentation

and tracking scenario, the U-Net approach [6, 68] performs well. In its architecture, the context and
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location information of cells are incorporated. In abdominal imaging, multi-level deep convolutional

networks have been proposed to segment the pancreas in CT images [189]. This uses a hierarchical

coarse-to-fine method studying images from patch level to superpixel/region level. In cardiac imag-

ing, a left ventricle segmentation approach for MR images has been proposed that combines deep

CNNs and deformable models [190].

Similar to the deep networks proposed for brain lesion segmentation, generic CNN architectures are

often customized for many other medical imaging tasks. However, the U-Net [6] is a generic architec-

ture which can be easily adapted to other cases in medical imaging. More specifically, it is not a task

specific method that requires specific prior knowledge (e.g. the input data has to be homogeneous in

3D). Furthermore, since it is a FCN, the input is flexible in terms of sizes and dimensionality.

In addition to the U-Net, the FCN [13] and the DeepLab [14] are another two generic CNNs for

segmentations. The FCN [13] is the first CNN which allows end-to-end training for the semantic

segmentation problem. It inherits the convolution and pooling layers from contemporary CNNs, in-

cluding the AlexNet [8], the VGGNet [64], and the GoogLeNet [9], in image classification problems.

It adapts them into fully convolutional styles for the semantic segmentation task. The FCN [13] learns

features across multiple scales. The DeepLab [14] is a type of improvement to the FCN [13]. In order

to gain deep features, the FCN [13] performs many convolutions and poolings which decrease the

image resolutions while the DeepLab [14] contributes the atrous convolution and ASPP layers which

keep the depth of features without decreasing image resolutions.

5.3 Our Approach

The proposed lesion segmentation framework consists of two modules: The first one is an ensemble of

N adapted DeconvNets [2] (EDD Net) (Figure 5.3) and the second one is a MUti-Scale Convolutional

Label Evaluation Net (MUSCLE Net) (Figure 5.5). While the EDD Net attempts to achieve optimal

lesion segmentation at voxel level, the MUSCLE Net focuses on small lesions that have been detected

and aims to remove FPs.



5.3. Our Approach 79

5.3.1 EDD Net

Figure 5.3 shows the architecture of the proposed EDD Net. The input is an image patch, which is

fed into N parallel DeconvNets [2] to infer the semantic segmentations respectively. The results from

all DeconvNets are then combined. The combination is concatenated with the input image patch.

Several convolution layers are added in the end to produce the final output. The CNN is based on 2D

to reduce the inaccuracies of image resampling in z-axis.

The basis CNN architecture, i.e. the DeconvNet [2] is selected among several generic CNN archi-

tectures for semantic segmentation, including the U-Net [6], the DeepLab [14] and the FCN [13].

The basis network has a stack of convolution and pooling layers in the convolution stage and a stack

of corresponding deconvolution and unpooling layers in the deconvolution stage. Within each stack,

there are several convolution/deconvolution layers. Between two stacks, there is a pooling/unpooling

layer. The number of stacks and the number of layers in each stack define the size of the network.

The proposed basis network has three stacks of convolution layers and two pooling layers in the

convolution stage, which leads to the best results.

Figure 5.3: The architecture of the proposed EDD Net. The rectangles in different sizes indicate
data blobs in different sizes. The height shows the size of each piece of data, e.g. 64 × 64. The
width shows the number of data pieces in each blob, e.g. 1, 32. Arrows in difference colors stand for
different operations.
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In segmentation problems, contextual information often contributes important knowledge to solve

the label assignment. However, the appropriate level of contextual information is often difficult to

identify. Excessive amounts of context can hinder the segmentation of lesions and insufficient context

makes it difficult to distinguish between lesions and artefacts. If the network grows deep, i.e. has

many convolution and pooling layers, it processes a large amount of contextual information. However,

with the increasing number of convolution and pooling layers, the input is down-sampled further

and further and therefore the resulting feature maps have lower and lower resolutions. In this case,

small lesions are gradually eliminated by subsequent down-sampling steps and it can be difficult to

reconstruct these. In contrast, if the network is shallow, i.e. using only few convolution and pooling

layers, only limited context is used. In this case, lesions and artefacts may have similar feature

representations making it difficult for the classifier to distinguish between them.

In our approach, we propose to use image patches instead of image slices as the input. This has

three major advantages: Firstly, it modifies the data distribution. For a given image slice, there is

a significant imbalance between pixels that represent normal tissues compared to those of lesions

since acute ischemic lesions occur locally [33]. The signals representing lesions are as weak as those

representing noise and artefacts among the whole data distribution. However, the lesion signals can be

apparent among the data distribution based on image patches. Secondly, a large number of patches can

be extracted from image slices, which is a fundamental requirement for CNN training. In contrast,

if the training data is based on image slices, there is only limited number of candidates available.

Finally, as image patches are smaller than image slices, the batch size in training can be larger, which

makes the training more efficient [59].

We propose to adopt the DeconvNet [2] as the basis network of the EDD Net. In addition to convolu-

tion and pooling layers, the DeconvNet [2] has corresponding deconvolution and unpooling layers to

create the segmentation probability map from the coarse feature maps. For the input image patch x,

assume x̃ is the feature maps obtained from the convolution and pooling operations. f(·) and g(·) are

the convolution and deconvolution functions which jointly produce the segmentation map y, i.e.

x̃ = f(x),y = g(x̃).



5.3. Our Approach 81

In different architectures, the f(·) functions are similar, which is the composition of several convolu-

tions and poolings, while different strategies are usually used in g(·).

In the DeepLab approach [14], the g(·) function is a bilinear interpolation function upsampling the

coarse feature map into the segmentation map directly. In the FCN approach [13], the g(·) not only

bilinearly upsamples the feature map but also fuses it with the feature maps obtained at higher resolu-

tions as these contain more image details. Therefore, more small lesions are detected. However, they

are difficult to distinguish from artefacts.

In the U-Net [6], the g(·) is modelled in a more sophisticated and powerful fashion. Here, the final

segmentation is constructed step by step. In each step, the feature map is upsampled to a higher

resolution first, which corresponds to a pooling layer before. The upsampled feature maps are then

concatenated with the feature maps before the corresponding pooling layer. Afterwards, a few layers

of convolutions are performed on the concatenation. As a result, the segmentation obtained from the

U-Net [6] has less FPs than that from the FCN [13] since these convolutions detect and eliminate

several FPs.

In the DeconvNet approach [2], there are additional pooling masks m (Figure 5.4) output from pool-

ing layers who record the locations of the maximal activations. Thus, the specific functions in the

DeconvNet [2] can be written as:

x̃,m = fD(x),y = gD(x̃,m).

The gD(·) function represents the deconvolution and unpooling operations. The pooling masks m are

used for upsampling so that the semantic output can be better constructed. Similar to the U-Net [6],

the DeconvNet [2] employs a number of deconvolution layers to construct the output step by step,

which results in accurate segmentations. In contrast, the U-Net [6] uses feature maps before pooling

layers to assist recovering image details, however, this can introduce artefacts and noise. Instead, the

pooling masks used in the DeconvNet approach [2] exclude the artefacts and noise.

We propose to combine N DeconvNets [2] to produce an ensemble of classifiers in order to further



82 Chapter 5. Acute Ischemic Lesion Segmentation on DWI

Figure 5.4: The max pooling and unpooling strategy demonstrated in the DeconvNet approach [2]. In
the pooling stage, the position of the maximum activation is recorded within each filter window by a
mask. In the unpooling stage, the entries are placed in the unpooled map according to the mask.

enhance the results. Let h(·) be the ensemble function fusing the N networks together, i.e.

h(x) = g1D(f 1
D(x))⊕ g2D(f 2

D(x))⊕ · · · ⊕ gND (fND (x)). (5.1)

Since the N DeconvNets [2] are initialized differently, they converge at different optima but all of

them are able to produce accurate lesion segmentations. An ensemble of all CNNs therefore benefits

for performance improvement because of their accuracy and diversity [101]. Furthermore, inspired

by the U-Net [6] we propose additional convolution layers at the end of the naive ensemble to refine

the segmentation. There are many convolutions and deconvolutions between the original input image

and the semantic segmentation. The network may eliminate some details in the input image during

the feed-forward pass. We propose to concatenate the input image and the segmentation probability

map as well as to add a few convolution layers so that the segmentation can be refined according to

the original image. The refinement yields marginal increase of performance. Therefore, the function

that the proposed EDD Net performs is

H(x) = r(h(x),x) (5.2)

Here r(·, ·) performs the concatenation and convolutions after the naive ensemble. The loss function
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of the EDD Net is therefore

` = λ1`1(H(x),y) + λ2`2(h(x),y) + λ3`3(g
1
D(f 1

D(x)),y)

+ λ4`4(g
2
D(f 2

D(x)),y) + · · ·+ λN+2`N+2(g
N
D (fND (x)),y). (5.3)

In the loss function, `i(i = 1, 2, . . . , N + 2) is the cross-entropy loss function and the λi is the

corresponding weight. The loss function is optimised via back-propagation as usual.

The EDD Net is a fully convolutional network since both of its subnets are fully convolutional. There-

fore, the size of the input image patch is flexible. In practice, we use the image patches to train the

network and we test it on the whole image slice.

5.3.2 MUSCLE Net

The EDD Net identifies many acute ischemic lesions correctly. However, it also produces many

false positive (FP) clusters (i.e. aggregation of voxels) which have similar appearance with the small

lesions. To remove them, we propose a second network, called MUSCLE Net, which evaluates the

labels of small lesions detected by the EDD Net in order to differentiate between FPs and TPs.

The architecture of the MUSCLE Net is shown in Figure 5.5. The input is a stack of image patches

across three scales extracted from the original DWI as well as the probabilistic output from the EDD

Net. The MUSCLE Net aims at evaluating if the candidate is a real lesion or not. Considering the

input patches are fairly small, the MUSCLE Net has limited convolutional layers.

The architecture of the MUSCLE Net is based on a mini VGGNet [64]. The MUSCLE Net consists

of four convolution layers, one pooling layer, and three fully connected layers. The convolution and

pooling layers extract the distinctive features from the input and the fully connected layers act as a

classifier.

The input patch set is derived as follows: First, the primary binary lesion segmentation map is ob-

tained by thresholding the probabilistic segmentation map which is the output of the EDD Net. Based

on the binary segmentation map, small candidate lesions are detected using connected-component
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Figure 5.5: The architecture of the MUSCLE Net. The rectangles stand for the data blobs. Their
heights represent the sizes of data pieces, e.g. 16× 16. Their widths show the number of data pieces
in the blobs, e.g. 4, 32. In the fully connected layers, the lengths of strings demonstrate the number
of elements in the layers. Arrows in different colors show different operations.

analysis. Original image patches at multiple scales are extracted around them, as well as the corre-

sponding probabilistic segmentation as computed by the EDD Net. This procedure is described in

Figure 5.6. The real lesions (TPs) are labelled as positive instances while the FPs are labelled as

negative ones.

The MUSCLE Net outputs results at instance level rather than pixel level, which are the probabilities

of the candidates being lesions. They are then fused with the pixel level probabilities given by the

EDD Net by multiplication. The fused probabilities are re-normalized afterwards. The final semantic

segmentation result is therefore achieved. The loss function used here is the cross-entropy function

and it is optimised using the BP algorithm.

5.3.3 Evaluation Methods

We propose a number of criteria to evaluate our method. First, the Dice coefficient is used to compare

the agreement with manual segmentation. It measures the overlap between the candidate segmentation
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Figure 5.6: The derivation of the input to the MUSCLE Net. The probabilistic segmentation is ob-
tained from the EDD Net. The binary segmentation is obtained by thresholding the probabilistic
segmentation. Candidate small blobs are detected in the binary segmentation. The corresponding
patches are extracted in the original DWI across multiple scales and the probabilistic segmentation
map. They are then resized and concatenated resulting in the input to the MUSCLE Net.

X and the reference segmentation Y and is defined as

Dice(X, Y ) =
2|X ∩ Y |
|X|+ |Y |

.

| · | denotes the number of pixels in the set. However, the Dice similarity measurement based on over-

laps is not robust in all cases: For example, an error of one pixel may not affect the Dice coefficient

significantly if the ground truth contains hundreds of pixels; however it makes a significant difference

where the ground truth is small and only contains a few pixels. Therefore, the average number (m#)

and the average pixel-size (mS) of the FPs and FNs are introduced as additional metrics. Our goal is

to decrease the number and size of FPs and FNs. In addition, we define the DR as

DR =
NTP

N
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where the N denotes the number of all subjects and the NTP denotes the number of subjects with any

true positive (TP) lesion detections. Since the FP may mislead clinicians, the DR is expected to be as

high as possible.

5.3.4 Implementation Details

The CNNs in this chapter are implemented using the Caffe framework [191]. The optimization during

training is achieved using the standard stochastic gradient descent algorithm. The learning rate is

fixed as 0.05. The momentum and the weight decay is set to 0.9 and 0, respectively. The weights

in networks are initialized using the Xavier algorithm [192]. The filter size of the convolution and

deconvolution layers are 3 × 3 and the stride is 1. The batch normalization technique [132] is used.

We have limited computation resources and therefore set N = 2. In the Equation 5.3, we set λi =

1, i = 1, 2, . . . , N + 2.

5.4 Data

5.4.1 Dataset and Preprocessing

In this study, DWI scans from 741 acute stroke patients were collected from local hospitals. All clin-

ical images were collected from a retrospective database and anonymized prior to use by researchers.

Ethical approval was granted by ICL Joint Regulatory Office. The scans were obtained from three

different scanners (Siemens) with the following acquisition parameters: field strength: 1.5–3T; slice

thickness: 5–6mm; slice spacing: 1.0–1.5mm; matrix size: (19− 23)× (128× 128) or (192× 192);

field of view: 230× 230 or 267× 267; echo time 90-93ms; repetition time 3200–4600ms; flip angle

90◦; phase encoding steps: 95–145. Patients information can be found in Table 5.1. In all images the

acute ischemic lesions were annotated by experienced experts. We use 380 of them to train and vali-

date our CNNs and the remaining 361 ones are used for testing only. Among the developing images,

274 of them are used for training and 106 ones consist of the validation set.
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Table 5.1: Patients information in statistics.

Age (years) mean: 68.01, std: 14.8, range: 26–93
Gender (male %) 56.28
Interval from acute clinical
presentation to MRI (days)

median: 2, std: 1.78, range: 0–9

Admission functional sever-
ity (NIHSS)

median: 5, range: 1–30

Since the images were acquired from different scanners under different protocols, several pre-processing

steps are performed before experiments. Considering the images are anisotropic in the axial direction

(or z-axis) and the resampling is likely to introduce interpolation errors, we will perform analysis of

2D slices instead of 3D volumes. To make sure each pixel in 2D slices has uniform physical pixel size

(in mm2), homogeneous linear resampling is performed in 2D. All images are resampled to uniform

pixel size in 2D of 1.6×1.6mm2. Subsequently, the intensity distribution of each image is normalized

into that of zero mean and unit variance.

5.4.2 Data Augmentation

Each DWI scan has a limited number of lesions, if the training data is generated at the image slice level

or lesion instance level, there is only a small number of images (patches) available. As CNNs have a

large number of parameters and it is necessary to generate a large number of images (patches) to train

the CNN. For this, data augmentation is implemented in several ways to produce more training data

based on the limited number of DWI: First, extracted images (patches) are horizontally flipped and

randomly rotated. Second, the patch extraction strategy also represents a way of data augmentation. It

is used to reduce the redundant contextual information and balance the number of normal and lesion

pixels but it is an effective way of data augmentation. We sample all pixels labelled as part of lesions.

For each of these pixels, we extract a patch around it. That pixel is placed in a random position in

the patch. As a result, each patch contains pixels belonging to both lesions and tissues/background in

general. If the pixel locates in the center of a very large lesion, the patch extracted based on it may

contain pixels only belonging to lesions. A pixel cluster of lesions usually have a number of pixels

(e.g. 20). That number of patches (i.e. 20) can be generated.



88 Chapter 5. Acute Ischemic Lesion Segmentation on DWI

5.5 Experiments and Results

5.5.1 Baseline Architectures

Although the DeconvNet [2] is selected as the basis CNN in the proposed EDD Net, other generic

CNN architectures, including the U-Net [6], the DeepLab [14] and the FCN [13], aiming at image

segmentation are used as baseline comparison. In this set of experiments, comparisons are among

single networks rather than ensembles. The training inputs to all CNNs are patches from the DWI of

64× 64 pixel size. This is the best patch size for this task (see Section 5.5.2). Since each architecture

has its own characteristics, it is difficult to adapt them so that they have exactly the same size of the

receptive field. Fortunately, our results in Secion 5.5.2 show the performance is robust to the size of

the receptive field when the image patch size is 64 × 64. When adapting the candidate CNN archi-

tectures into our dataset, we preserve their key features. More specifically, the adapted DeepLab [14]

contains atrous convolution and ASPP layers. The adapted FCN [13] is still in the fully convolutional

configurations and uses a multi-scale approach. The adapted U-Net [6] has concatenations between

related layers. The adapted DeconvNet [2] retains the featured unpooling layer. No post-processing

operations such as the CRF are used in any architecture.

The results are displayed in Table 5.2. All CNNs share very high detection rates. The DeconvNet [2]

clearly outperforms the other approaches. Since the gap between the U-Net [6] and the DeconvNet [2]

is not very significant, we perform paired t-test between them in the testing dataset. The p-value is

1.12× 10−4, which indicated that the DeconvNet [2] is superior to the U-Net [6] in this case. As they

share similar f(·) functions, the key lies in the g(·) functions. In the f(·) functions, many convolution

and pooling operations are performed, which diminishes the activations of lesions in small scales.

Basically, all architectures except the DeconvNet [2] employ the bilinear interpolation strategy to

upsample the coarse feature maps. This bilinear interpolation makes it difficult to reconstruct the small

lesions based on the weak activations. The DeepLab approach [14] produces the output by conducting

the bilinear interpolation on the feature maps in the lowest resolution, which introduces many FNs.

The FCN approach [13] combines feature maps at multiple resolutions to construct the segmentation

map. The feature maps in high resolutions contain signals from small lesions but artefacts and noise
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Table 5.2: Performance of the baseline CNN architectures. In each measurement, results on the
training, validation, and testing datasets are reported respectively. The DeconvNet [2] is superior to
the others in most measurements.

Architecture DeepLab w/o CRF [14] FCN [13] U-Net [6] DeconvNet [2]
Size of receptive field 44× 44 52× 52 46× 46 44× 44

Dice (%)
train 59.85 65.67 71.01 71.10
val 55.10 59.99 64.13 61.99
test 48.08 49.82 52.23 54.65

m#FP
train 10.35 11.73 7.86 8.32
val 11.51 13.30 8.95 10.08
test 12.81 16.44 12.85 11.78

m#FN
train 4.80 2.96 2.35 2.19
val 4.91 4.00 3.92 4.03
test 5.22 3.88 3.99 3.99

mSFP
train 7.23 8.40 9.56 8.60
val 7.29 8.66 9.10 8.69
test 8.25 9.92 11.50 10.14

mSFN
train 3.34 2.03 2.17 1.80
val 6.53 5.84 6.20 5.11
test 4.08 3.66 4.17 3.58

DR (%)
train 96.73 99.27 98.91 98.91
val 98.11 99.06 99.06 97.17
test 92.80 93.63 93.63 94.18

as well, which results in a large number of FPs in average. The U-Net [6] is equipped with more

powerful operations in its g(·) function so that it performs better than the former two networks. The

success of the DeconvNet [2] in this case is due to the recorded pooling masks and the unpooling

strategy. They work jointly and are able to preserve the signals from small lesions. Despite the fact

that the activations of small lesions are weakened, if they are recorded by the pooling masks, they are

likely to be reconstructed in the deconvolution stage. In summary, the pooling mask recording and

unpooling strategy works better than bilinear interpolation when there are small lesions.

5.5.2 Patch Size and Receptive Field

The DeconvNet [2] has been validated that it is the best baseline architecture among all candidate

CNN architectures. In addition to the CNN architecture, the configuration of the network influences

the performance significantly. It is mainly in two aspects which are the size of the input image patches
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and that of the network’s receptive field. As mentioned before, the size of image patches in the training

stage determines the data distribution. The size of the network’s receptive field determines the amount

of contextual information being considered. They work jointly and experiments in this section aim at

discovering how do they affect the CNN’s performance.

Single DeconvNets are used in the following experiments. In terms of the input patches, four different

sizes are tested. The maximum is the whole image slice. Different sizes of the receptive fields

are realized by employing different numbers of convolution and pooling layers. For instance, each

DeconvNet branch in the EDD Net (Figure 5.3) has the receptive field in 64× 64 pixels.

Table 5.3 displays the results of the DeconvNets [2] for different configurations. It is obvious that

when the input patches in the training stage are small (32 × 32) or large (i.e. the full image size

128×128), the CNN can not perform well in the semantic segmentation task since they contain either

insufficient or excessive contextual information. Although small patches can help discriminate the

lesions from the normal tissue, which reduces the FNs to the minimum, it is difficult for the network

to distinguish between artefacts and the real lesions. As a result, there is a large number of FPs

introduced. In the other extreme case where the input is the full image slice, small objects including

artefacts and lesions are easily eliminated by the numerous convolutions and poolings. Therefore,

few FPs are introduced but there are more FNs. In the mean time, many TPs are ignored by the CNN

so that the detection rate falls down. Not surprisingly, patches of medium sizes (64× 64 and 96× 96)

are able to achieve the trade-off between the numbers of FPs and FNs and thus the Dice coefficients

on the whole increase to reach an optimum.

The DeconvNets [2] are generally robust to the size of the receptive fields in terms of the Dice coeffi-

cient when the size of the training input patches is fixed. Particularly when the patch size is extremely

small or large, the overall results are stable in terms of Dice coefficient. In these cases, the size dif-

ference of the receptive fields is reflected in the number of FPs and FNs. If the patches are in medium

sizes, the Dice coefficient shows little fluctuations. For instance, when the training patches are in

64× 64 pixel size, the networks perform similarly to those whose receptive fields are in 32× 32 and

44× 44 pixel sizes. However, the performance slightly improves when the size of the receptive field

increases to 64× 64 pixels. When the training patches are in 96× 96 pixels, the DeconvNet [2] with
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the receptive field in 44 × 44 pixels has a slightly better performance compared to those with larger

receptive fields.

According to the results, the configuration providing the best performance is chosen as the basis

network of the EDD Net. More precisely, the training patches are in 64× 64 pixel-size and the same

as the receptive field. In summary, the training patch size affects the networks’ performance more

than the receptive field. Patches of medium sizes are preferable. Once the size of training patches is

fixed, the network is fairly robust to the size of the receptive field.

5.5.3 Ensemble and Refinement

To further improve the performance, the EDD Net is developed based on the DeconvNets [2] under the

best configuration. Table 5.4 displays the results in details. First, the two DeconvNets [2] both provide

accurate segmentations as before. Note that the Dice coefficient of them in this experiment were 0.56

which is slightly lower than it in Table 5.3. It is the fact that training two networks simultaneously is

more difficult than a single one as the number of parameters doubles. Therefore, the loss function is

more difficult to optimise. Second, it is obvious that the naive ensemble of the two networks leads to a

significant improvement. This is due to a sharp reduction of the FPs, which results from the diversity

of the two DeconvNets [2]. As both of them have detected most of the lesions, the diversity indicates

FPs given by them are different. Fusing them together should be able to decrease a substantial number

of FPs.

Finally, a few convolution layers are added to refine the segmentation provided by the naive ensemble.

The naive ensemble of the two DeconvNets [2] is so deep that the input patches are likely to lose

details when being fed forward. Inspired by the U-Net approach [6], concatenating the original input

and the result given by the naive ensemble and adding a few convolution layers yields a refined

segmentation. In summary, the ensemble based on the accuracy and diversity of sub-nets makes a

significant improvement to the network performance entirely.
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5.5.4 The MUSCLE Net

The EDD Net has advantages to segment the acute ischemic lesions in DWI. However, FPs are difficult

to avoid. We validate the trained EDD Net on the validation dataset and report the FPs in Figure 5.7.

Approximately 99% FPs are of size 60 pixels or less. According to the Table 5.4, the FPs on the

validation dataset are in 8.87 pixels in size on average. Therefore, the MUSCLE Net is only needed

to assess candidates within 60 pixels or less in size, which is defined as small objects.

Figure 5.7: The statistics of the FPs on the validation dataset provided by the EDD Net.

Table 5.4 also shows the results of the EDD+MUSCLE Nets. The MUSCLE Net eliminates a large

number of FPs without erasing many TPs, which benefits further improvement in performance. Ac-

cording to our observations, the FPs normally appear isolated without overlap with other lesions.

Examples are shown in Figure 5.6 and Figure 5.8. This should be one of the major reasons leading to

the success of the label evaluation. Although FPs are removed, their mean size grows, which indicates

that most FPs within a few pixel-size are eliminated while some slightly larger ones are remaining.

The limitation of the MUSCLE Net is that it is not possible to be integrated with the EDD Net to

enable the end-to-end training since the training data generation operation is not differentiable. In

summary, the MUSCLE Net is powerful to remove FPs without introducing many FNs.
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5.5.5 Small and Large Lesions

Apart from the analysis based on the whole testing dataset, it is also interesting to study the perfor-

mance of our proposed CNNs on datasets with only small or large lesions. First, we compute the

mean size of lesions of each subject in our testing dataset and took an average across all subjects. As

a result, the mean average size of lesions of the testing subjects is 36.21 pixel-size. Therefore, we re-

gard subjects with average lesions smaller than 37 pixel-size as the ones with small lesions; otherwise

with large lesions. Second, the testing dataset is separated into two subsets: one contained subjects

with small lesions and the other one consisted of subjects with large lesions. The former subset has

271 subjects and the latter one has 90 subjects. Third, we evaluate our baseline CNN architectures

and proposed EDD and MUSCLE Nets based on the two subsets.

Results are displayed in Table 5.5. Not surprisingly, the performance of all CNNs drop down when

there are only small lesions. When there are only large lesions, the detection rates were 100%. How-

ever, the EDD Net performs significantly better than any of the baseline CNNs. Its mean Dice score is

9% higher than the best baseline CNN. This improvement comes from the significant reduction of the

number of FPs as its m#FN, mSFP, and mSFN are similar to the baselines’. In addition, the MUSCLE

Net further removes nearly half of the FP artefacts. Importantly, the m#FN of the MUSCLE Net only

increases a bit compared to the EDD Net, which indicates that it maintains most of the TP lesions.

In terms of the subjects with large lesions, the Dice score achieved by the EDD Net reaches 83%. In

this condition, although the MUSCLE Net is still able to remove some small FPs, it can not reflected

on the Dice score. The detection rates indicate that when there are large lesions, they can never be

ignored by our CNNs. The proposed CNNs may only ignore a few small lesions.

5.5.6 Running Time

The preprocessing computation was run on a desktop PC, which is an HP Elite 8300, with an i7 pro-

cessor and 16GB RAM. The CNNs were trained and tested on an NVIDIA Tesla K80 GPU processor.

We tested the running time of each stage of our proposed pipeline and the results were shown in Table

5.6. In summary, to test a new DWI scan, it costs less than one second, which is very fast.
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5.6 Discussion and Conclusion

In this study, we have presented a novel framework based on deep CNNs to segment the acute is-

chemic lesions in DWI. To the best of our knowledge, it is the first fully automatic method developed

for this problem. The algorithm is validated on a large real clinical dataset and achieves the state-

of-the-art, which is 0.67 in terms of the Dice coefficient in average. Several visual examples of the

segmentation results are shown in Figure 5.8.

Although the combination of EDD+MUSCLE Nets achieves very good results, the proposed approach

still has a few limitations: First, semantic segmentation of objects in images across multiple scales

remain a challenge that it is not fundamentally solved. Second, the training and testing is not end-to-

end, which decreases the system’s efficiency. Finally, in the second stage, we only consider the FPs.

However, there are still a small number of FNs which must be corrected.

In the future, further improvements could be achieved in several aspects. In particular, more DW

images should be collected for training and testing. Our method is capable of automatically generat-

ing acute ischemic lesion segmentations. Experts could create the manual annotations based on the

automatic segmentations, which will be less expensive in terms of time and effort. In addition, the

framework could be adapted so that the end-to-end training is possible. Last but not least, convolutions

in our proposed networks could be extended to 3D, which may reduce more FPs. 3D convolutions

require the image patches and/or volumes to be isotropic in 3D [184, 185]. However, image slices in

our dataset are very thick and simple processes such as resampling cannot provide satisfactory results.

Therefore, we consider to employ image super resolution techniques [193] to enhance the images in

3D. Then 3D convolutions can be used in our CNNs.
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Table 5.4: Results of the EDD and the MUSCLE Nets. In each measurement, results on the train-
ing, validation, and testing datasets are reported respectively. The ensemble contributes a significant
improvement to the whole performance. The MUSCLE Net shows its advantage in removing FPs to
boost the performance tremendously again.

DeconvNet 1 DeconvNet 2 Naive ensemble EDD Net EDD+MUSCLE Net

Dice (%)
train 74.42 72.48 79.07 80.41 88.39
val 63.98 61.42 67.60 68.74 72.81
test 56.38 56.18 61.66 62.56 66.71

m#FP
train 6.82 9.49 4.20 3.78 0.64
val 9.23 12.27 6.33 5.67 3.14
test 10.18 13.38 6.68 5.89 3.27

m#FN
train 1.80 1.59 1.51 1.45 1.45
val 4.08 3.80 4.02 4.01 4.16
test 4.02 3.66 3.81 3.82 4.07

mSFP
train 8.39 6.89 9.55 9.49 8.81
val 8.09 7.33 9.01 8.87 8.95
test 9.55 7.37 10.31 10.53 12.16

mSFN
train 1.86 1.40 1.41 1.42 1.42
val 5.58 5.71 5.65 5.62 6.32
test 3.81 3.19 3.49 3.64 4.16

DR (%)
train 99.27 98.55 98.91 99.27 99.27
val 99.06 99.06 99.06 99.06 99.06
test 93.91 94.46 94.18 94.18 94.46

Table 5.5: Performance comparison among adapted existing CNNs and our proposed CNNs on two
subsets of testing dataset. One subset consisted of 271 subjects with small lesions and the other one
contained 90 subjects with large lesions. The results showed the EDD Net performed significantly
better than existing CNN architectures, particularly on the first subset. The MUSCLE Net further
improved it by removing more FPs while maintaining TPs.

Dice (%) m#FP m#FN mSFP mSFN DR (%)

DeepLab w/o CRF [14]
small 39.13 12.84 4.96 8.16 3.52 90.41
large 75.03 12.72 6.00 8.52 5.80 100.00

FCN [13]
small 40.73 16.74 3.63 9.81 3.16 91.51
large 77.19 15.56 4.62 10.23 5.16 100.00

U-Net [6]
small 43.50 12.81 3.80 11.75 3.61 91.51
large 78.52 12.97 4.56 10.73 5.87 100.00

DeconvNet [2]
small 46.71 11.38 3.75 10.21 3.21 92.25
large 78.58 12.98 4.72 9.92 4.72 100.00

EDD Net
small 55.91 5.58 3.58 10.59 3.17 92.25
large 82.59 6.82 4.56 10.38 5.06 100.00

EDD+MUSCLE Net
small 61.18 2.97 3.83 12.58 3.68 92.62
large 83.37 4.16 4.78 10.90 5.58 100.00
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Table 5.6: Running time of our proposed pipeline. The unit of time in testing is second and it in
training is hour. The numbers in testing are in the form of mean±std while the training time was
measured in once.

Running Time
Testing (s) Training (h)

Preprecessing 0.20± 0.10 –
EDD Net 0.63± 0.07 26.61
Muscle Net 0.07± 0.05 0.11
Total 0.90± 0.12 26.72
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Figure 5.8: The results of the proposed method. The first column shows the original DWI. The second
column displays the manual annotations of the acute ischemic lesions. The third column demonstrates
the results given by the EDD Net. The last column illustrates the lesion segmentations refined by the
MUSCLE Net.



Chapter 6

Self-Supervised Feature Learning for

Medical Image Analysis

The work in this chapter is under review on:

• L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, and D. Rueckert, “Self-supervised

feature learning for medical image analysis,” Medical Image Analysis, 2018.

6.1 Introduction

Deep convolutional neural networks (CNNs) have achieved great success in computer vision, includ-

ing image classification [8, 9, 64], object detection [194, 195] and semantic segmentation [13, 14].

In medical image analysis, CNNs have also demonstrated significant improvement when applied to

challenging tasks such as disease classification [196, 197] and organ segmentation [6, 68, 185]. Large

amounts of training data with manual labels have been crucial in many of these successes. In natural

images, crowdsourcing can be used to obtain ground-truth labels for the images [63]. This is based on

the fact that the annotation of natural images only requires simple human knowledge, e.g. most hu-

mans are able to recognize cars in natural images. However, crowdsourcing has limited applicability

in medical imaging because annotation usually requires expert knowledge. This means it is usually

99
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easier to access a large number of unlabelled medical images rather than a large number of annotated

images.

Training CNNs only using the small number of labelled images cannot always achieve satisfactory

results and does not exploit the potentially large number of unlabelled images that may be available.

The most straightforward method to make use of unlabelled data is to train an auto-encoder [3] to

initialise the task-specific CNN. However, the loss function used in auto-encoder is the L2 recon-

struction loss which leads the auto-encoder to learn features that have limited value for discriminative

tasks.

Self-supervised learning is a type of machine learning strategy which has gained more and more

popularity in recent years. It aims at supervised feature learning where the supervision tasks are

generated from data itself. In this case, a very large number of training instances with supervision is

available. Pretraining a CNN based on such self-supervision results in useful weights to initialise the

subsequent CNN based on data with limited manual labels. Therefore, self-supervised learning is a

good option to explore the unlabelled images to improve the CNN performance in case where only

limited labelled data is available.

In this study, we focus on self-supervision for medical images. Two existing self-supervised learning

strategies are applicable in our cases, namely, the prediction of the relative positions of image patches

[4] (the RP method) and local context prediction [5] (the CP method). Figure 6.1 shows an example

of these two methods. In the RP approach, a 3 × 3 patch grid is selected and the CNN learns the

relative position between the central patch and one of its surrounding patches. For instance, a patch

containing left cerebellum should locate at the bottom left corner of the patch of right cerebrum. In

the CP method, a patch in the centre of image is selected and a CNN learns to predict its context using

other image context.

We propose a novel self-supervised learning strategy for medical imaging. Our approach focuses on

context restoration as a self-supervision task. Specifically, given an image, two small patches are

randomly selected and swapped. Repeating this operation a number of times leads to a new image

for which the intensity distribution is preserved but its spatial information is altered. A CNN is then

trained to restore the altered image back to its original version. The proposed context restoration strat-
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Figure 6.1: Demonstration of the RP and CP method on a brain CT image. (a) shows the original CT
image in the coronal view. (b) shows the patch grid of the RP method and the red rectangles indicate
patches of left cerebellum and right cerebrum. (c) shows the selected patch to be predicted.

egy has three advantages: 1) CNNs trained on this task focus on learning meaningful features; 2) CNN

weights learned in this task are useful for different types of subsequent tasks including classification,

localization, and segmentation; 3) implementation is simple and straightforward. We evaluate our

novel self-supervised learning strategy in three different common problems in medical image analy-

sis, namely classification, localization, and segmentation. Our evaluation uses different types of med-

ical images: image classification is performed on 2D fetal ultrasound (US) images; organ localization

is tested on abdominal computed tomography (CT) images; and segmentation is performed on brain

magnetic resonance (MR) images. In all three tasks, the pretraining based on our context restoration

strategy is superior to other self-supervised learning strategies, as well as no self-supervised training.

6.2 Related Work

The key challenge for self-supervised learning is identifying a suitable self supervision task, i.e. gen-

erating input and output instance pairs from data. In computer vision, various types of self supervision

have been proposed depending on data types and target task, which is summarised in Table 6.1.

For static images, patch relative positions [4, 87], local context [5], and colour [86, 198] have been

used in self-supervised learning. In the RP method, it was proposed to predict the relative positions

between a central patch and its surrounding patches in a 3× 3 patch grid [4]. The idea was that there

are intrinsic position relations among divided parts of an object of interest. The RP method has three

shortcomings: First, the relative position between two patches could have multiple correct answers,
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Table 6.1: Summary of related literature. There are many self-supervision strategies have been pro-
posed for natural images and videos while there is only one strategy relating to medical images.

Data Type Authors Supervision

RGB images

Doersch et al. [4]
patch relative position prediction

Noroozi et al. [87]
Pathak et al. [5] local context prediction
Zhang et al. [86] colourization
Zhang et al. [198] colour-context cross prediction
Dosovitskiy et al. [199] exemplar learning

Videos

Mobahi et al. [90]
temporal coherence

Jayaraman et al. [200]
Wang et al. [201] temporal continuous
Walker et al. [202]

object motion predictionPurushwalkam et al. [203]
Sermanet et al. [204]
Misra et al. [205]

temporal order verification
Fernando et al. [206]

Multi-modal data

Agrawal et al. [88]
ego-motion prediction

Jayaraman et al. [207]
Owens et al. [208]

audio-video matching
Chung et al. [209]

MR images Jamaludin et al. [210] follow-up scan recognition

e.g. a patch of a car and a patch of a building. Second, it was reported that CNNs could complete

the self-supervised learning tasks by learning trivial features, instead of meaningful features that are

useful in other discriminative tasks such as classification and segmentation. Specifically, in the RP

method, CNNs learns the shared edges or corners of two patches to predict their relative positions.

Although techniques were proposed to address this effect, CNNs could still learn trivial features. For

instance, it was proposed that patches are randomly jittered so that there is no shared information at

edges or corners. However, the CNN may still learn patch positions from some background patterns.

Third, the RP method is based on patches, which do not convey information about the global context

of images. As a result, the RP method can only provide limited improvements for subsequent tasks

requiring global context, such as classification. Later, a more complicated version of patch relative

positions was proposed [87], in which all 9 patches are input to CNNs in a random sequence. The

CNNs were trained to find the correct sequence of the patches.

In terms of feature learning, learning to predict image context is more straightforward as proposed
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by Pathak et al. [5]. They proposed an idea which trains CNNs to learn how to inpaint missing

information in images with patchy context removed. For the inpainting, an adversarial loss was

proposed in addition to the L2 reconstruction loss while for feature learning only the L2 loss was

used. They reported that if the removed patch is always in the centre of an image and in the square

shape, CNNs would only focus on the central context. As a result, patches with random shapes and

in random locations were removed to improve the feature learning. However, the removal of context

changes the image intensity distribution. Thus the resulting images belong to another domain and the

learned features may not be useful for images in the original domain. Compared to the RP method, the

CP method is more useful for the subsequent tasks. More precisely, the CNN weights learned in the

CP method can be used to initialise subsequent CNNs for classification and segmentation; while CNN

weights learned in the RP method can initialise subsequent classification CNNs and only the analysis

part of the subsequent segmentation CNNs. This is because a CNN predicting the relative positions of

patches is a classification model, which does not have layers to reconstruct image-level maps. Table

6.2 compares the RP method and the CP method in terms of subsequent task initialization.

Table 6.2: Comparison between the RP method and the CP method. Weights learned in both of them
can initialise the subsequent classification CNN. Weights learned in the RP method can only initialise
the analysis part of the subsequent segmentation CNN; while weights learning in the CP method can
initialise analysis and reconstruction part of the subsequent segmentation CNN.

Self-supervision

Main task

Classification Segmentation

Patch relative position prediction

Local context prediction

Colour is one of the most important features in natural images. It was proposed that learning colours

from greyscale images learns features that capture semantic information [86], i.e. CNNs must implic-

itly perform object recognition in order to colour them appropriately. However, it is generally difficult
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to recognize if the weather is sunny or not in greyscale images. Therefore, learning semantics via

colours is difficult to cover all aspects of object variance. In subsequent work, Zhang et al. [198] pro-

posed stronger supervision. Specifically, natural images were firstly converted into greyscale space

and colour space. Then image representing each space was used to train a siamese CNN to predict

the information in the other space. Combining the two outputs reconstructs the original image. This

cross-supervision forces the CNNs to learn more meaningful semantics. In medical imaging, most

images are in greyscale so that no colour information is available.

In addition, the exemplar learning has been proposed as a self-supervised learning strategy [199]. In

exemplar learning, the task is to classify each data instance into a unique class. In this case, heavy

augmentation is required to generate training data. Since each data instance is regarded as one class,

the exemplar learning method is difficult to apply to large datasets.

Image sequences (or videos) offer rich resources which could be used in self-supervised learning.

First, neighbourhood frames should share similar features [90]. Training CNNs to learn the similar-

ities achieves the goal of learning contextual semantics. In addition, in events such as ball games,

the features of frames representing a batting action should also be smooth, i.e. temporal continu-

ous [200]. Second, frames representing similar motions such as cycling should share similar visual

features [201]. More generally, similar objects should share similar motions, which can be learned by

CNNs [202]. For instance, similar human poses should also share similar motions [203, 204]. Third,

frames representing actions should occur in a certain temporal order. This idea has led to the devel-

opment of CNNs which learn whether a sequence of frames is in the correct order or not [205, 206].

Imaging data with multiple modalities can be easily used for self-supervised learning. The cross-

supervision mentioned above is an obvious strategy to use for multi-modal imaging data. For instance,

cameras at different angles offer different views. A siamese CNN could be trained to predict camera

poses [88]. More generally, images with the same ego-motion are likely to share similar features

which can be learned by CNNs [207]. For videos with audio, it is reasonable to assume similar events

share similar audio sound [208]. Exceptionally, in news broadcast videos, similar lip poses represent

similar readings [209].

In medical imaging, patients often have follow-up scans. Recognizing scans of the same patient is a
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good method of self-supervised learning. Jamaludin et al. [210] proposed a siamese CNN to recognize

patients’ MR scans and predict the level of vertebral bodies. A large number of scans was collected

to train the CNN to recognize MR scans. Therefore, a small number of annotated scans is required

for disease prediction. The above approach is one of the first works on self-supervised learning in

medical imaging.

Our work also relates to the work of [85], which proposed to combine multiple self-supervised learn-

ing tasks to improve the feature learning. In this work, patch relative position prediction [4], colouriza-

tion [86], exemplar learning [199], and motion segmentation [89] were unified into one architecture.

A novel input harmonization method was proposed to enable end-to-end training. Features learned

in the individual tasks were then fused with an L1 penalty loss so that their combination could be

sparse. The results showed that multi-task self-supervised learning improves subsequent tasks more

than single-task self-supervised learning. The disadvantage of multi-task self-supervised learning is

the training requires significant computational resources, i.e. 64 GPUs for approximately 16.8K GPU

hours.

6.3 Self-supervision Based on Context Restoration

We propose a novel strategy for self-supervised learning which we term context restoration. We first

introduce this concept before we provide further details of the training process.

6.3.1 Context Restoration

There are two steps in self-supervised learning based on context restoration: generating paired in-

put/output images for training and learning a mapping between them. Given a datasetX = {x1,x2, . . . ,xN}

consisting of N images with no annotations, a new dataset

X̃ = f(X ) (6.1)
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is generated. Here X̃ = {x̃1, x̃2, . . . , x̃N}. f(·) is a function corrupting the context of original images.

Subsequently, a CNN is learned to approximate the function g(·) which is designed to model the

mapping x̃i 7→ xi, i.e.

xi = g(x̃i) = f−1(x̃i), (6.2)

where i = 1, 2, . . . , N.

Given an image xi, we randomly select two isolated small patches in xi and swap their context.

Repeating this process for T times results in x̃i. Figure 6.2 demonstrates this process on exemplar

images and Algorithm 1 summarises the process in detail. Subsequently, g(·) aims to restore the

context using CNN model by learning to approximate f−1(·). This is illustrated in Figure 6.3.

Figure 6.2: Generating training images for self-supervised context disordering: Brain T1 MR image,
abdominal CT image, and 2D fetal ultrasound image, respectively. In figures in the second column,
red boxes highlight the swapped patches after the first iteration.

Inspired by existing self-supervised learning strategies, a good self-supervised learning strategy should

exhibit three key features: 1) features learned in the self-supervised training stage should be meaning-
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Algorithm 1: Image context disordering
Input: original image xi

Output: image with disordered context x̃i

for iter = 1, 2, . . . , T do
randomly select a patch p1 ∈ xi

randomly select a patch p2 ∈ xi

p1 ∩ p2 = ∅
swap p1 and p2

ful; 2) self-supervised pretraining is useful for different types of subsequent tasks; and 3) the imple-

mentation should be simple. Our proposed context restoration method features all these advantages.

For many common problems in medical imaging such as classification, localization, and segmenta-

tion, learning image context is key. Therefore, learning the context of images in the self-supervised

pretraining stage benefits the subsequent tasks. Restoring the image context can learn image context.

Specifically, given the corrupted image x̃i, the g(·) function learns to restore it by solving two sub-

tasks: 1) recognising which parts of the image contain corrupted context; 2) reconstructing the correct

image context in these areas. Second, the proposed context restoration pretraining is applicable for

different types of subsequent tasks by adjusting CNN architecture according to that of subsequent

task. Finally, the implementation of the context restoration task is simple and straightforward.

6.3.2 Network Architectures

We model the proposed self-supervised learning strategy – context restoration – using CNNs. The

CNNs can be implemented using various different architectures. Most of these networks are image-

to-image networks consisting of two parts: an analysis part and a reconstruction part. Figure 6.3

shows an overview of the general architecture of feasible CNNs. The analysis part encodes input

disordered images into feature maps and the reconstruction part uses these feature maps to produce

output images in correct context.

Analysis Part: The analysis part consists of stacks of convolutional units and downsampling units,

extracting feature maps from the input images. The convolutional units can be single convolution

layers, residual convolution layers [10], inception layers [211], densely connected convolution layers

[11] and so on. The downsampling units could be single pooling layers or inception pooling layers
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Figure 6.3: General CNN architecture for the context restoration self-supervised learning. In the
figure, the blue, green, and orange strides represent convolutional units, downsampling units, and
upsampling units, respectively. In the reconstruction part, CNN structures could vary depending on
subsequent task type. For subsequent classification tasks, the simple structures such as a few decon-
volution layers (2nd row) are preferred. For subsequent segmentation tasks, the complex structures
(1st row) consistent with the segmentation CNNs are preferred.

[15, 211] and so on. The CNN weights learned in this part are then used to initialise the subsequent

tasks.

Reconstruction Part: The reconstruction part consists of stacks of convolutional layers and up-

sampling layers, producing output images in which the context information has been restored. The

upsampling layers can be deconvolution layers or other upsampling layers. Again, the CNN architec-

tures used here are flexible. In subsequent classification tasks, the CNN weights learned in this part

are not used. As suggested by [85], simple CNN layers with a few deconvolution layers are sufficient

(see Figure 6.3). In this condition, the analysis part makes most contributions to the context restora-

tion. Therefore, the feature maps resulting from the analysis part are more useful. In subsequent

segmentation tasks, the CNN weights learned in this part are then used. In this situation, the CNN

architectures of the self-supervised learning and the subsequent main task learning can be consistent.

As a result, almost all the weights of the subsequent segmentation CNN can be initialised using those

learned in the self-supervised learning. This results in better segmentation results.

Loss Function: We propose to use the L2 loss for training the CNNs for the task of context restora-

tion. As suggested by [5], the L2 loss is sufficient for feature learning although the outputs from

context restoration outputs may be blurry.

Implementation: In this work, the CNNs for context restoration employ single convolution layers as

the convolutional units. In the analysis part, the architecture is similar to that of the VGG-Net [64],
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where there is a pooling layer following a few convolution layers. In the reconstruction part, if

the subsequent task is a classification task, then there are only a few deconvolution layers; if the

subsequent task is segmentation, then the reconstruction part is in symmetry with the analysis part

with concatenation connections, which is similar to a U-Net architecture [6]. The loss function of

CNNs in the subsequent tasks is the cross-entropy function.

All the CNNs use the Adam method [133] for optimizing the loss function. We use β1 = 0.9, β2 =

0.999, ε = 1e − 8. The learning rates varies for the different problems. Batch normalization [132] is

utilized in all CNNs. Random weights are used for initialization and sampled from a truncated normal

distribution with standard deviation of 0.01. The kernel size of the convolution and deconvolution

layers is 3× 3. The stride size of the convolution layers is 1 and that of the deconvolution layers is 2.

The CNNs implemented in this chapter use the Tensorflow1 platform. Our experiments are performed

on a desktop PC with an Core i7-3770 processor and 32GB RAM and with an NVIDIA TITAN XP

GPU processor.

6.4 Experiments and Results

To evaluate the proposed self-supervision approach we have conducted four sets of experiments: First,

we show the proposed self-supervision using context restoration task can be performed by CNNs on

three different datasets, including brain MR images, abdominal CT images, and fetal US images. In

addition, we use the pretrained CNNs for subsequent tasks such as classification, localization, and

segmentation, respectively. For each of these problems, a different dataset is used. More importantly,

we compare different self-supervised learning strategies, namely, training an auto-encoder [3], self-

supervision using patch relative position prediction [4], self-supervision using local context prediction

[5], and the proposed context restoration. For each dataset, the self-supervised learning is based on

the whole training set. The subsequent tasks are based on the whole, half, and quarter of the training

set, respectively.

1https://www.tensorflow.org/
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6.4.1 Context Restoration Results

We evaluate the CNNs employed for context restoration on three different datasets, including brain

MR images, abdominal CT images, and fetal US images. Figure 6.4 shows examples of the three

datasets. In all cases, the image context restoration achieve qualitatively good results. A shortcoming

is that the L2 loss results in image blur.

Figure 6.4: Self-srpervision using context restoration: For brain MR images, our training is on 2D
image patch level. Therefore, the context restoration is also based on patches.

6.4.2 Fetal Standard Scan Plane Classification

Overview: 2D US imaging is the most widely used medical imaging modality to assess the health

of the fetus. In the UK, the fetal abnormality screening programme (FASP) handbook [212] defines

guidelines for selecting a number of standard scan planes, which are used to make biometric mea-

surements and possible abnormalities. However, US images often have low quality because of noise,

artefacts, shadows, etc. Therefore, interpreting fetal US images is challenging. Baumgartner et al.

proposed a novel CNN-based approach (known as the SonoNet) to detect and localise the defined 13

different standard scan planes in real-time from US images [213].

Dataset: We use the same dataset as used in [213]. Our dataset consists of 2694 2D ultrasound
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examinations of fetuses with gestational ages between 18 and 22 weeks. More details about the

image acquisition protocol can be found in [213]. Figure 6.5 shows examples of each class of scan

planes.

Figure 6.5: Examples of standard scan planes and background views of 2D fetal ultrasound images.
The standard scan planes consist of brain view at the level of the cerebellum (Brain cb), brain view at
posterior horn of the ventricle (Brain tv), coronal view of the lips and nose (Lips), standard abdominal
view at stomach level (Abdominal), axial kidneys view (Kidneys), standard femur view (Femur),
sagittal spine view (Spine sag), coronal spine view (Spine cor), four chamber view (4CH), three
vessel view (3VV), right ventricular outflow tract (RVOT), left ventricular outflow tract (LVOT), and
median facial profile (Profile).

Implementation: The CNN for this classification problem is the SonoNet-64 which achieved the best

performance in [213]. In terms of the training strategy, we use a fixed learning rate of 0.01. In the

original training, each batch consists of 2 images from each of the standard scan plane categories and

26 images from background images. As a multi-class classification problem, the numbers of instances

across classes are imbalanced. In our implementation, we sample equal number of frames for each

class, including the background.

Evaluation: As in [213], we evaluate the performance of CNNs in this classification task using the

precision, recall, and the F1-score.

Results: Table 6.3 displays the results of performance of the CNNs under different configurations.

Balancing the numbers of instances in each class significantly improves the performance in all three

metrics.

In training in random initialisation situations, it is not surprising that less training data leads to worse

results. When the SonoNet is trained on half of the training data, the precision and recall both de-

crease, which lead to the decrease of the F1-score. Interestingly, when the SonoNet is trained on
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Table 6.3: The classification of standard scan planes of fetal 2D ultrasound images. The entries in
bold highlight the best comparable results.

Training data% Initialisation Precision (%) Recall (%) F1-score (%)
100% [213] Random 80.60 86.00 82.80
100%, Ours Random 89.39 89.66 89.42

50%

Random 84.69 84.94 84.64
Auto-encoder [3] 84.63 86.09 84.50
Relative positions [4] 85.15 86.79 84.74
Context prediction [5] 84.43 85.27 84.43
Context restoration 85.52 87.56 85.94

25%

Random 57.23 78.99 62.85
Auto-encoder [3] 55.54 82.87 62.32
Relative positions [4] 61.01 83.09 66.38
Context prediction [5] 57.73 81.58 63.10
Context restoration 65.69 85.25 69.93

quarter of the training data, the precision decreases significantly while there is only slight decrease in

terms of the recall. This suggests a large number of false positives (FPs) occur.

With the help of self-supervised pretraining, the performance of CNNs when using small training

sets can be improved. Specifically, when learning on half of training images, the F1-scores keep

stable in most cases except where the SonoNet is pretrained based on context restoration. In this

scenario, the baseline (i.e. random initialisation) is not far away from the ceiling (i.e. SonoNet on

the whole training set). Therefore, it is difficult to obtain improvements. The SonoNet pretrained

using context restoration can only offers marginal improvement. When learning using only a quarter

of training images, the SonoNet with feature initialisation from the auto-encoder pretraining still

cannot improve the baseline; while SonoNets using other pretraining strategies perform better than

the baseline. Our context restoration pretraining improves the SonoNet performance the most. This

suggests that context restoration pretraining is more useful for image classification in this case.

6.4.3 Abdominal Multi-organ Localization

Overview: In many medical image analysis problems, localization anatomical structures is a prereq-

uisite. For instance, in the liver segmentation challenge [214] hosted in MICCAI 2007, the provided
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CT images were cropped such that the livers were roughly localized. This excludes irrelevant organs

and tissue and benefits the segmentation. However, manual cropping requires expert knowledge and

costly. de Vos et al. [215] proposed a novel approach which can localize anatomical structures in 3D

medical images. This approach defines the localization as discovering bounding boxes in 3D images

so that regions within these bounding boxes contain target anatomical structures (see Figure 6.6).

Following this idea, we localise multiple abominal organs in CT images. The organs of interest are

pancreas, kidneys, liver, and spleen.

Dataset: A dataset of 3D abdominal CT image from 150 subjects is employed. The patient demo-

graphics and image acquisition details can be found in [153]. We normalize the volume intensities in

zero mean and unit deviation before analysis. The whole dataset is randomly divided into two equal

halves. The first half is used for training and validation and the other half is used for testing. Images

in this dataset were annotated at voxel level. We derive the reference bounding boxes and slice labels

(organ presence) using these annotations.

Implementation: The CNN for multi-organ localization task is similar to the SonoNet [213]. It

has one more stack of convolution and pooling layers than the SonoNet since the input images are

512× 512 which is approximately twice larger than the processed 2D ultrasound frames in each side.

The CNN for localization is also equipped with a global mean pooling layer. The output of this CNN

is a prediction vector with K elements indicating the probabilities of presence of the K organs. The

learning rate in this task is fixed as 0.001.

Evaluation: We follow [215] that distances (in mm) from the reference bounding boxes to the pre-

dicted bounding boxes are used to evaluate the localization performance. Specifically, we compute

the distances of the centroids and walls between bounding boxes.

Results: Table 6.4 displays localization performance of the CNN in different training strategies.

Initialising by pretrained features, particularly those from context restoration tasks, improves the

CNN performance.

Performance is compared among CNNs using different pretraining strategies. Training on incomplete

training set using random initialization is used as baseline in each comparison group. Within each
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Figure 6.6: An example of abdominal CT image in axial, coronal, and sagittal views. The pancreas,
left kidney, right kidney, liver, and spleen are colours in red, green, blue, yellow, and purple, respec-
tively.

group, the CNN pretrained using the auto-encoder sometimes improves the performance upon the

baseline. For instance, on half training data, it improves the centroid prediction of pancreas. How-

ever, it is worse than the baseline in terms of liver. In total, the results cannot verify auto-encoding

pretraining improves the CNN performance. In contrast, pretraining based on relative position predic-

tion and context prediction improves the CNN performance. Specifically, in most cases, pretraining

of these two tasks decreases the errors on baselines in terms of both centroid and walls. Importantly,
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pretraining based on context restoration results in more localization improvements. In some cases,

the CNN using context restoration pretraining is comparable to or even better than none pretraining

on more annotated training data. For instance, in terms of left kidney, the CNN on half training data

slightly outperforms that on all the training data; in terms of spleen, the CNN on a quarter training

data performs better than the one on half training data. These improvements cannot be achieved by

CNNs using other pretraining strategies.

In terms of different organs, the distance variance of centroid and walls in kidneys is significantly

larger than that of other organs. This is because not all patients have two kidneys. It is challenging for

CNNs to distinguish two kidneys individually because of inter-subject variance. CNNs are more likely

to make mistakes based on less training data. Although the CNN pretrained using the RP method on

quarter training data outperforms that using context restoration pretraining, it performs much worse in

left kidney. Regarding the pancreas, the performance of CNNs without pretraining decreases slightly

when the training data halves. However, it decreases significantly when there is only quarter training

data. In the opposite, in terms of the liver, the CNN performance decreases sharply with half training

data; while it remains stable with quarter training data. On the spleen, the situation is different. The

CNN performance keeps decreasing rapidly with less and less training data. It is noteworthy that if

less training data leads to significant decrease of results, self-supervised learning is likely to improve

the results significantly.

6.4.4 Brain Tumour Segmentation

Overview: Gliomas are the major brain tumours occurring in adults. They are routinely assessed

using MR imaging [27]. Accurate segmentation of gliomas on MR image is a key step for quantifi-

cation. Our segmentation task is based on the Brain tumour segmentation (BraTS) chanllenge [162].

The task is to segment the necrotic and non-enhancing tissues, the peritumoral edema, and gadolinium

enhancing tissues of tumour [161] on multi-modal MR images. Figure 6.7 shows such an example.

Dataset: We use the dataset of the BraTS 2017 challenge which consists of 285 subjects. Each

subject has MR images in multiple modalities, namely, native T1 (T1), post-contrast T1-weighted
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Figure 6.7: An example of MR image in multiple modalities with gliomas and the tumour structure
annotations. In the manual annotation image, the background, edema, non-enhancing tumours, and
enhancing tumours are coloured in purple, green, blue, and yellow, respectively.

(T1-Gd), T2-weighted (T2), T2 fluid attenuated inversion recovery (FLAIR). These images were

preprocessed that images in different modalities are co-registered into the same anatomical template;

skulls are removed; and voxels are resampled into the isotropic resolution (1mm3) [162]. Intensities

are normalized to zero mean and unit variance. We use 142 out of the 285 images for training and

validation and remaining 143 ones for testing.

Implementation: For the tumour segmentation in this work, we use a 2D patch-based CNN approach

as suggested in [24,185] in medical image segmentation since medical images usually have large sizes

while lesions of interest are small. Figure 6.4 shows an example of such patches. The patch size used

is 64 × 64. The CNN used in this experiment is a 2D U-Net [6]. The learning rate is fixed as 0.001.

We follow the post-processing strategy proposed in [179]: a 3D dense conditional random fields

(CRFs) [216] is used to refine the output of whole tumour structures; isolated voxel clusters of whole

tumours less than 1000 voxel size are then removed based on the connected component analysis; the

predicted voxels of tumour cores outside the regions of whole tumours are removed.

Evaluation: The evaluation is not based on three tumour classes individually. It is based on the

following three classes: the whole tumour region which include all tumour structures, the tumour

core region which include tumour structures except edema, and the enhancing tumour core region.

We use the same evaluation metrics in the BraTS 2017 challenge: Dice score, sensitivity, specificity,

and Hausdorff distance. Particularly, we use a robust version of the Hausdorff distance (Hausdorff95),

which measures the 95% quantile, instead of the maximum distance between two surfaces.

Results: Table 6.5 shows the results on the BraTS problem. The general experiment settings are sim-



118 Chapter 6. Self-Supervised Feature Learning for Medical Image Analysis

ilar to the previous experiments. According to the results, U-Nets [6] initialised by context restoration

pretraining achieve the best performance in total.

In terms of different pretraining strategies, the auto-encoding pretraining does not improve CNN

performance, which has been verified in previous experiments. This is also similar to the previous

experiments that pretraining based on relative positions and context prediction tasks improves the

segmentations but they are not as good as the pretraining based on the context restoration task. Again,

self-supervision based on context restoration offers best pretraining startegy for the segmentation task.

The decrease in U-Net performance is not significant every time when the size of the training data

halves. Therefore, the differences in performance among different self-supervision strategies are not

significant. The performance using self-supervision based on context restoration approaches that of

random initialisation on a larger dataset. For instance, using 50% of the training set, the proposed

self-supervision strategy offers similar performance to using the whole training set. The Dice score in

enhanced tumour core, the sensitivity in non-enhanced and enhanced tumour cores, and the Hausdorff

distances in all aspects are even slightly better.

6.5 Discussion and Conclusion

In this work, we proposed a novel self-supervised learning strategy based on context restoration. This

enables CNNs to learn useful image semantics without any labels. The subsequent task-specific CNNs

benefit from this pretraining. We conclude from the existing self-supervised feature learning literature

that the ideal pretraining task should have similar goal to the subsequent task. Particularly, in medical

image analysis, the image context is the common feature for classification, localization/detection,

and segmentation tasks. Therefore, the context restoration learning contribute to learning features for

these goals.

In addition, the CNNs for context restoration can be structured in flexible architectures depending on

subsequent tasks. The idea is to ensure subsequent tasks can make full advantages of the weights

from pretrained CNNs. Furthermore, the implementation of the context restoration task is simple and
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straightforward, meaning that it can be widely used. Compared with the existing strategies such as rel-

ative positions and context prediction, solving the context restoration task requires pattern recognition

and prediction, which ensures the context restoration task offers more efficient image semantics.

We have validated the proposed context restoration pretraining on three types of representative tasks

in medical image analysis, which are classification, localization, and segmentation. Each of these

tasks are based on a different type of medical images. The classification task is based on fetal 2D

ultrasound images; the localization task is based on abdominal CT image; and the segmentation task is

based on multi-modal brain MR images. In all three tasks, context restoration pretraining outperforms

other pretraining methods. These results underlines the advantages of our context restoration strategy.

In our experiments, we found that if the reduction of training data causes significant performance

decrease, the context restoration pretraining can offer significant performance improvement over the

baselines.

In computer vision, many CNNs are pretrained before the main task. For instance, the Faster R-

CNN [195] is based on the pretraining of the VGG-Net [64]. This type of pretraining leads to good

detection results in the Faster R-CNN. However, it was reported that the self-supervised pretraining

is not as good as the supervised pretraining [217]. This is not verified in this work since in medi-

cal image analysis, it is difficult to conduct supervised pretraining, which requires a large number of

annotations. However, it is noteworthy to exploring more powerful self-supervised learning method

so that the self-supervised pretraining can be as good as supervised pretraining in the future. Fur-

thermore, comprehensive image augmentation contributes to the model performance based on small

training datasets. We plan to study the effect of data augmentation when using self-supervised learn-

ing.



Chapter 7

Small Vessel Disease Identification on CT

Images

The work in this chapter is based on:

• L. Chen, T. Tong, C.P. Ho, R. Patel, D. Cohen, A.C. Dawson, O. Halse, O. Geraghty, P.E. Rinne,

C.J. White, T. Nakornchai, P. Bentley, and D. Rueckert, “Identification of cerebral small vessel

disease using multiple instance learning,” in Proceedings of the International Conference of

Medical Image Comupting and Computer-Assisted Intervention, pp. 523–530, 2015.

7.1 Introduction

Fazekas et al. [218] proposed a standard approach for SVD grading. In this approach, SVD is di-

vided into four categories according to the degree of the lesion severities: absent, mild, moderate,

and severe. Generally, mild SVD is associated with normal brain ageing while moderate or severe

SVD suggests potential risks for diseases such as stroke. It can be seen in Figure 7.1 that the lesion

severity relates to lesion volumes and if it extends to gray matter (GM). As such, if lesion volumes

and positions can be quantified, then Fazekas grading can be addressed using classic machine learning

algorithms, including logistic regression, SVM, and RF. However, the SVD lesion quantification is
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challenging so Fazekas scores are qualitatively graded by experts. Lesion quantification requires fine

annotations at voxel level, which is expensive in terms of time and human resource. In addition, it

is difficult to distinguish SVD lesions and normal tissue since the lesions look blurry, particularly at

boundaries.

Figure 7.1: Examples of CT images of the brain: (a) normal brain appearance, (b) brain with mild
cerebral SVD, (c) brain with moderate SVD, and (d) cerebrum with severe SVD. The red arrows point
out where the lesions are.

There have been a large number of studies focusing on the automatic analysis of brain MR images.

For instance, in terms of Alzheimer’s Disease (AD), machine learning techniques have been exten-

sively used to classify controls and patients [219–221]. However, there are very few works that focus

on the classification of subjects suffering from stroke and even fewer which use CT images [222]. The

cutting-edge studies on CT images [223–225], are typically based on statistical values and threshold.

These methods are fairly simple and cannot perform well on large datasets. To the best of our knowl-

edge no machine learning approach has been proposed for the identification of SVD in a large dataset

of CT images. This is because CT images are usually not annotated at voxel level so the key features

such as lesion volumes cannot be achieved. Classic machine learning algorithms are not applicable.

In the context of similar challenging classification problems in medical images, weakly supervised

machine learning approaches, particularly MIL [226] have been very successful. The reason is that

the diagnosis of medical images is usually based on some ROIs instead of the whole image; however

annotations on these ROIs are usually unavailable and annotations are only on the image level. Con-

ventional machine learning methods analyzing the whole images are difficult to achieve satisfactory

classification results. In contrast, the MIL can solve classification problems where annotations are

coarse-grained. In MIL, each image can be recognized as a bag containing a number of instances.
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The instances are features extracted from the image. Different images have different number of

instances. In binary classification of MIL, a bag is positive if there is one positive instance in it;

otherwise the bag is negative. The labels of the instances are unknown but the label of the image is

known. For instance, Tong et al. [96] employed MIL to classify subjects in the context of AD. In this

case, only subject level classes are available but the class of a subject is strongly associated with the

regions around the hippocampus. To this end, the image patches around the hippocampus were ex-

tracted and packed into bags. Then the SVM classifier was used on the bag level to achieve desirable

classification results.

There are many MIL methods that have been developed and applied, e.g. MIS-Boost [93], MIForest

[227], and EM-Diverse Density [228]. The MIS-Boost proposed by Akbas et al. [93] is based on

boosting. It outperforms a number of other similar algorithms on several benchmark datasets. This

approach aims to learn a specific instance for each weak classifier, which is able to discriminate two

categories of bags.

In this chapter, we address the problem of automatic SVD identification on CT images. An MIL-based

framework is proposed to classify SVD into normal (absent and mild) and abnormal (moderate and

severe) groups on a large dataset of CT images. In our approach, each CT image is regarded as a bag,

which contains a number of image patches (i.e. instances). The MIS-Boost algorithm is formulated

to apply on the bags for classification. We achieve good results distinguishing SVD lesions with

different severity groups. Comparisons among other state-of-the-art algorithms show the advantages

of our method.

7.2 Methods

7.2.1 Overview

In our approach, we first build feature bags upon images. Instances in these bags are a number of

image patches. Afterwards, a classifier based on boosting is formulated to learn several featured

instances, which are used to distinguish bags. As such, patients with absent/mild SVD and moder-
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ate/severe SVD can be discriminated without fine-grained annotations.

7.2.2 Patch Extraction

In MIL, each bag contains a number of instances, which are patches in our case. Patches were ex-

tracted from original CT images since the slice thickness varies between different scans and resam-

pling them to a constant voxel size will reduce the image quality. The extraction was guided by an

atlas, which shows the regions with high probability of SVD lesions. In order to construct such an

atlas, we collected 277 MR images with SVD. For all these MR images, clinical experts manually

outlined ROIs corresponding to the SVD lesions. They were then registered and normalized onto a

standard template so that we are able to obtain the lesion atlas. The template was developed by Ror-

den et al. [229]. The atlas constructed shows the probability for each voxel in the brain to be part of

an SVD lesion. We excluded the regions with very low abnormal probability (< 4%) in the atlas since

they are likely to be outliers. Finally, the lesion atlas was mapped back to each individual CT image

so that for each CT image a native lesion atlas is available which shows regions with high probability

of lesions. Figure 7.2 visualizes this processing pipeline.

Details of mapping the lesion atlas to native spaces are as follows. First, all CT images were re-

sampled to a uniform voxel size. Separate image volumes from the same subjects were joined as

single volumes. Subsequently, we corrected the gantry tilt and rigidly co-registered all volumes to the

template space. Following this step, a non-rigid registration [116] was performed between individ-

ual images and the template. Finally, the lesion atlases in individual native spaces were achieved by

inverting the deformations.

Figure 7.2: The process of atlas construction and mapping back. The red regions are the ROIs for
patch extraction.
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7.2.3 MIS-Boost

Given bags and their labels, MIL is recognized as a supervised learning method, which learns the

mapping X → Y, where X is a set of training data and Y = {−1,+1} is the set of corresponding

labels. In this case, X = {B1,B2, . . . ,BN} and for each bag Bi = {I1, I2, . . . , Ini
}, where Ik ∈ Rr

is the k-th instance in bag Bi. N is the number of bags. ni is the number of instances in the i-th bag. r

is the size of a patch. The boosting-based MIL proposed in [93] aims to learn a “bag-level” classifier

F (B) = sign

(
M∑
m=1

fm(B)

)
, (7.1)

where fm(·),m = 1, 2, . . . ,M , are weak classifiers defined as

fm(B) =
2

1 + e−(β1D(pm,B)+β0)
− 1. (7.2)

The task of each weak classifier is to find a patch pm, which serves as an instance, to discriminate

different bags. The distance from an instance to a bag is defined as:

D(pm,B) =
n∑
k=1

πkd(pm, Ik), (7.3)

where

d(pm, Ik) = ‖pm − Ik‖2, (7.4)

and

πk =
e−αd(pm,Ik)∑n
l=1 e

−αd(pm,Il)
. (7.5)

d(pm, Ik) is the distance between the specific instance pm and the k-th instance Ik in the bag, which

is the standard Euclidean distance. πk is the associated weight. α is a constant and is set as 1e− 4 in

this case. D(pm,B) is the weighted average distance of pm to each instance in the bag. fm(·) maps

this distance into the range [−1, 1].

In order to learn pm, an error function is defined based on the Adaboost algorithm [230]. We obtained

the parameters β0, β1, and pm by minimizing the weighted error between the ground truth labels and
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the predictions made by weak classifiers.

min
pm,β0,β1

εm =
N∑
i=1

wi(yi − fm(Bi))
2 (7.6)

In [93] the optimization problem is solved via a coordinate descent algorithm. This uses a line-search

method and therefore does not require the calculation of derivatives. However, each iteration is very

time-consuming. In this work, we propose to use the region-trust-reflective method [231] to allow

a more efficient optimization. Therefore, we formulate optimization of the objective function as a

non-linear least square fitting problem.

For initialization, we performed k-means clustering for all instances in all the bags. The k-means

algorithm was randomly initialized. The resulting K clustering centres were used as input for the

initial pm and we selected one leading to the minimum error εm among them. The K is set as 3 in our

implementation, representing three types of patches: 1) patches with normal tissue, 2) patches with

SVD, 3) others. In order to decide on the number of weak classifiers M , we split the training dataset

into sub-training and validation sets and pick up the optimal M with minimum validation error. The

work-flow of the algorithm is demonstrated in Algorithm 2.

Algorithm 2: Pseudo-code for the MIS-Boost algorithm
Input: training data X and Y
Initialization
Split X into Xtrain and Xvalid; Y into Ytrain and Yvalid

for m = 1 . . .M do
[pm, β0m, β1m]← arg min εm
wi ← wie

−yifm(Xtrain)/Z, Z is the normalization term
F ← F + fm(Xvalid)
errorm ← evaluate F on Yvalid

M ← arg min error
Output: F (B)←

∑M
m=1 fm(B)
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7.3 Experiments and Results

7.3.1 Imaging Data and Pre-processing

In this study, all the data was collected from a local hospital. We collected 627 baseline CT brain

images with stroke. For all patients, the imaging was carried out within a short time window after

stroke (4.5 hours). The average age of these subjects is 70.75 ± 10.83. There are 326 male and 301

female participants. The labels of these images were assessed by experts according to the Fazekas

scoring system [218]. The inter-rater consistency is about 75% among experts.

In order to reduce the radiation burden for patients, in some subjects the brains were scanned in two

separate volumes including the cerebrum and the base using different voxel sizes. For the images

scanned separately, the voxel sizes of cerebrum and base are approximately 0.45 × 0.45 × 7.2 mm

and 0.45 × 0.45 × 2.4 mm, respectively. The voxel size of the whole-brain scans is approximately

0.38× 0.38× 3 mm. The template’s voxel size is 2× 2× 2 mm.

The atlas mapping pipeline failed for 37 CT scans because of poor image quality and/or patient move-

ment. These subjects were excluded and we used the remaining 590 scans in the following experi-

ments, which consists of 350 subjects with absent/mild SVD and 240 subjects with moderate/severe

SVD.

7.3.2 Patch-Based Identification of SVD

In order to obtain two SVD groups which are balanced in terms of number of subjects, we randomly

sampled 240 subjects from the absent or mild group and performed leave-10%-out cross-validation.

The random sampling was repeated for T = 10 times and the final results are average values of the T

repeats. In this paper, abnormal bags and instances are regarded as positive.

In MIS-Boost, each subject is modelled as a bag, which can contain a number of patches as the

instances. The patches were extracted from the region of interest (ROI) according to the atlas. The

ROI is defined by those voxels in which the prior probability for lesions is high. As different original
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CT scans have different numbers of slices and the size of the brain varies, different bags contain

different numbers of instances. We obtain in average 2313 patches (std: 762) in a bag. Given the

different slice thickness of the different scans, 2D patches were extracted with a patch size of 15×15.

The results are shown in Table 7.1.

Table 7.1: Classification performance of different classifiers and features. Results of MIS-Boost and
RF are based on T times cross-validation.

Classifier Feature Accuracy(%) Sensitivity(%) Specificity(%)

MIS-Boost Patch in ROI 75.04±1.37 80.17±1.65 69.92± 1.37

RF
Voxel in ROI 70.65± 0.03 69.63± 0.04 71.67±0.04
Voxel in whole brain 65.25± 0.02 65.64± 0.04 64.96± 0.04

Threshold t-Score 54.07 5.42 48.64

In order to demonstrate the advantages of our model, we compared the results to those obtained using

alternative approaches. We compared our approach to RF [44]. It is one of the most popular standard

machine learning methods and has achieved a notable success in classification of AD patients and

controls using imaging data [232]. As the CT images have been registered and normalized to the

template, the voxels of processed images were selected as features for the RF. Voxels were extracted

from the whole brain and the ROIs, respectively.

We also compared the approach by [225] which has shown the ability for automated stroke lesion

delineation on brain CT images. In this approach a t-score map is calculated, which can be used

to delineate stroke lesions when combined with a carefully selected threshold. Since acute stroke

lesions are similar to SVD in terms of intensity and texture, this approach can be tested in terms of its

performance for the evaluation of SVD. We collected Nc = 307 CT images without SVD to calculate

the standard t-score map in the template’s space. The t-score for each patient x is calculated as:

t =
x− 1

Nc
ΣNc
i=1ci√

Nc+1
Nc(Nc+1)

ΣNc
i=1

(
ci − 1

Nc
ΣNc
i=1ci

)2 (7.7)

Here, ci is the i-th control subject. Then the t-score maps are mapped to the individual native spaces

using the transformations developed above. For each individual subject, we delineated the potential

SVD lesions by applying the selected threshold to its t-score map and obtained the volume of the le-
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sions. We then sorted the volumes of all subjects and chose the median as the threshold to distinguish

normal and abnormal subjects in terms of SVD.

According to Table 7.1, our implementation of patch-based MIS-Boost outperforms the other two

methods. It is clear that a simple method based on thresholds is unreliable since its sensitivity is

low. This means it cannot detect abnormal subjects. Compared with the threshold-based method, the

RF-based method improves the accuracy by 10%. In addition, the RF classifier achieves the trade-off

between FPs and FNs since the gap between sensitivity and specificity is small. The use of voxels

from the ROIs defined by the atlas enhances the accuracy by 5% compared to using voxels from the

whole brain. Furthermore, our proposed model boosts the classification accuracy by an additional

5%. Apart from the high accuracy of classification, the sensitivity of MIS-Boost is high.

7.4 Discussion and Conclusion

We have presented a framework in which boosting-based MIL is used to learn patches for discrimi-

nation of normal or abnormal brain degeneration. To the best of our knowledge, this is the first work

to automatically identify the SVD categories on CT.

A key feature of the proposed method is that individual CT images are formulated as bags, which

enables the SVD identification without fine-grained annotations. We propose to use an atlas of SVD

lesions derived from MR images. Compared with the low resolution of CT images, MR images

are able to show brain lesions in detail. MR imaging is therefore regarded as the gold standard in

the assessment of SVD. This provides prior knowledge where lesions occur frequently in the brain.

In addition, our method has been verified on a large clinical CT dataset, which shows potentials of

clinical use.

We have also shown that the classification results obtained using classic techniques such as RF are

not as good as those achieved using our proposed approach. The proposed method also showed its

strength compared to standard clinical approaches, where basic statistical features are used. Since

CT images show a low signal-to-noise ratio, small lesions like SVD are difficult to be identified at a

voxel. In contrast, patch-based features decrease the effect of noise.
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In the future, the proposed method will be applied to a larger dataset including data from different

clinical centres so that the framework can be tested more widely in terms of robustness and accuracy.

More importantly, our final goal is to predict the outcome of stroke – whether the stroke patients will

hemorrhage or not. This will help to reduce the rate of ICH significantly, which will improve quality

of patients’ lives and reduce the pressure for the public health services.
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Conclusion

8.1 Summary

The thesis has focused on addressing key challenges in medical image analysis. The methods pro-

posed in this thesis make use of different machine learning techniques, including random forests, deep

neural networks, and multi-instance learning.

The first contribution is an automated framework based on multi-scale patches and random forests

for segmentation on poor quality medical images. In Chapter 3, this framework has been applied

to segment WML on clinical CT images. Image patches across multiple scales provide rich context

information. Using this information, lesions can be accurately segmented even when the image quality

is poor. An existing WML atlas was used to guide the segmentation, which improves the efficiency of

the framework. A comprehensive evaluation of the framework was performed based on large clinical

trial datasets. The results obtained using the proposed framework were compared to those achieved

by human experts, in terms of segmentation similarity, predicted lesion volume, and disease ratings

using two scoring systems. Our results showed that the proposed method was comparable to human

experts, which suggests our method is robust and applicable to clinical practice.

In medical image analysis, segmentation is a common challenge in many clinical applications. A

generic segmentation method is useful as it can be used in different applications. With this in mind,
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we have proposed a novel CNN architecture, namely DRINet, which was based on the DenseNet [11]

and the Inception Net [15]. The three key components of the DRINet, which are the dense connection

block, the residual inception block, and the unpooling block, widen and deepen the network over the

classic FCN while the parameter space of the whole network can be controlled. In Chapter 4 The

DRINet architecture has been validated on three different types of segmentation problems: Multi-

class segmentation of brain CSF in CT images, multi-organ segmentation of abdomen in CT images,

and multi-class segmentation of brain tumours in MR images. Compared to the classic approaches

such as FCN and the U-Net [6], significant improvements were observed for the DRINet approach in

all three experiments.

Although the DRINet solves general segmentation problems well, a more sophisticated framework

is required for complex segmentation problems. More precisely, if the target of interest is highly

variable in terms of position, size, and shape, and artefacts are present, a framework based on multiple

CNNs is desired. In Chapter 5, we have proposed such a framework to segment the acute ischemic

lesions in DW images. A particular challenge is that acute ischemic lesions can occur anywhere in

the brain. Furthermore, the difference between real lesions and the artefacts is very subtle. As such,

a single CNN cannot address the segmentation problem well due to FPs and FNs. To address this,

we proposed the EDD Net which is an ensemble of two DeconvNets [2] and reduces the number of

FPs and FNs. The second CNN, which is the MUSCLE Net evaluated the detections of the EDD

Net and reduced the number of FPs further. Compared to the single CNN, we observed significant

improvements achieved by the EDD Net and the MUSCLE Net, respectively.

In medical imaging, there are often only very few images which have been annotated. If models were

developed on these limited images with annotations, the large amount of images without annotations

remain unused. Using the images without annotations is likely to help to improve the performance

of machine learning models. We have proposed a novel strategy to make use of the unannotated

images to improve the model performance. The proposed approach was based on the self-supervised

learning; the basic idea was training an extra CNN, which learns the image semantics using synthetic

labels. Afterwards the learned weights were used to initialize the main CNN, which was trained on the

annotated images. For medical images are typically static images in gray scale, existing applicable

self-supervised methods, including patch relative positions and local context prediction, are likely
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to learn trivial features. We have proposed to randomly disrupt the image context and used a CNN

to learn to restore it. This forces the CNN to learn the image semantics. In Chapter 6, we have

evaluated the proposed strategy in three different types of medical image analysis problems, namely

classification, localization, and segmentation. These applications were based on different types of

medical images, namely fetal ultrasound images, abdominal CT images, and brain MR images. The

results demonstrated that 1) the proposed context restoration strategy improves CNN performance

in all cases; 2) the context restoration learning provides more useful image semantics than existing

methods, which lead to the best results; 3) in some cases, the performance achieved via self-supervised

learning is comparable to full supervised learning.

Since annotating medical images is expensive in terms of time and human resource, there are several

scenarios in which images can only be weakly annotated. An example is that only coarse-grained

labels are available. In Chapter 7, we have proposed a framework based on multi-instance learning to

address such problem. In the clinic, the SVD is usually assessed via CT or MR images and grading

is performed according to well-established scoring systems. Usually, no fine-grained annotations of

the lesions in medical images is performed. In the proposed approach, patches associated with the

SVD lesions were extracted from individual CT images. The patch extraction was guided by an

MRI-derived atlas, which defines the ROIs of SVD lesions. Each CT image was regarded as a bag

comprising a number of patches (instances). The MIS-Boost [93] algorithm was adapted and applied

on these bags. The learning results were a few distinctive instances discriminating different bags. The

proposed framework was observed to perform better than classic machine learning methods such as

the random forests, as well as existing clinical methods based on statistical scores and thresholds.

8.2 Limitations

Although the thesis has contributed to several key challenges in medical image analysis problems,

these contributions still have some limitations.

Chapters 3, 4, and 5 have focused on segmentation problems and achieve promising results. However,

given a set of images with manual segmentations, the upper bound accuracy that an automatic method
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can achieve is still unknown. Empirically, a generic approach such as the DRINet is applied to achieve

a baseline segmentation. Then techniques including adjusting the network parameter space are used

to improve the baseline. However, it is difficult to understand if the developed model can be improved

further and how much improvement can be expected.

Second, we have contributed a novel self-supervised learning strategy which restores image context,

in order to make use of images without annotations. Our results showed that the CNNs solving

different types of problems benefit from the self-supervised proxy training, which improves the CNN

performance. We also observed that the performance improved more if the labelled training data was

less. Furthermore, the context restoration was superior to existing self-supervised learning methods in

terms of learning image semantics. However, these observations are only based on empirical evidence.

It remains unknown whether there is a generally optimal self-supervised learning strategy or what is

the best self-supervised learning strategy for individual tasks. It is also open how much improvement

can be expected with certain amount of annotated data using a self-supervised learning strategy.

Finally, the analysis in Chapter 3 included annotations from multiple experts. The annotations, includ-

ing pixel-level delineations and subject-level ratings, contain differences among experts. However,

the model training in the work of all chapters has been based on single expert’s delineations. These

delineations are regarded as ground truth labels for training, which is likely to lead to a bias in the

evaluation. As such, the models do not work well in some cases. For instance, the random forests

model developed in Chapter 3 was observed to be more conservative than other experts, in terms of

SVD lesion estimation.

8.3 Future Work

In the future, it would be very interesting to explore the following areas in more detail:

Theoretical Analysis: In medical image analysis, many problems can be well addressed using DNNs,

such as image classification and segmentation. The most promising results are achieved using large

amounts of annotated images. However, in medical imaging it is difficult to build datasets as large as
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the Microsoft COCO [233]. Therefore, one has to be careful with regards to underfitting and overfit-

ting. To address underfitting problems, a theoretical analysis is necessary to identify the performance

upper bound and how one can reach the upper bound. To address overfitting problems, learning to

generalize from images with limited annotations, weak annotations or without annotations is the key.

This requires solid theoretical analysis which does not exist.

Data Auditing: In an image dataset comprised of natural images, objects of interest (e.g. cars,

houses) can be accurately recognized by most human observers. However, given a medical image, it

is likely that different experts may have different opinions with regards to the annotation. Ideally each

image should be annotated by a number of experts and a consensus can be computed and used for

model development. However, this is too expensive in terms of time and human resources. In practice,

a dataset is usually annotated by a small group of experts. Each of the experts annotate a subset of

images and each image is annotated by no more than a few experts. Before model development, the

quality of annotations by different experts should be evaluated so that a reliable consensus can be

achieved.

Extracting Clinically Useful Information: Medical image analysis provides clinicians with useful

tools for quantification, diagnosis and treatment planning. For classification tasks, the output is a pre-

dicted categorical label. For detection tasks, the output is usually a bounding box highlighting objects

of interest. For segmentation tasks, the output is typically a soft probability map, which can be con-

verted to binary maps. Then the volume of segmentation can be quantified. The binary segmentation

map can be used for geometric reconstruction and visualization. In addition, more clinically useful

information can be explored, such as the correlation between the measured quantities and disease out-

comes. For instance, we have contributed to analysing medical images from stroke patients and we

have achieved good results on SVD segmentation, brain CSF segmentation and acute ischemic lesion

segmentation. Afterwards, it is clinically useful to study if measurements on these segmentations re-

late to the ICH. Furthermore, follow-up scans can be used to assess lesion evolvement. Understanding

the lesion evolvement helps clinicians improve their diagnosis and treatment.
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