2,742 research outputs found

    Cyber security situational awareness

    Get PDF

    Data fusion strategy for precise vehicle location for intelligent self-aware maintenance systems

    Get PDF
    Abstract— Nowadays careful measurement applications are handed over to Wired and Wireless Sensor Network. Taking the scenario of train location as an example, this would lead to an increase in uncertainty about position related to sensors with long acquisition times like Balises, RFID and Transponders along the track. We take into account the data without any synchronization protocols, for increase the accuracy and reduce the uncertainty after the data fusion algorithms. The case studies, we have analysed, derived from the needs of the project partners: train localization, head of an auger in the drilling sector localization and the location of containers of radioactive material waste in a reprocessing nuclear plant. They have the necessity to plan the maintenance operations of their infrastructure basing through architecture that taking input from the sensors, which are localization and diagnosis, maps and cost, to optimize the cost effectiveness and reduce the time of operation

    Multisensor Data Fusion Implementation for a Sensor Based Fertilizer Application System

    Get PDF
    "Mapping systems" (“mapping approach”), real-time sensor-actuator systems ("sensor approach") or the combination of both (“Real-time approach with map overlay”) determine the process control in mobile application systems for spatially variable fertilization. Within the integrated research project “Information Systems Precision Farming Duernast” (IKB Duernast) the implementation of the “Real-time approach with map overlay” was done for intensive nitrogen fertilization. The bottom line of this sophisticated approach is a comprehensive situation assessment, a typical multisensor data fusion task. Based on a functional and procedural modelling of the multisensor data fusion and decision making process, it could be pointed out that an expert system is an adequate fusion paradigm and algorithm. Therefore, a software simulation with an expert system as core element was implemented to fuse on-line sensor technology measurements (REIP), maps (yield, EM38, environmental constraints, draft force) and user inputs in order to derive an application set point in real-time. The development of an expert system can be viewed as a structured transformation in five levels from the “specification level”, the “task level”, the “problem solving level” and the “knowledge base level” to the “tool level”. In the “tool level” the hybrid expert system shell JESS (Java Expert System Shell) was selected for implementation due to the results of preceding levels. Knowledge acquisition was done within another IKB-subproject by the means of data mining. Typical and maximal times of 10 ms and 60 ms for one fusion cycle were measured running this application on a 32-bit processor hardware (Intel Pentium III Mobile, 1 GHz)

    ATC Trajectory Reconstruction for Automated Evaluation of Sensor and Tracker Performance

    Get PDF
    Currently most air traffic controller decisions are based on the information provided by the ground support tools provided by automation systems, based on a network of surveillance sensors and the associated tracker. To guarantee surveillance integrity, it is clear that performance assessments of the different elements of the surveillance system are necessary. Due to the evolution suffered by the surveillance processing chain in the recent past, its complexity has been increased by the integration of new sensor types (e.g., automatic dependent surveillance-broadcast [ADS-B], Mode S radars, and wide area multilateration [WAM]), data link applications, and networking technologies. With new sensors, there is a need for system-level performance evaluations as well as methods for establishing assessment at each component of the tracking evaluation.This work was funded by contract EUROCONTROL’s TRES, by the Spanish Ministry of Economy and Competitiveness under grants CICYT TEC2008-06732/TEC and CYCIT TEC2011-28626, and by the Government of Madrid under grant S2009/TIC-1485 (CONTEXTS).Publicad

    Automatic Adaptation of Airport Surface Surveillance to Sensor Quality

    Get PDF
    This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing method

    Opportunity Trajectory Reconstruction Techniques for Evaluation of ATC Systems

    Get PDF
    This paper describes some key points of a new tool being currently developed by Eurocontrol for the assessment of air traffic control (ATC) multisensor trackers performance. It summarizes the algorithmic foundations of the high-accuracy trajectory reconstruction process used to obtain reference trajectories from recorded measures. These trajectories will serve as a reference for the evaluation of the accuracy of ATC data processing centers. The performance of the system is illustrated with some reconstruction experiments on synthetic and real data

    Towards a Unified Approach to Information Integration - A review paper on data/information fusion

    Full text link

    Cognitively-Engineered Multisensor Data Fusion Systems for Military Applications

    Get PDF
    The fusion of imagery from multiple sensors is a field of research that has been gaining prominence in the scientific community in recent years. The technical aspects of combining multisensory information have been and are currently being studied extensively. However, the cognitive aspects of multisensor data fusion have not received so much attention. Prior research in the field of cognitive engineering has shown that the cognitive aspects of any human-machine system should be taken into consideration in order to achieve systems that are both safe and useful. The goal of this research was to model how humans interpret multisensory data, and to evaluate the value of a cognitively-engineered multisensory data fusion system as an effective, time-saving means of presenting information in high- stress situations. Specifically, this research used principles from cognitive engineering to design, implement, and evaluate a multisensor data fusion system for pilots in high-stress situations. Two preliminary studies were performed, and concurrent protocol analysis was conducted to determine how humans interpret and mentally fuse information from multiple sensors in both low- and high-stress environments. This information was used to develop a model for human processing of information from multiple data sources. This model was then implemented in the development of algorithms for fusing imagery from several disparate sensors (visible and infrared). The model and the system as a whole were empirically evaluated in an experiment with fighter pilots in a simulated combat environment. The results show that the model is an accurate depiction of how humans interpret information from multiple disparate sensors, and that the algorithms show promise for assisting fighter pilots in quicker and more accurate target identification

    READUP BUILDUP. Thync - instant α-readings

    Get PDF

    Emergency management in the highways of the future. A performance-based multilayered ITS architecture design proposal

    Get PDF
    Emergency management is one of the key aspects within the day-to-day operation procedures in a highway. Efficiency in the overall response in case of an incident is paramount in reducing the consequences of any incident. However, the approach of highway operators to the issue of incident management is still usually far from a systematic, standardized way. This paper attempts to address the issue and provide several hints on why this happens, and a proposal on how the situation could be overcome. An introduction to a performance based approach to a general system specification will be described, and then applied to a particular road emergency management task. A real testbed has been implemented to show the validity of the proposed approach. Ad-hoc sensors (one camera and one laser scanner) were efficiently deployed to acquire data, and advanced fusion techniques applied at the processing stage to reach the specific user requirements in terms of functionality, flexibility and accuracy
    • …
    corecore