
Automatic Adaptation of Airport Surface Surveillance to Sensor 
Quality 

 

Juan Besada, Guillermo Frontera, Ana M. Bernardos, Gonzalo de Miguel 
Universidad Politécnica de Madrid 

besada@grpss.ssr.upm.es 
  

ABSTRACT 
This paper describes a novel method to enhance current 
airport surveillance systems used in Advanced Surveillance 
Monitoring Guidance and Control Systems (A-SMGCS). 
The proposed method allows for the automatic calibration 
of measurement models and enhanced detection of non-
ideal situations, increasing surveillance products integrity. 
It is based on the definition of a set of observables from the 
surveillance processing chain and a rule based expert 
system aimed to change the data processing methods 
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INTRODUCTION 
Multisensor multitarget tracking (MMTT) systems are the 
basis of modern airport surveillance systems. They rely on 
the coupled operation of: 
• Association systems, obtaining a unique target track 

from data from all sensors. They contain means for 
track initiation, association of measures to tracks, 
and track deletion for tracks not receiving updates. 

• Highly accurate tracking filters (such as IMM filters 
[1]), which exploit all available sensor 
measurements enabling fast manoeuvre detection 
and possibly airport map information. 

Much effort has been devoted in the last years to the 
definition of bias estimation procedures for MMTT systems 
(among others [2][3][4]). The basic idea is estimating all 
bias terms in the measurements potentially causing 
consistency mismatch, and removing them from the raw 
measures, providing the tracking filters with bias corrected 
(therefore unbiased) measures. 
In A-SMGCS, the most common sensors used for target 
tracking include: 
• Radar data, from Surface Movement Radar 

(SMR)[6]. 
• Multilateration data from multilateration sensors, 

based on Mode S squitters. 
• Automatic dependent surveillance (ADS-B) data [5], 

usually from DGPS navigation measures. 
The complementarity nature of these sensor techniques 
allows a number of benefits (high degree of accuracy, 
extended coverage, enhancements to systematic errors 
estimation and correction, etc.) and brings new challenges 
for the fusion process in order to guarantee an improvement 
with respect to any of the sensor techniques used alone. 

The fusion of all measurements requires a robust process 
that considers detailed characteristics of all data sources 
and checks their consistency before being fused.  
An example data processing architecture for airport 
surveillance is depicted in next figure. One of its main 
problems is the lack of automatic means to adapt to 
changes in sensor quality. 

 
Fig. 1. Surface MMTT architecture 

In this paper we define a novel approach to cover bias 
estimation, noise covariance estimation (present on some 
systems), association and detection estimation and real time 
adaptation to current sensor situation. 
In general, in all considered measurement sources there are 
two types of sources of error: 

• Random terms (i.e. thermal noise, quantization 
errors, or measurement timestamp jitter), usually 
modelled as white noise. 

• Constant or slow-changing terms, spatially 
correlated, which may be modelled as bias. 

In addition, not every attempt to perform detection is 
successful with radar sensors. Also, a certain percentage of 
measurements suffer errors much in excess of nominal 
statistics. They are usually marked as outliers, and they are 
due to some non-linear effect of the sensor, probably due to 
some kind of malfunction. 
In stationary or slow changing conditions, all those 
problems’ effect on tracking may be alleviated through 
manual adaptation, tuning the association and filtering 
processes to the current sensor situation. If there is a 
sudden change in detection or error behaviour of a given 
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sensor, the system must be able to respond rapidly (and 
therefore automatically) in order to either adapt to the new 
conditions, or to even preclude the use of some sensor data. 
The paper starts with the definition of all sensors of interest 
detection models, and then describes and justifies the 
overall sensor state assessment process. Then, the 
adaptation procedure is described, and a simulation-based 
example for some of the described problematic situations is 
included. 
SENSOR MEASUREMENT PROCESS DESCRIPTION 

Surface Movement Radar 
SMR is a kind of radar aimed to monitor aircraft 
movements on airport surface [6]. It is a high-resolution 
radar sensor: the range of a target usually extends over 
several azimuth beam widths and includes a few range 
cells. The plot position is obtained through extraction of 
radar image centroid. 
Due to occlusion, some parts of the aircraft may not be 
visible to the radar, and some others may appear disjointed. 
Also, measures may suffer from the presence of false 
alarms due to thermal noise or reflections on ground or rain 
(clutter). Some pre-processing is present in order to group 
plots belonging to the same target, and merge them into a 
unique measure. 
ADS-B  
ADS-B is based on the broadcasting of aircraft navigation 
information to ground through a data-link [5], using a 
unique identifier, known as ICAO address. Due to its 
cooperative nature, it does not suffer from the generation of 
false alarms, but sometimes outliers can appear due to 
coding/decoding issues. 
In airport, ADS-B measures usually come from DGPS 
navigation systems (either of local area or of Wide areas). 
These high quality ADS-B measurements do not suffer 
measurement biases, but in the case they have integrity 
problems. 
Multilateration Error models 
Multilateration measurement performs Time Difference Of 
Arrival (TDOA) estimation to calculate target position, 
based on the emission by the aircraft of random signals and 
its reception by a ground-based station network. 
This system can suffer from the appearance of false alarms 
due to presence of multipath, leading to potential 
duplicated data as splits, but a non-malfunctioning 
multilateration sensor must have a very small false alarm 
rate or outlier rate. 
The error of multilateration is a function of several 
variables, such as the geometry of the receiving stations 
and transmitter, the timing accuracy of the receiving 
stations and the accuracy of the synchronization of the 
receiving sites. The effect on position estimation due to 
drift errors must be approximately cancelled through 
accurate synchronization. 

We assume the position bias was corrected by the internal 
calibration system, while there can be a time offset with 
respect to fusion system reference clock. 
SURVEILLANCE SENSORS ASSESSMENT AND 
ADAPTION 
The proposed Multisensor Data fusion is depicted in Fig 1, 
where the usual Multisensor Multitarget Tracker (MMTT) 
has attached a parallel on-line Surveillance Sensor 
Assessment & Adaptation procedure. This procedure 
derives MMTT adaptation data from all sensor 
measurements and from Association data and 
multisensor/monosensor tracks. 

 
Fig. 2. Adaptive Multisensor Data Fusion Proposal 

Surveillance Sensor Assessment and Adaptation is based 
on the observation of a set of data providing indirect 
information on not-modelled errors or situations, and in the 
update of sensor related models and algorithms within 
MMTT. 
There are three different kinds of assessments: 

• Sensor oriented, using all available data for a 
given sensor (with index i). 

• Target oriented, using data from a given target. 
Those are specially important for ADS-B. We will 
use subindex t to indicate given aircraft. 

• Grid oriented, segmenting data from a sensor in a 
3D grid, to take into account variations of 
behaviour depending on position. Radar grids are 
defined in polar coordinates while multilateration 
grid is defined in cartesian coordinates. We will 
indicate given cell with index j. 

Sensor Detection State Analysis is in charge of detecting 
anomalous detection or high outliers rate areas/sensors. The 
analysis is based on monosensor association/tracking. 
To do so it performs a set of analysis: 

1) Sensor/Grid estimation of track initiation rate (P1). 
2) Sensor/Grid estimation of track deletion rate (P2). 
3) Sensor/Grid estimation of track life duration 

statistics of deleted tracks (P3). 
4) Sensor/Grid estimation of non-associated measures 

rate (P4). 
5) Sensor/Grid estimation of ambiguous data 

association rate (P5). 
6) Target oriented number of tracks for ADS-B ICAO 

address (P6). 
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Analysis 1) to 4) are related to high false alarm rates. 5) is 
related to presence of crossing targets or false alarms, 
splits, and possibly occlusions. In an MMTT these 
situations are alleviated by hardening track 
initiation/confirmation requirements (by tuning those 
algorithms’ parameters), and reducing association gates 
around predicted tracks to reduce the probability of 
association of a false alarm to a track. 6) is an special case, 
accounting for the case of an unstable target measurement 
process, indication of a potentially malfunctioning ADS-B 
equipment. 
Variance Assessment is another interest test. Performing 
differences of consecutive measures from a given sensor 
and target we may obtain an observation related to sensor 
noise, assuming constant velocity dynamics. From a 
collection of such measures sensor based variances may be 
derived. Note ADS-B and multilateration sensors provide 
covariances of measures, so a consistency analysis between 
sensor provided variances and observed variances may be 
performed. 
In this case we also have a set of analysis: 

1) Sensor/Grid estimation of covariance for radar (S1). 
2) Sensor/Grid Consistency between sensor provided 

covariance and measured covariance for 
multilateration (S2). 

3) Target oriented consistency analysis between 
measured covariance and ADS-B provided 
covariance (S3). 

Each of previous analysis can provide better-adapted 
covariance data (enabling improved statistical data fusion) 
or serve as the basis for the detection of malfunctioning 
sensors. 
Bias Assessment, in parallel to bias Estimation and 
correction is a key element for alignment of sensor data. It 
is based on the analysis of the mismatch between different 
sensor measures, taking into account the previous 
characterization of this mismatch. It obtains the lists of 
sensor and target biases (to be denoted as b0 and b1). 
In addition, after performing tracking, the offset between 
bias-corrected measures and predicted tracks is averaged in 
a grid, in order to localize areas with additional bias terms 
not corrected, potentially due to malfunctioning sensors. 
Let’s call these values b2. 
Monosensor/Multisensor Compatibility Assessment 
provides additional integrity to our proposal. Multisensor 
tracks are based on data from all sensors, while monosensor 
tracks have only one sensor measures. A statistical 
compatibility assessment of all monosensor tracks and 
multisensor tracks may be used to detect uncorrected bias 
terms, or, by analyzing the presence of missed detections, 
malfunctioning sensor. 
The main observations here are: 

1) Sensor/Grid/Target Monosensor/Multisensor track 
offset compatibility assessments (C1) 

2) Sensor/Grid/Target missed measure analysis for 
radar (C2) 

ADAPTATION EXPERT SYSTEM DESIGN 
An expert system has been designed to take decisions that 
make the whole system perform better when some sensor 
or target’s measures stop behaving as expected. The 
adaptation decisions the expert system is able to take for 
each sensor, grid or target include changing the track 
initialization method, changing the size of the association 
windows, updating the measurement models used for 
filtering or completely removing measurements under 
certain conditions. 
The knowledge used in the system is structured as a set of 
rules. These rules are used to inference the conclusions (in 
this work, conclusions are the need to take any of the 
adaptation decisions described above) using the sensor 
detection state, variance assessment, bias assessment and 
monosensor/multisensor compatibility assessment data. 
Our system has more than 50 different rules, most of which 
can be inferred from previous discussion. Due to lack of 
space here we are just providing some of them: 
• For each sensor i, and grid cell j (all actions are 

for sensor-cell i,j). 
if P1(i,j)>u1,1 and P3(i,j)<u3,1 and P4(i,j)>u4,1 then 
harden initialization 
if P1(i,j)>u1,2 and P2(i,j)>u2,2 and P3(i,j)<u3,2 and 
P4(i,j)>u4,2 then disable initialization 
if S1(i,j)>nominal_S1(i) or C1(i,j)>u9,1 then 
increase radar measure covariance matrix   
if S2(i,j)=inconsistent or C1(i,j)>u9,2 then 
increase multilateration measure covariance matrix  
if P1(i,j)>u1,3 or P2(i,j)>u2,3 or P3(i,j)<u3,3 or 
P4(i,j)>u4,3 or P5(i,j)>u5,3 or S1(i,j)>> 
nominal_S1(i,j) or S2(i,j)= very inconsistent or 
b0(i,j)>u6 or b2(i,j)>u8 or C1(i,j)>u9,3 then disable 
use of measures for association and tracking 

• For each sensor i (all actions are performed for 
measures from i-th sensor). 

if P1(i)>w1,1 and P3(i)<w3,1 and P4(i)>w4,1 then 
harden initialization 
if P1(i)>w1,2 and P2(i)>w2,2 and P3(i)<w3,2 and 
P4(i)>w4,2 then disable initialization 
if S1(i)>nominal_S1(i)or C1(i)>w9,1 then increase 
radar measure covariance matrix   
if S2(i)=inconsistent or C1(i)>w9,2 then increase 
multilateration measure covariance matrix  
if P1(i)>w1,3 or P2(i)>w2,3 or P3(i)<w3,3 or P4(i)>w4,3 
or P5(i)>w5,3 or S1(i)>> nominal_S1(i) or S2(i)= very 
inconsistent  or b0(i)>w6 or b2(i)>w8 or C1(i)>u9,3 
then disable use of measures for association and 
tracking 

• For each target t (all actions performed for measures 
from t-th target) 

if P6(i,t)>z6 then disable initialization from 
ADS-B 
if S3(t)<z3 or C1(t)>z9,1 then increase ADS-B 
measure covariance matrix 
if b1(t)<z7 or C1(t)>z9,2 then disable use of 

measures for association and tracking 



Some other rules are aimed to restore the default behaviour 
of the MMTT when the conditions of the sensors return 
back to the expected ones. For instance, when measured 
covariances return to nominal values the increased 
covariance matrix is not used anymore. 
SIMULATION RESULTS 
We have conducted a set of simulations and worked with 
real data in order to be able to tune the different thresholds 
in the expert system rules, to increase overall system 
integrity. Due to lack of space and confidentiality 
requirements over real data, only one simulated scenario 
will be described next. In this simple scenario we have 
three sensors with overlapping coverage, two of them are 
SMR, and the others is a Multilateration sensor. After bias 
correction, there is a remaining uncorrected bias leading to 
a mismatch of around 50 meters in Multilateration. Due to 
that, b2(i,j) and C1(i,j) exceed their corresponding 
thresholds and therefore, for this cell, which leads to 
precluding the use of this sensor measure to perform 
tracking. The results, interpolated for different times, for a 
given trajectory, are summarized in next figure. Axes are 
expressed in Km, and the scenario is related to two aircraft 
crossing in two taxiways. One of them does not broadcast 
Mode S squitters and therefore is not visible by 
Multilateration sensor. 
 

  
Fig. 3. Adaptive Multisensor Data Fusion Results 

In the left part of the figure the monosensor tracks from the 
radar feeding the track in red, and the Multilateration 
measures blue, and the multisensor track in black (with 
extremely problematic velocity vector). Meanwhile, in the 
right, after removal of the problematic sensor by our 
automatic procedure, only one of the monosensor track is 
available which becomes equivalent to the multisensor 
track, with increased stability in velocity. 
CONCLUSION 
In this paper we are proposing the use of a set of figures of 
merit, coupled with an expert system, to provide a 

Multisensor Multitarget Tracker oriented to airport 
surveillance, with automatic sensor context adaptation 
capabilities. Such tests are performed using the information 
provided by the surveillance sensors and the MMTT, and 
the output of the tests is defined by a rule based expert 
system which takes decisions and makes changes in the 
MMTT by changing parameters or disabling sensors in 
order to obtain better results. 
Some Air Traffic Control surveillance systems already 
include simple adaptation mechanisms. However, such 
mechanisms are usually tightly bounded to the MMTT 
itself, which makes them more difficult to maintain or 
improve. This work aims to extract these mechanisms and 
place them in a separate procedure, which allows 
expressing the adaptation knowledge in a more formal way. 
Also, having a Surveillance Assessment & Adaptation 
process eases future enhancements of the context 
adaptation mechanisms, as all the rules are centralized. 
Future enhancements of this approach include automatic 
optimal threshold search and applying machine learning 
techniques to the context adaptation process. 
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