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This paper describes some key points of a new tool being currently developed by Eurocontrol for the assessment of air traffic 
control (ATC) multisensor trackers performance. It summarizes the algorithmic foundations of the high-accuracy trajectory 
reconstruction process used to obtain reference trajectories from recorded measures. These trajectories will serve as a reference 
for the evaluation of the accuracy of ATC data processing centers. The performance of the system is illustrated with some 
reconstruction experiments on synthetic and real data. 
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I. I N T R O D U C T I O N 

Trajectory Reconstruction and Evaluation Suite (TRES) will 
become in the near future a replacement for some parts of 
current versions of Surveillance Analysis Support System for 
Centers (SASS-C) suite [1]. This is a system used for the per­
formance assessment of air traffic control (ATC) multisensor/ 
multitarget trackers. This paper describes the overall architec­
ture of the assessment system, and details some of its most 
innovative elements related to opportunity trajectory recon­
struction (OTR). 

OTR is a batch process within TRES where all the available 
real data from all available sensors are used in order to obtain 
smoothed trajectories for all aircraft in the interest area. It 
requires accurate measure-to-reconstructed trajectory associ­
ation, bias estimation and correction to align different 
sensor measures, and adaptive multisensor smoothing to 
obtain the final interpolated trajectory. It should be pointed 
out that it is an off-line batch processing potentially quite 
different from usual real-time data fusion systems used for 
ATC. Data processing order and specific processing tech­
niques will be different. 

In fact, one of the main uses of TRES is the evaluation of 
the performance of real-time multisensor-multitarget trackers 
used for ATC, when they are provided with the same measure­
ments as TRES. OTR works as a special multisensor fusion 
system, aiming to estimate target kinematic state, in which 
we take advantage of the knowledge of future target position 
reports (smoothing). TRES must be able to process the follow­
ing kinds of data: 

- Radar data, from primary (PSR), secondary (SSR), and 
mode S radars, including enhanced surveillance. These 
measurements have random errors in the order of hundreds 

of meters (with size increasing linearly with distance to 
radar), and they may produce losses of detection and false 
alarms. They also suffer large systematic errors (biases). 
With enhanced surveillance, mode S radars may provide 
velocity information. 

- Multilateration data from wide area multilateration 
(WAM) sensors. They have much lower errors (in the 
order of 5-100 m), also increasing with distance to sensor 
coverage center, but in a complex manner depending on 
the receiving stations situation relative to the target. 

- Automatic dependent surveillance-broadcast (ADS-B) data. 
Its quality is dependent on aircraft equipment, but with the 
current trend to adopt GPS/GNSS, it will have errors in the 
order of 5-20 m. In ADS-B measures there could be sys­
tematic errors due to incorrect time stamping. This 
sensor may also provide velocity information. 

The complementarity nature of these sensor techniques 
allows a number of benefits (high degree of accuracy, extended 
coverage, systematic errors estimation, correction, etc.) and 
brings new challenges for the fusion process in order to guar­
antee an improvement with respect to any of the sensor tech­
niques used alone. An important novelty is the integration of 
traditional ground-based surveillance (PSR/SSR radars) with 
modern sensors such as WAM, with increased accuracy, and 
airborne sensors providing extended detection capability (vel­
ocity and maneuvers). The fusion of all measurements 
requires new solutions and a robust process that considers 
detailed characteristics of all data sources and checks their 
consistency before being fused. 

The two basic aspects for estimating the reference trajec­
tory are the development of appropriate models for sensor 
errors and target behavior. As mentioned, the model of 
sensor errors should address the probability density function 
(systematic and random components), to be exploited in the 
reconstruction process. Regarding the model of target behav­
ior, in this work we propose a model-based reconstruction, 
based in a practical implementation of the optimal smoother 
[2] and taking advantage of physical motion models tuned 
for aircraft flying in controlled airspace. Those aircraft 
follow quite regular patterns, although at the same time the 



system also has to consider more irregular flights in other 
areas. 

In consequence, the paper is divided into two main parts. 
After a description of the general trajectory reconstruction 
architecture (Section II), we devote one section to the 
problem of systematic error correction and association 
(Section III) and another to the reconstruction (smoothing) 
algorithms (Section IV). Finally, we conclude the paper with 
the presentation of some illustrative results (Section V). 

I I . O T R A R C H I T E C T U R E 

OTR main architecture is composed of the processes 
explained below (which are executed sequentially with the 
order of the following list): the OTR system follows the 
steps below to generate reference trajectories: 

- Converting all measurements to the same coordinates 
system and correct user provided systematic errors of 
each sensor. The measurements of each sensor are con­
verted from its measured coordinates system to stereo-
graphic central coordinates. If information about sensor 
measurement variances exists, it is also converted to the 
noise covariance matrix in central coordinates. 

- Selecting the data for trajectory reconstruction applying 
filters specified by the TRES user. 

- Gross association, adequate for batch processing track 
reconstruction procedures. The proposed solution is 
based on the use of a conservative association procedure 
to be used for sensor noise and bias estimation, and a 
refinement of such association, after bias correction, for 
reconstruction (smoothing) and later steps. Gross associ­
ation is the name given to the first process, similar to a real­
time multisensor-multitarget association system. 

- Noise variance and bias estimation for radar, WAM, and 
ADS methods using measurements (real traffic and fixed 
field transponder, if it exists). There could be inaccuracies 
in the noise parameters provided by the user, and hence 
overall system robustness and precision will be enhanced 
with the estimation of sensor noise covariance. 

- Fine association refines the process in gross association 
after sensor bias correction. It contains methods for reco­
vering data discarded during gross association and 
methods to enhance reconstruction continuity over cover­
age gaps. 

- Trajectory reconstruction based on a particular implemen­
tation of the optimal smoother adapted to the aircraft local 
mode of flight (MoF) preliminary forward-backward MoF 
segmentation. 

I I I . A S S O C I A T I O N A N D B I A S 
E S T I M A T I O N 

A) Gross association 
Gross association is performed in two parallel processes: 

- Monosensor track association: It is different depending on 
sensor type, running in parallel for all sensors. 

- Multisensor track association: It uses monosensor tracks, 
resampled at common times, to merge them in a multisen­
sor track. 

Specific monosensor association processes will be used for 
each kind of sensor, performing the following: 

- Target code correlation if this information is available (not 
for PSR). 

- Barometric and geometric height compatibility test if those 
measurements are available (different sensors provide 
different kinds of data). 

- Space/time compatibility test, based on Kalman filters and 
gating tuned to sensor error characteristics. 

The monosensor association procedure is quite conserva­
tive, closing tracks in potentially problematic association situ­
ations. Fine association will be able to recover from this 
situation. 

Multisensor association is performed by synchronous 
resampling at a low rate of monosensor tracks (both position 
and velocity) and correlation of codes and of several samples. 
Only long (stable) tracks will be created in these first stages of 
the algorithm, as only long monosensor tracks will be allowed 
to be used in multisensor track association. 

In this stage, we also perform a detection of non-
maneuvering segments, to be exploited for bias and noise esti­
mation systems. 

B) Noise and bias estimation 
Much effort has been devoted in the last years to the definition 
of bias estimation procedures for multisensor-multitarget 
tracking systems (among others [3-5]). These efforts have 
been mainly concentrated, in ATC environments, on radar 
bias estimation and correction, as they are the most widely 
used sensors for this application. 

With the advent of new families of sensors, such as ADS-B, 
WAM, or high-resolution airport radars, the means for bias 
estimation must be extended. 

The proposed procedures are based on the definition of a 
series of error models for noise and bias estimation for the 
different sensors previously described. 

l) ATC RADAR ERROR MODELS 
There are mainly two types of radars used in ATC, primary 
(PSR) and secondary (SSR and mode S) radars. They 
measure range and azimuth, and in the case of SSR or mode 
S, they also receive height from the aircraft barometer. 

In the mode S and conventional secondary radar error 
model, fcth range-azimuth measurement (R^, Ok) includes 
the terms in (1): 

fit = (1 + K)Rid(k) + Afi + ARj + nR(k), 

Ok = 0id{k) + AO + A0! sin 0id(k) + A02 cos 0id(k) + ne(k), 

(1) 

where (Rid (k), 0id (fc)) are the ideal target positions for the fcth 
measurement, expressed in local polar coordinates, AR is the 
radar range bias, K is the gain of range bias, Afi;- is the 
transponder-induced bias of the jth aircraft, different for 
each aircraft, AO is the azimuth bias, {A0X, A02) are the 
values that characterize the radar's azimuth eccentricity, and 
(nR (k), ne(k)) are the measurement noise errors. 

Primary radar has the same model, except for the lack of 
the Afi,- term. 



When we translate this measure to the stereographic plane, 
we use a quite exact non-linear coordinate transformation 
method like the one used by Paradowski and Kowalski [6]. 
This method implements a function we call fRadar{')- So, to 
project error terms into the stereographic plane, we make a 
first-order approximation of this transformation, and have 
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where xid(k), yici{k) are the ideal target positions for the fcth 
measurement. HR is the Jacobian offRadar(-) with respect to 
the vector with bias terms. It is a 6 x 2 matrix, whose first 
two rows are equal, raising a potential observation problem 
in our bias estimation procedures (our procedures take this 
fact into account). GR is the Jacobian of Radar(-) with 
respect to the noise vector. It is a 2 x 2 matrix. 

There is also a potential time bias, leading to an equivalent 
position bias aligned with velocity. Then, (X, Y) projected 
measures will suffer an additional bias of the form 

Xkjinal = Xk — VXAt, 

ykjinal =yk~ VyAt, 
(3) 

where (Vx, VY) are the velocity vectors of the target in this 
time and At is the time bias for the radar. 

Finally, it should be noted that there are collocated PSR-
SSR and PSR-mode S radars, for which we will define two 
virtual sensors, one for PSR and another one for the secondary 
radar. 

2) ADS-B ERROR MODELS 
With precise navigation systems as the ones currently 
deployed in modern aircraft, ADS-B measures suffer mainly 
from a time-stamping error that could lead to a time bias, 
different for each aircraft. Also, a local-to-aircraft position 
bias is assumed to be potentially present. 

The fcth position measurement (xk, yk), obtained using the 
stereographic projection over latitude, longitude, and height 
measures, may be modeled as 

Xk = xid{k) 

yk=yid(k)-

VxAtj + AXj + nx(k), 

VYAtj + AYj + ny(k), 
(4) 

where xici(k), ytJJi) are the ideal target positions for the fcth 
measurement, (Vx, VY) are the velocity vectors of the target 
in this time, {AXp AYj) are the X, Y bias for the jth aircraft, 
Atj is the time bias for the jth aircraft, and nx{k), ny{k) are 
the measurement noise errors. 

Finally, we must note the potential observability problem 
as it is not possible to discriminate position bias along aircraft 
direction and time bias. 

3) WIDE AREA MULTILATERATION ERROR MODELS 
Wide area multilateration measurement performs time differ­
ence of arrival (TDOA) estimation to calculate target position. 
Irrespective of the method used for position estimation, the 
basic measures used to obtain aircraft position are the times of 
arrival of the same signal emitted from this target. The bias of 
multilateration is a function of several variables, including 

- geometry of the receiver(s) and transmitter(s), 
- timing accuracy of the receiver system, and 
- accuracy of the synchronization of transmitting sites or 

receiving sites. This can be degraded by unknown propa­
gation effects. 

It should be noted that the multilateration system has internal 
calibration means, because without them no position estimation 
would be possible. So we are dealing with remaining errors after 
this calibration. This is a subject still under active research; a 
description of the main error terms may be found in Leeson 
[7]. In this system, we assume that the bias changes in space 
are not too fast, and therefore we perform a discretization of 
the space in cells. Then, the fcth position measurement (xk, yk), 
obtained using the stereographic projection over latitude, longi­
tude, and height measures, may be modeled as 

Xk = xid{k) • 

yk = ytd(k) • 

VxAt + AX(n) + nx(k), 

VYAt + AY(n) + ny(k), 
(5) 

where x,y(fc), ytJJi) are the ideal target positions for the fcth 
measurement, (Vx, VY) are the velocity vectors of the target in 
this time, (AX(n), AY{n)) are the X, Y bias for the nth cell in 
the cell list, equal for all aircraft, At is the time bias for all aircraft 
and cells, and {nx(k), ny{k)) are the noise components in the 
stereographic plane. 

4) NOISE ESTIMATION PROCEDURE 
WAM and radar measurement error covariances are calcu­
lated by taking sets of three consecutive measurements from 
a given monosensor track, in not maneuvering segments. 
With the first and last measure of each set, we perform a 
linear interpolation for the time of the second measure. 
Then we perform a difference between this extrapolated 
measure and the actual measurement taken at that position. 
This difference error has a covariance related with measure­
ment covariance (assuming it is equal for the three measure­
ments of the same sensor) and with the time differences 
between the three measures. Performing an adequate trans­
formation over the difference, we obtain a pseudo-measure 
with the same covariance of the measures. Calculating its 
covariance, by averaging out results from consecutive differ­
ences, we can obtain each sensor covariance. Note that for 
WAM they must be calculated for each error cell, in the 
X-Y direction, assuming there is cross covariance, and for 
ATC radar we can safely assume there is no cross covariance 
and calculate range and azimuth variances. 

5) BIAS ESTIMATION ARCHITECTURE 
From the previous description it is evident that there are three 
different kinds of bias terms: 

- terms dependent on the sensor, 
- terms dependent on the sensor-target pair and 
- terms dependent only on the target. 



The bias estimation procedure takes this fact into account, 
and is based on three steps: 

- Track bias estimation: From all the available data from a 
given aircraft, integrated in a multisensor track, an esti­
mation of all the bias terms from all sensors providing 
measures to this track is obtained. As important as obtain­
ing a vector of bias estimates is obtaining a consistent 
measurement of its covariance matrix. 

- Sensor bias estimation: This method integrates all track bias 
estimators in an efficient manner, to obtain sensor-related 
biases. It assumes that the previously described bias 
vectors are independent measures (as they come from 
different aircraft measures) of the sensor bias terms. 

- Target bias estimation: This is obtained for each aircraft, 
using the corresponding measurement reports with sensor 
bias corrected. 

C) Fine association 
The first process in fine association is based on merging the short 
monosensor tracks not associated during gross association with 
the multisensor tracks. This process also initiates new multisen­
sor tracks with the monosensor tracks not associated to multi­
sensor tracks in previous steps, because they were too short. 
Those new multisensor tracks will also be used to try and 
merge other short monosensor tracks not previously associated. 

The methods used to perform those mergings are based on 
position measurement (including barometric and geometric 
heights) compatibility testing, based on the combination of 
a linear interpolation in time of measurements from the multi­
sensor and monosensor tracks and a percentage of compatible 
target reports between the two tracks. To enhance fine associ­
ation, the method starts with higher quality measures, as are 
those coming from mode S, ADS, or WAM (from mode S 
signals), and later processes the rest of the sensor types. 

Those compatibility tests, if necessary, include height com­
pletion procedures to test whether each measure is compatible 
with the multisensor track under evaluation. The association is 
a recursive process, as the association of small tracks could lead 
to multisensor track life extension; therefore all small tracks in 
the vicinity will have to be re-evaluated after this merging. 
Internally, after each recursion in the association process, a 
height completion for the multisensor track is performed, 
especially important for those data without height (PSR). 

Finally, this function also merges pairs of multisensor 
tracks not associated during gross association, and also 
those new multisensor tracks created during fine association, 
using a process analogous to that used for small tracks. 

I V . T R A J E C T O R Y S M O O T H I N G 

In this section, we will describe the new proposed method for 
trajectory reconstruction. In order to check its performance 
improvement over other techniques we have taken the per­
formance of two classical approaches as reference. 

A) Previous approaches 
Data smoothing has been tackled from different points of 
view. Splines are a current method for non-parametric data 

fitting. For instance, one of the reconstruction techniques cur­
rently being operated uses beta-splines [8]. However, a theor­
etically optimal approach may consist in a double tracking 
loop in the forward and backward directions for smoothing, 
named as "optimal smoother" [2, 9, 10], considering detailed 
models of sensors and aircraft motion. 

Two previous reconstruction techniques have been con­
sidered. The first one is a suboptimal fixed-interval smoothing 
algorithm presented by Helmick et al. [9] and the second one 
is a spline-based reconstruction. 

l) FIXED-INTERVAL SMOOTHER 
This is a suboptimal approach based on the use of two 
Interacting Multiple Mode (IMM) filters. One of the filters pro­
pagates in the forward-time direction and the other in the 
backward-time direction. This algorithm is an approximation 
that considers only the motion model over two successive 
sampling periods. The two motion models implemented are 
constant-velocity models, one with no plant noise and the 
other with plant noise covariance: 
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The initial model probabilities in the forward-time filter are 
fJLoF = [0.9 0.1] and the model-switching probability matrix is 
given by 

The final measurement and its covariance are used to 
obtain initial position estimates and covariance in the 
backward-time filter. For this filter, the initial mode probabil­
ities have been chosen to be u,oB = [0.9 0.1]. 

2) SPLINES 
The second reconstruction technique is based on a "natural" 
cubic spline that is directly implemented using a MATLAB 
function (csaps). This second comparison is provided in 
order to show the behavior of a non-parametric data fitting 
with no special tuning. 

B) Proposed solution 
Since target behavior may change dramatically (e.g. develop­
ment of maneuvers inserted between uniform-motion seg­
ments), a single kinematic model is insufficient. We have 
applied an IMM algorithm to model aircraft behavior, a well-
referred algorithm for maneuvering target tracking that dyna­
mically determines the most likely model at each time [11,12]. 
This algorithm has been extensively applied to a type of 
problem referred to as jump Markov or hybrid-state 
problem, which involves the joint estimation for both the 
continuous-valued state vector and a discrete-valued state 



variable, based only in the sequence of available observations. 
In our case, the state vector contains position and velocity in 
reconstruction, whereas a discrete variable represents the MoF 
at each time, {17, T, L], denoting uniform, transversal, 
longitudinal. 

Our approach carries out two stages. The trajectory is seg­
mented in regular motion segments with a first pass to extract 
the segments. Then, in the second phase, an accurate recon­
struction, with less uncertainty, can be performed according 
to the models identified in the flight and explicitely taking 
into account the transitions and parameters computed. 

The segments are obtained from the IMM mode probabil­
ities computed in a double forward-backward loop. This 
process provides a first division of sequence of associated 
measures in MoF segments, but probably with a high rate of 
over-division produced by noisy transitions. So, a refinement 
is applied in a second phase. Very short segments are 
removed, fused with neighbor adjacent segments, and adja­
cent uniform segments are analyzed to check whether they 
can be fused. Finally, all MoF segments are validated with a 
least-squares test. The kinematic parameters corresponding 
to different types of motion are computed to generate ideal­
ized paths, and then the averaged normalized residual is com­
pared with a maximum threshold. If the averaged residual is 
not acceptable, the segment is labeled as "unknown". 

Then, the trajectory interpolation is carried out with an 
optimal smoothing filter operating forward and backward 
[2]. It takes into account the advantage of classified MoF seg­
ments when available and validated (those accomplishing the 
least-squares fitting test). The maneuvering parameters 
describing the "mean" values along the segment are used in 
the dynamic models, adapted to the specific conditions of 
the data segment. For instance, in the case of a turn model, 
a circular prediction model is applied, taking into account 
the parameters for circle radius and center. Besides, the infor­
mation about motion intervals is used in the structure. The 
transition probabilities are modified in the intervals close to 
edges, and the plant noises are also increased in the presence 
of close transitions. When no validated segment class is avail­
able ("unknown" or "recovered" segment), the prediction filter 
uses default values and a wider plant noise to avoid degra­
dation. Therefore, all modes exploit information about the 
parameters used in reconstruction and also whether they are 
applicable or not. 

If available, aircraft derived data (ADD), the velocity data in 
the target reports from mode S and ADS sensors, are also used 
in the reconstruction. In this case, the velocity measurements 
(groundspeed and heading) are projected onto the stereo-
graphic plane, together with their error covariance matrix, 
and integrated in the reconstruction filters through variable-
size projection matrices. In order to avoid instabilities due to 
bad information, a consistency check is performed before inte­
grating this velocity information in the reconstruction. The 
deviation between estimated and measured velocities is com­
pared with a maximum allowed deviation before acceptance. 

V . R E S U L T S 

In this section, we present some results to illustrate the per­
formance of the whole trajectory reconstruction system. We 
decompose the discussion into three sections: bias estimation, 
association, and reconstruction. 

A) Noise and bias estimation 
Next, we describe some noise and bias estimation results from 
a simulated data example, with error models consistent with 
the described models. Of course, these results are dependent 
on the actual position of simulated radars and the relative geo­
metry of targets. 

This is a scenario with 61 aircraft with a mixed fleet of SSR 
and mode S transponders, and mode S, SSR and PSR radars. 

In Table 1 we summarize noise and bias estimation results, 
for selected radars and coordinates. Having the same number 
and different types means these are different virtual sensors 
from the same real physical sensor. The advantage of fusing 
multiple radars and ground sensor data with aircraft-derived 
data through the mode S link is obtained if the sensor errors 
are correctly characterized (the biases are correctly estimated 
and removed and standard deviations are estimated). 

Quite often the 95% band of error in bias estimation is not 
respected due to 

- approximations in the bias processing and 
- presence of transponder bias, whose average is mixed with 

radar bias. 

But it is clear from these and other results that the bias esti­
mation is converging to values near the actual ones. 

With real data, typical 1 h scenarios tend to have in the 
order of thousands of aircraft, and typical bias estimation 
error bands (95%) are in the order of several meters. 

B) Association 
Here we provide results regarding association for a real scen­
ario, with only 20 min of data. In this scenario we have mode S 
and SSR radars, and some of them are collocated. Collocated 
radars provide the best-quality measure (mode S > SSR > 
PSR) if there are several plots available for an aircraft in the 
same scan, one of each collocated radar. Therefore misses 
from a given higher quality mode result in short tracks of 
lower quality collocated sensors not associated in gross associ­
ation and recovered quite often in fine association. This can be 
observed in Table 2 for collocated radars 1, 2, and 3, where 
the percentage of correct gross association is much lower for 
the radar mode (SSR or PSR) with less quality. It should 
also be noted that the PSR false alarm generation process 
may lead to higher numbers of non-associated plots. 

Due to border effects in a short scenario, these numbers are 
quite conservative. 

Our assessments show three different effects after fine 
association: 

Table 1. Simulated noise and bias estimation results. 
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Table 2. Real data association results. 

Radar number 
and type 

l-MS 

I - S S R 1 

I - P S R 1 

2-MS 

2-SSR 

3-SSR 

3-PSR 
4-SSR 

Percentage of 
unassociated plots in 
gross association (%) 

2.42 

23-97 
88.56 

4-9 

27-49 

7-7 

74-3 
14.4 

Percentage of 
unassociated plots in 
fine association (%) 

0.015 

1-37 
59.61 

0.029 

0.26 

0.31 

49.29 

1.18 

- Most non-associated plots are associated to previously 
existing tracks, especially at track initiation. 

- Short trajectories appear after fine association. 
- Bias is corrected, and therefore different sensor measures 

are better aligned. 

C) Smoothing 
In this section, the reconstructions performed on two trajec­
tories using the previously described techniques will be pre­
sented. One synthetic trajectory and a real one have been 
chosen to illustrate the quality of the reconstruction. For the 
synthetic scenario, we represent the trajectory in Fig. 1 and 
the absolute value of reconstruction error in Figs 2 and 3 for 
X and Y coordinates. The synthetic trajectory is used to 
demonstrate the performance improvement of the proposed 
method over classical approaches described in Section 
IV-A. For the real scenarios, as there is no ground truth the 
measurements and the output of the model-based reconstruc­
tion are shown. In order to analyze more in depth, several 
maneuvers have been zoomed in, which allows seeing the 
quality of the reconstruction (Figs 4-6). 

The synthetic scenario consists of an aircraft that performs 
a left turn after a straight segment which is continued by 
another straight segment. It goes from the west to the east 
at a constant velocity of 300 m/s. 

Ideal trajectory 
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Fig. 2. Error in position, X coordinate. 

Fig. 3. Error in position, Y coordinate. 
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Fig. 1. Ideal trajectory. Fig. 4. Measurements and reconstructed real trajectory. 
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Fig. 5. First detail of reconstructed real trajectory. 

The absolute position error in the reconstruction is 
shown in Figs 2, 3 for three methods: spline reconstruction, 
fixed-interval smoother, and our model-based reconstruction. 
As can be seen, the output of the parametric approaches is 
better than the one provided by the spline one. It can be 
seen that the output of the model-based approach has less 
error peak than the fixed-interval smoother. 

For the real scenario, as can be seen in Figs 4-6, the quality 
of the reconstruction is more than reasonable, being robust 
enough to cope with outliers as can be observed in Fig. 5. 
However, the reconstruction can be improved by parameter 
tuning, which implies a trade-off between noise reduction 
and maneuver response. 
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Fig. 6. Second detail of reconstructed real trajectory. 

V I . C O N C L U S I O N S 

A new processor for ATC offline multisensory data processing 
has been designed. Its architecture, although similar to ATC 
real-time processes, takes advantage of the lack of real-time 
constraints and performs a smoothing process instead of a fil­
tering one. Extensive real and simulated data results show the 
capability of this system to generate high-accuracy smoothed 
trajectories. These will serve as reference trajectories for the 
evaluation of operative ATC data processors (comparing 
output tracks of data processors with the reference trajectory). 

The proposed system is capable of processing data for the type 
of sensors used for ATC now and in the near future (mode S radar, 
enhanced surveillance, SSR, PSR, WAM, and ADS-B). For this 
purpose, the system incorporates new methods to correct 
sensor bias for all kinds of sensors, to perform a high-quality 
association, and, finally, for reconstruction of high-accuracy tra­
jectories using the measurements of many dissimilar sensors. 
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