75 research outputs found

    Multiscale PCA to distinguish regular and irregular surfaces using tri axial head and trunk acceleration signals

    No full text
    This study uses multiscale principal component analysis (MSPCA) signal processing technique in order to distinguish the two different surfaces, tiled (regular) and cobbled (irregular) using accelerometry data (recorded from MTx sensors). Two MTx sensors were placed on the head and trunk of the subject while the subject walked freely over the regular and irregular surfaces during a free walk. 3D acceleration signals, vertical, medio lateral (ML) and anterior-posterior (AP) were recorded for the head and trunk segments and compared for the free walk on a defined route. The magnitude of the ML and AP acceleration obtained from the MTx sensors (for both head & trunk) was higher when walking over the irregular (cobbled) surface as compared to the regular (tiled) surface. The accelerometry data was initially analysed using MSPCA and was later classified using naïve Bayesian classifier with >86% accuracy. This research study demonstrates that MSPCA can be used to distinguish the regular and irregular surfaces. The proposed method could be very useful as an automated method for classification of the two surfaces

    Multiscale PCA to distinguish regular and irregular surfaces using tri axial head and trunk acceleration signals

    No full text
    This study uses multiscale principal component analysis (MSPCA) signal processing technique in order to distinguish the two different surfaces, tiled (regular) and cobbled (irregular) using accelerometry data (recorded from MTx sensors). Two MTx sensors were placed on the head and trunk of the subject while the subject walked freely over the regular and irregular surfaces during a free walk. 3D acceleration signals, vertical, medio lateral (ML) and anterior-posterior (AP) were recorded for the head and trunk segments and compared for the free walk on a defined route. The magnitude of the ML and AP acceleration obtained from the MTx sensors (for both head & trunk) was higher when walking over the irregular (cobbled) surface as compared to the regular (tiled) surface. The accelerometry data was initially analysed using MSPCA and was later classified using naive Bayesian classifier with >86% accuracy. This research study demonstrates that MSPCA can be used to distinguish the regular and irregular surfaces. The proposed method could be very useful as an automated method for classification of the two surfaces

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare
    corecore