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1.1 Abstract 

 

There is a paucity of research demonstrating objective methods to empirically derive 

quality of movement measurements and its subsequent relationship to health, 

performance and risk factors. Therefore, the overarching aim of this thesis was to 

characterise and profile children’s physical activity movement (and gait) quality.  

 

Following laboratory based work to confirm the feasibility and development of 

assessing movement quality in children, ankle mounted accelerometers were used for 

all experimental studies. Classic and novel temporal and frequency domain analyses 

were conducted in all studies. All data underwent hierarchical clustering based on 

normalised Euclidean distances. Further inferential statistics were conducted to 

investigate differences and correlations, accordingly. 

 

Experimental chapter 1 consisted of three smaller studies to, first, test the technical 

specifications of the SlamTracker accelerometer and that the data output were valid 

and reliable. Second, to verify the validity of using raw accelerometry to estimate 

movement characteristics during ambulation compared to gold standard methods, and 

third, to characterise the relationship between overall integrated acceleration and three-

dimensional kinematic variables whilst performing fundamental movement skills. The 

accuracy, suitability and validity of the SlamTracker raw accelerometer data (absolute 

variance: <0.001 g, CV: 0.004%, in all axes) was confirmed. Following this, the ability 

to accurately capture complex movement characteristics, compared to gold standard 

methods, such as joint angle (r=0.98, P=0.001) and force production (r=0.98, P=0.001) 

was demonstrated. Finally, there were no differences found in overall activity 

(integrated acceleration) in children who completed the same fundamental 

movements, whilst a large variance was detected in the kinematics of children’s 

movement (CV: up to 65%). We concluded that quality of movement, whilst evidently 

important and diverse even in standardised tasks, needed a specific operational 

definition in the context of this thesis. Following pilot work, the term quality was 

therefore defined as, and derived from, the purity of the fundamental frequency spectra 

(signal) during human movement, specifically relating to gait, otherwise termed, 

spectral purity. 

 

Experimental chapter 2 was necessary to establish a credible base for the combination 

of raw accelerometry and novel analytics, outside of laboratory settings. This was the 

first empirical study to draw upon frequency domain analysis and hierarchical 

clustering in the characterisation of movement in children. The aims of this study were; 

first, to characterise the movement quality of children during a standardised fitness 

assessment and second, to report how movement quality characteristics cluster 

according to body mass indices in 9-11y children. One hundred and three children 

(10.3±0.6y, 1.42±0.08m, 37.8±9.3kg, body mass index; 18.5±3.3 kg.m2) volunteered 

for this study, had anthropometric recordings taken and took part in the twenty-metre 

multistage fitness test. This study found that children with high BMI had significantly 

lower spectral purity and time to exhaustion. Moreover, BMI was hierarchically 

clustered with stride profile, and time to exhaustion was clustered with spectral purity. 

BMI was negatively correlated with time to exhaustion, spectral purity, integrated 

acceleration, stride angle and stride variability. In conclusion, spectral purity was 

representative of children’s performance during a standardised fitness test, and 

significantly negatively correlated with body mass index. 
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Experimental chapter 1 and 2 both utilised more controlled environments, whereas 

Experimental chapter 3 moved away from controlled into more free-form, 

uncontrolled movement, i.e. recess. The aims of this study were to characterise 

children’s recess physical activity, and investigate how movement quality 

characteristics cluster during school recess. Twenty-four children (18 boys) 

(10.5±0.6y, 1.44±0.09m, 39.6±9.5kg, body mass index; 18.8±3.1 kg.m2) who were a 

representative sub-sample of 822 children (10.5±0.6y, 1.42±0.08m, 27.3±9.6kg, body 

mass index; 18.7±3.5 kg.m2), took part in a normal school-time recess for one school 

week (five days). This study found that integrated acceleration (overall physical 

activity) during recess was invariant day-to-day, yet significant daily differences were 

found for spectral purity. Integrated acceleration was clustered with spectral purity, in 

addition to a significant positive correlation between integrated acceleration and 

spectral purity (P<0.05), whilst body-mass index percentile was negatively correlated 

with integrated acceleration and spectral purity. This study highlighted that movement 

quality measurement was achievable and robust in an uncontrolled environment (i.e. 

recess). Given the link established in previous chapters between spectral purity and 

movement quality, the tenuous literature on motor competency development through 

childhood, and, the evidence motor competence may track though the life course; it 

was deemed appropriate to examine movement quality characteristics in early years’ 

children, in conjunction with traditional motor competency assessment. 

 

The aims of Experimental chapter 4 were two-fold; to characterise children’s free-play 

physical activity and investigate how movement quality characteristics cluster in 

children (3-5y). Sixty-one children (39 boys, 4.3±0.7y, 1.04±0.05m, 17.8±3.2kg, body 

mass index; 16.2±1.9 kg.m2) took part in free-play and completed the movement 

assessment battery for children, second edition, using standardised procedures. There 

were significant differences between motor competency classifications for spectral 

purity and integrated acceleration (P<0.001). Spectral purity was hierarchically 

clustered with motor competence and overall physical activity. Additional significant 

positive correlations were found between spectral purity, integrated acceleration and 

motor competence (P<0.001). 

 

In conclusion, children’s movement quality can be reliably computed using novel 

analytics in laboratory and in-field. The novel quality measure coined in this thesis, 

spectral purity, was shown to be hierarchically clustered with, and indicative of, 

performance, physical activity and motor competence. This thesis has expanded the 

current evidence base on children’s physical activity and movement quality and 

demonstrated that raw accelerometry can be used, in conjunction with novel analytics, 

to provide innovation in movement quality assessment across ages. 
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Early years - Refers to infants aged 3-5y 

EE - Energy expenditure 

EF - Elbow flexion 

ELM - Extreme learning machine 

ER - External rotation 

FFT - Fast Fourier Transform 

FMAX - Maximum impact force 

generated upon foot strike 

FMS - Fundamental movement 

skills 

FSR - Force sensitive resistor 

G - Gravity 

Gauss - Magnetic field 

GMM - Gaussian mixture model 

HMM - Hidden Markov model 
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Hr - Hour 

HR - Heart rate 

Hz - Frequency (per second) 

IC - Indirect calorimetry 

ICC - Intra-class coefficient 

IOTF - International Obesity Task 

Force age- and sex-specific  

BMI thresholds for 

classifying overweight and 

obesity in children and 

youth aged 2-18 years 

IR - Internal rotation 

Kcal - Kilocalories 

KG - Kilogram 

KJ - Kilojoules 

KM - Kilometre 

KNN - k-nearest neighbour 

L - Litre 

LDA - Linear discriminant 

analysis 

LQ - Lower quartile 

Med - Median 

MEMS - Micro-electromechanical 

system 

MET - Metabolic equivalents 

classification 

Min - Minute 

MJ - MilliJoules 

mL - Millilitre 
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MM - Millimetre 

MPH - Miles per hour 

MRV - Maximum radial velocity 

MSB - Multi-sensor board 

MSFT - Multi-stage fitness test 

MVPA - Moderate to vigorous 

physical activity 

N - Number 

NW - Normal weight 

O2 - Oxygen 

OB - Obese 

ODBA - Overall dynamic body 

acceleration 

OW - Overweight 

P - Statistical measure that 

denotes significance 

PA - Physical activity 

PCA - Principal component 

analysis 

PPA - Physiological profile 

assessment 

Q - Stride profile quotient 

R or R2  - Reliability coefficients; 

statistical measures that 

express  

correlation between two 

measures 

SA - Stride angle 

SD - Standard deviation from 

the mean 

SF - Stride frequency 
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SIN - Sine 

SP - Spectral purity 

SV - Stride variability 

SVM - Support vector machine 

TTE - Time to exhaustion 

UQ - Upper quartile 

UW - Underweight 

VEDBA - Vector of the dynamic 

body acceleration 

V̇O2 - Oxygen consumption; 

expressed in absolute 

terms (L·min-1)  

or relative to body mass 

(ml·kg-1min-1) 

V̇O2MAX - Maximum oxygen 

consumption; expressed in 

absolute terms  

(L.min-1) or relative to 

body mass (ml·kg-1min-1) 

Y - Years  

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

2.0 Introduction 

2.1 Rationale and background 

Physical inactivity is the largest contributor to risk factors for non-communicable 

diseases in the world 1-3. Conversely, physical activity has been identified as an integral 

contributor to a healthy lifestyle 4 and can provide numerous health benefits 5, 

including decreased risk of premature death by around 30% for those attaining the 

recommended levels of physical activity on most days of the week (see 1,2). Whilst 

these data are not available for children, the systematic reviews of Saunders, et al. 6, 

Chaput, et al. 7, Carson, et al. 8 and Poitras, et al. 9 have quantified the relationship 

between physical activity, sedentary behaviour, sleep and health and concluded that 

these behaviours are co-dependent and all related to health risk 10. A sedentary 

lifestyle, common during childhood, adolescence and continued into adulthood, is a 

major concern for the health of the general public 2,11 and the substantial increase in 

the prevalence of overweight and obesity and other non-communicable diseases, such 

as diabetes, cancer, hypertension and cardiovascular diseases over the previous 

decades 12,13, is partly attributed to lower levels of physical activity and increase in 

sedentary behaviour 14. There are numerous acute physiological and psychosocial 

benefits to physical activity among children and adolescents and, second, that physical 

activity behaviours between childhood and adulthood are correlated and that 

physically active children are more likely to grow up to be physically active adults 

compared with their inactive peers 15,16. It is therefore advocated that physical activity 

be promoted amongst children and adolescents for health enhancement and to embed 

lifelong behavioural patterns that will result in more active adult populations in the 

future occur 10,15-17. 

 

There is a dearth of research demonstrating objective methods to empirically derive 

movement quality measures and as such, this thesis intends to explore novel measures 

of movement quality that underpin movement. Authors, such as Bellanca, et al. 18 and 

Brach, et al. 19, have demonstrated quality measurements in specific population are 

useful and valid using raw accelerometry. Furthermore, in geriatric patients and 

Parkinsonian gait, respectively, frequency domain analyses can reliably highlight 

deteriorating gait characteristics 20,21. To date, almost all focus on physical activity has 

been on time spent above or below various thresholds, such as moderate-to-vigorous 

physical activity. There has been no integration of physical activity quantities and 

qualities. Quality is a nebulous term, and can have connotations relating to psychology, 
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physiology, biochemistry, well-being, emotional state, biomechanics or even life. For 

the purpose of this thesis, the term ‘quality’ shall be referred to as, and derived from, 

the purity of the fundamental frequency spectra (signal) during human movement, 

specifically relating to gait, and will be explored throughout the experimental chapters 

of this thesis. 

In a seminal study, Stodden, et al. 22 proposed a theoretical model that explains the 

interaction between the development of motor competence and physical activity. 

Whilst Stodden, et al. 22 suggested that motor competence is the underlying mechanism 

that will influence physical activity engagement levels across the life course, measures 

to support this assertion are lacking. In early childhood, current modes of motor 

development assessment find there is no relationship between motor development, 

health related fitness and physical activity, and motor competencies are naturally 

variant 22-24. During middle to late childhood and beyond, individuals with a higher 

motor competence begin to demonstrate increased health-related fitness compared to 

that of a child with lower motor competence, using traditional assessments 25,26. Whilst 

the relationship between physical inactivity, unhealthy weight and motor competence 

has been investigated 27-30, the underlying mechanisms of this correlation are yet to be 

understood. Robinson, et al. 31 reported that a positive relationship exists between 

motor competence and physical activity throughout childhood, motor competence may 

be both a precursor and a consequence of weight status, and that the strength of these 

(dis)associations increases from childhood and adolescence into adulthood. Despite 

the emerging evidence base of motor competence correlates in adolescence and 

beyond, there exists little no adequate measures of motor competence and movement 

qualities in early years and pre-adolescent children, and therefore necessitates 

development 32. 

 

Whilst accelerometers are the de facto standard in objectively measuring physical 

activity, literature has focussed on quantifying activity in the form of activity counts 

or time spent above or below activity thresholds, as opposed to the movement qualities 

33,34. Furthermore, functional limitations, such as high frequency movement and noise 

information escaping the bandpass filter, which in turn adds unexplained variation in 

activity counts 35, variations in epoch length, cut points and device type further add to 

the lack of clarity in the literature 36-38. This is further confounded by the consensus 

that commercially available accelerometers only provide manufacturer-dependent 
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output values that are computed by unpublished and proprietary signal processing 

techniques, resulting in a unit of measure termed ‘activity counts’. Activity counts 

summarize data in an epoch, reducing the burden of data management, analysis, and 

interpretation; 34,39 however, as traditional accelerometers are limited in memory and 

battery capacity to store raw signal data, data processing stages are performed on the 

device itself, and this process is irreversible once the count has been stored in local 

memory. This irretrievable conversion prevents re-analysis of the raw accelerometer 

signal using novel analytics and data processing techniques however, information 

about the raw accelerometer signal is irretrievably lost and a full picture of physical 

activity quality overlooked. This irretrievable conversion prevents re-analysis of the 

raw accelerometer signal using novel analytics and data processing techniques 40,41.  

 

On the other hand, accelerometers that store the raw signal for each movement can be 

analyzed in the frequency domain using Fourier analysis and subsequently assess gait 

and movement quality in-field 18,20,42,43. This type of analysis is highly suggestive of a 

fundamental feature of the neural control of movement 44 and can be further processed 

using clustering algorithms. Cluster analysis is an analytic procedure that reduces 

complex multivariate data into smaller subsets or groups. Compared with other data 

reduction methods, such as factor analysis, clustering yields groupings that are based 

on the similarity of whole cases, as opposed to the individual variables that comprise 

those cases 45. Cluster analysis represents a valuable analytic tool for the health and 

exercise sciences and may be used for profiling, or in the development of classification 

systems or taxonomies 45,46. However, this has not been applied to children’s 

movement in any age group. 

 

2.2 Problem statement 

Across the literature, there exists a dearth of research examining the gait movement 

quality of the multi-dimensional construct, physical activity. The devices and 

analytical techniques available for application to physical activity data has proliferated 

beyond traditional methods of assessment and analysis, therefore novel approaches to 

characterise and assess physical activity warrants extensive investigation. For the 

purpose of this thesis, the operational definition of “children” shall refer to the age 

range of 5-11y, whilst “early-years” shall refer to the age range 3-5y. 
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2.3 Thesis aims  

The overarching aim of this thesis was to characterise and profile children’s physical 

activity movement and gait quality. 

Experimental chapter one: the aims of this chapter were to; quantify the mean, standard 

deviation and variance of a raw accelerometer at a range of speeds, to verify the 

validity of using raw accelerometry to measure force (N) and ankle angle (°) during 

ambulation, to characterise the relationship between facets of fundamental movement, 

and finally, to characterise the relationship between overall integrated acceleration and 

three-dimensional kinematic variables whilst performing fundamental movement 

skills. 

Experimental chapter two: The aims of this chapter were first, to apply automated, 

novel analyses to characterise the movement quality of children during the MSFT 47-

49, and second, to report how movement quality characteristics of gait cluster according 

to body mass indices. 

Experimental chapter three: The aims of this chapter were to characterise the recess 

activity of children aged 9-11y using novel methods and investigate day-to-day 

variability of novel characteristics of recess. 

Experimental chapter four: The aims of this chapter were to characterise children’s 

free-play physical activity and, investigate how movement quality characteristics of 

gait cluster with free-play and motor competence in children (3-5y). 
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3.0 Literature Review 

3.1 Physical activity and health    

Physical inactivity is the largest contributor to risk factors for non-communicable 

diseases worldwide, whereas engaging in regular physical activity is widely 

recognised to counteract this 1-3. Physical activity has been identified as an integral 

contributor to a healthy lifestyle 4,6 and can provide immediate and future health 

benefits 5,16,50. Strong relationships exist between physical activity and health, with 

higher physical activity levels leading to reduced risks of coronary heart disease 51, 

hypertension 52, non-insulin dependent diabetes mellitus 53, stroke 54, colon cancer 55, 

osteoporotic fractures 56 and depression 57. Further, physical activity has also been 

frequently associated with improved physiological functioning and lower disease risk 

according to observations drawn from controlled experimental trials and population-

based epidemiological studies 58  There is sufficient empirical evidence to conclude 

that physical activity has beneficial effects on adiposity levels, blood pressure, plasma 

lipid and lipoprotein levels and non-traditional cardiovascular risk factors 

(inflammatory markers, endothelial function and heart rate variability) in adolescents 

and adults 16,59-62. Moreover, physical activity has beneficial effects on several 

components of mental health (self-concept, anxiety and depression) 5,13. The benefits 

of regular physical activity have been clearly set out across the life course 1,2.  

 

4.1.1 Physical activity guidelines 

It has been recommended that children (5-17 years) should accumulate at least 60 

minutes of moderate intensity physical activity each day 2,63,64, whilst for early years 

children (3-5 years) it is recommended that at least 180 minutes of physical activity is 

achieved every day (Department of Health 65, Department of Health and Aging 66, 

Tremblay, et al. 67). Recently, however, a step change was made in relation to physical 

activity guidelines. The Canadian 24-Hour Movement Guidelines for Children and 

Youth were the first to address the whole day 10,68. The Canadian 24-Hour Movement 

Guidelines for Children and Youth encourage children and youth to “Sweat, Step, 

Sleep and Sit”. For optimal health benefits, children and youth (aged 5–17 years) 

should achieve high levels of physical activity, low levels of sedentary behaviour, and 

sufficient sleep each day. A healthy 24 hours includes: uninterrupted nine to 11 hours 

of sleep per night for those aged 5–13 years and eight to 10 hours per night for those 

aged 14–17 years, with consistent bed and wake-up times; and an accumulation of at 

least 60 minutes per day of moderate to vigorous physical activity (MVPA) involving 
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a variety of aerobic activities. Vigorous physical activities and muscle and bone 

strengthening activities should each be incorporated on at least three days per week; 

several hours of a variety of structured and unstructured light physical activities; no 

more than two hours per day of recreational screen time; and limited sitting for 

extended periods. Preserving sufficient sleep, trading indoor time for outdoor time, 

and replacing sedentary behaviours and light physical activity with additional 

moderate to vigorous physical activity can provide greater health benefits 10,68. The 

rationale behind these changes were drawn from a series of comprehensive reviews 

(see: Saunders, et al. 6, Chaput, et al. 7, Carson, et al. 8 and Poitras, et al. 9). 

 

Poitras, et al. 9 supported the notion that children and youth accumulate at least 60 

minutes per day of moderate to vigorous physical activity for disease prevention and 

health promotion 1. Following a systematic review, Poitras, et al. 9 reported that total 

physical activity was positively and significantly associated with physical, 

psychological/psychosocial, and cognitive health indicators 10,68. Relationships were 

more consistent and robust for higher-intensity compared with lighter-intensity 

physical activity, whilst light-intensity physical activity was positively associated with 

cardiometabolic biomarkers. The findings highlight the potential benefits of both light 

intensity physical activity and total physical activity, neither of which were captured 

in the previous guidelines 9. A further review, by Carson, et al. 8, into sedentary 

behaviour found that higher durations and/or frequencies of screen time and television 

(TV) viewing were associated with adverse body composition; frequency and time 

spent TV viewing was associated with higher cardiometabolic risk; TV viewing and 

video-game use were associated with adverse behavioural indicators; greater time 

spent reading and homework were associated with higher scholastic achievement; 

screen time was associated with lower cardiorespiratory fitness; and screen time and 

computer use were associated with reduced self-esteem 8. Screen time has a stronger 

relationship with health indicators compared with overall sedentary time, and 

concluded that less sedentary behaviour (especially screen time) was associated with 

better health indicators 8. A systematic review on the effect of sleep, by Chaput, et al. 

7, noted longer sleep duration was linked with positive indicators of adiposity, 

emotional control, scholastic achievement, and overall health and well-being 7. 

Chaput, et al. 7 concluded that shorter sleep duration is congruent with detrimental 

physical and mental health outcomes. Finally, Saunders, et al. 6 reported that school-

aged children and youth having a high physical activity, high sleep, low sedentary 
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behaviour had better measures of adiposity, cardiometabolic health and general health 

indicators 6. Whereas those who had low activity and sleep also had deleterious health 

indicators 6. Collectively, the systematic reviews of Saunders, et al. 6, Chaput, et al. 7, 

Carson, et al. 8 and Poitras, et al. 9 provided an evidence base and led to the inception 

of the 24-hour movement guidelines, targeting a more holistic approach than 

previously seen. This presents a paradigm change representing a fundamental shift 

from focusing on behaviours in isolation, to the composition of behaviours across a 

whole day 6-9. Consideration for all behaviours along the movement spectrum as a 

collective is necessary and warranted, and holds promise in the promotion of 

population health 10.  

 

3.1.2 Childhood physical activity 

In children and young people (5-18 years of age) there is evidence of the beneficial 

effects of physical activity on musculoskeletal health, cardiorespiratory fitness, several 

components of cardiovascular disease, adiposity, and blood pressure 5,28,69,70. Further 

physical activity can improve children's psychological well-being and promote moral 

reasoning, positive self-concept, and social interaction 71. Thus, physical activity and 

fitness in childhood are associated with numerous health benefits 14,72, and should be 

promoted 73. Further, in the late 1980’s, Blair, et al. 74 hypothesised a number of 

relationships that linked childhood activity to adult health, and adult activity. 

Specifically: (i) childhood physical activity influences adult physical activity, which 

may affect adult health, (ii) childhood physical activity has a direct beneficial effect 

on child health, which predicts adult health and, (iii) childhood physical activity has a 

direct beneficial effect on adult health, this hypothesis has since been supported in the 

literature 5,16.  

Higher levels of physical activity in children are associated with improved cardio-

respiratory fitness and muscular strength 75, enhanced bone health and reduced body 

fat 76. Participation in physical activity is vital for enhancing children’s physical, 

social, cognitive and psychological development 76. Further, children who frequently 

participate in physical activity demonstrate reduced symptoms of anxiety and 

depression, and improved self-esteem and confidence 76. Whilst children’s activity has 

been widely investigated, the pre-school period (3 to 5 years of age) is often 

overlooked, yet pre-school represents a crucial period of development whereby the 

regulation of energy balance is programmed 77. For example, lifestyle behaviours are 

thought to track from pre-school to childhood, and subsequently into adulthood 78,79, 
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indicating that this is a critical time for promoting physical activity and preventing 

sedentary behaviours 80. On the other hand, the relationship between physical activity, 

sedentary behaviour and health in the early years is not fully understood and warrants 

investigation 81. Pivotal to the research is an accurate measure of physical activity that 

should go over above current approaches 32. In addition, diversification and refinement 

on the approaches to measuring physical activity will enable better understanding of 

these relationships 82. There has been much debate in the literature into whether young 

children are sufficiently active for health 83, and conflicting conclusions have been 

reached. One solution to the dearth of understanding throughout development (i.e. 

physical activity, motor development and control interaction), is to assess elements of 

movement quality, as well as quantity.   

3.2 Motor development 

In a seminal study, Stodden, et al. 22 proposed a theoretical model that explains the 

interaction between the development of motor competence, physical activity 

participation and weight management. Stodden, et al. 22 suggested that motor 

competence is the underlying mechanism that will influence physical activity 

engagement levels. However, the model asserted that physical activity is also mediated 

by age, perceived motor competence, physical literacy, health related fitness and 

obesity risk 22. During early childhood, the cognitive capability to accurately perceive 

motor competence is not sufficiently developed 23,84. However, when children reach 

middle to late childhood their cognitive ability will have developed to the point they 

compare themselves to their peers 23,84, resulting in a stronger relationship between 

motor competence and perceived motor competence. Children who have a higher 

perceived motor competence and higher motor competence will perceive tasks to be 

easier and are more likely to engage in physical activity, whereas the reverse is evident 

in children with low actual and perceived motor competence 85.  

Based upon the findings of a comprehensive review, Robinson, et al. 31 reported that a 

positive relationship exists between motor competence and physical activity across 

childhood, the strength of associations between motor competence and both 

cardiorespiratory endurance and muscular strength/endurance increase from childhood 

into adolescence. Finally, motor competence has tenuously been shown to be both a 

precursor and a consequence of weight status and demonstrates an inverse relationship 

across childhood and adolescence 31. Whilst some literature has explored the impact 

youth physical activity levels have through the life course, there exists little more than 

tenuous links between early years and childhood motor competence, tracking across 
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the life course. Therefore, adequate measures of motor competence and movement 

qualities are required to explore this further 32. 

3.3 Physical activity, fundamental movement and body-mass index 

Fundamental movement skills (FMS) are considered the basic building blocks for 

movement and provide the foundation for specialized and sport-specific movement 

skills required for participation in a variety of physical activities. Fundamental 

movements skills can be categorized into locomotor (e.g., run, hop, jump, leap), 

object-control (e.g., throw, catch, kick, strike), and stability (e.g., static balance) skills  

86. Current tools to assess FMS, such as the movement ABC test and the gross motor 

development test, assume that the reliability data and validity information is well 

founded 87. However, there is not sufficient evidence that clearly indicates the FMS 

test items are actually evaluating the motor skill constructs 88. Test-retest and inter-

rater reliability has been reported in the literature to range anywhere between 0.49 to 

1.00 89-91. 

In-spite of reliability issues, there is strong evidence to suggest a positive association 

between fundamental movement skill competency, physical activity and health related 

benefits in children 24,92-94. Many cross-sectional studies have shown a linear 

relationship between FMS and physical activity. However, cross-sectional data cannot 

determine causality, for example, it is not clear if FMS influences physical activity, or 

if physical activity influences FMS. In a systematic review on FMS in children and 

adolescents Lubans, et al. 92 found that FMS was associated with organised and non-

organised physical activity and pedometer step counts although ten studies were cross-

sectional hindering cause and effect conclusions. Okely, et al. 95 found that as little as 

3% of organised physical activity was predicted from FMS levels (r2 =0.03) in 13-16 

years old adolescents, whilst Hamstra-Wright, et al. 96 reported that 29% of the 

variance in locomotor skills was accounted for by organised sport, which is a much 

higher percentage of variance than reported in the other studies (3% for Okely, et al. 

95; 10.4% for McKenzie, et al. 97; 3.6% for Barnett, et al. 98; 19.2% for Cliff, et al. 99).  

Previous research has highlighted that FMS is inversely correlated with weight status 

100-103 and out of the 21 studies cited in the Lubans, et al. 92 systematic review, nine of 

them used body mass/BMI as a variable to compare FMS mastery. Six of the nine 

studies highlighted a significant inverse relationship between weight status and FMS 

mastery. Okely, et al. 95 also established that overweight and obese children score 

lower in the locomotor skills (run, gallop, skip and hop). McKenzie, et al. 97 on the 
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other hand did not find a significant relationship between childhood FMS scores and 

adolescent physical activity levels, although an inverse relationship between FMS and 

weight status was identified. The theory is that improving FMS at an early age will 

result in increased PA and improved health. This is an important concept given that 

excess body weight is correlated with low physical activity levels, increased all-cause 

mortality risk and biomechanical movement perturbations 104,105. It has been shown 

that children with excess weight move less and with much greater difficulty than 

normal-weight counterparts 105-110, and the impact of excess body mass in children 

appears to hinder physical activity, movement quality and fundamental movement skill 

22,24. The compromised movement in overweight children is attributed to greater force 

through joints, decreased mobility, modification of gait pattern, and changes in the 

absolute and relative energy expenditures for a given activity 105,108. Furthermore, 

overweight children have a longer gait cycle and stance phase duration as well as a 

reduced cadence and velocity compared to normal weight 111-113. The difficulty 

overweight children have in adapting to different walking speeds is disadvantageous 

when participating in physical activities involving frequent speed changes, including 

standardised fitness tests 108. Spatiotemporal and kinetic analyses of obese vs. non-

obese children showed that obese children were mechanically less efficient than 

normal weight children, i.e. obese children used more mechanical energy when 

walking at the same speed, compared to normal weight children 108.  

3.4 Physical activity and energy expenditure  

A multitude of instruments providing objective measures of physical activity have 

been developed, the simplest being pedometers 114, which allow the estimation of 

distance walked and associated energy expenditure 115,116. Whereas, other sensors and 

methods, including; accelerometers, heart rate monitoring, doubly labelled water, and 

direct observation have been employed to objectively quantify physical activity and 

its related energy expenditure 117,118.  

Doubly labelled water is classified as the gold standard of energy expenditure 

measurement, however, this technique does not measure specific physical activities, 

per se, but rather estimates total energy expenditure over a period from which the 

physical activity energy expenditure can be calculated 119. This method uses non-radio-

labelled isotopes of oxygen and hydrogen (18O and 2H) administered as a standard dose 

of water at the start of the measurement period (usually 7-21 days). The 18O is 

eliminated from the body in CO2 and water and the 2H is eliminated as water only. The 



28 
 

difference between the elimination rates of each isotope is an estimate of CO2 

production over the measurement period and the total energy expended during the 

measurement period can then be calculated using a standard equation 120. Physical 

activity energy expenditure can then be calculated by subtracting dietary induced 

thermogenesis and resting energy expenditure from total energy expenditure 120. 

However, physical activity is a complex multidimensional human behaviour that 

encompasses all bodily movement from fidgeting to marathon running 121,122. 

Consequently, it is important to understand the relationship between specific physical 

activities and energy expenditure. Types of physical activity may be spontaneous (i.e., 

daily life activity), obligatory (i.e., activity necessary for survival) or voluntary (i.e., 

formal, planned exercise) 123. The major contributor to daily physical activity energy 

expenditure in children is spontaneous physical activity 124 . There is evidence that low 

levels of physical activity are associated with increased risk of weight gain and this in 

turn may have health consequences for children 5,16,50,125, hence why the focus of 

physical activity literature has been on energy expenditure.   

Physical activity is a multi-faceted construct and can be expressed and quantified in 

numerous ways. For example, physical activity can be described according to context, 

such as surrounding environment and social conditions and further characterised 

according to type, frequency, duration and intensity 126. The type or modality of 

physical activity (recreational, obligatory or occupational, aerobic or anaerobic, 

continuous or intermittent, weight-bearing or non-weight bearing) refers to the specific 

activity in which the individual is engaged. The frequency of physical activity refers 

to the number of bouts of physical activity over time, whilst duration is the length of 

time in each activity bout.  The dose of physical activity, however, may be expressed 

according to absolute or relative intensity. Absolute intensity is the actual rate of 

energy expenditure over a specified time period and is generally expressed as oxygen 

uptake (V̇O2; L.min-1), oxygen uptake relative to body mass (ml.kg-1min-1) and/or 

energy expenditure (kcal.min-1, kJ.min-1, MJ, kJ.kg-1). Absolute intensity can further 

be described according to multiples of resting energy expenditure using the metabolic 

equivalents classification (MET). METs are defined as the ratio of energy expended 

from work to resting metabolic equivalent (3.5 mL of O2
.kg-1min-1) or 1 kcal.kg-1hr-1. 

Knowing the MET value associated with a particular type of activity and individual 

body mass permits the energy cost of the activity to be estimated 127,128.  
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The Compendium of Physical Activities was conceived in 1993 and subsequently 

revised in 2000 and currently presents MET values for 605 specific activities for 

adults, categorized under 21 major headings 128,129. The values range from 0.9 METs 

(sleeping) to 18 METs (running at 10.9 mph). MET values are used to express the 

intensity of physical activity according to intensity categories (i.e., light, moderate, 

vigorous).  Although absolute intensity levels corresponding to MET values exist for 

children, research is equivocal over which are most appropriate. In most studies, 

moderate intensity is defined as ≥3 METs. It is asserted by some that a threshold of ≥5 

METs is more suitable for children 130,131. More recent evidence suggests ≥4 METs is 

an appropriate threshold for describing ≥moderate intensity activity in children 130,131.  

Accelerometers can record movement in the anterior-posterior, medio-lateral and 

vertical directions, provide an alternative method of estimating EE in a free-living 

environment and are considered the de facto standard for objectively measuring 

physical activity. Physical activity EE can be predicted from the anterior-posterior 

direction of an accelerometer signal 132, whilst the vertical acceleration is most 

sensitive to a majority of activities like walking or running. The signal integral of 

triaxial acceleration outputs have been shown to have linear relationship with the 

metabolic EE 133. Commercial accelerometers follow the same principles and convert 

raw acceleration signal into activity counts over an epoch. The activity counts 

represent the estimated intensity of measured activities during each time period and 

subsequently compared with the DLW method 134 or indirect calorimetry to estimate 

the EE 135. 

A review of physical activity measurement reported that 63% of monitoring devices 

used were accelerometers, predominantly the ActiGraph 136, whilst literature has 

focussed on quantifying activity in the form of activity counts, time spent above or 

below activity thresholds or energy expenditure, as opposed to the movement qualities 

33,34. Furthermore, functional limitations, such as; high frequency movement and noise 

information escaping the bandpass filter which in turn adds unexplained variation in 

activity counts 35, variations in epoch length, cut points and device type further add to 

the lack of clarity in the literature 36-38.  

3.5 Physical activity and recess 

Children spend a significant proportion of their waking time at school. Non-curricular 

time, such as school recess periods (recess and lunch break) and after-school programs, 

provide opportunities for children to be physically active within the school 
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environment 137,138. Of these contexts, recess periods may provide the single greatest 

opportunity during the school day to impact on child physical activity levels 109,139,140. 

However, in recent years there has been a trend to reduce the frequency and duration 

of school recess, or remove it from the school day altogether, often due to academic 

pressures 138,141. Consequently, it is important that school recess is included in school-

based physical activity programming and policy, and that the recess environment is 

conducive for children to make physically active choices 142. Whilst the scheduling 

and duration of recess periods vary between countries, social and physical 

environments that facilitate enjoyable and safe physical activity engagement in this 

context would be advantageous 143. A number of reviews have examined correlates of 

preschool, children’s and adolescents’ physical activity 144-146, yet these have 

predominantly focused on factors associated with whole-day activity. Since physical 

activity is a multidimensional behaviour influenced by numerous factors across several 

domains 147, it is logical to also consider specific contexts in which children and 

adolescents are active. This notion links to a conceptual model proposed by Welk 148, 

where the author addressed the area of motor competence. Welk 148 categorized the 

five most commonly reported determinants/correlates of physical activity into (1) 

personal, (2) biological, (3) psychological, (4) social, and (5) environmental, and the 

available literature supports this assertion. Welk 148 suggests in his conceptual model 

that biological factors such as physical skills and fitness act as enabling factors that 

are promoted by physical activity with increased fitness and competence, leading to 

increased adherence to physical activity and subsequent enhancement of perceived and 

actual competence.  

 

Ridgers, et al. 146, conducted a systematic review into correlates of physical activity 

during recess and reported that age, grade level, BMI, cardiovascular fitness, outdoor 

environment, physical education provision, and number of recess periods had no 

association with recess physical activity 149-151. The authors went on to summarise a 

number of significant, positive associations with physical activity during recess, which 

included; playing ball games, being male, perceived encouragement, loose equipment 

and overall facility equipment 151-153. Current research indicates that many correlates 

of recess physical activity are equivocal, indicating that more empirical research is 

required 146; for example, special educational needs, supervision, socioeconomic 

status, fixed equipment, playground markings, season, temperature, weather, 

organized activities and recess duration all affect recess activity to varying levels 146. 
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Whilst an appreciation must be also made for the differences between primary (3-11y) 

and secondary (12-16y) school aged children. Factors consistently reported to 

significantly influence primary school aged physical activity levels include; sex (being 

male), parental overweight status, parent support physical activity preferences, 

intention to be active, perceived barriers (inverse), previous physical activity, healthy 

diet, program/facility access, and time spent outdoors 146,154-158. Whilst commonly 

reported factors significantly associated with secondary school aged physical activity 

are; sex (being male), ethnicity (white), age (inverse), perceived motor competence, 

depression (inverse), previous physical activity, community sports, sedentary time 

(inverse), and parent support, highlighting that in older age groups (adolescents vs 

children) social and mental health/well-being factors increase in their influence, whilst 

biological factors remain constant 146,154-158. 

 

A further consideration is that a range of physical activity measures have been used to 

assess physical activity levels, which has a profound influence on the identified 

associations. While the majority of child studies reported in Ridgers, et al. 146 utilised 

objective measures to quantify physical activity during recess, (such as accelerometry 

and direct observation), aspects such as device type, model type, accelerometer cut-

points and observation systems have varied widely, thereby hindering many of the 

observations 146. Furthermore, self-report measures are well documented to be less 

accurate 159. Therefore, future research should explore how movement quality 

indicators may be used, in conjunction with traditional quantitative measures i.e. 

energy expenditure, overall activity counts 32, and to characterise and profile children’s 

physical activity movement and gait quality.   

3.6 Physical activity quality 

A contemporary problem that needs addressing is a clear definition of ‘quality’ in a 

physical activity context. Whilst quantity, with reference to physical activity, is well 

described, with the most common definition coming in form of the razor coined by 

Casperson, et al. 160; “Physical activity is defined as any bodily movement produced 

by skeletal muscles that results in energy expenditure”, the term ‘quality’ is nebulous 

and can have connotations relating to; physical activity, movement, psychology, 

physiology, biochemistry, well-being, emotional state, biomechanics or even life.  

 

Quality can be used to describe an individual’s overall self-assessment or subjective 

appraisal of well-being or life satisfaction associated with physical status and 
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functional abilities, mental health, happiness, satisfaction with interpersonal 

relationships and economic and/or vocational status 161,162. For children and youth, 

there is the additional domain of school/academia 161. Health-related quality of life 

includes aspects of overall quality of life that are directly related to physical and/or 

mental health 161,162 As such, health related quality of life reflects the degree to which 

a person is able to participate physically, emotionally and socially with or without 

assistance 163. 

 

Social interactions and participation can also be described in terms of quality. Full 

social participation is considered a fundamental human need, with empirical evidence 

finding that lack of social connections increases the odds of death by at least 50% 164. 

The quality of multidimensional tenets of social relationships have been reported to 

increase odds of mortality by 91% among the socially isolated 164. The magnitude of 

this effect is comparable to that of other known risk factors of mortality, such as 

obesity or physical inactivity 164,165. In humans of all ages, deficits in social 

relationship quality, such as social isolation or low social support can similarly lead to 

chronic activation of immune, neuroendocrine, and metabolic systems that lie in the 

pathways, leading to cardiovascular, neoplastic, and other common aging-related 

diseases 166-169. 

 

Objectively-measured biomarkers of physical health, such as C-reactive protein, 

systolic and diastolic blood pressure, waist circumference, and body mass index can 

be used to indicate physiological quality 170,171. For instance, blood pressure may be 

used to determine the quality and efficiency of the myocardium’s ability to distribute 

and regulate blood flow 170,171. Physiological quality may also refer to a molecular and 

cellular level and the capability to perform basic cellular functions. All cells perform 

certain basic functions essential for their own survival. These basic cell functions 

include, but are not limited to: nutrient retention, chemical reactions, waste removal, 

protein synthesis and reproduction 170,171. If any cell within the human system does not 

perform these basic, and subsequent specialized, functions then the quality of the cell 

would be considered compromised.  

 

Quality can also be referred to in the context of gait and has been determined using 

raw accelerations, aligned to anatomical axes with respect to gravity 172-174 and analysis 

of the bipedal (left-to-right leg) symmetry 175-177. Quality can be determined from bouts 
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of locomotion and described as; vertical trunk displacement 178-180, stride frequency, 

and walking speed 178-180. Whilst gait quality can be described in terms of; intensity, 

expressed as the root mean square of the signal; variability expressed as stride-to-stride 

variability in walking speed, stride frequency and length; symmetry expressed as the 

harmonic ratio 181,182; smoothness expressed as the index of harmonicity 183; and 

complexity expressed as the mean logarithmic rate of divergence per stride using 

Wolf's method 184 and sample entropy 185. Further examples include; the 

autocorrelation at the dominant period 174, the magnitude and width of the dominant 

period in the frequency domain 186-188 and the percentage of power below 0.7 Hz 189. 

However, authors, such as Bellanca, et al. 18 and Brach, et al. 19, have demonstrated 

that quality measurements in specific populations can be derived from analysing the 

fundamental frequency and harmonic content of movement. With the addition of raw 

accelerometry, novel analytics, such as fast Fourier transformation (FFT), has been 

used to process the accelerometer signal and identify gait qualities; walking 

smoothness, walking rhythmicity, dynamic stability and stride symmetry 18,19. For the 

purpose of this thesis, the term ‘quality’ shall be referred to and derived from the 

fundamental frequency spectra (signal) during human movement, specifically relating 

to ambulation, using a raw accelerometer and will be explored throughout the 

experimental chapters of this thesis. 

3.7 Application and accuracy of novel analytics 

Signal processing of accelerometer data has moved beyond the descriptive approach 

of simply quantifying overall activity using time spent in thresholds or counts per 

minute. There are more substantive insights that will take the accelerometer data past 

the descriptive stage that characterises the data, allowing both quantity and quality to 

be reported 114,117. Chen, et al. 117 reported that sensor type and data processing will 

directly impact the results of the outcome measurement. Further, that multisite 

assessment and combining accelerometers with other sensors and new analytics will 

offer additional advantages. Yang, et al. 114 reported that the application of sensors is 

expanding to encompass, for example, characterisation of falls, postures and gait 

qualities. Both, Chen, et al. 117 and Yang, et al. 114, respectively, highlighted issues 

with traditional analyses, such as device reliability, insensitive energy expenditure 

algorithms, epoch length affecting overall physical activity and inability to detect 

intermittent activities. Future technological improvements will necessitate examining 

raw acceleration signals and developing advanced models for accurate energy 

expenditure prediction and activity classification 114,117,190. 
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Recently, emerging approaches to physical activity measurement have focused on 

prevention of falls, postural movement, energy expenditure and analysing raw 

accelerometry traces 191,192. One example, pattern recognition, which is an analytical 

technique used to classify activity behaviours (such as jumping, walking or running) 

can make use of data from several sensors placed on the body. This process involves 

gathering data from participants carrying out a protocol of structured activities and 

then processing the signal for common features. Once processed, it is possible to 

program a computer to detect features in data collected from participants carrying out 

defined activities, otherwise known as machine learning. The algorithms used to do 

this depend largely on the features used for classification of activities and subsequent 

variants of these. In addition to machine learning and pattern recognition, 

mathematical modelling has resulted in improved energy expenditure estimations, by 

incorporating accelerometry, heart rate monitors, indirect calorimetry (IC) and 

anthropometric data. Further the utilisation of more sophisticated techniques, such as 

artificial neural networks, can feed data information through the network, and then 

compute to better predict energy expenditure or movement 193.  

The diversification of analytical techniques to characterise physical activity is 

accelerating, and multiple, diverse platforms on which to assess and report physical 

activity have come to the fore, and therefore an updated synthesis of the current 

evidence base is warranted. Further, consideration of accuracy and associated 

limitations is also needed to indicate the current suitability of different techniques.  

3.7.1 Reviewing method 

Literature search 

A computerised search was conducted using the following databases; Web of Science, 

PubMed and Google Scholar. A combination of the following key words was used to 

locate studies for review, post January 2010; ‘physical activity’, ‘pattern recognition’, 

‘wearable motion sensor’, ‘artificial neural network’, ‘energy expenditure’, ‘sensor’, 

‘multi sensor’, ‘monitor’, ‘motion sensor’, ‘accelerometer’, ‘accelerometry’, 

‘regression’, ‘hidden Markov model’ and ‘machine learning’. Terms were combined 

such that every search included one term related to; ‘physical activity’ and one term 

related to type; ‘measurement’ or ‘classification’. Figure 1 shows the results of the 

literature search and article selection process. 
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Study characteristics 

Multiple searches were then made in each of the selected databases and additional 

searches for relevant references and citations linked to the studies obtained during this 

primary search were conducted. The selection process sought to identify studies that 

assessed physical activity using emerging analytical techniques, of varying study 

design, conducted human-based investigations, assessed the accuracy of analytical 

technique 114,117. 

Study selection 

Coding of papers only allowed for studies that adopted emerging analytical techniques 

for physical activity measurement, including; pattern recognition, artificial neural 

networks, hidden Markov models, machine learning and regression, and assessed 

technique accuracy. Studies of varying designs were acceptable for the purposes of 

this review; however, technical reports, review articles, non-human based studies, or 

studies which did not measure activity or report technique accuracy were not 

considered further. Following the selection of appropriate articles, study design, aims, 

population, analytical technique, overall accuracy and limitations were reviewed in 

Table 1. 
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3.7.2 Results 

The electronic search subsequently identified 2,064 potentially relevant articles. 

Following screening and detailed assessment, 11 studies were deemed suitable for 

review. Of the 11 studies included, one study utilised linear discriminant analysis, four 

utilised feature extraction and machine learning, two utilised a support vector machine 

classifier, one utilised dynamic time warping, one utilised hierarchical clustering, one 

utilised an extreme learning machine, and one utilised a hidden Markov model. Table 

1 summarises; study aims, participant characteristics, study outcomes, overall 

accuracy and study limitations. 

Articles meeting initial search criteria 
(n=2,064) 

Titles and article abstracts screened 

(n=1,750) 

314 articles removed 

- Duplicates 

1,699 articles removed 

- Outside scope of study 

- Did not meet inclusion criteria 

- Did not assess physical activity 

Full-text of articles assessed (n=50) 

39 articles removed 

- Non-human based (n=13) 

- Technical report/systematic review 

(n=11) 

- Did not report accuracy (n=15) 

Total articles included 

(n=11) 

       

Figure 1. Flowchart of the search and selection process. 
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Table 1. Emerging technique accuracy (including falls, activity type, behaviour, prediction). 

Study Aim  Populationa Instrument/technique Overall accuracy Conclusion Limitations 

       

Aziz, et al. 194 To develop and evaluate 
the accuracy of wearable 

sensor systems for 
determining the cause of 
falls. 

Nine males 
and three 

females (20-
35y) 

Accelerometer 
(MicroStrain), linear 
discriminant analysis. 

89% These results establish a basis for the 
development of sensor-based fall monitoring 

systems that provide information on the cause 
and circumstances of falls, to direct fall 

prevention strategies at a patient or population 
level. 

All falls were performed under controlled laboratory conditions 
by healthy individuals between the ages of 20 and 35, who fell on 

soft gymnasium mats. So application to real world setting needs 
to be investigated. Small sample and biased towards males. 

Bulling, et al. 
195 

To investigate eye 

movement analysis as a 
new sensing modality for 
activity recognition 

Six males and 

two females 
(23-31y) 

Electrooculography 

(Mobi8), feature 
extraction and machine 
learning, SVM. 

76.1% Activity recognition using eye movement analysis 

can be used to successfully recognise five office 
based activities and has future potential 

Some subjects had to be excluded due to poor signal quality. Any 

pathologic eye disorder (such as nystagmus) can significantly 
affect activity recognition 

Duncan, et al. 
196 

 

To examine the accuracy 

of a MSB that infers 

activity types (sitting, 
standing, walking, stair 

climbing, and running) 
and estimates EE 

25 males and 

37 females 
(39.2±13.5y) 

MSB, accelerometer 

(Actical), stationary 

calorimetry 
(TrueMax), HR 

monitor (Polar), feature 
extraction. 

97% (laboratory) 
and 84% (field).  

The MSB provides accurate measures of activity 

type in laboratory and energy expenditure during 
treadmill walking and running. 

Device underestimates EE when used in the field. Device 

estimates EE based on walking speed and does not factor in events 
such as carrying loads.  

Fulk, et al. 197 

 

To determine the ability of 

a novel shoe-based sensor 
that uses accelerometers, 

pressure sensors, and 

pattern recognition with a 
SVM to accurately 

identify sitting, standing, 

and walking postures in 
people with stroke. 

Two males 

and six 
females 

(60.1±9.9y) 

who suffered 
a cortical 

CVA 

51.7±45.1 
months prior 

Force sensitive 

resistors (Interlink), 
SVM. 

99.1% to 100% 

individual 
models. 76.9% to 

100% group 
models.  

The combination of accelerometer and pressure 

sensors built into the shoe was able to accurately 
identify postures 

There was no attempt to examine the ability of the sensors to 

detect transitions such as sit to/from stand position or ascend/ 
descend stairs 

Goncalves, et 
al. 198 

To determine stereotypical 
motor movements for 

application to individuals 
with ASD 

Two 
participants  

Xbox Kinect sensor, 
dynamic time warping 
algorithm 

100% Results were promising, some aspects need to be 
improved, i.e. noise of the depth image that can 

lead to false-positives in the identification, and 

improve the accuracy of the application when the 
user sits too far from or too close to the Kinect 
sensor. 

Subjects used did not suffer from ASD. No participant 
information. Hand flapping was the only movement. Did not 
correctly identify duration of movement. 

Kjaergaard 199 To identify multiple 

human movement 

(flocking) derived from 
multiple sensors. 

16 
participants 

WiFi, accelerometer, 

compass, hierarchical 
clustering. 

87% Hierarchical clustering improves flock recognition 

and multiple sensors improve recognition 
compared to uni-model approaches 

No participant information was provided. 
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Leutheuser, et 
al. 192 

To generate a publicly 

available benchmark 
dataset for the 

classification of daily life 

activities, comparing 
multisensor based 

classification to state-of-
the-art algorithms 

13 males and 

10 females 
(27±7y)  

Wearable sensor 

(SHIMMER; 3axial 
accelerometer and 

3axial gyroscope 

combination), feature 
extraction and machine 
learning. 

89.6% The comparison showed that the proposed data 

fusion of accelerometer and gyroscope provided 
a useful tool to distinguish between complex 
activities like ascending stairs. 

Inconsistent sensor placement and numbers used for different 
algorithms. 

Mannini, et al. 
200 

To investigate machine 

learning methods for 
classifying human PA  

20 
participants 

Accelerometer. HMM 92.2 to 98.5%. The use of HMM with pattern recognition is a 
promising approach for the future. 

Only basic motions captured. No sex or age information. 

Trost, et al. 201 To develop and test ANNs 

to predict PA type and EE 
from processed 
accelerometer data 

100 

participants 
(11.0±2.7y) 

IC (Oxycon), 

accelerometer 
(Actigraph), ANN 

81.3% to 88.4%.  ANNs can be used to predict both PA type and 

EE in children and adolescents using count data 
from a single waist mounted accelerometer 

Authors noted that EE can be predicted accurately from a limited 

number of activities. ANNs developed from laboratory controlled 
activities not PA or free living conditions. No sex information 
provided. 

Xiao, et al. 202 

 

To develop a wearable 
feedback system for 

monitoring the activities of 
the upper-extremities 

6 participants 
(29.7±4.4)  

FSR, ELM classifier   92% Results support the use of this system for 
providing instant feedback during functional 
rehabilitation exercises. 

Only discrete postures were used. No sex information provided. 

Zhang, et al. 203 To extract and evaluate PA 

patterns from image 

sequences captured by a 
wearable camera 

One 
participant 

Wearable camera, good 
features detector 

>85% Many types of PA can be recognized from field 
acquired real-world video 

Extremely low sample size, camera position was not securely 
fixed. No participant information reported.  

Table I definitions; ANN: Artificial neural network, ASD: autism spectrum disorder, CVA: cerebro-vascular attack, EE: energy expenditure, ELM: extreme learning machine, FSR: force sensor resistor, 

HMM: hidden Markov model, HR: heart rate, IC: indirect calorimetry, MSB: multi-sensor board, PA: physical activity, SVM: support vector machine. a Age data are mean ± SD, or range.  
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3.7.3 Discussion 

Accelerometry based studies  

Several studies applied emerging analytical techniques with accelerometry to assess 

physical activity, with a range of accuracies and limitations (see: Table 1). Measuring 

human physical activity using wearable monitors 191,192 demonstrates promising 

results. Physical activities, including walking, running, cycling and rope jumping, have 

been accurately (up to 100% accuracy in certain circumstances) classified using 

sensors with multiple inputs (for example accelerometers or gyroscopes) 192,197. Aziz, 

et al. 194 successfully measured physical activity and sedentary behaviour using 

accelerometers in older adults or those with impaired ambulation using linear 

discriminant analysis, which is a type of machine learning, with overall accuracy of up 

to 89% in classifying fall type. Further, computed values were highly correlated to 

walking speed prediction (r=0.98). However, problems arose when using the same 

approach in highly transitory activities and when detecting falls that were a result of 

syncope. Leutheuser, et al. 192 also utilised machine learning, in combination with 

feature extraction, and could correctly identify basic daily life physical activities with 

89.6% accuracy. The use of machine learning with accelerometry appears to allow 

identification of specific movements with high accuracy. However, at present activity 

classification using this method appears to only be able to identify basic movements. 

Conversely, when focussing more broadly on inferring activity type, and not 

specifically falls or basic movement, Duncan, et al. 204 achieved 97% accuracy during 

walking and running in the laboratory and 84% accuracy in the field (performing 

scripted activities including walking up and down stairs, walking around and picking 

up a 20-pound object), using feature recognition. This particular method appears to be 

successful due to the incorporation of EE in order to infer activity type, rather than the 

accelerometer signal alone. However, once in field testing was performed, the 

accuracy falls by 13 percentage points, indicating reliability issues outside of a 

controlled setting. Trost, et al. 201 advocated the use of a different form of machine 

learning, ANN, and reported high accuracy (88.4%) in activity classification. This type 

of machine learning has been applied to multiple settings with high levels of accuracy 

and reliability and relies on a computational model inspired by natural neurons to 

process and link inputted data 205. Trost, et al. 201 was the only study to have utilised a 

substantial sample size, giving strength and reliability to their findings. Although 

accelerometers can be combined with novel analyses for the same or similar outcomes, 
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there are numerous mathematical processes and models that can be applied under the 

umbrella of machine learning, i.e. ANN, feature detection, linear discriminant 

analysis, all of which demonstrate comparable level of accuracy. In addition to 

machine learning approaches, pattern recognition in combination with accelerometry 

has demonstrated very good reliability. Mannini, et al. 200 reported that very high 

accuracy (92.0 – 98.5%) could be achieved when classifying postural (sitting, lying 

and standing) and basic motor movements (stair climbing, walking, running and 

cycling) when applying a HMM to characterise an accelerometer signal. This indicates 

that when pursuing activity classification, machine learning and pattern recognition 

represent two very promising techniques. At present, these techniques are limited to 

classifying only simple or basic movements and as such, further work is required to 

extend these models to be applicable in a more generalised setting. Further, a 

confounding limitation of emerging analytics in conjunction with accelerometry is that 

the number of participants used in studies has been small (Fulk, et al. 197, Leutheuser, 

et al. 192). It is evident that studies have addressed varying problems, ranging from 

pedestrian flocking, to falls, or more predominantly, inferring activity and the relative 

accuracies of these techniques has been shown to be very high. 

Other sensor based studies  

There have been a number of approaches used to classify characteristics in physical 

activity data, such as pattern recognition, machine learning and principal component 

analysis (PCA) 200. When analysing a raw accelerometry trace, it is very difficult to 

deduce what action has been performed without any other input or prior knowledge 

about the actions. In such cases, a pattern recognition technique, such as a HMM, may 

be applied, where observations are available (the raw accelerometry trace) but the 

background information giving rise to those observations are ‘hidden’ (prior 

knowledge of any activities or movement). Therefore, HMM is an approach used to 

classify features in a dataset. Other statistical modelling approaches can be used where 

the probability data derived from a ‘training set’ of data are used to classify some 

features into various motion and physical activities. An important consideration when 

classifying data is that large datasets will result in multiple features and characteristics, 

which results in time-consuming data analysis and collection. Artificial neural 

networks, in addition to decision trees, have also been used to good effect 206,207. 

Further, pre-processing and reclassifying data can help reduce the dimensionality of 

large data sets 200, and using novel analytics can help to compute the meaningful basis 
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in a data set by filtering out noise, resulting in improved accuracy 200. However, a 

consistent feature associated with many pattern recognition analytics is that many data 

need to be gathered in order for patterns to be recognised. This can be time-consuming 

and expensive and requires significant computer memory and power 200. Further, 

whilst accelerometry has become the de facto device for objectively assessing physical 

activity, the use of other sensors (i.e. cameras, force sensitive resistors, 

electrooculography) to achieve the same outcome has grown. It is evident that the aim 

of many emerging analytical techniques has been to aid in better detecting the quality 

and type of activity that a person is undertaking. Zhang, et al. 203 incorporated motion 

cameras to recognise patterns of movement and concluded that basic motor 

movements could be recognised with 85% accuracy. The accuracy reported by Zhang, 

et al. 203, using a pattern recognition approach, was lower than Mannini, et al. 200. This 

could be an artefact of the device, as acquired images are often blurry and ineffective 

in capturing feature points. However, this approach attained similar levels of accuracy 

to Trost, et al. 201. Goncalves, et al. 198 utilised an Xbox Kinect camera in conjunction 

with a pattern recognition approach, dynamic time warping, where the similarity 

between patterns which may vary with time of different durations is measured 198. The 

authors reported success in application of the technique, however, the gesture sensing 

algorithm was only applied to two participants and one action, hand flapping. So, 

although the accuracy reported was absolute, there is still much development needed 

in order to apply this to more movements. Bulling, et al. 195 reported an accuracy of 

76% when identifying activities such as text copying, reading a printed paper, taking 

hand-written notes, watching a video, and browsing the web. The authors contended 

that recording the movements of human eyes, electrooculography, can successfully be 

used to identify certain activities and may be feasible in wider applications, such as 

accurately identifying non-traditional activities (e.g. rock climbing), which would be 

missed by common sensing modalities. However, further investigations would be 

required to corroborate the effectiveness of this technique.  

The application of cameras, in different forms, to characterise activity type has 

demonstrated variable success when complemented with novel analyses. A further 

example of instruments used when attempting to characterise human movement with 

novel analytics is force sensitive resistors. Fulk, et al. 197, for example, mounted the 

device in the footwear of participants to measure plantar pressure and record the 

acceleration signal, thereby inferring postural activity in stroke victims. The raw signal 
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from the device was analysed using a support vector machine, which is a supervised 

machine learning technique that can use training examples to learn the dependencies 

in the data (in Fulk, et al. 197, the computer learns how the signals from the sensors can 

predict postural activities) and apply the learned model to recognition of previously 

unseen data 197. Across eight participants, accuracy in identifying postural activity of 

99-100% was found, indicating that, using a modest sample size, the combination of 

acceleration and pressure traces, postures may confidently be assessed. Similar to Fulk, 

et al. 197, Xiao, et al. 202 utilised a force sensitive resistor, but applied it to the upper 

extremities to analyse force myographic signals of the forearm. The authors were able 

to accurately identify upper extremity movements during a controlled drinking task 

(92% accuracy). Xiao, et al. 202 also utilised a form of machine learning to learn and 

classify the data, an extreme learning machine classifier. As with previously 

mentioned studies, a training approach was taken, where the ELM classifier was 

‘taught’ or ‘trained’ to model the force myography trace. 

Although substantial gains have been made utilising emerging analytics to develop 

deeper insights into human physical activity data, the underlying algorithms require 

further development. It is evident that when simple postural changes or activities are 

quantified, there are a number of techniques and instruments that can be used to 

accurately determine them, which is not the case when complex or specific activity 

recognition is required. The main problem with the studies reviewed is that they are 

predominantly laboratory based, or have much lower accuracy in-field, use small 

sample sizes and are exploratory. Many of these studies also failed to account, or 

indeed report, anthropometric and physiological metrics such as age, sex and fitness, 

which could conceivably affect patterns of movement.  

Cluster analysis 

Whilst refining emerging techniques should remain a strong focus, so that adequate 

levels of accuracy and confidence may be established and improved upon, the 

techniques by which physical activity can be measured will continue to proliferate. 

Cluster analysis involves the use of algorithms to separate a population into clusters 

or groups based on various parameters, such as activity behaviours, and has been 

identified by Kjaergaard 199 to have high accuracy. Kjaergaard 199 focussed on group 

activity, rather than individual activity, using flock detection and found by 

incorporating accelerometry, Wi-Fi and cluster analysis that pedestrian flocks could 

be correctly identified and tracked with 87% accuracy. One problem encountered in 
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this study was flock proximity (i.e. the ability of the cluster analysis to successfully 

differentiate between flocks was encumbered when different groups become entwined 

or were too close), thereby indicating that the mathematical modelling process needs 

further refinement. The cluster analysis approach relies upon an iterative process of 

interactive, multi-objective optimization and may be used in various ways depending 

on which parameters are applied. For example, cluster analysis can be used to 

determine friendship groups in the playground or could be used to determine trends 

and correlations between factors such as physical activity, age and socioeconomic 

status. Cluster analysis is versatile and has previously been used to study animal 

behaviours and movements theory 208 and in biology to identify and track cells 47. 

Given the nature of human behaviour, cluster analysis could be of great use in 

advancing the analysis of physical activity indices.  

Conclusion 

Research into physical activity is expanding to incorporate a multitude of different 

techniques, and within each approach exists a series of limitations that need 

addressing. This chapter identified that a range of emerging analytical techniques have 

reported high accuracy across physical activity measurement, with success in postural 

activity classification. However, many of the studies were exploratory or require 

further development to establish reliable, accurate measures across larger samples.  

The field of physical activity measurement is rapidly developing; however, emerging 

analytical techniques have only achieved variable success in relatively small samples, 

and the degree of measurement accuracy across a range of activities has been 

inconsistent. It is of importance to establish the degree of accuracy achieved by using 

these techniques for researchers to make an informed choice on analytical approach. 

Further, future studies should include more detailed participant characteristics, as 

many individual factors affecting gait and physical activity characterisation vary by 

age, sex and motor competence. Despite the different techniques undertaken, these 

problems were consistently found. Consequently, as methods develop, it is 

recommended that ‘qualities’ of different activities, such as characteristics of gait, 

activity duration and idiosyncratic differences be further investigated in controlled, 

semi-controlled and free-play settings. 
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3.8 Summary and Conclusion 

The literature review in this chapter has summarised the current evidence base 

surrounding physical activity and its relationship to health, recess, motor 

competence/FMS, body mass index and energy expenditure, whilst also appreciating 

the current physical activity guidelines. Further, a comprehensive and systematic 

review of accelerometry, classic and novel analytics and considerations in physical 

activity research was detailed. 

Physical activity is a complex construct and should not be pigeonholed to simply 

quantity of activity, it may pertain to physical behaviour, movement quality, 

characteristics of movement, joint angles during movement, force production, motor 

competency, volume of activity, or even psychological constructs 122. A substantial 

amount of research using accelerometers to examine physical activity has focused far 

more acutely on examining characteristics of movements in a contextualised setting, 

to later be applied to a wider application 18,19,209. In the literature, the general reference 

to physical activity refers to the idea of capturing overall quantity, however, as noted 

physical activity is an umbrella term, for which many things could be inferred. For 

example, posture classification, movement classification, EE estimation, fall detection 

or balance and control assessment, frequency component or gait analysis 18,19. Physical 

activity, measured by overall quantity is demonstrably unresponsive to interventions, 

as a systematic review by Metcalf, et al. 210 found that physical activity interventions 

only improve physical activity quantity, on average, by four minutes per day. Further, 

Altenburg, et al. 211 found interventions specifically designed to target sedentary 

behaviour are equally as ineffective. It is therefore this authors’ recommendation that 

accelerometers placement and explicit use and application be better defined. 

It is apparent, however, that physical activity is linked with several positive factors 

through the life course. It is also clear from the literature the deleterious impact 

inactivity, and factors such as excess body mass, can have on physical health, 

fundamental movement skill and movement quality. However, there is a dearth of 

literature presenting techniques capable of accurately and reliably quantifying the 

quality of movement across ages. Therefore, the overarching aim of this thesis is to 

characterise and profile children’s physical activity movement and gait quality. 
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3.8.1 Objectives 

1. To introduce a novel accelerometry-based device and investigate its suitability, 

accuracy and validity in a mechanically controlled setting and during 

controlled and semi-controlled activity (experimental chapter 1). 

2. To investigate how movement quality and gait characteristics cluster during a 

standardised fitness test (9-11y; experimental chapter 2). 

3. To investigate how movement quality and gait characteristics cluster during 

recess (9-11y; experimental chapter 3). 

4. To investigate how movement quality and gait characteristics during free-play, 

and how they cluster with motor competency (3-5y; experimental chapter 4). 
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4.0 General methodology 

This chapter describes the general methods used within this thesis. Further specific 

details of individual studies and review of measurement techniques are outlined in the 

relevant experimental chapters and appendices. 

4.1 Ethical approval  

Ethical approval for experimental chapters 1 (PG/2014/009), 2 (PG/2014/12), and 3 

(PG/2014/37)) was granted in agreement with the guidelines and policies of the 

Swansea University research ethics committee (REC). Ethical approval for the study 

in experimental chapter 4 was approved by the NRES committee Yorkshire and the 

Humber (12/YH/0334). For all experimental chapters, information sheets were 

developed for children, parents and school staff and prior to study engagement explicit 

informed parental consent, school consent and child assent was attained (see 

appendices). 

4.2 Instruments and procedures  

SlamTracker 

This SlamTracker is micro-electromechanical device that measures both dynamic 

acceleration resulting from motion or shock and static acceleration, such as gravity, 

that allows the device to be used as a tilt sensor. The sensor is a polysilicon surface-

micro machined structure built on top of a silicon wafer. Polysilicon springs suspend 

the structure over the surface of the wafer and provide a resistance against forces due 

to applied acceleration. Deflection of the structure is measured using differential 

capacitors that consist of independent fixed plates and plates attached to the moving 

mass. Acceleration deflects the proof mass and unbalances the differential capacitor, 

resulting in a sensor output whose amplitude is proportional to acceleration. Phase-

sensitive demodulation is used to determine the magnitude and polarity of the 

acceleration. This device incorporates a tri-axial accelerometer with a +/- 16g dynamic 

range, 3.9mg point resolution and a 13-bit resolution and a tri-axial magnetometer with 

a +/- 1.3 gauss range and 12-bit resolution (ADXL345 sensor, Analog Devices). It was 

housed in a small plastic case and, in experimental chapters 1, 2, 3, and 4, was mounted 

via a Velcro strap to the lateral malleolar prominence of the fibula of the dominant leg 

and set to record at 40 Hz (Figure 3, Figure 3, Figure 4). 

 

 



47 
 

  

Figure 3. Diagram of accelerometer placement 

 

Figure 4. Output Response vs. Orientation to Gravity 

Anthropometrics 

Following recruitment, anthropometric measures of children’s stature and body mass 

were recorded to allow characterisation of the sample population. Body mass was 

measured to the nearest 0.1 kg using Seca digital scales (SECA, Hamburg, Germany), 

stature to the nearest 0.1 cm using a stadiometer (SECA, Hamburg, Germany) and 

sitting stature to the nearest 0.1cm using a seated stadiometer (Holtain, Crymych, UK). 

To ensure standardisation in the measurement of anthropometric variables the standard 

procedures outlined by Lohmann, et al. 212 were followed. 

To measure stature, participants were asked to stand barefoot with their heels touching 

the back of the stadiometer. The child was asked to look straight ahead with arms 

Figure 2. Axes of acceleration sensitivity 
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relaxed by their sides. The researcher then gently held the child’s head in two hands 

so that light upwards pressure was applied under the jaw anteriorly and occiput (base 

of the skull) posteriorly to provide maximum extension of the spine. Care was taken 

not to tilt the head and to maintain the Frankfurt position of the head, whereby the 

inferior aspect of the orbit was parallel with upper margin of the ear canal 212. The 

child was asked to breathe in and then out and to relax their shoulders without lifting 

their heels from the ground. The horizontal head plate was then lowered until it made 

contact with the highest point of the child’s head and stature was recorded to the 

nearest 0.1 cm. Each participant was weighed in light clothing and asked to stand 

barefoot in the centre of the scales with arms by their sides. Weight was measured to 

the nearest 0.1 kg. Using the corresponding height and weight data, the children’s 

BMIs were calculated. BMI was calculated as the body mass in kg divided by the 

square of the height in metres (kg.m2). Additionally, children were classified as either 

underweight (<5th percentile), normal weight (5th to 85th percentile), overweight (>85th 

to <95th percentile) or obese (≥ 95th percentile) 213. 

4.4 Data Analysis 

4.4.1 SlamTracker  

For experimental chapters 1, 2, 3, and 4 raw triaxial acceleration and magnetometer 

data from the SlamTracker MEMS device were uploaded into MatLab (MATLAB 

version R2016a), where the subsequent characteristics; integrated acceleration, stride 

profile quotient, stride variability, stride frequency, stride angle, spectral purity, and 

time to volitional exhaustion, were derived. For ankle-mounted acceleration, 

characteristics used for analysis were derived from acceleration in the axis along the 

lower leg towards the origin of motion, termed the radial axis.  The maximum impact 

force generated upon foot strike, Fmax, corresponds to the peak positive value of 

acceleration (force vector pointing from foot to knee) and was calculated by 

subtracting the background static acceleration and multiplying by the participant’s 

weight. The stride angle, αmax was obtained from the peak acceleration value in the 

negative direction. This point represented the maximum leg lift and when dynamic 

acceleration was zero, the radial acceleration was wholly determined by the vector 

component of the gravitational field, as determined by the angle of the accelerometer 

relative to the vertical axis. Therefore, determining the angle to which the subject’s leg 

swings, the minimum point during the acceleration trace of the stride, Aradial was used 

in the following equation (Equation 1).  
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𝛼𝑚𝑎𝑥  =  𝑎𝑐𝑜𝑠(𝐴𝑟𝑎𝑑𝑖𝑎𝑙/𝑔) 

            Equation 1. Maximum angle of foot lift 

Where, 𝛼𝑚𝑎𝑥 is the stride angle; 𝑎𝑐𝑜𝑠 is the inverse of cosine; 𝐴𝑟𝑎𝑑𝑖𝑎𝑙, is the minimum 

point during the acceleration trace of the stride; and 𝑔, is gravity. 

The integrated acceleration was also determined, using an integration of the rectified 

signal and correspondent to the computation used to derive the standard ‘activity 

counts’ by other commercial devices, such as the ActiGraph 214.   

As we were analysing accelerometer data taken from children performing motions 

such as walking and running, or ambulation, we decided to convert the time signal into 

the frequency domain. The frequency spectrum highlights important features of a 

child’s movement including stride-to-stride variation and overall complexity 

represented by the number of harmonics present in the spectrum, and can also be used 

to highlight the absence of repetitive motion thereby indicating inactivity or lower 

movement quality. In order to convert the data into the frequency domain the Fast 

Fourier transform was applied to the data.  The Fast Fourier Transform computes the 

discrete Fourier transform (DFT) of a sequence. 

Let x_0,…,x_(N-1) be a sequence of N complex numbers. The Fast Fourier transform 

computes the Discrete Fourier transform 

𝑋𝑘 =  ∑ 𝑥𝑛. 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0  , 𝑘 ∈ 𝑍 

Equation 2. Discrete Fourier Transform 

Where, N = number of time samples, n = current sample under consideration (0 .. N-

1), xn = value of the signal at time n, k = current frequency under consideration (0 

Hertz up to N-1 Hertz), Xk = amount of frequency k in the signal (amplitude and phase, 

a complex number), n/N is the percent of the time gone through, 2 * pi * k is the speed 

in radians.sec-1, e^-ix is the backwards-moving circular path. 

Several measures related to quality were also taken from the frequency domain. The 

stride frequency, f is identified as the first amplitude maxima. In order to determine 

the quality of a child’s movement - ‘Spectral purity’ was calculated from the 

cumulative distribution function (CDF) of the frequency spectrum.  

The CDF plot is used to generate a value for spectral purity. The empirical CDF F(x) is 

defined as the proportion of X values less than or equal to some value x. In this case, 

it is the number of values less than or equal to some frequency in a spectrum being 

considered. A measure for spectral purity is therefore considered to be the frequency 
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at which the midway point of the CDF (0.5) occurs. As a result, spectra that is 'clean', 

i.e. consisting of a tall narrow peak at the fundamental frequency and only low amount 

of noise and small harmonics will have a different value to spectra where there is lots 

of noise, a shorter wider peak, and higher peaks at the harmonics.  

Cluster analysis 

For experimental chapters 2, 3 and 4 a clustering algorithm was applied to the dataset. 

The derived characteristics (specific to each experimental chapter) from the raw 

acceleration traces were normalised so that they could be compared and input into an 

in-built clustering algorithm (MATLAB version R2016a). This algorithm performs 

multiple iterative processes in order to cluster the data along the columns of the dataset. 

The similarity or dissimilarity between metrics was determined by calculating the 

pairwise Euclidean distances between the values of the different metrics. 

 

d2st= (xs−xt)(xs−xt)
′ 

Equation 3. Euclidean distance 

Where, d is the Euclidean distance; xs and xt represent the data values being compared. 

Once the distances between the characteristics (specific to each experimental chapter) 

for each child were derived, a linkage function was applied, to determine the proximity 

of the metrics to each other. These were paired into binary clusters, which were 

subsequently grouped into larger clusters until a hierarchical tree was formed. The 

resulting clustergram was displayed in terms of a heat map and dendrogram. The 

height of the link at which two observations on the dendrogram were joined was 

analysed using cophenetic distance (Equation 4), to demonstrate the similarity between 

two clusters 46,215,216. The values for the dendrogram linkages were subsequently 

normalised. The cophenetic distance ratio for the overall clustergram was also 

measured to demonstrate how successfully the dendrogram preserved the pairwise 

distances between the original unmodeled data points (where 1 is maximum). 

𝑐 =  
∑ (𝑌𝑖𝑗𝑖<𝑗 − 𝑦)(𝑍𝑖𝑗 − 𝑧)

√∑ (𝑌𝑖𝑗 − 𝑦)2
𝑖<𝑗 ∑ (𝑍𝑖𝑗 − 𝑧)2

𝑖<𝑗

 

Equation 4. Cophenetic distance equation 
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Where 𝑌𝑖𝑗 is the distance between objects 𝑖 and 𝑗 in 𝑌. 𝑍𝑖𝑗 is the cophenetic distance 

between objects 𝑖 and 𝑗, from 𝑍. 𝑦 and 𝑧 are the average of 𝑌 and 𝑍, respectively. 

 

4.4.2 Statistical tests 

All data were assessed for normal distribution before statistical tests were selected. 

Where the data were normally distributed the means and standard deviations were 

presented. Parametric inferential statistics were used to determine differences or 

explore associations (further details are provided in the respective study chapters). 

Where the data were found to be not normally distributed the median and upper and 

lower quartiles were presented. Non-parametric inferential statistics were used to 

determine differences and test for associations (further details are given within the 

respective study chapters). 
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5.0 Experimental Chapter 1 

5.1 SlamTracker Accuracy under Static and Controlled Movement Conditions 

*this chapter is a published manuscript: Clark, C. C. T., Barnes, C.M., Holton, M.D., 

Summers, H.D., Stratton, G. (2016). SlamTracker Accuracy under Static and 

Controlled Movement Conditions. Sport Science Review, 25(5-6), 321-344. 

5.2 Introduction 

Accelerometry is the most commonly applied method for objective assessment of 

physical activity 34. Traditional accelerometer devices predominantly store a summary 

measure of the raw acceleration signal, termed an “activity count” 40. A count is a 

dimensionless unit aimed to be proportional to the average overall acceleration of the 

human body in a specified period of time, referred to as an “epoch” 117. However, this 

relationship has been questioned due to the restrictive dynamic range of commercial 

accelerometers, the downstream signal processing and band-pass filtering 32,34. Such 

processing and filtering is designed to remove components of the signal unrelated to 

human movements 41,217, however high frequency movement and noise information 

can escape the bandpass filter, which in turn adds unexplained variation in activity 

counts and incorrectly removes frequencies directly from human movement 32,35. 

 

There are a plethora of methods that exist to filter and summarise a raw acceleration 

signal, the choice of which has profound implications on the interpretation of the final 

output 34,39. However, as traditional accelerometers are limited in memory and battery 

capacity to store raw signal data, data processing stages are performed on the device 

itself, and this process is irreversible once the count has been stored in local memory. 

This irretrievable conversion prevents re-analysis of the raw accelerometer signal 

using novel analytics and data processing techniques. 

Although a detailed synopsis of the signal processing protocol employed would be 

vital to enable replication of empirical data, most manufacturers of accelerometer 

devices state that pre-processed raw data is proprietary information. This lack of 

transparency on the calculation of “activity counts” prevents a comparison between 

different accelerometer brands, or even between versions of the same brand 40,41. On 

the other hand “activity counts” derived from a raw accelerometer output have 

concordance with commercially developed devices (r=0.93, P<0.05), demonstrating 

the versatility of utilising the raw accelerometer signal 34. 
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Using a raw accelerometer signal, where all frequencies related to human movement 

are included in the signal, would allow novel analyses, such as; pattern recognition, 

feature extraction, machine learning, cluster analysis, data mining to be undertaken, 

aided by the fact the Nyquist-Shannon sampling theorem is not violated  34,200. Further, 

given there is no hidden signal processing, researchers may maintain control and 

confidence in their outputs. So as raw accelerometers become more commonplace, it 

will be increasingly important to test their accuracy and variance during human 

movement, so device and human noise may be differentiated, and accuracy quantified 

32,218.  

The SlamTracker is a device that captures raw accelerometer signals without pre-

processing the data, and has been shown to accurate and robust in a plethora of bi- and 

quadrupedal animal based studies 219-223. Despite the extensive use of the SlamTracker 

device, it has not been assessed in a controlled manner. Therefore, the aim of this study 

was to quantify the mean, standard deviation and variance of the SlamTracker device 

at a range of speeds. 

5.3 Methods 

5.3.1 Instruments and procedures 

Four tri-axial accelerometers of identical build, specifications and shape (ADXL345 

sensor, Analog Devices) with a +/- 16g dynamic range, 3.9mg point resolution and a 

13 bit resolution (see: 219-223 for detailed examples of previous use) underwent a one 

minute static condition test and were subsequently tested at nine movement conditions 

(three speeds at three radii), for one minute, on a motorised turntable (GPO Stylo, 

Manchester, UK), with speeds verified by digital tachometer (RS Digital Tachometer 

Model 445-9557, Corby, UK) (Table 2,Figure 5). 

Table 2. Movement test conditions 

 33.7 rpm 45.3 rpm 77.1 rpm 

27 mm 0.09 m.s-1 0.13 m.s-1 0.22 m.s-1 

56 mm 0.2 m.s-1 0.27 m.s-1 0.45 m.s-1 

83 mm 0.29 m.s-1 0.39 m.s-1 0.67 m.s-1 

*27, 56, 83 denote the possible radii in millimetres, 33.7, 45.3, 77.1 denote the possible speed in 

revolutions per minute. 

 



55 
 

Figure 5. Turntable schematic 

For the static condition, each device was tested at 20, 40, 100 and 200 Hz, and only 

the sensitive axis (Z) was analysed as the only force acting upon the accelerometer was 

gravity. All motorised turntable tests were performed at 40 Hz, with X, Y and Z axes 

being analysed. The decision to use 40 Hz was based on the results of the static 

condition test. 

5.3.2 Data analysis 

Raw acceleration data was uploaded into a comma separated values spreadsheet where 

all analyses took place. For the static condition, mean, standard deviation and 

coefficient of variation over the one-minute measurement epochs. 

For the movement test conditions; mean, standard deviation and coefficient of 

variation over each one-minute test was assessed for all axes. Because axes can be 

subject to negative and positive g during movement, sample variance was calculated 

as the squared differences from the mean (Equation 5). For static and movement test 

conditions, analysis of variance (ANOVA) was assessed between all 4 devices. 

Equation 5. Sample variance 

𝜎2 =
∑(𝑋 − 𝜇)2

𝑁
 

Where μ is the mean, N is the number of scores, 𝜎2 is the sample variance, and 𝑋 is 

the actual numeric value.  

5.4 Results 

5.4.1 Static condition 

The static condition test demonstrated that the Z-axis amplitude coefficient of variation 

improved as recording frequency reduced (Table 3). The mean Z-axis amplitude, offset 

to zero, across recording frequencies is shown in Figure 6. There were no significant 

differences between devices. 
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Table 3. Static condition test 

Frequency Mean SD CV 

200 0.918 0.009 0.01 

100 0.923 0.004 0.005 

40 0.904 0.004 0.004 

20 0.913 0.004 0.004 

Mean (g), standard deviation and coefficient of variation (%) values for recording frequencies; 20, 40, 

100 and 200 Hz, respectively. 

 

Figure 6. Amplitude for accelerometer Z-axis under no movement condition for 

different sampling frequencies. 

Crosses denote device recordings at 20 Hz; closed triangles denote device recordings at 40 Hz, closed squares 

denote device recordings at100 Hz, closed diamonds denote device recordings at 200 Hz. 

5.4.2 Movement conditions  

The mean (SD) and sample variance for the X, Y and Z axes during all movement 

condition tests are detailed in Table 4 and there were no significant differences 

between devices. 
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 Table 4. Movement condition tests at nine speeds. 

Data reported as: Mean accelerometer amplitude in g, (standard deviation) and sample variance in g. 

values are reported for all speeds and all axes. 

5.5 Discussion 

The aim of this study was to quantify the accuracy of the SlamTracker accelerometer 

at a range of speeds. This study found that during the static condition test 40 Hz had 

joint lowest CV and joint lowest SD (Table 3). For the movement condition tests, the 

sample variance was <0.001g across all speeds and axes (Table 4). 

The static condition test was performed at a range of recording frequencies suitable for 

assessing physical activity 34,217. It was found that as recording frequency was 

decreased, the coefficient of variation concomitantly improved, as did deviation from 

the mean. The highest recording frequency with the lowest coefficient of variation and 

lowest standard deviation was found at the 40 Hz recording frequency.  

The movement condition tests found that, for all axes, the sample variance was less 

than 0.001 g across all speeds. This indicates that, irrelevant of speed, the SlamTracker 

accelerometer is reliably accurate and consistent, indicating no artefacts of the device 

are present during movement. This is an important finding as any artefacts or 

anomalies recorded during human movement assessment can be attributed to 

researcher error (i.e. affixing problems), tampering (i.e. participant moving device) or 

accidental damage (i.e. participant falling on device), as opposed to device error. 

Slaven, et al. 224 determined the quality of accelerometer data by applying k-means 

clustering to the raw acceleration signal mean and variance across specific, 

consecutive time points and reported data quality as ‘good’ or ‘poor’ by how the 

 0.09 0.13 0.2 0.22 0.27 0.29 0.39 0.45 0.67 

Axis  m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 

X (g) -0.046 

(0.02) 

<0.001 

-0.025 

(0.01) 

<0.001 

-0.03 

(0.01) 

<0.001 

-0.001 

(0.01) 

<0.001 

-0.021 

(0.01) 

<0.001 

-0.028 

(0.02) 

<0.001 

-0.006 

(0.02) 

<0.001 

-0.007 

(0.01) 

<0.001 

-0.048 

(0.02) 

<0.001 

Y (g) 0.019 

(0.01) 

<0.001 

0.017 

(0.01) 

<0.001 

0.019 

(0.01) 

<0.001 

0.018 

(0.02) 

<0.001 

0.016 

(0.01) 

<0.001 

0.019 

(0.01) 

<0.001 

0.02 

(0.03) 

0.001 

0.017 

(0.02) 

<0.001 

0.019 

(0.01) 

<0.001 

Z (g) 0.855 

(0.02) 

<0.001 

0.858 

(0.02) 

<0.001 

0.856 

(0.02) 

<0.001 

0.855 

(0.02) 

<0.001 

0.857 

(0.02) 

<0.001 

0.857 

(0.02) 

<0.001 

0.856 

(0.02) 

<0.001 

0.855 

(0.02) 

<0.001 

0.853 

(0.02) 

<0.001 
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clustering algorithm grouped the data. Data were retained in the ‘good’ cluster if they 

were within ~6% of the cluster mean. The present study variance from the mean was 

under 1% for all axes and speeds, indicating all data points would be considered 

‘good’. Further, Tawk, et al. 225 reported accelerometer amplitude variance of <0.001 

g during a static condition test, the present study, however, found similar low levels of 

variance in static and movement conditions.  

This study comprehensively investigated the SlamTracker acceleration signal 

amplitude at predominantly slow speeds, ranging from static to slow ambulation. It 

has been suggested that in some previous studies with a mechanical calibration or 

validation component (217,226), the mechanical device used only allowed very limited 

acceleration amplitude in the low frequency area 227. It was further suggested that 

utilising a device that can smoothly rotate at low speeds is of paramount importance 

when calibrating/validating accelerometers 227. The fact this study focussed 

predominantly on slow speeds is therefore a strength, as finding confidence in slow 

speeds demonstrates that subtle movements may be accurately attributed to human 

ambulation and not an artefact of device noise. It may be considered a limitation that 

the fastest speeds of human movement were not assessed in this study, however this 

device was subject to a broad band pass filter, up to 12 Hz, which has been vindicated 

by Wundersitz, et al. 228, who identified that filters at this frequency were most suitable 

to process accelerations in human running tasks, and filter out non-human motion. 

Further, although this is the first time the SlamTracker device has been mechanically 

validated, prior to human use, the SlamTracker has been extensively tested in 

biological tracking studies of multiple mammals, birds and ocean dwelling animals of 

varying sizes (see; Wilson, et al. 220). 

5.6 Conclusion 

This empirical investigation has quantified sample variance and deviation from mean 

values for the SlamTracker. This variance may be factored in to future analyses when 

using raw acceleration data. The SlamTracker demonstrates low variance and minimal 

deviation from mean values across an extensive range of slow speeds, and processes 

acceleration frequencies up to 12 Hz, and is therefore suitable for assessing human 

movement at very slow and fast speeds. Given the accuracy in static and movement 

tests for raw accelerometry, combined with its capability for novel analytics 32. 
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Thesis map 
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deviation and variance of the 

SlamTracker device at a range of 
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<0.001g across all 

speeds and axes during 

the movement condition 

tests. we conclude the 
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device for measuring 
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during human 

movement. 

Validity of Force and 

Angle Derivation Using 

Raw Accelerometry 

Aim To verify the validity of 
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accelerometry to 
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Key Findings - 
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Aim - 
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Aim - 
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5.7 Validity of Force and Angle Derivation Using Raw Accelerometry 

*this chapter forms part of a published manuscript: Barnes, C.M., Clark, C. C. T., 

Holton, M. D., Stratton, G., Summers, H. D. (2016).   Quantitative Time-Profiling of 

Children’s Activity and Motion. Medicine and Science in Sports and Exercise, 49(1), 

183-190. 

5.8 Introduction 

Accelerometers are considered to be the de facto standard device for objective physical 

activity monitoring 33,34. The most widely used accelerometers in physical activity 

research (e.g. ActiGraph) use a piezoelectric lever to detect acceleration ranging from 

0.05 to 2.13G. In traditional physical activity analyses, participants typically, although 

not exclusively, wear the accelerometer on the right hip (near to the centre of mass). 

Any full body movement results in displacement of the accelerometer causing the 

piezoelectric lever to bend. Resultantly, a signal is generated in proportion to the 

amount of acceleration, which subsequently generates intensity of movement output 

and the signal is sampled at a user specified value otherwise known as an ‘epoch’ 

34,131,229. Physical activity is then traditionally reported as overall quantity of activity 

or time spent in varying intensities 34,131,229. 

Signal processing of accelerometer data has, however, progressed beyond the 

descriptive approach of simply quantifying overall activity using time spent in 

thresholds or counts per minute. Chen, et al. 117 and Yang, et al. 114 extensively 

reviewed the area and concluded that there are more substantive insights that will take 

the accelerometer data past the descriptive domain, allowing quality and movement 

characteristics to be accurately reported. Utilising raw accelerometer signals assessing 

movement characteristics such as; joint angles, force production, ambulation control 

and spectral components is possible. Further, future research will necessitate 

examining raw acceleration signals for more in-depth analyses of physical activity 

114,117,190. 

Physical activity is a complex construct and not simply quantity of activity, and may 

pertain to physical behaviour, movement quality, characteristics of movement, joint 

angles during movement, force production, motor competency, volume of activity, or 

even psychological constructs 122. The most common definition in the literature of 

physical activity is, “any bodily movement produced by skeletal muscles that requires 

energy expenditure” 160. However, physical activity as defined in this way does not 
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cover all aspects of behaviour and movement that can be relevant (e.g., body postures, 

angles, forces, movement characteristics etc.). It has been suggested by Bussmann, et 

al. 122 that a clear ontology and definition is required as to what the actual outcome and 

criterion measures are intended to be. Taking this in to consideration, and the 

capability of raw accelerometry, the aim of this study was to verify the validity of 

using raw accelerometry to estimate force (N) and leg angle (°) during ambulation. 

5.9 Methods 

5.9.1 Participants and settings 

A single participant was used for this case study (25y, 1.75m, 73kg, leg length: 0.8m). 

Approval was granted from Swansea University’s Research Ethics Committee (REC), 

and the participant provided signed, informed consent before participation. 

5.9.2 Instruments and Procedures 

The participant attended the laboratory on two separate occasions. During the first 

occasion standing stature, leg length (measured to the nearest 0.01m) and body mass 

(to the nearest 0.1kg) were measured using a stadiometer (SECA, Hamburg, Germany) 

and digital scales (SECA, Hamburg, Germany), respectively, using standard 

procedures. The participant then performed eight movement tasks (four walking and 

four running, at volitional speed) on an embedded force platform (Kistler, model 

number 9286AA). The force platform was calibrated by applying known loads to the 

plate before and after each movement task and sampling its output, and was set to 

record at 1000 Hz and output force in Newtons. 

On the second visit, the participant performed five runs of one-minute duration, with 

speed increasing in 1.5 km.h-1 increments from 7.0 to 13 km.h-1 on a motorised 

treadmill (Woodway, Cardiokinetics, Salford, UK). Each run was recorded using a 

high-resolution (350 fps) video camera (Bonita 480m, Biometrics, France) positioned 

medio-laterally to the participant. During the force platform and treadmill 

measurements the participant also wore a custom-built motion tracking and recording 

device, which incorporated a tri-axial accelerometer with a +/- 16g dynamic range, 

3.9mg point resolution and a 13 bit resolution (with an amplitude coefficient of 

variation of 0.004% at 40Hz (see: 230)) (ADXL345 sensor, Analog Devices). It was 

housed in a small plastic case and affixed via a Velcro strap to the lateral malleolar 

prominence of the fibula of the right leg, where a co-ordinate system referenced to the 

lower leg was used (motion space rather than absolute space), in which acceleration in 

the axis along the lower leg towards the origin of motion (knee or hip), Aradial is used 
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for all measurements - termed the radial axis.  The device was set to record at 40 Hz 

and data were recorded onto a microSD card. 

5.9.3 Data analysis 

Data analysis was carried out using custom algorithms written in the MATLAB 

software environment (MATLAB version R2016a). Low and high frequency device 

noise was removed by passing the raw data through a broad band-pass filter (0.5Hz to 

12 Hz) i.e. only frequencies within the normal range of walking and running 

frequencies were accepted.  

For the tri-axial accelerometer, the maximum impact force generated upon foot strike, 

Fmax, corresponds to the peak positive value of acceleration (Figure 1) and was 

calculated by subtracting the background static acceleration (1g) and multiplying by 

the participant’s body mass. Fmax was validated against the value derived by the force 

platform using Pearson’s product-moment correlation coefficient analysis. 

For the tri-axial accelerometer, the maximum angle of foot lift, 𝛼𝑚𝑎𝑥 was obtained 

from the peak acceleration value in the negative direction (Figure 8). At this point of 

maximum leg lift the dynamic acceleration is zero and the radial acceleration is wholly 

determined by the vector component of the gravitational field, as determined by the 

angle of the accelerometer relative to the vertical axis. Therefore, to determine the 

angle to which the participant’s leg swings the minimum point during the acceleration 

trace of the stride, Aradial is used in the following equation: 

Equation 6. Maximum foot lift angle 

α𝑚𝑎𝑥  =  𝑎𝑐𝑜𝑠(𝐴𝑟𝑎𝑑𝑖𝑎𝑙/𝑔) 

Where, 𝛼𝑚𝑎𝑥 is the stride angle; 𝑎𝑐𝑜𝑠 is the inverse of cosine; 𝐴𝑟𝑎𝑑𝑖𝑎𝑙, is the minimum 

point during the acceleration trace of the stride; and 𝑔, is gravity. 

Recorded video data was uploaded into MatLab, where manual measurement of the 

leg position from the image frames was used to determine maximum angle of the foot 

lift using the knee as the reference point. Following this, validation of the 

accelerometer derived angle against the video derived angle was performed using 

Pearson’s product-moment correlation coefficient analysis. 
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5.10 Results 

Accelerometer derived angle was significantly correlated with video derived angle 

(r=0.98) (Figure 8), and were within 8±2.4% of video values. Accelerometer derived 

force was significantly correlated with force platform derived force (r=0.98) (Figure 

9), and were within 0.67±6% of force platform values. 

 

Figure 8. Video vs. accelerometer derived angle (°). 

 

Figure 9. Force platform vs. accelerometer derived force (N). 
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5.11 Discussion 

The aim of this study was to verify the validity of using raw accelerometry to estimate 

force (N) and leg angle (°) during ambulation. In accord with the aim of this study, the 

key finding was that a tri-axial accelerometer raw signal is significantly related to 

criterion measures for angle estimation and force derivation. The method for 

estimating angle (°) using an accelerometer significantly correlated with video verified 

angle estimation (r=0.98, P=0.001). The method for deriving force (N) using an 

accelerometer significantly correlated with force platform verified values (r=0.98, 

P=0.001). 

5.11.1 Angle estimation 

Accelerometers can equate with kinematics, goniometers and cameras for angle 

estimation. Djuric-Jovicic, et al. 231 demonstrated accelerometry estimated ankle angle 

correlated to a criterion measure strongly (r=0.85), although, the present study found 

a stronger correlation coefficient (r=0.98), indicating strength in this method of 

estimation. The result found in this study, Williamson, et al. 232, and Djuric-Jovicic, et 

al. 231 indicated a small, mean over or under estimation of angle when derived through 

accelerometer signal processing, however all angle estimations were within 8% of 

criterion measured values for all three studies. The present study sought to identify one 

particular characteristic of the walking/running, angle maxima, which explains the 

high level of agreement. Whilst Djuric-Jovicic, et al. 231 reported lower correlation 

coefficients using a criterion measure, they used a continuous angle measurement 

indicating that accelerometers are extremely robust and capable of continuous and 

discrete measurements of angle. 

5.11.2 Force estimation 

The utility of accelerometers is widely recognised, and with the proliferation of novel 

technologies and signal processing techniques 34, there use is expanding. In addition 

to being able to accurately estimate angles, the ability to estimate force production 

using accelerometers is also possible. This study has shown accelerometry can be used 

to very accurately and reliably estimate force production during ambulation at varying 

speeds (r=0.98) to within <1% of force platform recorded values. This has also been 

demonstrated for counter-movement jumping, Howard, et al. 233, found both minimum 

eccentric force and maximum concentric force were accurately estimated, in 

comparison to force platforms although there were higher intra-class correlations in 

the minimum eccentric force (r=0.93), compared to maximum concentric force 

(r=0.6). Further, ground reaction force estimation has yielded promising results. 
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Simons, et al. 234 found correlation coefficients of up to r=0.86, whilst Pouliot-Laforte, 

et al. 235 reported a correlation coefficient of r=0.96, and noted 95% limits of agreement 

between 17% and 31%. This indicates that the force derivation in this study yielded 

higher accuracy and correlation coefficient to a criterion measure than other 

comparable studies. One potential reason for the higher accuracy in this study is that 

the accelerometer was ankle mounted, opposed to hip mounted. Studies using hip 

mounted accelerometers acknowledged that forces were routinely underestimated, this 

could in part be due to low band-pass filters applied to the accelerometers. Wundersitz, 

et al. 228 identified that filters with at least an 8 or 10 Hz cut-off frequency were most 

suitable to process accelerations in walking and running tasks. An alternative 

explanation is poor choice in device placement, where the errors found may be due to 

the distance between the accelerometer worn on the trunk and the criterion measure 

chosen, such as a force plate located on the ground 228. Although centre of mass locale 

are widely accepted for their correlation with energy expenditure 236. Moreover if 

identifying a force inherent to a specific movement (i.e. running or jumping) opposed 

to energy expenditure is the aim, then the ankle (in the case of running or jumping) 

may be more appropriate 237. 

5.11.3 Conclusion 

Novel signal processing techniques have enabled researchers to use raw tri-axial 

accelerometry to accurately and reliably estimate movement characteristics such as 

force and joint angles. Congruent with this statement, it was concluded that the 

SlamTracker raw accelerometer can be accurately and reliably used to estimate force 

production and angle estimation against criterion measures.  
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Thesis map 

Chapter Study  Outcomes 

1 SlamTracker Accuracy 

under Static and Controlled 

Movement Conditions 

Aim To quantify the mean, standard deviation and 

variance of the SlamTracker device at a range 

of speeds 

Key Findings Sample variance was <0.001g across all 

speeds and axes during the movement 

condition tests. In conclusion, the 

SlamTracker is shown to be an accurate and 

reliable device for measuring the raw 

accelerations of movement. 

Validity of Force 

and Angle 

Derivation Using 

Raw 

Accelerometry 

Aim To verify the validity of using raw 

accelerometry to estimate force (N) and leg 

angle (°) during ambulation. 

Key Findings Angle estimation (°) and force 

derivation (N), using an 

accelerometer, significantly 

correlated with video verified 

angle estimation (r=0.98, 

p=0.001) and force platform 

verified values (r=0.98, 

p=0.001), respectively.  
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Analysis of 

Fundamental 

Movement Skills 

Aim To characterise the 

relationship between facets of 

fundamental movement and, 

to characterise the relationship 

between overall integrated 

acceleration and three-

dimensional kinematic 

variables whilst performing 

fundamental movement skills. 

Key Findings - 

2 Profiling Movement 

Quality and Gait 
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Children (9-11y) 

Aim - 

Key Findings - 

3 Profiling Movement 
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Primary School Children 

Aim - 

Key Findings - 

4 Profiling Movement and 

Gait Characteristics in 

Early-Years Children (3-

5y) 
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Key Findings - 
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5.12 A Kinematic Analysis of Fundamental Movement Skills 

*this chapter is a published manuscript: Clark, C. C. T., Barnes, C. M., Holton, M. D., 

Summers, H. D., Stratton, G. (2016). A Kinematic Analysis of Fundamental 

Movement Skills. Sport Science Review, 3-4, 261-275. 

5.13 Introduction  

Participation in physical activity is vital for enhancing children’s physical, social, 

cognitive and psychological development 76. Higher levels of physical activity in 

children are associated with improved fitness (both cardio-respiratory fitness and 

muscular strength) 75, enhanced bone health and reduced body fat 76. Further, children 

who frequently participate in physical activity demonstrate reduced symptoms of 

anxiety and depression, and improved self-esteem and confidence 76. 

Accelerometers are the de facto standard in objectively measuring physical activity 

33,34. Commercial devices (such as; ActiGraph, ActiCal) measure activity in the form 

of ‘activity counts’, which summarize data over a user-specified epoch, reducing the 

burden of data management, analysis, and interpretation 35. However, information 

about the raw accelerometer signal is irretrievably lost and a full picture of physical 

activity and fundamental movement quality and competency is overlooked. 

Fundamental movement skills are considered the basic building blocks for movement 

and provide the foundation for specialized and sport-specific movement skills required 

for participation in a variety of physical activities. Fundamental movements skills can 

be categorized as locomotor (e.g., run, hop, jump, leap), object-control (e.g., throw, 

catch, kick, strike), and stability (e.g., static balance) skills 86. There is strong evidence 

to suggest a positive association between fundamental movement skill competency 

and physical activity in children 92. Although some studies have relied upon self-report 

measures of physical activity 238,239, a recent review by Barnett, et al. 24 contended the 

positive relationship between functional movement skills and health related benefits, 

and highlighted the findings of Holfelder, et al. 94 and Lubans, et al. 92 who reported 

predominantly positive associations in their respective systematic reviews. Further, it 

has been reported, by Cohen, et al. 240, that overall daily physical activity is positively 

correlated with locomotor and object control competency.  

Robust kinematics have been used to successfully analyse multi-dimensional facets of 

human movement 241, and in relation to fundamental movement skills, can offer in 

depth analysis across; object control i.e. throwing velocity and release angle 242, 

stability i.e. centre of mass movement 243 and locomotion i.e. stride angle 244. A 
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kinematic analysis of fundamental movement skills has not been performed prior to 

this study, but would provide a vital piece of evidence for future research, elucidating 

the range in fundamental movement skills in a homogenous population, and providing 

an initial research base to build upon. Therefore, the aims of this study were to, (1) 

characterise the relationship between facets of fundamental movement and, (2) 

characterise the relationship between overall integrated acceleration and three-

dimensional kinematic variables whilst performing fundamental movement skills. 

5.14 Methods 

5.14.1 Participants and settings 

A sample of 11 (four female) participants (10±0.8y, 1.41±0.07m, 33.4±8.6kg, body 

mass index; 16.4±3.1 kg.m2) were recruited to take part in this study. The participants 

were invited to attend the Swansea University Biomechanics and Motion laboratory 

on one occasion, had anthropometric variables recorded and performed a series of 

fundamental movement tasks. This research was conducted in agreement with the 

guidelines and policies of the institutional ethics committee. 

5.14.2 Instruments and procedures 

After familiarisation with the laboratory surroundings, tasks and five-minute warm-

up, children performed a series of stepwise tasks (Table 5), whilst a three-dimensional 

motion capture system (Vicon, MX13) recorded all movements. Participants also wore 

custom built Micro Electro-Mechanical System (MEMS) based devices, which 

incorporated a tri-axial accelerometer with a +/- 16g dynamic range, 3.9mg point 

resolution and a 13-bit resolution (with a z-axis amplitude coefficient of variation of 

0.004 at 40hz) (ADXL345 sensor, Analog Devices). It was housed in a small plastic 

case and affixed via a Velcro strap to; (1) the lateral malleolar prominence of the fibula 

of the dominant leg, (2) between the radial and ulnar styloid processes of the dominant 

hand and (3) mounted to the right side of the hip of each individual and set to record 

at 40 Hz.  
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Table 5. Fundamental movement tasks 

 Task Description  

1 Overarm throw Using the dominant hand, throwing a standard tennis ball at a 

target, five meters away, using an overarm throw. 

2 Balance task Walking along an up-turned bench, whilst maintaining 

balance and control. 

3 Walk  Walk at self-selected speed along five metres. 

4 Jog  Jog at self-selected speed along five metres. 

5 Sprint  Run at maximal speed along five metres. 

*1= throw, 2= balance, 3-5= locomotion 

Anthropometrics 

Standing and seated stature (measured to the nearest 0.01m) and body mass (to the 

nearest 0.1kg) were measured using a stadiometer (SECA, Hamburg, Germany), 

sitting stadiometer (Holtain, Crymych, UK) and digital scales (SECA, Hamburg, 

Germany), respectively, using standard procedures 212. 

Motion capture 

Motion capture was performed using the Vicon MX13 motion capture system (Vicon 

Peak, Oxford, UK), including twelve cameras sampling at 200 frames per second. For 

kinematic analysis, 39 retro-reflective markers of 14 mm diameter were attached to 

specific anatomical landmarks (Plug-In Gait Marker Set, Vicon Peak, Oxford, UK) 

(see methodology section) of every participant. Three-dimensional coordinates of the 

39 markers were reconstructed with the Nexus software (Nexus 2.0, Vicon, Oxford, 

UK) and smoothed using cross validation splines 245. Both static and dynamic 

calibrations were performed, and residuals of less than 2 mm from each camera were 

deemed acceptable.  

The 39 retro-reflective marker were placed at the following anatomical locations; the 

right forehead (RFHD), left forehead (LFHD), right back of head (RBHD), left back 

of head (LBHD), the 7th cervical vertebrae (C7), the 10th thoracic vertebrae (T10), the 

clavicle (CLAV), sternum (STRN), the right scapula (RBAK), the left shoulder at the 

acromio-clavicular joint (LSHO), the right shoulder at the acromio-clavicular joint 

(RSHO), the left upper arm between shoulder and elbow (LUPA), the right upper arm 

between shoulder and elbow (RUPA), the lateral epicondyle of the left elbow (LELB), 
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the lateral epicondyle of the right elbow (RELB), the left forearm between the elbow 

and wrist (LFRA), the right forearm between the elbow and wrist (RFRA), the medial 

and lateral left wrist (LWRA and LWRB, respectively), the medial and lateral right 

wrist (RWRA and RWRB, respectively), the left hand second metacarpal head (LFIN), 

the right hand second metacarpal head (RFIN), the left anterior superior iliac spine 

(LASI), the right anterior superior iliac spine (RASI), the left posterior superior iliac 

spine (LPSI), the right posterior superior iliac spine (RPSI), the lateral epicondyle of 

the left knee (LKNE), the lateral epicondyle and the right knee (RKNE), the left thigh 

between the lateral epicondyle of the knee and greater trochanter (LTHI), the right 

thigh between the lateral epicondyle of the knee and greater trochanter (RTHI), the left 

lateral malleolus (LANK), the right lateral malleolus (RANK), the left tibia between 

the lateral epicondyle of the knee and lateral malleolus (LTIB), the right tibia between 

the lateral epicondyle of the knee and lateral malleolus (RTIB), the left foot second 

metatarsal head (LTOE), the right foot second metatarsal head (RTOE), the left heel 

placed on the calcaneous at the same height as the left foot second metatarsal head 

(LHEE), the right heel placed on the calcaneous at the same height as the right foot 

second metatarsal head (RHEE). Which has been used previously with a child 

population 246,247. 

5.14.3 Data analysis 

MEMS 

Raw acceleration data was uploaded into MatLab (MATLAB version R2016a), where 

the subsequent movement characteristic; integrated acceleration was derived. The 

integrated acceleration was determined using an integration of the rectified raw 

acceleration signal in the radial axis and correspondent to the computation used to 

derive the standard ‘activity counts’ by other commercial devices 214. 

Vicon 

All corresponding data and video files were first uploaded into Vicon Nexus software 

and underwent in-depth analysis. Firstly, a reconstruct and labelling process was 

performed, allowing conversion of stereoscopic images into a three-dimensional 

movement. Once a three-dimensional movement had been established, a functional 

skeleton calibration was performed and all body segments, joint centres, bone lengths 

and marker movements were comprehensively modelled and trajectories were 

manually filtered using Woltring cross validation splines. Every single frame was 
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scrutinised for fluidity and accuracy and marker quality was assessed. Using the three-

dimensional reconstruction, maximum elbow flexion (°), maximum shoulder external 

rotation (°), and maximum internal shoulder rotation velocity (°.s-1) were computed for 

the overarm throw, mediolateral centre of mass range (cm) and coefficient of variation 

(%) were computed for the balance task and maximum stride angle (defined as 

maximum hip extension) was computed for the walk, jog and sprint. Further 

coefficient of variation between participants for each characteristic was computed. 

Following this, all kinematic and raw acceleration data was converted into a comma 

separated values spread sheet for; descriptive statistical analysis, Pearson’s product-

moment correlation coefficient analysis, and assessed for statistical significance. 

5.15 Results  

The results of this study found that there were a number of significant relationships 

within specific movement tasks (throwing, locomotion and balance) and across 

movement tasks. Descriptive statistics are detailed in Table 6. All participants were 

found to have completed correspondent overall activity for the fundamental movement 

tasks (Hip: 34±3 counts, Ankle: 50±5 counts, CV: 10%). 

5.15.1 Facets of Fundamental Movement 

For overarm throwing, there was a significant correlation between maximum shoulder 

external rotation (°) and maximum shoulder internal rotation velocity (°.s-1) (r=0.86, 

P<0.001). For the balance task, there was a significant positive correlation coefficient 

between mediolateral centre of mass range (cm) and centre of mass coefficient of 

variation (%) (r=0.83, P<0.001). For the locomotion tasks, there was a significant 

strong positive correlation found between maximum stride angle (°) in the jog and 

walk (r=0.74, P=0.01). Finally, there was a significant correlation found between 

maximum sprint stride angle and maximum shoulder internal rotation velocity (°.s-1) 

(r=0.67, P<0.02). 
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Table 6. Mean ± SD of fundamental movement variables 

 THROW BALANCE LOCOMOTION 

 
Max 

ER 

(°) 

Max 

EF 

(°) 

Max IR 

velocity 

(°.s-1) 

CoM 

range 

(cm) 

CoM 

CoV 

(%) 

Max sprint 

SA 

(°) 

Max jog 

SA 

(°) 

Max walk 

SA 

(°) 

Mean 117.93 111.42 4021.34 42.26 0.08 27.15 19.97 14.18 

SD 43.48 12.14 1667.19 12.25 0.05 3.62 3.30 2.86 

CV (%) 37 11 41 21 65 13 17 20 

*Max ER: maximum shoulder external rotation, Max EF: maximum elbow flexion, Max IR velocity: maximum 

shoulder internal rotation velocity, CoM range: mediolateral centre of mass range, CoM CoV: centre of mass 

coefficient of variation, Max sprint SA: maximum sprint stride angle, Max jog SA: maximum jog stride angle, Max 

walk SA: maximum walk stride angle. CV: coefficient of variation, SD: standard deviation. 

5.15.2 Integrated Acceleration vs. Kinematic Variables  

Hip and ankle derived integrated acceleration were positively correlated (r=0.97, 

p<0.001). For locomotion, integrated acceleration at the hip (r=0.96, p<0.001) and 

ankle (r=0.97, p<0.001) was significantly correlated with maximum sprint stride angle. 

For overarm throwing, there was a strong positive correlation between maximum 

internal rotation velocity and integrated acceleration at the ankle (r=0.6, p=0.05). 

5.16 Discussion 

The aims of this study were to, (1) characterise the relationship between facets of 

fundamental movement and, (2) characterise the relationship between overall 

integrated acceleration and three-dimensional kinematic variables whilst performing 

fundamental movement skills. This study identified a number of relationships between 

and within facets of fundamental movement; maximum shoulder external rotation (°) 

and maximum shoulder internal rotation velocity (°.s-1) (r=0.86, P<0.001), 

mediolateral centre of mass range (cm) and centre of mass coefficient of variation (%) 

(r=0.83, P<0.001), maximum stride angle (°) in the jog and walk (r=0.74, P=0.01) and 

maximum sprint stride angle and maximum shoulder internal rotation velocity (°.s-1) 

(r=0.67, P=0.02) were significantly correlated. This study also identified relationships 

between maximum sprint stride angle (hip: r=0.96, P<0.001, ankle: r=0.97, P<0.001) 

and maximum internal rotation velocity (ankle: r=0.6, P=0.05) to overall integrated 

acceleration. 
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5.16.1 Facets of Fundamental Movement 

Task specific variables, i.e. overarm throw, balance and locomotion were found to be 

significantly correlated. The movement required to powerfully throw a ball, overarm, 

follows a specific developmental sequence 248, where there is a wind-up, stride, arm-

cocking, arm acceleration, arm deceleration and follow-through 249. In this sequence 

of movement, the external and internal rotation of the shoulder is described as one of 

the most dynamic movements in the human body 249 and is pivotal in power production 

in overarm throwing. It is therefore necessary for a greater external rotation to produce 

greater internal rotation velocity. 

For stability tasks, it is common to assess this fundamental movement skill using 

balance beams etc. as a proxy for stability and control 92. In order to competently 

perform a stability task, it necessitates controlled movement, resulting in minimal 

mediolateral range, i.e. wobble, and by reducing wobble, centre of mass variation 

would concomitantly be reduced. 

For locomotion tasks, only the jog and walk stride angle were correlated, indicating 

that an individual’s normal gait has minimal bearing on maximum effort gait. The 

increase in stride angle from volitional walking and jogging was only ~5°, meaning 

that the increase in speed from walk to jog was only minimal. However, the difference 

in stride angle for the sprint was markedly increased (walk-sprint: 13°).  

The only significant cross fundamental movement skill relationship was between 

maximum sprint stride angle and maximum internal rotation velocity. Although these 

tasks represent very different mechanics and movements, they are both very strongly 

related to power production. The maximum speed sprint relies upon explosive leg 

power 250 and an overarm throw relies upon power generated, predominantly, from the 

shoulder and trunk 251. Indicating that if a child is competent and powerful in one 

fundamental movement skill, it will transfer across skills. It has been shown previously 

that children who demonstrate competence in locomotion are also competent during 

object-control tasks 92,240. Despite the relationship found, only 45% of the variance 

would be explained. However given the nature of developmental sequence involved in 

overarm throwing, there are a number of trunk, arm and shoulder components that are 

not present nor required in locomotion, and the step portion of a throw is only a small 

part of the throwing sequence, meaning a large proportion of movement during internal 

rotation of the shoulder would be restricted to the upper body 252,253. 
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5.16.2 Integrated acceleration vs. Fundamental Movement  

Locomotion was found to have the greatest correlation to hip and ankle integrated 

acceleration, this finding can be explained given that the method for calculating 

integrated activity requires using the radial axis (i.e. along the lower leg towards the 

origin of motion). Therefore, greater movement along that axis, should result in greater 

integrated acceleration. 

The only other facet of fundamental movement that correlated with integrated 

acceleration was internal rotation velocity of the overarm throw, however at the ankle 

only. Given the mechanics of a powerful overarm throw and the developmental 

sequence of step and trunk action during overarm throwing, there is a strong step action 

component 252,253, where there is a contralateral step forward, and the ipsilateral foot is 

stretched backwards over half the child’s standing stature 248. This large and powerful 

ipsilateral to contralateral foot range would explain the moderate relationship to 

integrated acceleration. Nevertheless, only 36% of the variance was accounted for 

between these two characteristics.  

However, similar to the relationship between maximum sprint angle and internal 

rotation velocity above,  given the action sequence involved for an overarm throw, 

there are a substantial components that are not present in locomotion, and the 

ipsilateral step back and contralateral step forward are only minor components of the 

throw, meaning a large proportion of movement during the throw would be restricted 

to the upper body, in particular glenohumeral, scapulothoracic, and trunk 

hyperextension 249,252,253. 

No other facet of fundamental movement (locomotion, stability, object control) was 

significantly correlated to integrated acceleration, this is consistent with previously 

reported literature, where the relationship between object control competency and 

short activity bouts has been reported to be very weak; r=0.11) 240. 

Finally, the overall integrated acceleration was comparable between participants (Hip: 

34±3 counts, Ankle: 50±5 counts), and had a coefficient of variation of 10%, whereas 

characteristics derived from the three-dimensional kinematic analyses varied by up to 

65%. Indicating that although overall activity may be the comparable, the 

characteristics of a child’s movement may be noticeably different, even when 

completing the same activities. 
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5.16.3 Limitations  

Although the overarm throw was assessed, the exact contribution to total external 

rotation by each of the shoulder components of glenohumeral, scapulothoracic, and 

trunk hyperextension was not quantified in this study as it went beyond the scope of 

the study.  

This study utilised a homogenous sample of normal weight, active children, and 

although their overall integrated acceleration was found to be similar, the facets of 

fundamental movement were clearly varied, indicating that an overall measure of 

activity isn’t sensitive enough to identify differences in competence or quality of 

movement. 

Fundamental movement skills have previously been linked with health outcomes and 

physical activity, however, the links have been somewhat tenuous or weak 92,240. It is 

recommended that more in depth research to dichotomise quality and quantity of 

activities is needed, which may be achieved through analysing raw acceleration signal 

features more acutely to reveal information about movement quality and competence 

across different BMI groups  

5.16.4 Conclusion  

This study identified that in a homogenous group of children performing the same 

fundamental movement tasks, overall integrated acceleration is consistent, whereas 

quality and competence variables are distinctly varied. This study also demonstrated 

that characteristics of specific fundamental movements are significantly correlated, as 

well as between certain movements, which has previously not been done using three-

dimensional kinematics. 

Although useful, quantity of activity is an insensitive measure, lacking the ability to 

identify acute changes, such as; skill acquisition, movement competency, movement 

quality, motor skill development and developmental disorders.  For example, a 

comprehensive systematic review by Metcalf, et al. 210, involving circa 14,000 

participants found physical activity interventions only improve physical activity 

duration, on average, by 4 minutes per day. The criterion measure of success of an 

intervention was based on the quantity of accelerometer counts, however the effect on 

competency or quality of locomotion or other movements, which is of fundamental 

importance, was overlooked. In this study, the overall activity of participants was 

comparable, whereas characteristics of their movement were varied (up to 65%). 
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Indicating that more attention should be given to fundamental differences in 

movement, as well overall quantity. 

Using the raw acceleration signal, activity counts can be computed in an analogous 

fashion to commercial devices 34, however there is a clear area for growth in 

developing beyond simple overall activity quantification, potentially using time-series 

analysis of raw acceleration to highlight the fundamental differences in similar 

movements. 

5.17 Summary: Experimental Chapter One 

The overarching aims of this experimental chapter were to introduce the SlamTracker 

device and demonstrate its suitability, accuracy and validity across mechanical, 

controlled and semi-controlled activity. 

Accordingly, the empirical investigation into the sample variance and deviation at a 

range of speeds concluded that the device reports was accurate and reliable. At all 

speeds a variance of less than 0.001 g was found in all axes of movement. Following 

this, the SlamTracker raw signal was examined, and compared to a criterion measure 

for joint angle estimation and force production during locomotion. We confirmed that 

the raw signal of the SlamTracker accelerometer allowed accurate estimation of joint 

angle maxima (r=0.98, P=0.001) and maximal force production (r=0.98, P=0.001) at 

a range of ambulatory speeds. The final section of this experimental chapter sought to 

demonstrate the utility of the SlamTracker by identifying overall activity (integrated 

acceleration), in comparison to three-dimensional kinematic variables, such as; sprint 

angle maxima, internal rotation velocity during an overarm throw, mediolateral centre 

of mass range. It was found that overall quantity of activity was comparable across 

participants, with a coefficient of variation of 10%, whilst for the three-dimensional 

kinematic variables there were coefficient of variations up to 65%. 

Overall, these studies were able to confirm the accuracy, suitability and validity of the 

SlamTracker. In addition, it was demonstrated that complex movement characteristics 

i.e. joint angle, force production and overall quantity of activity, can be accurately 

computed. Further, in children completing the same activity, there are fundamental 

differences in the way each child performs the activity. The subsequent conclusion 

was that the processing of the raw accelerometry data and application of novel 

analytics allowed children’s fundamental movement qualities to be examined. 
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The subsequent experimental chapters of this thesis will aim to analyse and 

characterise movement quality characteristics in children during (i) semi-controlled 

field measure of cardiorespiratory fitness, and (ii) during un-controlled activity, i.e. 

recess or free-play. 
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Thesis map 

Chapter Study  Outcomes 

1 SlamTracker Accuracy under 

Static and Controlled 

Movement Conditions 

Aim To quantify the mean, standard deviation and variance of 

the SlamTracker device at a range of speeds 

Key Findings Sample variance was <0.001g across all speeds and axes 

during the movement condition tests. In conclusion, the 

SlamTracker is shown to be an accurate and reliable device 

for measuring the raw accelerations of movement. 

Validity of Force and Angle 

Derivation Using Raw 

Accelerometry 

Aim To verify the validity of using raw accelerometry to 

estimate force (N) and leg angle (°) during ambulation. 

Key Findings Angle estimation (°) and force derivation (N), using an 

accelerometer, significantly correlated with video verified 

angle estimation (r=0.98, p=0.001) and force platform 

verified values (r=0.98, p=0.001), respectively.  

A Kinematic 

Analysis of 

Fundamental 

Movement Skills 

Aim To characterise the relationship between facets of 

fundamental movement and, to characterise the relationship 

between overall integrated acceleration and three-

dimensional kinematic variables whilst performing 

fundamental movement skills. 

Key Findings Overall integrated acceleration was 

comparable between participants (CV: 

10.5), whereas three-dimensional 

variables varied by up to 65%. 

Indicating that although overall activity 

may be correspondent, the 

characteristics of a child’s movement 

may be highly varied. 

2 Profiling 

Movement Quality 

and Gait 

Characteristics 

According to Body-

Mass Index in 

Children (9-11y) 

Aim To apply automated, novel analyses to 

characterise the movement quality of 

children during the multi-stage fitness 

test, and to report how movement 

quality characteristics of gait cluster 

according to BMI 

Key Findings - 

3 Profiling Movement Quality 

and Gait Characteristics of 

Recess Activity in 9-11-year-

old Primary School Children 

Aim - 

Key Findings - 

4 Profiling Movement and Gait 

Characteristics in Early-Years 

Children (3-5y) 

Aim - 

Key Findings - 
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6.0 Experimental Chapter 2 

6.1 Profiling Movement Quality and Gait Characteristics According to Body-

Mass Index in Children (9-11y)  

*this chapter is a published manuscript: Clark, C. C. T., Barnes, C. M., Holton, M. D., 

Summers, H. D., Stratton, G. (2016). Profiling movement quality and gait 

characteristics according to body-mass index in children (9–11 y). Human Movement 

Science, 49, 291-300. 

6.2 Introduction 

Physical inactivity is one of the most widespread non-communicable diseases 

worldwide 2, and despite recognition of the importance of physical activity, the use of 

the appropriate measurement and analytical techniques is currently limited, especially 

with regard to gait and movement quality characteristics that make up physical 

activity. Accelerometers are the de facto standard in objectively measuring physical 

activity 33,34 that cover the range of acceleration amplitudes and frequencies required 

to capture human movement 254. However commercial accelerometers have 

limitations, for example high frequency movement and noise information can escape 

the bandpass filter which in turn adds unexplained variation in activity counts 35. In 

addition, variations in epoch length, cut points and device type further add to the lack 

of clarity in the literature 36-38. This is further confounded by the fact that commercially 

available accelerometers only provide manufacturer-dependent output values that are 

computed by unpublished and proprietary signal processing techniques, resulting in a 

unit of measure termed, ‘activity counts’. Activity counts summarize data in an epoch, 

reducing the burden of data management, analysis, and interpretation; however, 

information about the raw accelerometer signal is irretrievably lost and a full picture 

of physical activity overlooked. In the assessment of human movement, a central body 

position is the best accelerometer placement for capturing overall quantity of activity 

and best predicts energy expenditure 255,256. However, the location of an accelerometer 

should be dependent on what researchers are attempting to investigate. Mannini, et al. 

48 asserted that for gait quality characteristics, an ankle-mounted monitor had greatest 

validity, with a classification accuracy of 95%. Furthermore, detailed information 

about gait quality during ambulation, gait phase detection, walking speed estimation, 

with an ankle mounted device would be far more revealing 48,257.  

 

The quantity of physical activity has been linked to various comorbidities, such as 

hypertension and obesity. 28,258 The quantity of physical activity is useful in studies 
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interested in measuring energy expenditure. The problem is that energy expenditure 

takes one simple measure from the accelerometer trace, the area under the curve. In 

contrast, there are numerous other features that can be derived from accelerometer 

data. For example, quality characteristics can provide specific, contextualised 

feedback, but these have not been well utilised. The best-known use of raw 

accelerometry to ascertain qualities of movement is in fall detection and the mobile 

gait analysis of older adults 194,259,260 whereby specific monitoring of walking and 

balance quality has been used to determine patients’ safety and control during 

ambulation. As novel and robust analytics develop quantity and quality data will be 

derived from accelerometer traces 257. 

  

For example, fast Fourier transformation (FFT), has been used to process the 

accelerometer signal and identify gait qualities; walking smoothness, walking 

rhythmicity, dynamic stability and stride symmetry 18,19. While FFT is an analytical 

technique used to characterise accelerometer data, cluster analysis involves the use of 

algorithms to separate a population into clusters or groups based on various 

parameters, such as activity behaviours, gait or movement qualities, stride profile, and 

BMI. Cluster analysis uses an iterative process of interactive, multi-objective 

optimization and has been used to inform animal movement and behaviour theory 208 

and to identify and track cells 47. Given the nature of human movement, cluster analysis 

could be of great use in the understanding and analysis of gait and movement quality 

characteristics at a group level 257. 

 

Fast Fourier transformation and cluster analysis can be combined to analyse movement 

in standardised settings. Moreover, sensors can be attached to whole groups 

undertaking the same movement task. The multi-stage fitness test (MSFT) is a globally 

utilised test of cardio-respiratory, particularly used within school aged children, and is 

a component of the European battery of cardiorespiratory and motor tests 261. It is well 

reported that obese children move less and with much greater difficulty than normal-

weight counterparts 105-110. This compromised movement is attributed to greater force 

through joints, decreased mobility, modification of gait pattern, and changes in the 

absolute and relative energy expenditures for a given activity. Further, detrimental 

changes in gait pattern have been demonstrated at the ankle, knee, and hip, and 

modifications at the knee level affecting articular integrity 104,105. Although some 

recent work has examined the relationship between gross motor and fundamental 
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movement skills and physical activity, in a standardised setting (incorporating 

accelerometry) 262,263, however, there has been no attempt in the literature to use 

clustering algorithms to profile and compare derivatives of a raw acceleration trace 

signal during standardised fitness tests. There is clearly potential to derive more 

information from the signal from accelerometers to address current gaps in scientific 

knowledge. The aims of this study were first, to apply automated, novel analyses to 

characterise the movement quality of children during the MSFT 47-49, and second, to 

report how movement quality characteristics of gait cluster according to BMI. 

6.3 Methods 

6.3.1 Participants and settings 

One hundred and three children (10.3±0.6y, 1.42±0.08m, 37.8±9.3kg, body mass 

index; 18.5±3.3 kg.m2) volunteered to take part in this study. Participants were a 

representative sub-sample of 822 children (10.5±0.6y, 1.42±0.08m, 27.3±9.6kg, body 

mass index; 18.7±3.5 kg.m2) from 30 schools in the City and County of Swansea. Mean 

and variance data were not significantly different between the whole sample and sub-

sample (P>0.05). The participants attended an indoor training facility, had 

anthropometric recordings taken and took part in the MFST. Additionally, children 

were classified as either underweight (<5th percentile, n = 7), normal weight (5th to 85th 

percentile, n = 73), overweight (>85th to <95th percentile, n = 14) or obese (≥ 95th 

percentile. n = 9) 213. This research was conducted in agreement with the guidelines 

and policies of the institutional ethics committee. 

6.3.2 Instruments and Procedures  

After standard familiarisation and five minute warm-up, children performed the MSFT 

(Leger, et al. 264), whilst wearing a custom built Micro Electro-Mechanical System 

(MEMS) based device, which incorporated a tri-axial accelerometer with a +/- 16g 

dynamic range, 3.9mg point resolution and a 13 bit resolution (with a z-axis amplitude 

coefficient of variation of 0.004 at 40hz) (ADXL345 sensor, Analog Devices). It was 

housed in a small plastic case and affixed via a Velcro strap to the lateral malleolar 

prominence of the fibula of the right leg and set to record at 40 Hz.  

Anthropometrics 

Standing and seated stature (measured to the nearest 0.01m) and body mass (to the 

nearest 0.1kg) were measured using a stadiometer (SECA, Hamburg, Germany), 

sitting stadiometer (Holtain, Crymych, UK) and digital scales (SECA, Hamburg, 

Germany), respectively, using standard procedures 212. 
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Twenty-metre Multi-Stage Fitness Test 

Participants completed the MFST by running back and forth along a 20m course, and 

were required to touch the 20m line at the same time that a sound signal was emitted 

from a pre-recorded audio disk. The frequency of the sound emissions increased in 

line with running speed. The test stopped when the participant reached volitional 

exhaustion and was no longer able to follow the set pace, or participants were 

withdrawn after receiving two verbal warnings to meet the required pace 265. 

6.3.3 Data analysis 

Raw acceleration data was uploaded into MatLab (MATLAB version R2016a), where 

the subsequent movement quality characteristics; integrated acceleration, stride profile 

quotient, stride variability, stride frequency, stride angle, spectral purity, and time to 

volitional exhaustion were derived. The MSFT was broken down into its respective 

running speed section. The characteristics used for analysis were derived from 

acceleration in the axis along the lower leg towards the origin of motion, termed the 

radial axis, in addition, three complete gait cycles were removed from the analyses 

prior to and post the point of turning during the test to reduce the effect the altered gait 

pattern had on the overall analyses. The maximum impact force generated upon foot 

strike, Fmax, corresponds to the peak positive value of acceleration (force vector 

pointing from foot to knee) and was calculated by subtracting the background static 

acceleration and multiplying by the participant’s weight. The stride angle, αmax was 

obtained from the peak acceleration value in the negative direction. This point 

represented the maximum leg lift and when dynamic acceleration was zero, the radial 

acceleration was wholly determined by the vector component of the gravitational field, 

as determined by the angle of the accelerometer relative to the vertical axis. Therefore, 

determining the angle to which the subject’s leg swings, the minimum point during the 

acceleration trace of the stride, Aradial was used in the following equation (Equation 7): 

𝛼𝑚𝑎𝑥  =  𝑎𝑐𝑜𝑠(𝐴𝑟𝑎𝑑𝑖𝑎𝑙/𝑔)  

Equation 7. Maximum angle of foot lift 

Where, 𝛼𝑚𝑎𝑥 is the stride angle; 𝑎𝑐𝑜𝑠 is the inverse of cosine; 𝐴𝑟𝑎𝑑𝑖𝑎𝑙, is the minimum 

point during the acceleration trace of the stride; and 𝑔, is gravity. 

The integrated acceleration was also determined, using an integration of the rectified 

signal and correspondent to the computation used to derive the standard ‘activity 

counts’ by other commercial devices 214. 
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Fundamental frequency was derived by first applying a discrete FFT to the data. The 

fundamental frequency of motion was identified as the highest amplitude component. 

The Stride Profile Quotient (Q), is a multi-dimensional measure derived from the mean 

stride frequency and mean stride angle of each child during the first and last section of 

running that each child completed. The absolute of the two measures between the two 

sections was derived and normalised. These values were then used in the following 

equation (Equation 8), where a score of 1 would equate entirely to changes in stride 

frequency, and a score of 0 would equate to changes entirely in foot lift angle. 

𝑄 = sin (atan(𝐷1/𝐷2)) 

Equation 8. Stride profile quotient 

      

Where 𝑄, is the stride profile quotient; sin, represents the sine function; atan, 

represents the inverse of the tangent; 𝐷1, is the = absolute difference in frequency and 

𝐷2, is the absolute difference in foot lift angle. 

Spectral purity was calculated from the cumulative distribution function (CDF) of the 

frequency spectrum and is the gradient of the CDF at high frequency, i.e. it measures 

how tightly the frequency components of the gait cycle are distributed. Finally, time 

to volitional exhaustion (TTE), derived by converting events into seconds based on the 

sampling frequency (40 Hz) was also recorded as a measure of overall performance. 

Cluster analysis 

In order to carry out further analysis of the cohort and identify areas of interest within 

the sample we applied a clustering to the dataset. The derived characteristics 

(integrated acceleration, stride profile quotient, stride variability, stride frequency, 

stride angle, and spectral purity) from the raw acceleration traces (described above) 

were normalised so that they could be compared and input into an in-built clustering 

algorithm (MATLAB version R2016a). This algorithm goes through multiple iterative 

processes in order to cluster the data along the columns of the dataset. The similarity 

or dissimilarity between metrics was determined by calculating the pairwise Euclidean 

distances between the values of the different metrics. 

d2st= (xs−xt)(xs−xt)
′ 

Equation 9. Euclidean distance 

Where, d is the Euclidean distance; xs and xt represent the data values being compared. 
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Once the distances between the characteristics (integrated acceleration, stride quotient, 

stride variability, stride frequency, spectral purity, TTE, BMI) for each child were 

derived, a linkage function was applied, to determine the proximity of the metrics to 

each other. These were paired into binary clusters, which were subsequently grouped 

into larger clusters until a hierarchical tree was formed. The resulting clustergram was 

displayed in terms of a heat map and dendrogram. The height of the link at which two 

observations on the dendrogram were joined was analysed using cophenetic distance, 

to demonstrate the similarity between two clusters 46,215,216. The values for the 

dendrogram linkages were subsequently normalised. The cophenetic distance ratio for 

the overall clustergram was also measured to demonstrate how successfully the 

dendrogram preserved the pairwise distances between the original unmodeled data 

points (where 1 is maximum). As data were not normally distributed non-parametric 

methods were used to analyse the data, and were presented as mean, median and upper 

and lower quartiles. The Kruskall-Wallis test was used to determine general 

differences between the various characteristics and the Mann-Whitney U test (with 

continuity correction and tie adjustment 266) was used to determine specific differences 

between BMI groups. The Spearman’s rho test was used to identify correlation 

coefficients between BMI within each characteristic. For all statistical tests an alpha 

level of 0.05 was applied. Data were reported in graphical and tabular format. 

6.4 Results 

The results from this study demonstrated that neither overall integrated acceleration 

nor overall stride variability were significantly different across BMI groups (Table 7, 

Figure 10, Figure 11).  

There were significant differences found in TTE between UW and OB (P=0.03) and 

OB and NW (P=0.05) (Table 7, Table 8, Figure 10). The OB group had significantly 

lower spectral purity than every other group (OB and OW: P=0.02, OB and NW: 

P=0.01, OB and UW: P<0.001) (Table 7, Table 8). The OB group had significantly 

lower stride angle than NW (P=0.04) and UW (P=0.04) groups (Table 7). Further, 

stride profile quotient was significantly different between UW and NW (P=0.01) and 

UW and OB (P=0.03) (Table 7, Table 8, Figure 13). 

Significant differences between BMI groups were found for stride profile quotient 

(P=0.03) and spectral purity (P=0.02). The clustergram illustrated that spectral purity 

and TTE (cophenetic distance: 0.3), stride profile quotient and BMI group (cophenetic 

distance: 0.6), and stride profile characteristics (integrated acceleration, stride angle 
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and stride variability: cophenetic distance 0.57) were clustered together (Figure 5), 

with a cophenetic distance ratio for the overall clustergram of 0.86. 

Following the Spearman’s rho test, significant (P<0.05) relationships were found 

between integrated acceleration (r=-0.22), stride variability (r=-0.22), stride angle (r=-

0.23), TTE (r=-0.25) and spectral purity (r=-0.24) and BMI. 
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Table 7. Differences in movement quality characteristics between BMI groups. 

Group Q MRV SV SF SA TTE SP 

UW-NW 0.01* 0.30 0.23 0.99 0.59 0.26 0.21 

UW-OW 0.07 0.17 0.15 0.36 0.15 0.09 0.11 

UW-OB 0.03* 0.33 0.33 0.80 0.04* 0.03* <0.001* 

OB-NW 0.13 0.74 0.87 0.60 0.04* 0.05* 0.01* 

OB-OW 0.16 0.87 0.51 0.51 0.87 0.33 0.02* 

OW-NW 0.51 0.20 0.37 0.09 0.10 0.35 0.75 

Q: Stride profile quotient, MRV: maximum radial velocity, SV: stride variability, SF: stride frequency, 

SA: stride angle, TTE: time to volitional exhaustion, SP: spectral purity.  UW: underweight, NW: 

normal weight, OW: overweight, OB: obese, * denotes significant difference (P≤0,05). 

 

Table 8. Descriptive data for time to exhaustion, spectral purity and stride profile quotient. 

 Measure UW NW OW OB 

 

 

TTE (s) 

Mean 328 279 254 203 

Med 293 263 227 182 

UQ 402 352 288 258 

LQ 257 190 177 168 

 

 

SP 

Mean 2.97 2.91 2.90 2.80 

Med 2.95 2.9 2.89 2.8 

UQ 3.02 2.97 2.94 2.88 

LQ 2.93 2.81 2.84 2.71 

 Mean 0.15 0.51 0.5 0.71 

 Med 0.11 0.48 0.35 0.91 

Q UQ 0.25 0.88 0.86 0.99 

 LQ 0.05 0.25 0.19 0.51 

 

TTE: time to volitional exhaustion, SP: spectral purity, Q: stride profile quotient, UW: underweight, 

NW: normal weight, OW: overweight, OB: obese, Med: Median value, UQ: upper quartile value, LQ: 

lower quartile value.  
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Figure 10. Body-mass Index vs. Time to Exhaustion (seconds). Filled black circles: Underweight children, filled 

black triangles: normal weight children, filled black diamonds: overweight children, filled black squares: obese 

children. 

 

Figure 11. Integrated Acceleration vs. Body-mass index -a: 8.0km.h-1, b:9.5km.h-1, c:10.5km.h-1. Filled black 

circles: Underweight children, filled black triangles: normal weight children, filled black diamonds: overweight 

children, filled black squares: ob child 
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Figure 12. Stride variability (Coefficient of Variation) vs. Body-mass index - a: 8.0km.h-1, b:9.5km.h-1, 

c:10.5km.h-1. Filled black circles: Underweight children, filled black triangles: normal weight children, filled black 

diamonds: overweight children, filled black squares: obese children. 

 

Figure 13. Stride profile quotient vs. Body-mass index. Filled black circles: underweight children, filled black triangles: 

normal weight children, filled black diamonds: overweight children, filled black squares: obese children. 
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Figure 14. Clustergram and Dendrogram 

 

Colours represent z-scores in the Clustergram. The Dendrogram highlights linkage between two or more characteristics. SQ: Stride 

profile quotient, BMI%: body-mass index percentile group, SF: stride frequency, IA: integrated acceleration, SA: stride angle, SV: stride 

variation, TTE: time to exhaustion, SP: spectral purity. 

        SQ  BMI%      SF          IA        SA          SV   TTE         SP 
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6.5 Discussion 

The aims of this investigation were; first to characterise movement qualities using 

novel analyses of children performing the MSFT, and second, to report how these 

movement qualities of gait clustered according to BMI group. 

The principal findings of this study were; that children from the OB group had 

significantly lower spectral purity than every other group and significantly lower TTE 

than UW and NW children. The clustergram linked TTE and spectral purity at a 

cophenetic distance of 0.3 and BMI and stride profile quotient at a cophenetic distance 

of 0.6. Further, significant negative correlation coefficients were found between BMI 

and TTE, spectral purity, integrated acceleration, stride angle and stride variability. 

6.5.1 Clustergram overview 

In order for a clustergram to be considered successful a cophenetic distance ratio of at 

least 0.75 is required. The clustergram in this study had a cophenetic distance ratio of 

0.86, indicating confidence in the veracity of clusters identified. The clustering 

algorithm hierarchically linked each characteristic (integrated acceleration, stride 

profile quotient, stride variability, stride frequency, stride angle, spectral purity, and 

TTE), accordingly. The proximity of two or more characteristics within the 

clustergram indicated how closely the movement quality characteristics were linked 

to each other 46,215, for example BMI and stride profile quotient: 0.6, time until 

volitional exhaustion and spectral purity: 0.3. This cophenetic distance ratio indicated 

that movement characteristics can be successfully, and reliably, clustered. 

6.5.2 Body-mass index, harmonic content and overall performance  

The finding that higher BMI had lower overall TTE (Figure 10, Table 7), and by 

extension cardiovascular fitness, agrees with similar studies 267, and that obesity has a 

highly deleterious effect on fitness and motor skill development 268. 

Our results are also novel. While spectral purity represents a measure of the motor 

control of ambulation 18,19, it has not been used in standardised fitness tests. Results 

from this study demonstrate that spectral purity, and performance score/fitness 

indicator (TTE) were cophenetically linked. Therefore, spectral purity is a 

characteristic of movement quality in children performing the MSFT (Figure 14). 

Further the frequency and harmonic content of the accelerometer output derived from 

the MSFT, spectral purity, was negatively correlated with BMI (r=-0.24, P=0.02). 
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While the harmonic content of ambulation is related to movement quality 181,269, its 

relationship with BMI has not been reported in the literature. This is a novel finding 

and indicates that the frequency and harmonic content of ambulation, and by 

extension, performance (TTE) during the MSFT, differs by BMI. 

This study indicated that overall performance during the MSFT, as well as the 

frequency and harmonic content of movement, differs by BMI group. This study 

shows spectral purity can be used as an indicator of overall performance, as well as 

being significantly related to BMI.  

6.5.3 Body-mass index and stride characteristics 

Stride frequency and stride angle may be independently used to provide an in-depth 

assessment of gait, in different age, body mass and gender groups. For higher BMI 

individuals, higher frequencies have been linked with greater knee-joint loads and 

deleterious to the biomechanics of ambulation 104,270. The quotient metric we derived 

from stride frequency and angle to assess movement quality is reflective of children’s 

running approach when performing the MSFT. This quotient has not yet been reported 

in the literature. We report that this stride profile quotient was an important contributor 

to the hierarchical clustering algorithm and was clustered with BMI (Figure 14). 

The stride profile of children in different BMI groups illustrated contrasting 

approaches to the MSFT (Figure 13). The mean stride profile quotient for the BMI 

groups showed that NW and OW children altered their gait in an analogous fashion 

(NW: 0.5, OW: 0.51), indicating that these children responded to the stimulus of an 

increase in running speed during the MSFT by increasing stride angle and frequency. 

In contrast the stride profile quotient for UW and OB children presented different 

responses (UW: 0.15, OB: 0.71) whereby OB children, increased stride frequency but 

not stride angle. In addition, the clustergram provided a novel illustration of this 

finding, with children of NW/OW BMI displaying similarly low stride profile quotient 

scores, while the reverse occurred for OB children (Figure 14). 

Children in the OB group predominantly altered stride profile through increases in 

stride frequency, as opposed to stride angle. Our findings that OB children develop a 

different gait have also been reported elsewhere, and has been shown to be exacerbated 

with increases in running speed 104,105,108. The inability to alter stride angle is reflective 

of OB children’s reduced articular range of motion in hip flexion, hip adduction, and 
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knee flexion, compared to NW children 271. The alteration in stride profile was 

associated with BMI (r=0.18, P=0.09). 

Reduction or impairment in range of motion (ROM) would detrimentally affect 

movement quality and performance during the MSFT 104,105,271. In fact, OB children, 

who displayed a greater stride profile quotient score, also had a significantly lower 

TTE than every other BMI group (Table 7, Table 8). This indicates that overall 

performance on a standardised fitness test may be effected by stride profile. 

This work is supportive of laboratory based findings that OB children have an altered 

gait and impaired articular ROM; this is reflected by the in-field movement quality 

characteristic, stride profile quotient, and demonstrates that during a standardised 

fitness test, stride profile is linked to BMI. 

6.5.4 Stride characteristics 

Three stride characteristics, integrated acceleration, stride angle and stride variability 

were clustered together, at a cophenetic distance of 0.57. Spearman’s rho test also 

demonstrated very similar relationships for all three characteristics with BMI 

(integrated acceleration: r=-0.22, P=0.02, stride angle: r=-0.23, P=0.03, stride 

variation: r=-0.22, P=0.03) The weak negative correlation coefficient between BMI 

and integrated acceleration is also supported by previous literature, where OB children 

have been shown to move less and with greater difficulty than their NW counterparts 

106, in addition to demonstrating a reduced velocity compared to NW children 106,111,272. 

The difficulty in movement in OB compared to NW children is also reflected in their 

inability to effectively alter stride angle, which further diminishes TTE. 

Although similar relationships were found between integrated acceleration, stride 

angle and stride variability with BMI (Table 7), there were underlying differences 

between these characteristics. Stride angle was found to be significantly different 

between OB and UW, and OB and NW (Table 1). Further, despite the significant 

relationship between integrated acceleration and BMI, it was not significantly 

different between groups (Table 1, Figure 2). Neither were there any significant 

differences in stride variation between any groups (Table 7, Figure 12). 

The movement quality characteristics of integrated acceleration, stride angle and stride 

variability were close cophenetically linked characteristics, as illustrated in the 

clustergram (Figure 5) These data provided novel insights into children’s movement 
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quality when performing the MSFT. For example, although stride angle was 

significantly different between OB and NW and OB and UW children, the quantity 

and variability remained consistent across BMI groups (Table 7, Figure 13). 

Furthermore, although high stride frequency affected gait in obese children 106, this 

study did not find any statistical differences between BMI group for stride frequency 

or stride variation (Table 7, Figure 12). Therefore, neither stride frequency, nor stride 

variation, precluded high TTE in the MSFT. Stride angle appears to play a pivotal role 

in the stride profile and performance of children taking part in the MSFT. In 

conclusion, multiple characteristics drawn from an accelerometer signal can be used 

to build a broader picture of children’s movement quality during a standardised fitness 

test and these may also be applicable to measures of habitual physical activity. 

6.5.5 Limitations  

There were a number of limitations to this study. First the clustering algorithm was 

structured using hierarchical methods pairing characteristics by proximity. However, 

this means it may not be instinctively obvious if characteristics are anti-correlated, for 

instance there was a clear negative association between BMI and spectral purity. On 

the other hand, this can be overcome with careful interpretation of the clustergram and 

in addition to other correlation analyses (i.e. Spearman’s rho). This study sought to 

employ novel analysis techniques to assess movement quality characteristics, and 

although TTE was recorded, no inferences to physiologic outputs (e.g. estimated 

V̇O2max, peak V̇O2, heart rate variability) or psychological aspects were made as this 

was beyond the scope and aims of the study. Finally, this study did not incorporate 

analysis of gait characteristics at the point of turning, there is body of literature 

specifically investigating turning strategy and including it in our analyses would have 

detrimentally impacted mean and standard deviation values and thus, the authors 

recommend that this be investigated further. 

6.6 Conclusion 

The first aim of this study was to apply automated, novel analyses to characterise the 

movement quality of children during the MSFT. This investigation found that key gait 

characteristics of children’s running performance during the MSFT could be derived. 

The second aim was to report how movement quality characteristics of gait cluster 

according to BMI. This study has shown clustering between a performance/fitness 

outcome, frequency and harmonic content of movement and BMI during a 
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standardised fitness test and, that movement quality in children of higher BMI (OB), 

is characterised by significantly lower stride angle, significantly lower TTE and 

significantly lower spectral purity than OW, NW and UW counterparts.  

Finally, further investigations into age, gender and movement characteristics other 

than running are required before the relationship between movement quality 

characteristics and performance/fitness in children can be elucidated. This research 

will provide further insights into the development of physical competency and fitness 

in children. 

6.7 Summary: Experimental Chapter Two 

The aims of this experimental chapter were to characterise the movement quality of 

children performing a standardised fitness test, and report how movement quality 

characteristics cluster according to weight status. 

Accordingly, obese children were found to have significantly lower spectral purity 

than every other group, in addition to significantly lower time to exhaustion (TTE) 

than UW and NW children (P<0.05). Weight status was clustered with stride profile, 

and TTE with spectral purity. Significant negative correlations (P<0.05) were found 

between BMI and TTE (r=-0.25), spectral purity (r=-0.24), integrated acceleration (r=-

0.22), stride angle (r=-0.23) and stride variability (r=-0.22).  

Overall, this was the first empirical study to report the spectral purity of children’s 

gait. Further analysis unveiled key performance characteristics that differed between 

BMI groups which were representative of children’s performance during a 

standardised fitness test, and significantly negatively correlated with BMI. This study 

was able to demonstrate that by analysing the raw accelerometer signal using novel 

analytics, hitherto unreported information could be revealed and warrants further 

investigation. 

The subsequent experimental chapters of this thesis will aim to analyse and 

characterise movement quality characteristics in children during un-controlled 

activity, i.e. recess or free-play. 
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Thesis map 

Chapter Study  Outcomes 

1 SlamTracker Accuracy under 

Static and Controlled 

Movement Conditions 

Aim To quantify the mean, standard deviation and variance of the SlamTracker 

device at a range of speeds 

Key Findings Sample variance was <0.001g across all speeds and axes during the 

movement condition tests. In conclusion, the SlamTracker is shown to be an 

accurate and reliable device for measuring the raw accelerations of 

movement. 

Validity of Force and Angle 

Derivation Using Raw 

Accelerometry 

Aim To verify the validity of using raw accelerometry to estimate force (N) and 

leg angle (°) during ambulation. 

Key Findings Angle estimation (°) and force derivation (N), using an accelerometer, 

significantly correlated with video verified angle estimation (r=0.98, 

p=0.001) and force platform verified values (r=0.98, p=0.001), respectively.  

A Kinematic Analysis of 

Fundamental Movement 

Skills 

Aim To characterise the relationship between facets of fundamental movement 

and, to characterise the relationship between overall integrated acceleration 

and three-dimensional kinematic variables whilst performing fundamental 

movement skills. 

Key Findings Overall integrated acceleration was comparable between participants (CV: 

10.5), whereas three-dimensional variables varied by up to 65%. Indicating 

that although overall activity may be correspondent, the characteristics of a 

child’s movement may be highly varied. 

2 Profiling 

Movement Quality 

and Gait 

Characteristics 

According to 

Body-Mass Index 

in Children (9-11y) 

Aim To apply automated, novel analyses to characterise the movement quality of 

children during the multi-stage fitness test, and to report how movement 

quality characteristics of gait cluster according to BMI 

Key Findings OB children had significantly lower spectral 

purity and time to exhaustion (TTE) than 

UW NW, and OW children (P<0.05). BMI 

was clustered with stride profile, and TTE 

with spectral purity. Significant negative 

correlation (P<0.05) between BMI and; TTE 

(r=-0.25), spectral purity (r=-0.24), 

integrated acceleration (r=-0.22), stride angle 

(r=-0.23) and stride variability (r=-0.22). 

Spectral purity was representative of 

children’s performance during the MSFT. 

3 Profiling 

Movement Quality 

and Gait 

Characteristics of 

Recess Activity in 

9-11-year-old 

Primary School 

Children 

Aim To characterise children’s recess physical 

activity, and investigate how movement 

quality characteristics of gait cluster during 

school recess 

Key Findings - 

4 Profiling Movement and 

Gait Characteristics in Early-

Years Children (3-5y) 

Aim - 

Key Findings - 
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7.0 Experimental Chapter 3 

7.1 Profiling Movement Quality and Gait Characteristics of Recess Activity in 

9-11-year-old Primary School Children  

*this chapter is an accepted manuscript: Clark, C. C. T., Barnes, C. M., Holton, M. D., 

Summers, H. D., Mackintosh, K.A., Stratton, G. (in press). Profiling movement 

quality and gait characteristics according to body-mass index in children (9–11 y). 

Human Movement Science. 

7.2 Introduction 

Regular physical activity during childhood is associated with a lower risk of obesity, 

insulin resistance, mental health problems, cardiovascular disease, and improved 

academic performance 5,16,273. However, a substantial number of children fail to 

engage in sufficient physical activity outside of school 146,274-276. Children spend a 

significant proportion of their waking time at school, and noncurricular time, such as 

school recess periods, provide opportunities for children to be physically active within 

the school environment 137,138. It is suggested that recess periods may provide the 

single greatest opportunity during the school day to impact on child physical activity 

levels 109,139,140.  

A number of systematic reviews have examined correlates of children’s physical 

activity 144-146, yet these have predominantly focused on factors associated with whole-

day activity. Ridgers, et al. 277 and Brusseau, et al. 278 highlighted that overall recess 

physical activity remains statistically invariant day-to-day, no significant main effects 

for moderate-to-vigorous activity, and no significant differences in recess activity 

between a priori categorised low and high activity children 279. On the other hand, 

physical activity is a multidimensional behaviour influenced by numerous factors 

across several domains 147, and Myer, et al. 280 highlighted that overall activity 

measures overlook critical information, such as; skill development, enjoyment and, 

importantly, movement quality.  

There is a paucity of suitable metrics available to objectively examine movement 

quality of children’s physical activity, in-field. It has recently been asserted that novel 

analytics may bridge the gap between quality and quantity measures of human 

movement 32. Traditional linear measures, such as mean and standard deviation, are 

measures of centrality and thus provide a description of the amount or magnitude of 
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the variability around a central point, such as overall physical activity levels 44. 

However, the use of such measures assumes that movement or activity variations are 

random and independent 281. Contrastingly, previous studies have highlighted that 

such variations are distinguishable from noise, are biologically relevant and warrant 

further investigation 44,282-285. 

Accelerometers that record the raw signal without undergoing propriety pre-

processing have been used to provide specific monitoring of walking 194,259,260, and to 

assess characteristics such as ambulation smoothness, control, balance and 

rhythmicity 18,19. Furthermore, frequency-domain features, extracted from the 

coefficients of raw accelerometry signals may be obtained by performing spectral 

analysis (usually fast Fourier transformation (FFT)), where the values of the 

coefficients represent the amplitudes of the corresponding frequency components. 

Both the dominant frequency, its amplitude, and spectral entropy, a product of spectral 

analysis, have been commonly used as the frequency-domain features for physical 

activity energy expenditure estimation and activity type 286-290. 

In addition to frequency-domain features, coefficient of variation (CV) in temporal 

data has been used to improve activity type estimation. Pivotal works by Crouter and 

colleagues 135,255,291-294 have demonstrated that, accelerometry derived, activity count 

CV can be used to distinguish between running and walking, and improve energy 

expenditure estimation when incorporated into regression models. 

However, whilst novel measures have been used to quantify physical activity energy 

expenditure and its classification, less attention has been given to the quality of 

movement. Movement quality characteristics are retrievable using the harmonic 

content of the accelerometer signal, by analysing the symmetry within a movement, 

exploiting the periodicity of the signal 295,296. The resulting spectral purity and 

integrated accelerations of each movement can be analyzed to assess, and profile, 

movement quality in children 18,218,297. This type of analysis is highly suggestive of a 

fundamental feature of the neural control of movement 44 and shown to be 

representative of movement quality in standardised settings 218. However, this has not 

been applied to children’s activity in an uncontrolled setting, such as school recess. 
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The aims of this study were to characterise children’s recess physical activity, and 

investigate how frequency spectrum movement quality characteristics cluster during 

school recess. 

7.3 Method 

7.3.1 Participants and settings 

Twenty-four children (18 boys) (10.5±0.6y, 1.44±0.09m, 39.6±9.5kg, body mass 

index; 18.8±3.1 kg.m2) volunteered to take part in this study from a primary school in 

the U.K. Participants were a representative sub-sample of 822 children (10.5±0.6y, 

1.42±0.08m, 27.3±9.6kg, body mass index; 18.7±3.5 kg.m2) from 30 primary schools 

and there were no significant differences for any descriptive characteristics between 

the whole sample and sub-sample (P>0.05). Prior to research commencing, informed 

consent and child assent was attained. This research was conducted in agreement with 

the guidelines and policies of the institutional ethics committee. 

7.3.2 Instruments and Procedures  

Children took part in a normal school-time recess period (40 ± 4 minutes per day) for 

one school week (five days), and activity was recorded using a Micro Electro-

Mechanical System (MEMS) based device 220,298, which incorporated a tri-axial 

accelerometer with a ± 16g dynamic range, 3.9mg point resolution and a 13-bit 

resolution (ADXL345 sensor, Analog Devices). The recording frequency was set to 

40 Hz, and deemed appropriate based upon the work of Clark, et al. 230, where 

amplitude coefficient of variation was optimal (0.004%) at 40 Hz.   In order to 

standardise data collection, the MEMS device was housed in a small plastic case and 

affixed via a Velcro strap to the lateral malleolar prominence of the fibula of the right 

leg of all participants. Mannini, et al. 48 highlighted that for movement quality 

characteristics related to ambulation, an ankle-mounted monitor may be most suitable, 

and Barnes, et al. 299 systematically demonstrated that ankle affixed accelerometers 

can be used to accurately compute leg lift angle. Data were stored locally on the device 

and there were no incidences of data loss. Children were also asked to rank how they 

self-perceived their health and fitness, administered according to validated Likert 

scales: Idler, et al. 300 and Marques, et al. 301 (Self-reported health) and Ortega, et al. 

302 (Self-reported fitness). 
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Anthropometrics 

Stature (measured to the nearest 0.01m) and body mass (to the nearest 0.1kg) were 

measured using a stadiometer and digital scales (SECA, Hamburg, Germany), 

respectively, using standard procedures 212. Additionally, children were classified as 

either underweight (<5th percentile), normal weight (5th to 85th percentile), overweight 

(>85th to <95th percentile) or obese (≥ 95th percentile) 213. 

7.3.3 Data analysis 

Raw acceleration data were extracted from the MEMS device and subsequently 

uploaded into MatLab (MATLAB version R2016a), where integrated acceleration and 

spectral purity were derived. The characteristics used for analysis were derived from 

acceleration in the axis along the lower leg towards the origin of motion, termed the 

radial axis. The integrated acceleration was determined using a full-wave rectification 

of the integrated raw acceleration signal and correspondent to the computation used to 

derive activity counts by other commercial devices (i.e ActiGraph, see: van Hees, et 

al. 214).  

Accelerometer data taken from children performing varying forms of ambulation were 

converted from the time into the frequency domain. In order to convert the data into 

the frequency domain the Fast Fourier transform was applied to the data.  The Fast 

Fourier Transform computes the discrete Fourier transform (DFT) of a sequence. 

Let x_0,…,x_(N-1) be a sequence of N complex numbers. The Fast Fourier transform 

computes the Discrete Fourier transform 

𝑋𝑘 =  ∑ 𝑥𝑛. 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0  , 𝑘 ∈ 𝑍 

Equation 1. Fast Fourier Transform 

Where, N = number of time samples, n = current sample under consideration (0 .. N-

1), xn = value of the signal at time n, k = current frequency under consideration (0 

Hertz up to N-1 Hertz), Xk = amount of frequency k in the signal (amplitude and phase, 

a complex number), n/N is the percent of the time gone through, 2 * pi (𝜋) * k is the 

speed in radians.sec-1, e^-ix is the backwards-moving circular path. 

In order to determine the quality of a child’s movement - ‘Spectral purity’ was 

calculated from the cumulative distribution function (CDF) of the frequency 

spectrum. The CDF plot is used to generate a value for spectral purity. The empirical 

CDF F(x) is defined as the proportion of X values less than or equal to some value x. 

In this case, it is the number of values less than or equal to some frequency in a 
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spectrum being considered. A measure for spectral purity is therefore considered to be 

the frequency at which the midway point of the CDF (0.5) occurs. As a result, spectra 

that is 'clean', i.e. consisting of a tall narrow peak at the fundamental frequency and 

only low amount of noise and small harmonics will have a different value to 

spectra where there is lots of noise, a shorter wider peak, and higher peaks at the 

harmonics. Spectral purity measures how tightly the frequency components of the raw 

accelerations are distributed using fundamental frequency to harmonics and the 

frequency spectrum analysis is directly related to the ambulation of a participant 218,299. 

A participant could have high spectral purity and low overall activity, which indicates 

that cyclical, high periodicity movement has occurred. However, in combination with 

low integrated acceleration this equates to the participant remaining static, for 

example, sat down in one location for prolonged periods. 

2.3.1 Cluster analysis 

Cluster analysis is an analytic procedure that reduces complex multivariate data into 

smaller subsets or groups. Compared with other data reduction methods, such as factor 

analysis, clustering yields groupings that are based on the similarity of whole cases, 

as opposed to the individual variables that comprise those cases 45. Cluster analysis is 

used for profiling, or in the development of classification systems or taxonomies 45,46. 

Numerous characteristics of movement and lifestyle in adults and children (9-11y) can 

be reliably analysed using cluster analysis 47,215,218. Further, Clark, et al. 32 highlighted 

that cluster analysis is an analytical tool that should be exploited in the analysis of 

human movement characteristics.  

The derived characteristics (integrated acceleration, integrated acceleration coefficient 

of variation (CV), spectral purity, spectral purity CV, BMI percentile, self-perceptions 

of health and fitness, gender) were normalised to fall between the data range of 0 and 

1, so that they could be compared and input into an in-built clustering algorithm 

(MATLAB version R2016a). This algorithm goes through multiple iterative processes 

to cluster the data along the columns of the dataset. The similarity or dissimilarity 

between metrics was determined by calculating the pairwise Euclidean distances 

between the values of the different metrics. 

d2st= (xs−xt)(xs−xt)
′ 

Equation 2. Euclidean distance 
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Where, d is the Euclidean distance; xs and xt represent the data values being compared. 

Once the distances between the characteristics for each child were derived, a linkage 

function was applied, to determine the proximity of the metrics to each other. The 

characteristics were paired into binary clusters, which were subsequently grouped into 

larger clusters until a hierarchical tree was formed. The resulting clustergram was 

displayed in terms of a heat map and dendrogram and were displayed in terms of Z-

score, derived using a standard formula: Z = (raw score - mean) / standard deviation. 

The height of the link at which two observations on the dendrogram were linked is 

termed the cophenetic distance, which demonstrates the similarity between two, or 

more, clusters 46,215,216. The values for the dendrogram cophenetic distances were 

subsequently normalised (0 to 1). The cophenetic distance ratio for the overall 

clustergram was also measured to demonstrate how successfully the dendrogram 

preserved the pairwise distances between the original unmodeled data points (where 1 

is maximum). 

The whole raw acceleration signal was analysed over the duration of each recess 

period, for each day (five in total), subsequently mean integrated acceleration and 

spectral purity values for each day were assessed for differences. A Shapiro-Wilk test 

was conducted to assess normality of distribution, and data were found to be 

significantly different from normal (all P<0.05). Therefore, non-parametric analyses 

were used, and were presented as mean, median and upper and lower quartiles. In 

order The Kruskall-Wallis (KW) and post-hoc Mann-Whitney U tests, with continuity 

correction and tie adjustment 266, were used to determine differences between days, 

where appropriate. The Spearman’s rho test was used to identify correlation 

coefficients between each characteristic. All inferential statistics were performed 

using MatLab (MATLAB version R2016a) and statistical significance was accepted 

at P≤0.05. Data were reported in graphical and tabular format.
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7.4 Results 

There were no significant inter-day differences found for integrated acceleration 

(P>0.05), however, significant inter-day differences were found for spectral purity 

derived movement quality (P<0.001). Post-hoc tests revealed significant differences 

between multiple days (detailed in Table 9). Significant, positive and negative, 

relationships were found between movement characteristics, and are detailed in Table 

10. 

The clustergram illustrated that integrated acceleration and mean spectral purity 

(cophenetic distance (CD): 0.22), integrated acceleration and self-perceived 

fitness/self-perceived health (both; CD: 0.22), mean spectral purity and self-perceived 

fitness/self-perceived health (both; CD: 0.13), self-perceived health and self-perceived 

fitness (CD: 0.02), gender and BMI percentile and integrated acceleration CV (CD: 

0.90), and finally, BMI percentile and integrated acceleration CV (CD: 0.72), were 

clustered together (Figure 15), with a cophenetic distance ratio for the overall 

clustergram of 0.96. 

Table 9. Descriptive data for integrated acceleration and spectral purity day-to-day variation 

 Measure Day 1 Day 2 Day 3 Day 4 Day 5 

 

 

IA 

Mean 8.86 9.09 10.76 9.73 10.32 

Med 8.69 8.61 10.77 9.93 10.12 

UQ 11.71 9.97 13.71 12.19 12.78 

LQ 6.35 7.37 8.17 7.39 8.14 

 

 

SP 

Mean 2.38 2.46 
*
 2.41

#
 2.47 

*
 2.67 

*, #, ᶲ, ǂ 

Med 2.38 2.47 
*
 2.42 

#
 2.48 

*
 2.82 

*, #, ᶲ, ǂ 

UQ 2.41 2.53 
*
 2.47 

#
 2.52 

*
 2.9 

*, #, ᶲ, ǂ 

LQ 3.32 2.41 
*
 2.34 

#
 2.39 

*
 2.56 

*, #, ᶲ, ǂ 

 

IA: mean Integrated acceleration, SP: mean Spectral purity, Med: Median, UQ: Upper quartile, LQ: 

Lower quartile. 
*
 denotes significant difference vs. day 1, 

#
 denotes significant difference vs. day 2, ᶲ 

denotes significant difference vs. day 3, ǂ denotes significant difference vs. day 4. Significance level; 

P≤0.05. 
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Table 10. Correlation coefficient matrix for movement characteristics 

  

Data reported as r value (P value). * denotes significance at P≤0.05. # denotes significance at P≤0.01. 

ǂ denotes significance at P<0.001. IA: Integrated acceleration, IA CV: Integrated acceleration 

coefficient of variation, SP: Spectral purity, SP CV: Spectral purity coefficient of variation, BMI%: 

Body-mass index percentile, SH: Self-perceived health, SF: Self-perceived fitness.  

 

 

 

 IA IA CV SP SP CV BMI % SH SF Gender 

IA - -0.05 

(0.82) 

0.51 

(0.01)
 #

 

0.12 

(0.58) 

-0.55 

(0.005) 
#
 

0.54 

(0.009) 
#
 

0.47 

(0.02) 
*
 

-0.09 

(0.66) 

IA CV - - -0.02 

(0.92) 

-0.07 

(0.75) 

0.06 

(0.77) 

-0.01 

(0.97) 

-0.001 

(0.99) 

-0.19 

(0.37) 

SP - - - 0.19 

(0.39) 

-0.05 

(0.79) 

0.65 

(<0.001) ǂ 
0.50 

(0.01) 
#
 

-0.32 

(0.13) 

SP CV - - - - 0.11 

(0.62) 

0.22 

(0.31) 

-0.13 

(0.53) 

-0.08 

(0.72) 

BMI% - - - - - -0.53 

(0.007) 
#
 

-0.53 

(0.008) 
#
 

-0.002 

(0.99) 

SH - - - - - - 0.68 

(<0.001) ǂ 
-0.22 

(0.31) 

SF - - - - - - - -0.28 

(0.19) 

Gender - - - - - - - - 
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Figure 15. Clustergram and Dendrogram 

 

Colours represent z-scores in the Clustergram (for Gender, blue denotes male and orange, female). The Dendrogram highlights linkage between two or 

more characteristics. SP CV: spectral purity coefficient of variation, IA: integrated acceleration, SP: spectral purity, SH: self-perceived health, SF: self-

perceived fitness, IA CV: integrated acceleration coefficient of variation, BMI%: body-mass index percentile

        SP CV    IA       SP          SH  SF   IA CV       BMI%       Gender 
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7.5 Discussion  

The aims of this study were to characterise children’s recess physical activity, and 

investigate how movement quality characteristics of gait cluster during school recess. 

The principal findings of this study were that although integrated acceleration did not 

differ significantly by day (P>0.05), spectral purity did (P<0.05). Key linkages 

identified by the clustergram were; integrated acceleration and spectral purity (CD: 

0.22), integrated acceleration and self-perceived fitness and health (CD:0.22), spectral 

purity and self-perceived fitness and health (CD: 0.13). Further significant positive 

correlation coefficients were identified between integrated acceleration and; spectral 

purity, self-perceived health, and self-perceived fitness. Whilst, significant negative 

correlation coefficients were identified between integrated acceleration and BMI 

percentile.  

7.5.1 Clustergram overview 

In order for a clustergram to be considered successful a cophenetic distance ratio of 

0.75 is required 303. The clustergram in this study had a cophenetic distance ratio of 

0.96, indicating confidence in the veracity of clusters identified. The proximity of two 

or more characteristics within the clustergram indicated how closely the movement 

quality characteristics were linked to each other, otherwise termed, the cophenetic 

distance 46,215. For example, integrated acceleration and spectral purity: 0.22, spectral 

purity and self-perceived health: 0.13. The clustergram may also be visually inspected 

(Figure 1), where all values are expressed in colours, according to their z-score. For 

instance, in adjacent columns of the clustergram are points at which the colours, or z-

scores, are matched (in particular integrated acceleration and spectral purity, and, 

spectral purity and self-perceived health), the degree to which the colours match 

provides an immediate, visual analysis of the clusters identified. 

7.5.2 Integrated acceleration and spectral purity 

Physical activity levels have previously been reported to be invariant day to day and 

insensitive to differences between a priori classified low and high activity children 279. 

The present study supports this characterisation of recess, where integrated 

acceleration does not change significantly throughout the school week. On the other 

hand, novel characterisation of recess activity in this study, through spectral purity 

derived movement quality, highlighted significant day-to-day variance (Table 9). 

Congruent with previous research, the present study found that children's physical 
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activity during recess can be characterised as comparable across days 277,279. 

Importantly, recess activities are volitional, though results reported in the literature 

suggest that children are consistent in their choices due to factors such as playground 

hierarchies that dictate activity choices. Thus impacting upon the variability recorded, 

making recess characterisation using traditional methods relatively straightforward 277. 

Advancing on previous research, the present study utilised analyses of the entire raw 

accelerometry signal, rather than the use of long epochs (> 5 s).  Long epochs may be 

too insensitive to accurately characterise sudden bouts of activity, and concomitant 

frequency spectrum characteristics, thereby enhancing fidelity and accuracy in the 

present study 218,299. 

Despite overall activity remaining invariant in a contextualised setting, movement 

quality characteristics are shown to be significantly different in the literature (Clark, 

et al. 218,304). The present study found that spectral purity derived movement quality 

was significantly different day-to-day (P≤0.05) (Table 9). This finding supports Clark, 

et al. 304 who identified, through kinematic and accelerometric analyses, that quality of 

movement in standardised settings is significantly different in children (9-11y). 

Further, it has been highlighted that spectral purity derived movement quality is 

indicative of movement quality characteristics, such as time to exhaustion, overall 

activity, stride angle and stride frequency, all specifically relating to ambulation 218. 

This novel finding demonstrates that the periodicity of the signal is variable day-to-

day, indicating that the activities and length of specific activities changes daily, even 

though overall activity remains invariant, offering novel insight into recess 

characterisation on a group and individual basis. Further, a tentative interpretation of 

spectral purity derived movement quality is that fundamental frequency and harmonic 

characteristics measured from an ankle worn accelerometer reflect the ambulatory 

movement quality of children. Contextually, the signal characteristics of children’s 

movement were significantly better on Day 5 vs. Day 1, whilst overall activity 

remained invariant. This has important implications given variability is intrinsic in all 

biological systems 44 and has been asserted that an optimal state of variability that 

exhibits chaos is important for health and functional movement 305,306. In a 

comprehensive review, Stergiou, et al. 44 reported that variability has an optimal 

chaotic structure and deviations from this state can lead to biological systems that are 

either overly rigid and robotic or unstable. Both result in systems (humans) that are 



107 

less adaptable to perturbations, such as those associated with unhealthy states or 

absence of skilfulness or control. It was also concluded that novel exploration of 

movement will provide a platform for better understanding human movement 44. 

Significant (P≤0.05) relationships were found between integrated acceleration and 

mean spectral purity (r=0.51) using traditional correlation analyses, further, integrated 

acceleration and spectral purity were hierarchically clustered together at a cophenetic 

distance of 0.22 (Figure 15). Based upon previously reported cophenetic distances 

between characteristics of movement 218, this finding supports the notion that the 

underlying frequency spectrum is fundamentally important to overall physical activity 

levels. 

Table 9 highlighted that spectral purity derived movement quality may be significantly 

better or worse daily, this finding has important practical implications related to 

physical activity intervention monitoring, at a group and individual level. Metcalf, et al. 

307 reported that physical activity interventions, assessed using objective measures, 

were ineffective, however, no movement quality, nor frequency domain, measures 

were used in this meta-analysis. There is potential for future research to consider 

overall activity levels in conjunction with spectral purity (and other frequency spectra) 

derived movement quality measures to better elucidate intervention effectiveness and 

the underlying factors of human movement. 

7.5.3 Body-mass index, gender and self-perception 

Clark, et al. 218 previously demonstrated that integrated acceleration is significantly 

correlated with BMI in 9-11-year-old children taking performing the 20-m multi stage 

shuttle run test. Data in the present study found a significant negative correlation (r=-

0.55) between overall activity and BMI. In Clark, et al. 218, the activity followed a 

standardised protocol, meaning that although the correlation to BMI was reported as 

significant, it was not strong. However, due to the uncontrolled nature of the present 

study, i.e. there were no predefined activities participants were completing, there were 

more degrees of freedom for weight status to impact upon overall activity. Significant 

(P≤0.05) relationships were found between mean integrated acceleration and; BMI 

percentile (r=-0.55), self-perceived health (r=0.52) and self-perceived fitness (r=0.47). 

Whilst BMI percentile was significantly correlated with; self-perceived health (r=-

0.53) and self-perceived fitness (r=-0.53). Seabra, et al. 308 reported children with high 

BMI have lower levels of attraction to physical activity, lower perceived physical 
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competence and less parental physical activity support, which puts them at greater risk 

of being physically inactive. Whilst, De Meester, et al. 309 asserted a combination of 

high actual and perceived motor competence is related to higher physical activity and 

lower weight status.  Additionally, in the present study, self-perceived health was 

significantly correlated with self-perceived fitness (r=0.68), whilst being clustered at 

a cophenetic distance of 0.02 (Figure 15). This is correspondent to the work of 

Peterson, et al. 310 who showed self-reported lifestyle and fitness were strongly 

positively correlated. 

Congruent with Stodden, et al. 22, i.e. perceived motor competence, actual motor 

competence, cardio-respiratory fitness and physical activity interact, and can lead to a 

positive or negative spiral of (dis)engagement in active lifestyles 22. This study found 

that overall activity, weight status and self-perception of health and fitness were inter-

related and fit within the developmental model proposed by Stodden, et al. 22. This 

assertion may be further supported by the significant relationships found between 

spectral purity derived movement quality and; self-perceived health (r=0.65) and self-

perceived fitness (r=0.5). Spectral purity was further shown to have a stronger 

correlation and closer cophenetic distance (Figure 15) to self-perceptions of health and 

fitness, than overall activity. This novel finding indicates that the frequency spectrum 

derived movement quality is more related to self-perceptions (of health and fitness) 

than a proxy measure of overall activity (integrated acceleration). Clark, et al. 218 and 

Barnes, et al. 299 have previously demonstrated spectral purity is a key characteristic 

of movement quality in a standardised setting, and it is evident that this translates to a 

measure of movement quality in uncontrolled recess activity.  

In early childhood (3–5 years), it is expected that children’s perceived motor 

competence will not strongly correlate with their actual motor competence or physical 

activity levels 309,311,312, and will generally overestimate their competence levels 23,309. 

However, as children continue to develop during childhood (up to 12y) they become 

more accurate in assessing their own motor competence, resulting in stronger 

correlations between actual and perceived motor competence 23,309. Therefore, in the 

age group utilised in this study (9-11y) it is conceivable that spectral purity derived 

movement quality is reflective of self-perceived competency relating to health and 

fitness. 
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7.5.4 Limitations 

The clustering algorithm used in this study was structured using hierarchical methods 

pairing characteristics by proximity, meaning inverse relationships may be difficult to 

highlight. On the other hand, this can be overcome with careful interpretation of the 

clustergram, in addition to other correlation analyses (i.e. Spearman’s rho). The sample 

size utilised within this study was relatively small, however incorporated all of the 9-

11y population in the sample school, furthermore participants were a representative 

sub-sample of 822 children (10.5±0.6y, 1.42±0.08m, 27.3±9.6kg, body mass index; 

18.7±3.5 kg.m2) from 30 schools, where mean and variance data were not significantly 

different between samples (P>0.05). It would be recommended, however, that a 

greater number of participants be investigated further to highlight whether school size 

and location impacts upon quality of movement. This study employed novel 

accelerometer signal analytics i.e. spectral purity derived movement quality, however, 

there are additional approaches that could be employed, i.e. direct observational tools, 

this should be incorporated into future research. Thereby further refining the 

assessment of movement quality, in-field. The assessment of self-reported health and 

fitness used in this study, although not validated in combination, has been shown to be 

independently accurate and valid in children 300-302. 

7.6 Conclusion 

The first aim of this study was to characterise children’s recess physical activity. This 

investigation found that overall recess activity (integrated acceleration) was invariant 

day-to-day, however the underlying frequency and harmonic component (spectral 

purity) derived movement quality was significantly different between days. The 

second aim of this study was to investigate how frequency spectrum movement quality 

characteristics cluster during school recess. It was found that overall activity and 

frequency and harmonic content of ambulatory movement cluster during uncontrolled 

physical activity. In addition, frequency and harmonic content was more closely linked 

to self-perceptions of health and fitness than overall activity. The analysis of frequency 

and harmonic content of movement quality, in conjunction with overall activity is 

demonstrably sensitive and informative in characterising children’s recess physical 

activity. This has important practical implications, particularly related to intervention 

monitoring and assessing human movement. Researchers should consider using 

frequency spectrum derived quality and quantity of movement to assess physical 

activity interventions, at a group and individual level. Further research should seek to 



110 

better quantify and qualify physical activity in contextualised settings to enhance our 

understanding of specific movement and ambulation patterns, with emphasis on 

development through the ages and the utility of novel analytics in early years’ children. 

7.7 Summary: Experimental Chapter Three 

The aims of this experimental chapter were to characterise children’s recess physical 

activity, and investigate how movement quality characteristics of gait cluster during 

school recess 

Accordingly, there were no significant inter-day differences found for overall activity 

(P>0.05), yet significant differences were found for spectral purity (P<0.001). 

Integrated acceleration was clustered with spectral purity, in addition to significant 

positive correlation coefficients between integrated acceleration and spectral purity 

(P<0.05), whilst BMI percentile was negatively correlated with integrated acceleration 

and spectral purity. 

Overall, this was the first empirical study to report spectral purity of children’s gait in 

an uncontrolled setting and demonstrated that the spectral purity of children’s 

movement is variable day-to-day, whereas overall activity is not. 

The final experimental chapter in this thesis will further seek to analyse and 

characterise movement quality characteristics in children during un-controlled 

activity, i.e. free-play, in addition to assessing motor competency. 
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Thesis map 

Chapter Study  Outcomes 

1 SlamTracker 

Accuracy under Static 

and Controlled 

Movement 

Conditions 

Aim To quantify the mean, standard deviation and variance of the SlamTracker 

device at a range of speeds 

Key Findings Sample variance was <0.001g across all speeds and axes during the movement 

condition tests. In conclusion, the SlamTracker is shown to be an accurate and 

reliable device for measuring the raw accelerations of movement. 

Validity of Force and 

Angle Derivation 

Using Raw 

Accelerometry 

Aim To verify the validity of using raw accelerometry to estimate force (N) and leg 

angle (°) during ambulation. 

Key Findings Angle estimation (°) and force derivation (N), using an accelerometer, 

significantly correlated with video verified angle estimation (r=0.98, p=0.001) 

and force platform verified values (r=0.98, p=0.001), respectively.  

A Kinematic Analysis 

of Fundamental 

Movement Skills 

Aim To characterise the relationship between facets of fundamental movement and, 

to characterise the relationship between overall integrated acceleration and 

three-dimensional kinematic variables whilst performing fundamental 

movement skills. 

Key Findings Overall integrated acceleration was comparable between participants (CV: 

10.5), whereas three-dimensional variables varied by up to 65%. Indicating that 

although overall activity may be correspondent, the characteristics of a child’s 

movement may be highly varied. 

2 Profiling Movement 

Quality and Gait 

Characteristics 

According to Body-Mass 

Index in Children (9-

11y) 

Aim To apply automated, novel analyses to characterise the movement quality of 

children during the multi-stage fitness test, and to report how movement quality 

characteristics of gait cluster according to BMI 

Key Findings OB children had significantly lower spectral purity and time to exhaustion 

(TTE) than UW NW, and OW children (P<0.05). BMI was clustered with stride 

profile, and TTE with spectral purity. Significant negative correlation (P<0.05) 

between BMI and; TTE (r=-0.25), spectral purity (r=-0.24), integrated 

acceleration (r=-0.22), stride angle (r=-0.23) and stride variability (r=-0.22). 

Spectral purity was representative of children’s performance during the MSFT. 

3 Profiling 

Movement 

Quality and 

Gait 

Characteristics 

of Recess 

Activity in 9-

11-year-old 

Primary 

School 

Children 

Aim To characterise children’s recess physical activity, and investigate how 

movement quality characteristics of gait cluster during school recess 

Key Findings There were no significant inter-day 

differences found for overall activity 

(P>0.05), significant differences were found 

for spectral purity (P<0.001). Integrated 

acceleration was clustered with spectral 

purity. There were significant positive 

correlations coefficients between integrated 

acceleration and spectral purity (P<0.05), 

whilst BMI percentile was negatively 

correlated with integrated acceleration and 

spectral purity. 

4 Profiling 

Movement 

and Gait 

Characteristics 

in Early-Years 

Children (3-

5y) 

Aim To characterise children’s free-play physical 

activity and investigate how movement quality 

characteristics of gait cluster in children (3-

5y). 

Key Findings - 
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8.0 Experimental Chapter 4 

8.1 Profiling Movement and Gait Characteristics in Early-Years Children (3-

5y). 

*this chapter is a submitted manuscript: Clark, C. C. T., Barnes, C. M., Swindell, N. 

J., Bingham, D. D., Collings, P. J., Barber, S. E., Holton, M. D., Summers, H. D., 

Mackintosh, K.A., Stratton, G. (2016). Profiling movement and gait characteristics in 

early-years children (3-5y). Submitted to Journal of Motor Behaviour, February 2017. 

8.2 Introduction 

Global physical activity guidelines recommend that early years children (3-5 years) 

engage in at least 180 minutes of physical activity every day (Department of Health 65, 

Department of Health and Aging 66, Tremblay, et al. 67). Demographic, biological, 

sociocultural, and motor competence can all impact upon physical activity levels 

24,92,313. Specifically, Stodden, et al. 22 highlighted an interaction between motor 

competence, perceived motor competence, cardiorespiratory fitness and physical 

activity levels. Further, recent prospective studies have established that development 

of motor competence has numerous tangible health and developmental benefits. For 

example, higher levels of motor competence are shown to positively predict 

cardiorespiratory fitness 314, improved academic performance 315, and are protective 

against overweight and obesity 316. Concerningly, studies have reported low levels of 

competence among primary school aged children 317,318. These findings highlight the 

need to examine motor competence during early years (3-5 years), which is considered 

a critical phase for fundamental movement skill development 319. During this period, 

neuromuscular maturation and rapid cognitive development affect motor skill 

acquisition and development 320. Motor development during the early years is 

considered a facilitator for lifelong physically active lifestyles, and children’s 

perceptions of their competency is asserted to influence this development 318. For 

example, older children who perceive themselves as having poor motor competence 

may fall into a negative spiral of disengagement, further limiting motor development, 

physical activity and cardiorespiratory fitness 22. Several studies have documented low 

levels of motor competence among early years’ children 99,321-325. Motor competence 

in the early years is traditionally assessed using observation tools in a controlled 

setting, such as the movement assessment battery for children (MABC2 87) or the test 

of gross motor development (TGMD 324,326). To our knowledge there have been no 

objective measurements of motor competence and movement quality during habitual 
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child activity 32, and this dearth of literature has resulted in limited insight into 

children’s motor development. We postulate that objective measures and novel 

analytics will provide insight into the quality and quantity of movement in parallel 32.  

Developments in the field of objectively measured physical activity are moving with 

expediency 32. For example, accelerometers can be used to characterise gait patterns 

and determine safety, control, balance, variability and rhythmicity during ambulation 

18,19,194,259,260. These characteristics are retrievable using the frequency and harmonic 

content of the accelerometer signal, and used to examine the symmetry within a 

movement by exploiting the periodicity of the signal 295,296.  

Raw acceleration signals, that have not undergone proprietary pre-processing, can be 

analyzed in the frequency domain using Fourier analysis to assess gait and movement 

in-field and to profile movement quality in children, respectively 18,218,297. However, 

this has not been applied in early years’ children’s activity in natural settings, such as 

free-play. Statistically, the use of traditional measures to study physical activity in 

humans assumes that variations are random and independent of past and future 

repetitions 281, contrastingly however, it has been shown that such variations are 

distinguishable from noise and warrant further investigation 44,282-285. Moreover, 

frequency spectrum characteristics derived from an accelerometer signal are 

significantly related to movement quality, cardiorespiratory fitness, running strategy 

and body mass index in primary school children (Clark, et al. 218 and Barnes, et al. 299). 

Numerous and complex characteristics of movement and lifestyle in adults and 

children (9-11y) can be reliably analysed using cluster analysis 47,215,218. Hierarchical 

clustering is an analytic procedure that reduces multi-factorial data into smaller 

subsets. Clustering yields groupings that are based on the similarity of whole cases, as 

opposed to the individual variables that comprise those cases 45. Cluster analysis has 

been used to profile and classify systems or taxonomies 45,46, and whilst it has 

consistently been applied in other disciplines, such as nanotechnology and cell biology 

327-331, it has only recently been used successfully to investigate human movement 

characteristics 218. 

Although some recent work has examined the relationship between motor skills and 

physical activity, in a standardised setting (incorporating accelerometry) 262,263, there 

has been no attempt in the literature to use clustering algorithms to profile and compare 
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derivatives of a raw acceleration trace (spectral purity, integrated acceleration) during 

free-play in early years’ children. There is clearly potential to derive more information 

from the signal output of accelerometers 32. Therefore, the aims of this study were two-

fold; to characterise children’s free-play physical activity and investigate how 

movement quality characteristics of gait cluster in children (3-5y).  

8.3 Method 

8.3.1 Participants and Settings 

Sixty-one children (39 boys, 4.3±0.7y, 1.04±0.05m, 17.8±3.2kg, body mass index; 

16.2±1.9 kg.m2) volunteered to take part in this study from two primary schools in 

Northern England, U. K (77% South Asian, 11% White British, 11% Other/Mixed). 

Prior to research commencing, informed parental consent and child assent was 

attained. This study was ethically approved and adhered to the institutional ethical 

guidelines.  

8.3.2 Instruments and Procedures  

Children took part in a free-play period (104 ± 12 minutes per day) while their physical 

activity was recorded using a custom-built Micro Electro-Mechanical System 

(MEMS) based device, which incorporated a tri-axial accelerometer with a +/- 16g 

dynamic range, 3.9mg point resolution and a 13-bit resolution (with a z-axis amplitude 

coefficient of variation of 0.004% at 40 Hz 230;ADXL345 sensor, Analog Devices). 

The MEMS device was housed in a small plastic case and affixed via a Velcro strap to 

the lateral malleolar prominence of the fibula of the right leg and set to record at 40 

Hz 218,299. Activity was also measured using an additional ActiGraph GT3X+ device 

(ActiGraph, Pensacola, FL, USA) mounted on the right hip and set to record at 100 

Hz. All children also completed the movement assessment battery for children, second 

edition, using standardised procedures (MABC2; as detailed in: Henderson, et al. 87). 

Anthropometrics 

Stature (measured to the nearest 0.01m) and body mass (to the nearest 0.1kg) were 

measured using standard procedures using a stadiometer and digital scales (SECA, 

Hamburg, Germany), respectively 212. Skinfold measurements were made by the same 

observer using a skinfold calliper (Harpenden, Baty International, U.K.) following 

standard procedures described by Lohmann, et al. 212 . Measurements were made at 

the triceps and subscapular sites, in addition to waist circumference, which provides a 

valid estimate of body fat percentage 332 (Eisenmann, et al. 333). Further, children were 
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classified as either underweight (≤5th percentile), normal weight (5th to 85th percentile), 

overweight (>85th to <95th percentile) or obese (≥ 95th percentile) 213.  

8.3.3 Data Analysis 

Raw acceleration data were uploaded into MatLab (MATLAB version R2016a), where 

integrated acceleration and spectral purity were derived 218,299. The characteristics used 

for analysis were derived from acceleration in the axis along the lower leg towards the 

origin of motion, termed the radial axis. The integrated acceleration was determined 

using an integration of the rectified raw acceleration signal 214. ActiGraph acceleration 

data were analyzed using a commercially available analysis tool (KineSoft version 

3.3.67, KineSoft; www.kinesoft.org). Non-wear periods were defined as any sequence 

of >20 consecutive minutes of zero activity counts 334. Sedentary behaviour was 

defined as <100 counts per minute, while 100, 2296 and 4012 counts per minute were 

thresholds to define light, moderate and vigorous physical activity, respectively 335,336. 

Mean counts per minute during valid wear time and percentage of total time spent in 

moderate-to-vigorous physical activity (MVPA) were used to define total physical 

activity. 

Spectral purity was calculated from the cumulative distribution function (CDF) of the 

frequency spectrum and is the gradient of the CDF at high frequency. Spectral purity 

measures how tightly the frequency components of the gait cycle are distributed using 

fundamental frequency to harmonics 218. This frequency spectrum analysis is directly 

related to the gait of a participant 218,299. A participant could have high spectral purity 

and low overall activity, which indicates that cyclical, high periodicity movement has 

occurred, however in combination with low integrated acceleration this equates to the 

participant remaining static, for example, sat down in one location for prolonged 

periods. 

The MABC2 was scored by two trained, experienced assessors (reliability: r=0.96) 

and scores were converted into gross motor, fine motor and overall percentile scores, 

and subsequently described in a traffic light classification system including a red zone 

(1), amber zone (2), and green zone (3), following standard procedures 87. A score 

below the 5th percentile was classified in the red zone indicating a significant 

movement difficulty, a percentile score between the 5th and 15th was classified in the 

amber zone indicating at risk of movement difficulty, and a percentile score >15th was 

classified in the green zone indicating no movement difficulty detected 87. 

http://www.kinesoft.org/


116 

Cluster analysis 

The derived characteristics (integrated acceleration, spectral purity, overall activity 

counts, MVPA percentage, BMI percentile, MABC2 classification, body fat 

percentage) were normalised so that they could be compared and input into an in-built 

clustering algorithm (MATLAB version R2016a). This algorithm goes through 

multiple iterative processes in order to cluster the data along the columns of the dataset. 

The similarity or dissimilarity between metrics was determined by calculating the 

pairwise Euclidean distances between the values of the different metrics. 

d2st= (xs−xt)(xs−xt)
′ 

Equation 10. Euclidean distance 

Where, d is the Euclidean distance; xs and xt represent the data values being compared. 

Once the distances between the characteristics (integrated acceleration, spectral purity, 

overall activity counts, MVPA percentage, BMI percentile, MABC2 classification, 

body fat percentage) for each child were derived, a linkage function was applied, to 

determine the proximity of the metrics to each other. These were paired into binary 

clusters, which were subsequently grouped into larger clusters until a hierarchical tree 

was formed. The resulting clustergram was displayed in terms of a heat map and 

dendrogram. The height of the link at which two observations on the dendrogram were 

joined was analysed using cophenetic distance, to demonstrate the similarity between 

two clusters 46,215,216. The values for the dendrogram linkages were subsequently 

normalised. The cophenetic distance ratio for the overall clustergram was also 

measured to demonstrate how successfully the dendrogram preserved the pairwise 

distances between the original unmodeled data points (where 1 is maximum). 

A Shapiro-Wilk test determined that data were not normally distributed (P<0.001) and 

therefore non-parametric inferential methods were used for analysis. Descriptive data 

were presented as mean, median and upper and lower quartiles 218. The Kruskall-

Wallis test was used to determine differences between motor competence traffic light 

groups and post-hoc Mann-Whitney U tests, with continuity correction and tie 

adjustment 266,  to determine specific differences between groups. Spearman’s rho was 

used to calculate correlation coefficients between each characteristic. All inferential 

statistics were performed using MatLab (MATLAB version R2016a). Statistical 

significance was accepted at P≤0.05.  
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8.4 Results 

Significant differences were found between MABC2 classification groups for spectral 

purity and integrated acceleration. Post-hoc testing found significant differences 

between green, amber and red MABC2 classifications for spectral purity and 

integrated acceleration (P<0.001). Descriptive data for movement and physical 

activity characteristics are detailed in Table 1. Significant (P≤0.05) relationships were 

found between MABC2 classification and percentage of time spent in moderate-to-

vigorous physical activity (r=0.29), integrated acceleration (r=0.66) and spectral purity 

(r=0.7). Significant relationships were also found between spectral purity and 

integrated acceleration (r=0.57), and body fat percentage and BMI percentile (r=0.75). 

Figure 1 illustrates that integrated acceleration and spectral purity (cophenetic distance 

(CD): 0.19), integrated acceleration and MABC2 classification (CD: 0.19), spectral 

purity and MABC2 classification (CD: 0.06), were clustered together (Figure 16), with 

a cophenetic distance ratio for the overall clustergram of 0.95. 
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Figure 16. Clustergram and Dendrogram 

Colours represent z-scores in the Clustergram. The Dendrogram highlights linkage between two or more characteristics. BMI%: body-mass index 

percentile, BF: body fat percentage estimation, MVPA%: percentage of time spent in moderate-to-vigorous physical activity, IA: integrated acceleration, 

MABC: movement ABC classification, SP: spectral purity, Counts: accelerometer counts.

        BMI%            BF           MVPA%    IA              MABC       SP                    Age      Counts 
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8.5 Discussion 

The aims of this study were to characterise children’s free-play physical activity, and 

investigate how movement quality characteristics of gait cluster in children (3-5y). 

8.5.1 Clustergram overview  

In order for a clustergram to be considered statistically accurate, a cophenetic distance 

ratio of 0.75 is required 303. The clustergram in this study had a cophenetic distance 

ratio of 0.95, indicating confidence in the veracity of clusters identified. The clustering 

algorithm hierarchically linked each characteristic (integrated acceleration, spectral 

purity, overall activity counts, MVPA percentage, BMI percentile, MABC2 

classification, body fat percentage), accordingly. The proximity of two or more 

characteristics within the clustergram indicated how closely the movement quality 

characteristics were linked to each other 46,215, for example, MABC2 classification and 

spectral purity: 0.06, integrated acceleration and spectral purity: 0.19. The cophenetic 

distance ratio reported in the present study indicates that movement characteristics 

were successfully, and reliably, clustered. Hierarchically clustering movement 

characteristics has previously been shown to be successful in pre-adolescent children 

and close cophenetic distances between spectral purity and aerobic performance were 

highlighted 218. However, this is the first study to utilise and report the hierarchical 

clustering of movement characteristics in early-years children. 

8.5.2 Integrated acceleration, spectral purity and motor competence 

The frequency and harmonic content of movement is reflective of movement 

characteristics such as gait pattern, overall physical activity and cardiorespiratory 

fitness 218,337. In this study, spectral purity and motor competence (MABC2 

classification) were more closely cophenetically linked (0.06) than integrated 

acceleration (0.19), which was previously unreported. Furthermore, traditional 

correlation analyses found spectral purity (r=0.7) and integrated acceleration (0.66) 

were significantly correlated with motor competence. These findings suggest that 

spectral purity and integrated acceleration may be movement quality indicators in early 

years’ children, congruent with previous findings where spectral purity was 

demonstrated to be indicative of fundamental aspects of movement in pre-adolescent 

children (9-11y) 218. Furthermore, in a population of geriatric and Parkinsonian 

sufferers’, accelerometer signals in the frequency domain reveal deteriorating gait 

characteristics and assess fall potential, respectively 20,21. To the authors’ knowledge, 
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the present study is the first to demonstrate that spectral purity and motor competence 

are related in early years’ children (Figure 16). 

Integrated acceleration, a proxy measure for overall physical activity 34,218, was 

positively related to motor competence in the present study and this is supported 

widely in the literature 24,31,93,321. Although some studies have relied upon self-report 

proxies of physical activity 238,239, a recent review found a positive relationship 

between motor competence and health-related benefits 24. Further, Holfelder, et al. 94 

and Lubans, et al. 92 also reported positive associations in respective systematic 

reviews, and Cohen, et al. 240 demonstrated that overall physical activity was positively 

correlated with locomotor and object control competency. Congruent with previous 

work 92,94,240, integrated acceleration was significantly different by MABC2 

classification (P<0.001). However, spectral purity was also found to significantly 

different by MABC2 classification (P<0.001). In preceding work, empirical evidence 

suggested that spectral purity was a viable proxy measure of the fundamental aspects 

of movement and that it clustered with motor competence (see: Clark, et al. 218 and 

Barnes, et al. 299). Further, given that the present study has demonstrated that spectral 

purity is clustered with movement competence and significantly different between 

motor competency classification, suggests underlying frequency components of 

movement should be further investigated for the measurement of movement quality in 

children 218. Moreover, whilst it has been demonstrated that a proxy for overall 

physical activity was positively correlated with motor competence 92,94,240, spectral 

purity (r=0.7) was found to have a stronger relationship to motor competence than 

overall activity (r=0.66) in the present study, thereby highlighting the need for future 

research to examine and further establish this relationship. 

8.5.3 Anthropometrics. age and actigraphy  

Congruent with previous research, the present study found that BMI and body fat 

percentage were closely cophenetically clustered and significantly positively 

correlated 338,339. Whilst previous research has highlighted that motor competence and 

physical activity are inversely correlated with weight status in children 100-103, this 

study found that anthropometric characteristics were not clustered, nor correlated to 

any other measure (Figure 16). This is reflected in the literature, as Ekelund, et al. 340 

and Vorwerg, et al. 341 reported no differences in physical activity levels in early years’ 

children according to BMI and that physical activity levels did not significantly differ 
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between overweight/obese children and normal-weight peers, respectively. Further, 

Williams, et al. 342  reported that there was no significant association between BMI and 

motor skill performance concluding that whilst weight status of early years’ children 

was considerably influenced by socioeconomic status, physical activity levels were 

not, potentially due to the highly transitory and frequent movement during 

nursery/preschool. 

 

Traditional hip-mounted accelerometer data did not cluster with any movement 

characteristic, whilst concurrent ankle-mounted raw accelerometry yielded significant 

results. One explanation is that traditional hip-mounted accelerometers have 

inadequate band-pass filtering, where high frequency movement and noise information 

can escape the filter adding unexplained variation in activity counts 35. Further, 

Wundersitz, et al. 228 identified that filters with at least an 8 or 10 Hz cut-off frequency 

were most suitable to process accelerations in ambulatory tasks, and thus adopted in 

the present study, whereas the actigraphy device  utilised filters out frequencies higher 

than 2.5 Hz 35,228. This finding highlights the insensitivity of traditional, hip-worn 

actigraphy units to measure contextualised physical activity. Physical activity is a 

multi-directional, complex construct and summative activity counts are a measure of 

centrality that are missing vital information 44,122. This study highlighted that 

integrated acceleration and spectral purity are hierarchically clustered and significantly 

correlated with motor competency, whereas traditional, hip mounted, physical activity 

measures do not.  

8.5.4 Limitations 

The clustering algorithm utilised within this study was structured using hierarchical 

methods, thereby pairing characteristics according to proximity. This means inverse 

relationships may be difficult to ascertain. However, this can be mitigated with careful 

interpretation of the clustergram, in addition to incorporating other correlation 

analyses (i.e. Spearman’s rho). Although this study employed novel signal analytics 

of accelerometer data, it only assessed spectral purity and integrated acceleration, and 

therefore further analytics could be employed and should be the focus of future 

research. 
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8.6 Conclusion 

The aims of this study were to characterise children’s free-play physical activity and 

to investigate how movement characteristics of gait cluster in children (3-5y). Overall, 

integrated acceleration and spectral purity were significantly different between motor 

competence classifications. Further, that overall physical activity and spectral purity 

cluster during uncontrolled free-play physical activity, whilst spectral purity was more 

closely linked to motor competence than integrated acceleration. Anthropometric and 

actigraphy characteristics were not correlated to, or clustered meaningfully with, any 

other measure. 

This study has built upon previous research 218,299,304 suggesting cophenetic clustering 

of spectral purity with integrated physical activity and motor competence, and has 

attempted to address the dearth of suitable metrics available to quantify movement 

quality. The analysis of frequency and harmonic content of movement and overall 

physical activity concomitantly is demonstrably sensitive and informative. It is 

recommended that future research seeks to better quantify and qualify physical activity 

in contextualised settings to enhance our understanding of specific movement and gait 

patterns. Furthermore, the link between spectral purity and motor competence 

highlighted in this study necessitates detailed further investigation. 

8.7 Summary: Experimental Chapter Four 

The aims of this experimental chapter were two-fold; to characterise children’s free-

play physical activity and investigate how movement quality characteristics of gait 

cluster in children (3-5y). Accordingly, significant differences were found between 

motor competency classifications for spectral purity and integrated acceleration 

(P<0.001). Spectral purity was hierarchically clustered with motor competence and 

integrated acceleration. Significant positive correlations were found between spectral 

purity, integrated acceleration and motor competence (P<0.001). Metrics capable of 

objectively quantifying movement quality in children are evidently missing. 

Furthermore, although objective movement quality characteristics have been 

investigated in pre-adolescent children, they have not been investigated in early years’ 

children. This was the first empirical investigation to report spectral purity in early 

years’ children and results demonstrate that the underlying frequency component of 

movement is clustered with motor competence. 
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Thesis map 

Chapter Study  Outcomes 

1 SlamTracker 

Accuracy 

under Static 

and 

Controlled 

Movement 

Conditions 

Aim To quantify the mean, standard deviation 

and variance of the SlamTracker device 

at a range of speeds 

Key Findings Sample variance was <0.001g across all 

speeds and axes during the movement 

condition tests. In conclusion, the 

SlamTracker is shown to be an accurate 

and reliable device for measuring the 

raw accelerations of movement. 

Validity of 

Force and 

Angle 

Derivation 

Using Raw 

Accelerometry 

Aim To verify the validity of using raw 

accelerometry to estimate force (N) and 

leg angle (°) during ambulation. 

Key Findings Angle estimation (°) and force derivation 

(N), using an accelerometer, 

significantly correlated with video 

verified angle estimation (r=0.98, 

p=0.001) and force platform verified 

values (r=0.98, p=0.001), respectively.  

A Kinematic 

Analysis of 

Fundamental 

Movement 

Skills 

Aim To characterise the relationship between 

facets of fundamental movement and, to 

characterise the relationship between 

overall integrated acceleration and three-

dimensional kinematic variables whilst 

performing fundamental movement 

skills. 

Key Findings Overall integrated acceleration was 

comparable between participants (CV: 

10.5), whereas three-dimensional 

variables varied by up to 65%. Indicating 

that although overall activity may be 

correspondent, the characteristics of a 

child’s movement may be highly varied. 

2 Profiling 

Movement 

Quality and 

Gait 

Characteristics 

According to 

Aim To apply automated, novel analyses to 

characterise the movement quality of 

children during the multi-stage fitness 

test, and to report how movement quality 

characteristics of gait cluster according 

to BMI 



124 

BMI in 

Children (9-

11y) 

Key Findings OB children had significantly lower 

spectral purity and time to exhaustion 

(TTE) than UW NW, and OW children 

(P<0.05). BMI was clustered with stride 

profile, and TTE with spectral purity. 

Significant negative correlation (P<0.05) 

between BMI and; TTE (r=-0.25), 

spectral purity (r=-0.24), integrated 

acceleration (r=-0.22), stride angle (r=-

0.23) and stride variability (r=-0.22). 

Spectral purity was representative of 

children’s performance during the 

MSFT. 

3 Profiling 

Movement 

Quality and 

Gait 

Characteristics 

of Recess 

Activity in 9-

11-year-old 

Primary 

School 

Children 

Aim To characterise children’s recess 

physical activity, and investigate how 

movement quality characteristics of gait 

cluster during school recess 

Key Findings There were no significant inter-day 

differences found for overall activity 

(P>0.05), significant differences were 

found for spectral purity (P<0.001). 

Integrated acceleration was clustered 

with spectral purity. There were 

significant positive correlations 

coefficients between integrated 

acceleration and spectral purity 

(P<0.05), whilst BMI percentile was 

negatively correlated with IA and 

spectral purity. 

4 Profiling 

Movement 

and Gait 

Characteristics 

in Early-Years 

Children (3-

5y) 

Aim To characterise children’s free-play 

physical activity and investigate how 

movement quality characteristics of gait 

cluster in children (3-5y). 

Key Findings Significant differences were found 

between motor competency 

classifications for spectral purity and 

integrated acceleration (P<0.001). 

Spectral purity was hierarchically 

clustered with motor competence and 

integrated acceleration. Significant 

positive correlations were found between 

spectral purity, integrated acceleration 

and motor competence (P<0.001) 
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9.0 Thesis Synthesis 

 

The overarching aim of this thesis was to characterise and profile children’s physical 

activity movement and gait quality. The overarching aim was achieved through a series 

of experimental chapters, each with specific aims and findings, outlined in the thesis 

map. 

 

The challenge this thesis sought to address was based upon the premise that: i) there 

are numerous, acute physiological and psychosocial benefits to physical activity 

among children and adolescents; ii) physical activity behaviours between childhood 

and adulthood are correlated and; iii) physically active children are more likely to grow 

up to be physically active and healthy adults 15,16. It has therefore been commonplace 

to quantify energy expenditure in children, both cross-sectionally and longitudinally 

10,15-17. However, there is a paucity of research demonstrating objective methods to 

empirically derive movement quality, or integrate physical activity quantities and 

qualities. Quality is an ambiguous term, with varying meanings relating to; 

psychology, physiology, biochemistry, well-being, emotional state, biomechanics or 

even life. However, throughout this thesis the term ‘quality’ was defined as, and 

derived from, the purity of the fundamental frequency spectra (signal) during human 

movement, specifically relating to gait. 

 

The novelty of this thesis encompasses numerous analytical techniques, such as; 

hierarchical clustering, frequency domain analysis and spectral purity. The challenges 

that needed to be addressed during this thesis involved ensuring that, i) we could 

introduce an informative, representative and robust measure of movement and gait 

quality, and, ii) to suitably characterise children’s movement and gait quality in 

controlled and uncontrolled settings. These challenges were initially met through a 

battery of smaller studies (experimental chapter 1), which led to the conception of the 

subsequent experimental chapters, each building upon the previous chapter. 

 

Following numerous laboratory-based studies, testing the specification and application 

of the SlamTracker device, confidence was asserted that the device was valid and 

reliable for the in the field approach being utilised in the experimental work. 

Experimental chapter 1 encompassed a body of work that sought to understand the 
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utility raw accelerometry had in mechanical, controlled and semi-controlled 

movements. This work confirmed that, in a mechanical setting, a raw accelerometer is 

robust and accurate at a range of controlled speeds. Further, this chapter demonstrated 

that temporal movement variables, force estimation and leg-lift angle, can be 

accurately computed from a single, ankle mounted accelerometer. The final tenet of 

the first experimental chapter formed a large basis for the continued work in the 

subsequent chapters (i.e. the finding that during standardised fundamental movements, 

although overall physical activity may be invariable, individual movement 

characteristics display large temporal and kinematic flux). 

The overarching aim of this thesis necessitated novel analytics being accurate and easy 

to perform. In accord with this aim, the computational accuracy of force and angle 

estimation from the SlamTracker device were affirmed. This was a significant stage in 

the thesis, and demonstrated that the SlamTracker could be utilised to accurately 

compute key variables in children’s movement, both of which would be integral to 

more complex and novel analytics. The final study in experimental chapter 1 facilitated 

establishing the niche in the literature this thesis could fill. In standardised, 

fundamental movements, traditional measures of overall activity showed minimal 

variance. Whereas detailed kinematic variables highlighted the significant differences 

between children. Therefore, experimental chapter 2 sought to explore the application 

of raw accelerometry and employ novel analytics to investigate movement quality 

characteristics. The aims of the second experimental chapter 2 were to characterise the 

movement quality of children during a standardised fitness test, and report how derived 

movement quality characteristics of gait cluster according to weight status. This 

experimental chapter was necessary for establishing a credible base for the 

combination of raw accelerometry and novel analytics and was the first empirical study 

to draw upon frequency domain analysis and hierarchical clustering in the 

characterisation of movement in children. This study elucidated that traditional and 

novel performance characteristics during a standardised fitness test differed between 

body mass indices, and were significantly negatively correlated with body mass 

indices. One of the principal findings of this study was that spectral purity 

hierarchically clustered with time to exhaustion (the key performance indicator in the 

fitness test). 
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This second experimental chapter provided empirical evidence that novel analytics, 

supported by the systematic review undertaken within this body of work, are robust 

and informative, offering new insights into children’s movement quality. Experimental 

chapter 1 and 2 both utilised more controlled, standardised movements and given the 

success in both chapters’, experimental chapter 3 moved away from controlled into 

more free-form, uncontrolled settings, i.e. recess. This was an important step to take 

as this would demonstrate the robustness of the novel analytics in less controlled 

environments. 

Congruent with experimental chapter 1, experimental chapter 3 found that overall 

physical activity remained invariant between children. Upon examining overall 

physical activity across numerous days, there were no significant inter-day differences 

found. On the other hand, significant inter-day differences in spectral purity were 

highlighted. Further, overall physical activity (measured by integrating accelerations) 

was hierarchically clustered with spectral purity, in addition to significant positive 

correlation coefficients between activity and spectral purity (P<0.05). Additionally, in 

congruence with experimental chapter 2, body mass indices were negatively correlated 

with activity and spectral purity.  

The third experimental chapter highlighted that the novel analytics utilised in this 

thesis were stable and robust in a volatile environment (i.e. recess). Demonstrating 

that, although overall physical activity is invariant, spectral purity can significantly 

differ daily. This was an important finding to empirically evidence, however raised the 

question, can we characterise children’s movement quality from an early age, using a 

stable, robust measure? The rationale for moving into early years aged children was 

based upon; i) the link established between spectral purity and movement quality, ii) 

the tenuous literature on motor competency development through childhood, and, iii) 

the evidence motor competence may track though the life course. Therefore, it was 

deemed prudent to examine fundamental frequency characteristics in early years’ 

children, in conjunction with traditional motor competency assessment. 

The final experimental chapter sought to follow on from the experimental chapter 3 

and characterise children’s free-play physical activity and, investigate how movement 

quality characteristics of gait cluster with free-play and motor competence in early 

years’ children (3-5y). Accordingly, significant differences were found between motor 
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competency classifications for spectral purity and overall physical activity (P<0.001). 

Spectral purity was hierarchically clustered with motor competence and overall 

physical activity. Furthermore, significant positive correlations were found between 

spectral purity overall physical activity and motor competence (P<0.001).  

Overall, this body of work was able to successfully profile and characterise children’s 

movement and gait quality in a variety of scenarios, from controlled, laboratory-based 

settings to un-controlled free-play. The novel quality measure coined in this thesis, 

spectral purity, was shown to be hierarchically clustered with, and indicative of, 

performance, physical activity and motor competence. This thesis has expanded the 

current evidence base on children’s physical activity and movement and demonstrated 

that raw accelerometry can be used, in conjunction with novel analytics, to provide 

innovation in movement quality assessment across ages. Future research should seek 

to measure and track movement quality measures longitudinally, from the early years 

and into adulthood. In the contextualised scenarios used within the experimental 

chapters of this thesis, spectral purity has been a stable measure of quality, and 

hierarchical clustering of movement variables has enabled novel characterisation of 

children’s movement quality. In order for these analytical techniques and novel 

measures to grow and become more commonplace, more background work will be 

required. A large cross-sectional data collection should occur in children, adolescents, 

adults and the elderly to create an index of movement quality during standardised 

tasks. Following this, a detailed investigation of how traditional health and fitness 

markers and novel quality indicators (spectral purity) impact risk stratification through 

the life course should be undertaken. Additionally, researchers who use traditional 

methods of assessing intervention success and viability, in the context of physical 

activity, health and well-being, should consider utilising movement quality markers in 

conjunction with overall quantity measures. 
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11.0 Appendices 

Appendix I 

Extension to Experimental Chapter 3 

Multiple linear regressions were performed on the data presented in Experimental 

chapter 3 to ascertain the robustness of spectral purity. Mean integrated acceleration 

(F (1,22) = 7.88, r2 = 0.23), BMI (F (1,22) = 0.09, r2 = -0.25), self-perceived health (F 

(1,22) = 16.02, r2 = 0.39), self-perceived fitness (F (1,22) = 7.56, r2 = 0.22) 

significantly predicted spectral purity (P<0.05). Whilst, integrated acceleration 

coefficient of variation (F (1,22) = 7.88, r2 = 0.07), spectral purity coefficient of 

variation (F (1,22) = 0.902, r2 = -0.04), and sex (F (1,22) = 2.47, r2 = 0.06), did not 

significantly predict spectral purity (P>0.05). 

The rationale for performing this further analysis was to investigate the extent to which 

spectral purity was influenced by other variables. For experimental chapter 3, 

integrated acceleration, body-mass indices, self-perceived health and self-perceived 

fitness were significant predictors of spectral purity. This finding is congruent with 

experimental chapter 2 which highlighted that spectral purity differs across body-mass 

indices and fitness levels and is significantly, negatively correlated. In experimental 

chapter 3, the strongest predictor of high spectral purity was self-perceived health 

(r2=0.39). Overall, these findings suggest that activity levels, self-perceptions and 

anthropometrics cannot wholly predict spectral purity. This further validates spectral 

purity as robust measure that is not an artefact of other variables. 

Extension to Experimental Chapter 4 

Multiple linear regressions were performed on the data presented in Experimental 

chapter 4 to ascertain the robustness of spectral purity. Movement-ABC classification 

(F (1,59) = 75.6, r2 = 0.55), and integrated acceleration (F (1,59) = 34.6, r2 = 0.36) 

significantly predicted spectral purity (P<0.05). Whilst, age (F (1,59) = 1.39, r2 = 

0.006), BMI (F (1,59) = 0.22, r2 = -0.013), body fat percentage estimation (F (1,59) = 

0.003, r2 = -0.017), Actigraph counts (F (1,59) = 1.99, r2 = 0.016), and percentage of 

time spent in MVPA (F (1,59) = 0.846, r2 = -0.003), did not significantly predict 

spectral purity (P>0.05). 

The rationale for performing this further analysis was to investigate the extent to which 

spectral purity was influenced by other variables. For experimental chapter 4, 

movement-ABC classification and integrated acceleration were significant predictors 
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of spectral purity. In experimental chapter 4, the strongest predictor of high spectral 

purity was movement-ABC classification (r2=0.55). Overall, the finding that a measure 

of motor competency may account for 55% of the variance in spectral purity indicates 

that it (spectral purity) may be a representative of a fundamental feature of movement 

quality/competence. This further validates spectral purity as robust measure that is not 

an artefact of other variables, and, in combination with the detailed results within this 

thesis, indicate spectral purity should be investigated further, with particular emphasis 

on how this robust measure tracks across ages. 
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Appendix II 

Submitted manuscripts 

Clark, C. C. T., Barnes, C. M., Swindell, N. J., Bingham, D. D., Collings, P. J., 

Barber, S. E., Summers, H. D., Holton, M. D., Mackintosh, K. A., Stratton, G. Profiling 

movement and gait characteristics in early-years children (3-5y). Submitted to Journal 

of Motor Behaviour in February 2017. 

Abstract 

There is a dearth of suitable metrics capable of objectively quantifying movement 

competence. Further, objective movement quality characteristics during free-play have 

not been investigated in early years’ children. The aims of this study were to 

characterise children’s free-play physical activity and to investigate how gait quality 

characteristics cluster with free-play in children (3-5y). Sixty-one children (39 boys, 

4.3±0.7y, 1.04±0.05m, 17.8±3.2kg) completed the movement assessment battery for 

children and took part in free-play whilst wearing an ankle- and hip-mounted 

accelerometer. Characteristics of movement quality were profiled using a clustering 

algorithm. Spearman’s rho and the Mann-Whitney U tests were used to assess 

relationships between movement quality characteristics and motor competence 

classification differences in integrated acceleration and spectral purity, respectively. 

Significant differences were found between motor competency classifications for 

spectral purity and integrated acceleration (P<0.001). Spectral purity was 

hierarchically clustered with motor competence and integrated acceleration. 

Significant positive correlations were found between spectral purity, integrated 

acceleration and motor competence (P<0.001). This is the first study to report spectral 

purity in early years’ children and our results suggest that the underlying frequency 

component of movement is clustered with motor competence. 

Presentations 

Clark, C. C. T., Barnes, C. M., Mackintosh, K. A., Summers, H. D., Stratton, G. 

(2015). Quantitative, multiscale profiling of Motion and Activity in Children. 20th 

Annual Conference of the European College of Sport Science, Malmo, Sweden. 

 

Clark C. C. T., Barnes, C.M. (2015). Physical activity measurement in children. 

Wales Exercise Medicine Symposium, Swansea, UK. 
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Clark, C. C. T., Barnes, C. M., Holton, M. D., Mackintosh, K. A., Summers, H. D., 

Stratton, G. (2016). Profiling movement quality characteristics according to body-

mass index in children. 21st Annual Congress of the European College of Sport 

Science, Vienna, Austria. 

 

Appendix III 

Additional Methods 

 Multi-stage Fitness Test 

Participants completed the multi-stage fitness test (MSFT) by running back and forth 

along a 20m course, and were required to touch the 20m line at the same time that a 

sound signal was emitted from a pre-recorded audio disk. The frequency of the sound 

emissions increased in line with running speed (detailed in Table 1). The test stopped 

when the participant reached volitional exhaustion and was no longer able to follow 

the set pace, or participants were withdrawn after receiving two verbal warnings to 

meet the required pace 265. 

Table 11.Multi-stage fitness test section speeds and sound emissions. 

Section 1 2 3 4 5 6 7 8 9 10 11 12 

Running speed (km.h-1) 8.0 9.0 9.5 10.

0 

10.

5 

11.

0 

11.

5 

12.

0 

12.

5 

13.

0 

13.

5 

14.

0 

Sound emission (Hz) 7 8 8 9 9 10 10 11 11 11 12 12 

Motion Capture  

Motion capture was performed using the Vicon MX13 motion capture system (Vicon 

Peak, Oxford, UK), including twelve cameras sampling at 200 frames per second. For 

kinematic analysis, 39 retro-reflective markers of 14 mm diameter were attached to 

specific anatomical landmarks (Plug-In Gait Marker Set, Vicon Peak, Oxford, UK) 

(Figure 1) of every participant. Three-dimensional coordinates of the 39 markers were 

reconstructed with the Nexus software (Nexus 2.0, Vicon, Oxford, UK) and smoothed 

using cross validation splines 245. Both static and dynamic calibrations were 

performed, and residuals of less than 2 mm from each camera were deemed acceptable. 
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The 39 retro-reflective marker were placed at the following anatomical locations; the 

right forehead (RFHD), left forehead (LFHD), right back of head (RBHD), left back 

of head (LBHD), the 7th cervical vertebrae (C7), the 10th thoracic vertebrae (T10), the 

clavicle (CLAV), sternum (STRN), the right scapula (RBAK), the left shoulder at the 

acromio-clavicular joint (LSHO), the right shoulder at the acromio-clavicular joint 

(RSHO), the left upper arm between shoulder and elbow (LUPA), the right upper arm 

between shoulder and elbow (RUPA), the lateral epicondyle of the left elbow (LELB), 

the lateral epicondyle of the right elbow (RELB), the left forearm between the elbow 

and wrist (LFRA), the right forearm between the elbow and wrist (RFRA), the medial 

and lateral left wrist (LWRA and LWRB, respectively), the medial and lateral right 

wrist (RWRA and RWRB, respectively), the left hand second metacarpal head (LFIN), 

the right hand second metacarpal head (RFIN), the left anterior superior iliac spine 

(LASI), the right anterior superior iliac spine (RASI), the left posterior superior iliac 

spine (LPSI), the right posterior superior iliac spine (RPSI), the lateral epicondyle of 

the left knee (LKNE), the lateral epicondyle and the right knee (RKNE), the left thigh 

between the lateral epicondyle of the knee and greater trochanter (LTHI), the right 

Figure 17. Vicon plug in gait markers 
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thigh between the lateral epicondyle of the knee and greater trochanter (RTHI), the left 

lateral malleolus (LANK), the right lateral malleolus (RANK), the left tibia between 

the lateral epicondyle of the knee and lateral malleolus (LTIB), the right tibia between 

the lateral epicondyle of the knee and lateral malleolus (RTIB), the left foot second 

metatarsal head (LTOE), the right foot second metatarsal head (RTOE), the left heel 

placed on the calcaneous at the same height as the left foot second metatarsal head 

(LHEE), the right heel placed on the calcaneous at the same height as the right foot 

second metatarsal head (RHEE). Which has been used previously with a child 

population 246,247. 

SlamTracker set-up and signal processing 

Firstly, a microSD card was initialised using a command line generator, enabling the 

user to predefine elements such as; recording frequency, battery modifications, 

magnetic control, light indicators on the device, sleep and pausing of the device, 

number of logging hours (if required) and global positioning system interface (if 

externally applied) (see: Figure 18). 

 

Figure 18. Command line generator for SlamTracker device 

A command line is subsequently generated which controls the SlamTracker device, 

for example in Figure 18.     

“AMTPXng,F40,R0072,Kh,S,ul,G060,s0000,Q030,I030,S300,b,t0000,P,S, 

g0000,gsd0000, grc0000,Dsd1613,T,I,S5,A30,t000,B20,t”. The generated code 
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contains all the information on the decisions made by the researcher in the command 

line generator. 

The SlamTracker device, in this body work, was operated via magnetic flux. As such, 

the device was set up in a way to enable and disable the recording function with 

magnetic proximity. Allowing for very specific starts, pauses and stops. 

Prior to data analyses using statistical packages such as MatLab, Microsoft Excel, 

SPSS etc. the raw data is protected on the device in a proprietary format, preventing 

data loss or damage. To extract the raw signal in a usable format, i.e. text file, a data 

converter must be used (Figure 19). The data converter enables the user to control data 

input, output, split the file, display different sections of the data, adjust magnitudes 

and offset values, perform basic analysis (such as FFT), or simply just to convert and 

export in text file format. 

 

Figure 19. SlamTracker data converter 

The raw trace is subsequently visualised on screen (see: Figure 20), and the user can 

then decide which aspects of the raw signal should be saved and converted into a text 

file, for example; accelerometer axes, magnetometer axes, pressure, temperature, time 

stamps, light level, battery level over time, in addition to derivatives of the trace such 

as, vector of the dynamic body acceleration (VeDBA) and overall dynamic body 

acceleration (ODBA). 
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Figure 20. Data converter output decision 

The data converting software then outputs all of the selected information into a text 

file, ready for use with programmes such as, MatLab (Figure 21). 

 

Figure 21. Text file output 

 

Skinfold (two-site assessment) 

For experimental chapter 4: the skinfolds of the triceps brachii and subscapularis were 

measured by picking up a fold of skin and subcutaneous tissue between the thumb and 

forefinger, initially placed about 2 cm apart on the skin, and pinching it away from the 

underlying muscle (see: Tanner, et al. 343). The width of the skinfold was measured 

with a calliper designed to give a constant pressure of 10 g.mm2 over its entire opening 
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range 344. The instrument was held and the jaws were applied to the skinfold just under 

the pinch point and the right hand was allowed to relax entirely its grip on the handle 

so that the jaws could exert their full pressure. The left hand maintained the pinch 

throughout the measurement. Tanner, et al. 343 assert this results in a stable reading up 

to 20 mm. The dial of the calliper Holtain Skinfold Calliper) was calibrated to 0.2 mm, 

and the measurement was estimated to the nearest 0.1 mm, as per Tanner, et al. 343. 

Skinfolds can only be measured accurately at sites where a proper fold can be raised 

clear of the tissues underneath. The two sites utilised in this thesis are considered 

suitable for assessing fat mass in children 343. The skinfold was picked up over the 

posterior surface of the triceps muscle on a vertical line passing upwards from the 

olecranon in the axis of the limb, and the calliper jaws were applied at the marked 

level. The subscapular skinfold was picked up just below the angle of the left scapula 

with the fold either in a vertical line or slightly inclined, in the natural cleavage line of 

the skin. All skinfold measurements were taken by the same researcher in order to 

avoid any discrepancy in technique. 

Accelerometer (ActiGraph GT3X) 

For experimental chapter 4: this device consists of a solid-state accelerometer using an 

integrated micro-machined monolithic integrated circuit chip (polysilicon) to detect 

acceleration (Analog Devices, 2007). The GT3X makes use of a triaxial capacitive 

micromechanical system 345. The sensor is suspended by springs over the surface of 

silicon water and provides a resistance against acceleration forces (Analog Devices, 

2007). The GT3X can detect both dynamic acceleration (e.g. as a result of motion) and 

static acceleration (e.g. as a result of gravity forces). This GT3X incorporates an 

inclinometer, so may be used to detect bodily position. The GT3X accelerometer uses 

a 12-bit analogue-to-digital converter digitalised at 40 Hz and records acceleration in 

the range 0.05 to 2.0 G, making use of a band-pass filter that excludes signals outside 

the range 0.25 to 2.5 Hz. In experimental chapter 4, this device was housed in a small 

plastic case and attached via an elastic strap to the right hip of the participants, and 

worn for the duration of recess or free-play. Prior to data collection, the accelerometers 

were set up to collect data in 1-s epochs. The accelerometers were initialised using a 

laptop PC and were set to start collecting the data at a pre-determined time. In this 

way, the time on the PC was synchronised with the internal accelerometer clock.  
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Data analysis 

Vicon 

For experimental chapter 1: all corresponding data and video files were first uploaded 

into Vicon Nexus software and underwent in-depth analysis. Firstly, a reconstruct and 

labelling process was performed, allowing conversion of stereoscopic images into a 

three-dimensional movement. Once a three-dimensional movement had been 

established, a functional skeleton calibration was performed and all body segments, 

joint centres, bone lengths and marker movements were comprehensively modelled 

and trajectories were manually filtered using Woltring cross validation splines. Every 

single frame was scrutinised for fluidity and accuracy and marker quality was assessed. 

Following this, all raw data was converted into a comma separated values spread sheet 

for statistical analysis.  

Slamtracker 

Specifically investigated in experimental chapter 2, the stride profile quotient is a 

multi-dimensional measure derived from the mean stride frequency and mean stride 

angle of each child during the first and last section of running that each child 

completed. The absolute of the two measures between the two sections was derived 

and normalised. These values were then used in the following equation (equation 2), 

where a score of 1 would equate entirely to changes in stride frequency, and a score of 

0 would equate to changes entirely in foot lift angle. 

𝑄 = sin (atan(𝐷1/𝐷2)) 

Equation 11. Stride profile quotient. 

Where 𝑄, is the stride profile quotient; sin, represents the sine function; atan, 

represents the inverse of the tangent; 𝐷1, is the = absolute difference in frequency and 

𝐷2, is the absolute difference in foot lift angle.  

Finally, time to volitional exhaustion (TTE), derived by converting events into seconds 

based on the sampling frequency (40 Hz) was also recorded as a measure of overall 

performance especially in experimental chapter 2. 

Actigraph  

For experimental chapter 4, following data collection non-wear periods were defined 
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as any sequence of >20 consecutive minutes of 0 activity counts 334. Mean counts per 

minute during valid wear time were used to define total physical activity. Sedentary 

behaviour was defined as <100 counts per minute, while 100, 2296 and 4012 counts 

per minute were thresholds to define light moderate and vigorous physical activity 

respectively 335,336. Accelerometer data was processed using a commercially available 

analysis tool (KineSoft version 3.3.67, Kinesoft; www.kinesoft.org). 

Appendix IV 

Review of accelerometry  

Accelerometers were initially used in the 1950s to measure gait velocity and 

acceleration 346. Accelerometric measurement of human movement was investigated 

in more detail during the 1970s following device advances 347. It was also shown that 

accelerometers had advantages over other techniques in quantitatively measuring 

human movement. With the inception of micro-electromechanical system (MEMS) 

technology the cost of accelerometers has reduced significantly over recent years. 

Furthermore, device performance has improved while the power consumption greatly 

reduced. The first fabricated MEMS accelerometers were reported in 1979 348. Since 

then various research and commercial applications have used MEMS accelerometers 

for physical activity assessment 114. 

Principles of accelerometry 

Accelerometers quantify acceleration using a mechanical sensing element which 

consists of a seismic mass attached to a mechanical suspension system with respect to 

a reference frame. Inertial force due to acceleration or gravity will cause the mass to 

deflect according to Newton’s Second Law. The acceleration may then be measured 

electrically with the physical changes in displacement of the mass with respect to the 

reference frame. Piezoresistive, piezoelectric and differential capacitive 

accelerometers are the most commonly used accelerometers reported in the literature 

349,350.  

Piezoresistive accelerometers  

In piezoresistive accelerometers the sensing element consists of a cantilever beam and 

its proof mass is formed by bulk-micromachining. The motion of the proof mass due 

to acceleration can be detected by piezoresistors in the cantilever beam and proof mass. 

The piezoresistors are arranged as a Wheatstone bridge to produce a voltage 

proportional to the applied acceleration 114. Piezoresistive accelerometers are simple 

http://www.kinesoft.org/
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and low-cost. The piezoresistive accelerometers are DC-responsive that can measure 

constant acceleration, such as gravity. The major limitations of piezoresistive sensing 

are the temperature-sensitive drift and the lower level of the output signals 114 

Piezoelectric accelerometers  

In a piezoelectric accelerometer, the sensing element bends due to applied acceleration 

which causes a displacement of the seismic mass, and results in an output voltage 

proportional to the applied acceleration. Piezoelectric accelerometers are, however, 

unable to respond to the constant component of accelerations 114. Although 

piezoelectric accelerometers do not respond to constant acceleration, their major 

advantage is that no power supply is required, aside for data storage, resulting in a 

considerable reduction in size and weight of the device 117,351.  

Differential capacitive accelerometers 

The displacement of the proof mass in an accelerometer can be measured capacitively. 

In a capacitive sensing mechanism, the seismic mass is encapsulated between two 

electrodes. The differential capacitance is proportional to the deflection of the seismic 

mass between the two electrodes. The advantages of differential capacitive 

accelerometers are low power consumption, large output level, and fast response to 

motions. Better sensitivity is also achieved due to the low noise level of capacitive 

detection. Furthermore, differential capacitive accelerometers also have DC response 

114. Currently this kind of accelerometer has widely been used in most applications, 

especially in mobile and portable systems and consumer electronics, and can be 

particularly useful in detecting human movement 114. 

Accelerometry is the most commonly used objective method of physical activity 

assessment in children and adolescents and it has greatly increased in popularity 

relative to other objective methods in all age groups 352. A review of physical activity 

measurement in preschool children reported that 63% of monitoring devices used were 

accelerometers, mainly the ActiGraph 136.  

Accelerometry issues 

Discrepancies in accelerometer-intensity thresholds 

Currently, the main challenge is to achieve consistency on accelerometer cut points 

that are representative of children’s physical activity 353,354. Inconsistent 

accelerometer-intensity thresholds limit between study comparability 355 
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Problematically reaching a consensus on the most appropriate thresholds to use is 

challenging 353 making physical activity data analysis and interpretation difficult. It 

has been asserted that the comparison of already available thresholds rather than the 

introduction of new ones may help reduce this inconsistency 356. Further, although one 

size fits all accelerometer thresholds can be useful for predicting the time spent in 

different activity intensities, they are not as precise on an individual level 357. Large 

variation in activity counts for children walking at standardized speeds has been 

reported 358. Accelerometer activity counts have been shown to range from around 400 

up to 2600 counts per minute during walking at 4 km.h-1 and from 1000 to 5000 counts 

per minute during walking at 6 km.h-1. The coefficient of variation for activity counts 

ranged from 21-40%. This high variation precludes the prediction of energy 

expenditure or classification of intensity and undermines the use of generic cut points 

for moderate or vigorous physical activity. 

Epoch length 

For children, the epoch length (a user specified averaging period for time) 

implemented whilst utilising and accelerometer is an important consideration when 

describing physical activity due to the intermittent nature of their activity and the 

typically short bouts 124. It has been suggested that an even greater amount of daily 

moderate intensity activity relative to the existing physical activity guidelines for 

children and youth (Strong et al., 2005) may be important to prevent risk factors related 

to obesity in childhood 359. However, in Andersen, et al. 359 this study physical activity 

was measured using one minute epochs and accelerometer thresholds for ≥moderate 

intensity activities were based on 3 METs. The evidence suggests that children 

accumulate physical activity in short bouts throughout the day; therefore the use of 

one minute epochs can miss short activity bouts and resultantly underestimate 

moderate to vigorous intensity physical activity 360. This is because children 

accumulate vigorous intensity activity in short, sporadic bouts; one minute epochs are 

too long to capture the majority of these bouts, effectively smoothing out the vigorous 

activity. A prime example of the potential negative impact of epoch length is shown 

in  Nilsson, et al. 361. Where 16 children (7 y) wore an accelerometer for four days. 

Activity data were subsequently analyzed in 5, 10, 20, 40 and 60 second epochs. Using 

MET prediction equations for 60 second epochs 362 and applying scaling factors for 

cut-points equivalent to 5, 10, 20 and 40 seconds, significant epoch effects were 
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discovered for estimated time in vigorous and  above vigorous intensity physical 

activity 361. Longer epochs underestimated time in vigorous and above vigorous 

intensity activity in these children. Many commercial devices have sufficient memory 

to measure physical activity using short epochs over a prolonged period of time. 

Therefore, the use of a short epoch will allow time in vigorous and above vigorous 

intensity activity in children to be captured so that a more accurate representation of 

the activity pattern may emerge. 

Wear time, weekday versus weekend days 

For field-based research, when activity is being measured over a prolonged period of 

time, it is important that the data processing and storage capabilities of the 

accelerometer are sufficient. Between four to nine days of monitoring are required to 

obtain a representative level of activity for children 360. Since differences have been 

reported for weekday and weekend activities 360, a combination of weekdays and 

weekend days should be included in physical activity measurement. In a cohort of 

children and adolescents, seven days of monitoring demonstrated acceptable estimates 

of daily moderate to vigorous physical activity (ICC = 0.76-0.86) and accounted for 

differences in activity on weekdays and the weekend 363.  

Fundamental issues 

Traditional accelerometer devices predominantly store a summary measure of the raw 

acceleration signal, termed an “activity count” 40. A count is, however, a dimensionless 

unit aimed to be proportional to the average overall acceleration of the human body in 

a specified period of time 117. However, this relationship has been questioned due to 

the restrictive dynamic range of commercial accelerometers, the downstream signal 

processing and band-pass filtering 34. Such processing and filtering is designed to 

remove components of the signal unrelated to human movements 41,217, however high 

frequency movement and noise information can escape the bandpass filter, which in 

turn adds unexplained variation in activity counts and incorrectly removes frequencies 

directly from human movement 35. 

There are a plethora of methods that exist to filter and summarise a raw acceleration 

signal, the choice of which has profound implications on the interpretation of the final 

output 34,39. However, as traditional accelerometers are limited in memory and battery 

capacity to store raw signal data, data processing stages are performed on the device 
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itself, and this process is irreversible once the count has been stored in local memory. 

This irretrievable conversion prevents re-analysis of the raw accelerometer signal 

using novel analytics and data processing techniques. 

Although a detailed methodology of the signal processing protocol used would be 

essential to enable replication of empirical data, most manufacturers of accelerometer 

devices state that pre-processed raw data is proprietary information. This lack of 

transparency on the calculation of “activity counts” prevents a comparison between 

different accelerometer brands, or even between versions of the same brand 40,41. On 

the other hand “activity counts” derived from a raw accelerometer have high 

concordance with commercially developed devices (r=0.93, P<0.05), demonstrating 

the versatility of utilising the raw accelerometer signal 34.  

Using a raw accelerometer signal, where all frequencies related to human movement 

are included allows novel analyses, such as; pattern recognition, feature extraction, 

machine learning, cluster analysis and data mining to be undertaken, without violating 

the Nyquist-Shannon sampling theorem 34,200. The Nyquist-Shannon sampling theorem 

specifies that the sample must contain all the available frequency information from the 

signal to result in a faithful reproduction of the analogue waveform signal. Further, put 

simply, if the highest frequency component, in Hz, for a given analogue signal is fmax, 

according to the Nyquist-Shannon sampling Theorem, the sampling rate must be at 

least 2fmax, or twice the highest analogue frequency component. If the sampling rate is 

less than 2fmax, and/or if all the available frequency information is not available, the 

signal will not be correctly represented in the digitized output 364,365. Further, given 

there is no hidden signal processing, researchers may maintain control and confidence 

in their outputs. This has led to more widespread use of raw accelerometry and the 

application of novel analytical techniques. 

Accelerometer usage 

Posture and Movement Classification  

Movement classification using accelerometry-based methodologies has been widely 

studied. Approaches to movement classification can be threshold-based or achieved 

using statistical classification techniques. Threshold derived movement classification 

takes advantage of known knowledge and information about the movements to be 

classified. It requires a hierarchical algorithm to discriminate between activity states. 
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A set of empirically-derived thresholds for each classification subclass are required. 

Kiani, et al. 366 demonstrated a systematic approach to movement classification based 

on a hierarchical decision tree that allows automatic movement detection and 

classification. Mathie, et al. 367 further presented a classification framework consisting 

of a hierarchical binary tree for classifying postural transitions, falls, walking, and 

other movements using raw acceleration signals.  Tilt sensing is a basic function 

provided by many accelerometers which respond to gravity or constant acceleration 

and with this capability human postures may be distinguished according to the 

magnitude of acceleration signals along sensitive axes 114,368. However, the single-

accelerometer approach has been shown to have difficulty in distinguishing between 

standing and sitting as both are upright postures, although a simplified approach with 

tilt threshold to distinguish standing and sitting was proposed 368. Standing and sitting 

postures can be distinguished by observing different orientations of body segments 

where multiple accelerometers are attached. For example, two accelerometers can be 

attached to the upper body and leg to differentiate standing and sitting postures from 

static activities 369. Sit to stand postural transitions can be identified according to the 

patterns of vertical acceleration from a hip or centrally mounted accelerometer 114. 

Raw acceleration signals can be used to determine walking and other ambulatory 

movement by employing frequency-domain analysis 368,370. Ohtaki, et al. 370 asserted 

a variance of over 0.02 g in vertical acceleration and a fundamental frequency peak 

within 1–3 Hz in the signal spectrum specifically identifies walking. Discrete wavelet 

transform (frequency and time domain analysis) has also been used to distinguish 

walking on a level ground vs. walking on a stairway 371. Movement classification using 

statistical techniques generally utilize a supervised machine learning procedure, which 

associates a feature of movement to movement states in to predict the observation. An 

example of some techniques include; k-nearest neighbour (kNN) classification 372, 

support vector machines (SVM) 373, Naive Bayes classifier 374, Gaussian mixture 

model (GMM) 375 and hidden Markov model (HMM) 376. Naive Bayes classifier 

determines activities according to the probabilities of the signal pattern of the 

activities. In the GMM approach, the likelihood function is not a typical Gaussian 

(typical bell curve) distribution. The weights and parameters describing probability of 

activities are obtained by the expectation-maximization algorithm 114. Transitions 

between activities can be described as a Markov chain that represents the probability 

of transitions between different activities. The HMM is applied to determine unknown 
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states at any given time according to known activity features that have been extracted 

from accelerometry data. After the HMM is trained by example data, it can be used to 

determine various activity states and transitions.  

Estimation of Energy Expenditure 

The gold standard for EE estimation is considered to be DLW and direct calorimetry. 

Though accurate, gas analysers for indirect calorimetry are expensive and they require 

specialist skills and training to operate. Additionally, isotope analysis and production 

for DLW method are expensive and are unsuitable for large-scale studies neither do 

they provide temporal patterning of physical activity 377. Accelerometers provide an 

alternative method of estimating EE in a free-living environment. Physical activity 

Energy expenditure is better predicted from the anterior-posterior direction of the 

accelerometer signal 132, although the vertical acceleration is most sensitive to a 

majority of activities like walking or running. The signal integral of triaxial 

acceleration outputs has been shown to have linear relationship with the metabolic 

energy expenditure 133. Commercial accelerometers follow the same principles and 

convert raw acceleration signal into activity counts over an epoch. The activity counts 

represent the estimated intensity of measured activities during each time period and 

subsequently compared with the DLW method 134 or indirect calorimetry to estimate 

the energy expenditure 135. Factors affecting the accuracy of EE estimation using 

accelerometry include; the location and attachment of the accelerometers, external 

interference, signal noise ratio, and certain types of activity particularly intense 

intermittent activity performed in a free-living environment. Sensor attachment to a 

central position is preferred for EE estimation because the trunk represents is closest 

to the centre of mass. Further, accelerometers attached to this portion of the body are 

generally less responsive to the gravitational effect 133. Conversely, hip mounted 

accelerometers are unable to measure upper limb movement or gait and have 

inaccurate EE estimation when the participants carry different loads during activity 367. 

Further, EE during walking may be inaccurately estimated when the locomotion is not 

horizontal, e.g., slope climbing and walking up and downstairs can hinder accurate 

estimation 114. 

Fall detection, balance and the frequency component  

A further example of accelerometry use that has expanded is in fall detection and 

balance assessment. Fall-related injuries can result in serious trauma, deleteriously 

affecting the health and functional status of elderly people, leading to living 
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dependence and higher risk of morbidity and mortality 114. Falls can be conceptualised 

as a rapid postural change from upright to reclining position to ground, 378. One of the 

first studies to monitor fall detection using accelerometry was  Williams, et al. 379, and 

a fall detector was presented after a number of pilot studies 380. More recently, Dobkin, 

et al. 381 and Aziz, et al. 194 successfully measured physical activity, sedentary 

behaviour and falls using accelerometers in older adults or those with impaired 

ambulation. However, they noted problems arose when using the same approach in 

highly transitory activities and when detecting falls that were a result of syncope. 

Lindemann, et al. 382 has also evaluated fall detection using a device that was fixed 

behind the ear. Two accelerometers were orthogonally placed in the device such that 

accelerations along all the sensitive axes could be measured. In fall detection there is 

generally some implemented thresholds such that if certain axes fall below a specific 

‘g’ value, it is registered as a fall 382. Balance control or postural stability of the body 

while standing or during ambulation has been regarded as an important predictor of 

risk of falling in the elderly 383. Lord, et al. 384 proposed the physiological profile 

assessment (PPA), which adopts postural sway as one of the six tests for screening fall 

risk and can be measured using a sway meter that records body displacement at waist 

level. Force plate or pressure sensors can also be used to record the trajectory of centre 

of pressure which is linked to postural sway 385. Postural sway can also be measured 

by using accelerometers 386. Triaxial accelerometers have been used to obtain the 

postural sway on a level ground 387, with the known height from the sensor to the 

ground, and the sensor output displaying the tilt angle, trigonometric calculation can 

be applied to obtain the trajectory in the anterior-posterior and medio-lateral axes 

projected on a level plane. The advantage of this technique is that an accelerometer is 

very sensitive to the different test conditions and is easily transportable. Studies also 

showed a moderate correlation (r=0.5-0.68) between trunk acceleration and centre of 

pressure pattern 388.  Detailed gait parameters have been utilised to assess balance 

control, functional ability, and risk of falling. Gait parameters during free walking can 

be measured by using accelerometers and the raw signal can be used to identify heel 

strike 389, gait cycle frequency, stride symmetry and regularity 390. Aminian, et al. 391 

noted that measurement of temporal parameters of gait may be measured successfully 

with the addition of a miniature gyroscope. Moe-Nilssen, et al. 174 estimated gait 

characteristics of the subjects during controlled walking, using a triaxial accelerometer 

affixed to the lower trunk, the raw acceleration signals were subsequently analyzed 
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using an autocorrelation procedure to obtain cadence, step length, and gait regularity 

and symmetry. Gait features between young and elderly subjects have been compared 

using accelerometry data and has been shown that vector magnitude values of 

accelerations obtained from the pelvis and head (vertical component) of elderly 

subjects are smaller compared to younger subjects 392,393. Elderly subjects 

demonstrated slower velocity, reduced step length, and larger step timing variability 

during both walking on level and irregular surfaces. A further technique applied to 

assess balance control is the analysis of frequency and harmonic content of the 

acceleration signal. The harmonic ratio has been proposed as a measure of smoothness 

of walking, and is defined as the ratio of the summed amplitudes of the even-numbered 

harmonics to the summed amplitudes of odd-numbered harmonics both obtained from 

finite Fourier transform 18. Older people with elevated risk of falling have been shown 

to exhibit lower harmonic ratio 18,393. Accelerometers have also been used to assess 

characteristics such as ambulation smoothness, control, balance and rhythmicity (how 

cyclical a movement is) 18,19. These characteristics are retrievable using the frequency 

and harmonic content of the accelerometer signal, based upon harmonic theory to 

examine the symmetry within a movement by exploiting the periodicity of the signal 

295,296. The measured accelerations for each movement can be analyzed in the 

frequency domain through a well-established technique of Fourier analysis 394. These 

fundamental characteristics of the raw signal reveal details surrounding gait and 

movement 18,218,257,297,299,337. 
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