1,566 research outputs found

    Neurotechnology and Psychiatric Biomarkers

    Get PDF

    Mortality Prediction of ICU Cardiovascular Patient: Time-Series Analysis

    Get PDF
    It is estimated that millions of deaths occur annually, which can be prevented when early diagnosis and correct treatment are provided in the intensive care unit (ICU). In addition to monitoring and treating patients, the physician of the ICU has the task of predicting the outcome of patients and identifying them. They are also responsible for the separation of patients who use special ICUs. Because not necessarily all patients hospitalized in ICU benefit from this unit, and hospitalization in a few cases will only lead to an easier death. Therefore, developing an intelligent method that can help doctors predict the condition of patients in the ICU is very useful. This paper aims to predict the mortality of cardiovascular patients hospitalized in the ICU using cardiac signals. In the proposed method, the condition of patients is predicted 30 minutes before death using various features extracted from the electrocardiogram (ECG) and heart rate variability (HRV) signals and intelligent methods. The paper's results showed that combining morphological, linear, and nonlinear features can predict the mortality of patients with accuracy and sensitivity of 96.7±6.7% and 94.1±5.8%, respectively. As a result, accurate classification of diseases and correct prediction of patients by reducing unnecessary monitoring can help optimize ICU beds' use. According to new and advanced techniques and technologies, it is possible to predict and treat many diseases in ICU, leading to longer patient survival

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance
    • …
    corecore