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Abstract 

Depression is a prevalent and severe mental health disorder that is one of the leading 

causes of disability worldwide. It can cause various physical and psychological 

problems, leading to loss of productivity, increased social burden, and even suicide. 

The current diagnosis of depression relies on skilled clinicians and self-reported 

questionnaires, which have limitations including subjective recall bias and loss of day-

to-day fluctuation information. As a result, the majority of individuals with depression 

did not receive timely and effective treatment. Therefore, there is a need for more 

effective auxiliary techniques for recognizing and monitoring depression. 

With the development and widespread use of sensors, mobile technology provides a 

cost-effective and convenient means for gathering individuals’ behavioral data related 

to depression symptoms. Several past studies have attempted to monitor depression 

using mobile phones and wearable devices. However, the majority of these studies were 

conducted on relatively small and homogeneous cohorts with short follow-up periods, 

which may have limited the generalizability of their findings. Furthermore, the impact 

of participant attrition and engagement, the direction of relationships over time, and 

individual differences need further exploration. 

To address these limitations, this thesis extracts a variety of behavioral features from 

multiple data streams of mobile phone and wearable data and explores their associations 

with depression symptom severity using a large, longitudinal, multi-center data set. 

Specifically, Chapter 1 provides an overview of the background of depression, 

motivations for using mobile technology for depression monitoring, and existing 

related studies.  
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Chapter 2 performs a novel investigation into long-term participant retention and 

engagement from a European longitudinal observational program, the RADAR-MDD 

study, which is used throughout the whole thesis. A significantly higher participant 

retention rate is found in the RADAR-MDD study than in previous remote digital health 

studies. According to the data-driven method, lower participant engagement is found to 

be associated with higher depression symptom severity, younger age, and longer 

questionnaire response/completion time in the study app. Finally, the strategies for 

increasing participant engagement in future digital health research are also discussed in 

this chapter. 

Next, the associations between depression symptom severity and various categories of 

behaviors are explored separately in the following chapters: sleep (Chapter 3), 

sociability as measured by Bluetooth device counts (Chapter 4), mobility (Chapter 5), 

daily walking (Chapter 6), and circadian rhythms (Chapter 7). These associations are 

examined using multilevel models that incorporate demographics as between-

participant covariates. A number of significant associations between behavioral 

characteristics and depression symptom severity are found in these chapters. For 

example, higher depression severity is significantly associated with worse sleep, lower 

sociability, lower mobility, slower cadence of daily walking, and weaker circadian 

rhythmicity. Notably, the longitudinal association between mobility and depression 

over time is assessed using dynamic structural equation models in Chapter 5. Changes 

in several mobility features are found to significantly affect subsequent changes in 

depression severity. Furthermore, daily-life gait patterns are found to provide extra 

information for recognizing depression relative to laboratory gait patterns in Chapter 6.  

Taken together, the findings in this thesis demonstrate that depression is closely 

associated with individuals’ daily-life behaviors, which can be captured by mobile 
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technology in real-world settings. Despite challenges of data quality and participant 

attrition, the evidence may provide support for the development of future clinical tools 

to passively monitor mental health status and trajectory with minimal burden on the 

participant.   
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Chapter 1  

Introduction 

1.1 Overview 

People with depressive symptoms frequently report abnormalities in daily behaviors, 

including sleep disturbances, diminished social connections, and decreased activity 

levels. With the advancement of mobile technology, individuals’ daily behaviors can be 

tracked without additional user input. Therefore, the present thesis aims to explore 

associations between depression symptom severity and individuals’ behaviors 

measured by mobile phones and wearable devices. In the introduction chapter, I first 

introduce the background of depression and the limitations of conventional depression 

diagnosis as well as other types of depression research (such as genetic and 

environmental research). Then, I explain the motivations for using mobile technology 

in depression research. Next, I review the existing related digital depression studies and 

summarize their findings and limitations. Finally, I list the objectives and outline of this 

thesis. 

1.2 Background 

1.2.1 Depression - Definitions and Symptoms 

Depression disorder is one of the most prevalent mental diseases, characterized by 

sadness, loss of interest or pleasure, feelings of guilt or low self-esteem, disturbed sleep, 

feelings of fatigue, and poor concentration (World Health Organization, 2017). 
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Depression is now diagnosed using the Structured Interview for Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), which identifies nine 

common symptoms linked with depression disorder: 1) depressed mood, 2) loss of 

interest or pleasure in activities, 3) changes in sleep, 4) changes in weight, 5) fatigue or 

loss of energy, 6) restlessness or feeling slow, 7) diminished interest or pleasure in 

activities, 8) diminished ability to concentrate, 9) feelings of worthlessness, and 

thoughts of death and suicide (American Psychiatric Association, 2013).  

1.2.2 Prevalence, Adverse Outcomes, and Treatment 

More than 300 million individuals worldwide suffer from depression (Friedrich, 2017). 

The 12-month prevalence estimates for major depressive disorders range from 6.6% to 

10.3%, whereas the estimated lifetime risk is between 16.6% and 17.1% (Kessler et al., 

2003; Kessler et al., 2005; Kessler et al., 1994). There has been a growing trend in the 

prevalence of depression, with an estimated 18.4% increase in the number of people 

living with depression between 2005 and 2015 (World Health Organization, 2017).  

Depression is one of the leading causes of disability worldwide (Ferrari et al., 2013). It 

is associated with a range of negative outcomes, including premature mortality 

(Miloyan & Fried, 2017), decreased quality of life (Saragoussi et al., 2018), loss of 

professional function (Cambridge, Knight, Mills, & Baune, 2018), and even suicide 

(World Health Organization, 2017). Further, depression has been found to be comorbid 

with many other medical diseases, such as cardiac disease, cancer, neurologic disorders, 

and HIV/AIDS (Krishnan et al., 2002). As a result of its chronic development, poor 

prognosis (Verhoeven et al., 2018), and comorbidities, depression can also impose a 

substantial burden on society in terms of cost, lost productivity, morbidity, and mortality 

(P. S. Wang, Simon, & Kessler, 2003; Wells et al., 2002).  
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Antidepressants and psychotherapy are two of the available treatments for depression 

(Frank, Novick, & Kupfer, 2022). Recognizing depression at an early stage would 

improve treatment results and prognosis (Kraus, Kadriu, Lanzenberger, Zarate Jr, & 

Kasper, 2019). However, the majority of depressed individuals did not receive adequate 

treatment (Evans-Lacko et al., 2018). The barriers to effective care include the lack of 

experienced healthcare providers and resources, the societal stigma of mental diseases, 

and the limitations of traditional depression assessments (Evans-Lacko et al., 2018).  

1.2.3 Limitations of Traditional Depression Assessments 

Traditional depression assessments, such as clinical interviews and self-reported 

questionnaires, have some limitations. First, these assessments rely on individuals' 

retrospective reports of their behaviors over weeks, months, or even years, which are 

known to be unreliable and susceptible to recall bias (Ben-Zeev & Young, 2010; De 

Beurs, Lange, & Van Dyck, 1992). Second, it is difficult to quantify the day-to-day 

fluctuations in mood and behavior using questionnaires (Bradshaw, Saling, Hopwood, 

Anderson, & Brodtmann, 2004; Snyder & Zhou, 2019). Third, physicians in primary 

care (where depression is managed (Simon & VonKorff, 1995)) may fail to recognize 

patients with depressive symptoms (Schulberg et al., 1985; Wells et al., 1989) due to 

the expertise and experience required for identifying depression. Last but not least, 

conventional evaluations often take place when the patient's mental health issues or 

functional impairments have progressed to a more severe, difficult-to-treat stage (Ben-

Zeev, Scherer, Wang, Xie, & Campbell, 2015). Therefore, effective auxiliary 

methodologies for recognizing depression at an early stage are needed to enable 

preventative strategies. 
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1.2.4 Genetic and Environmental Factors of Depression 

In order to understand the etiology of depression, a number of studies have investigated 

the genetic and environmental determinants of depression which may help prevent 

depression and guide therapy (Dunn et al., 2015).  

There is substantial evidence linking genetic factors to depression and other mental 

diseases (Dunn et al., 2015). In comparison to individuals without MDD, people with 

MDD were three times more likely to have a first-degree relative who was depressed 

(Sullivan, Neale, & Kendler, 2000). Moreover, twin studies indicate a modest 

heritability of depression (Rice, Harold, & Thapar, 2002). Several existing large genetic 

studies, such as Human Genome Project (Sawicki, Samara, Hurwitz, & Passaro Jr, 

1993); HapMap Project (Gibbs et al., 2003); 1,000 Genomes Project (Siva, 2008), offer 

researchers opportunities to explore the associations between candidate genes and 

depression etiology. However, the majority of candidate gene studies had insufficient 

power and results replication was rare (Dunn et al., 2015). 

Numerous risk factors for depression have been identified as environmental factors, 

such as poverty (Brooks-Gunn & Duncan, 1997), bad family relations (Repetti, Taylor, 

& Seeman, 2002), family disruption (Gilman, Kawachi, Fitzmaurice, & Buka, 2003), 

childhood abuse (Slopen, Koenen, & Kubzansky, 2014), and other stressful 

circumstances in life (Kessler, 1997). While the risk of depression is heightened 

immediately after encountering these environmental risk events, the consequences of 

adversity can remain throughout the course of a person's lifetime (Dunn, Gilman, 

Willett, Slopen, & Molnar, 2012; Dunn, McLaughlin, Slopen, Rosand, & Smoller, 

2013). 

Nonetheless, both genetic and environmental approaches are time-consuming and 
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expensive, and it is challenging to detect depression detection in a timely manner and 

capture the day-to-day mental states. Therefore, there is a need for more cost-effective 

methods, such as Mobile Health (mHealth), to gather complementary information on 

the day-to-day changes in mental states and related behaviors. 

1.2.5 Mobile Health (mHealth) 

With the development and global availability of mobile technologies (e.g., mobile 

phones and consumer wearables) (Vailshery, 2021), we now have an additional way to 

monitor people's daily behavior and health. Mobile phones, with embedded sensors, 

provide us with a cost-effective way to continually collect users' everyday context, 

including physical activity, location, and surroundings (Donker et al., 2013). Consumer 

wearables are generally unobtrusive, cost-effective, and comfortable to wear (Jia et al., 

2018; Shin et al., 2019). In recent years, the quality and precision of wearable data have 

increased (Fuller et al., 2020), enabling long-term monitoring of individuals’ behaviors, 

and environmental and physiological parameters including sleep stages, heart rate, and 

blood oxygen levels in real-world settings (Zapata-Lamana, Lalanza, Losilla, Parrado, 

& Capdevila, 2020).  

1.2.6 Digital Phenotyping for Depression Monitoring 

Depression is strongly related to a number of behavioral abnormalities, including 

decreases in activity and social interactions, sleep disturbances, and abnormal 

changes in circadian rhythm, walking patterns, and heart rate (Prigerson et al., 1995; 

Vallée, Cadot, Roustit, Parizot, & Chauvin, 2011). Individual behavioral patterns 

captured by mobile phones and wearables, often known as “digital phenotyping” (Mohr, 

Shilton, & Hotopf, 2020), provide a new way of detecting depression for both clinicians 
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and depressed people (Donker et al., 2013). Combined with phone-based questionnaires, 

mobile technologies could evaluate the evolution and changes in the individual’s 

depressive state and related behaviors more frequently than conventional clinical 

depression assessments (De Angel et al., 2022). The day-to-day fluctuations in 

individuals’ behaviors and moods could also be captured by mobile technologies with 

minimal user burden (Marzano, Hollis, Cipriani, & Malhi, 2017). Moreover, large and 

diverse cohorts could be recruited remotely, cost-efficiently, and swiftly using mobile 

technologies (Moore, Tassé, Thorogood, Winship, & Doerr, 2017), which could aid in 

the knowledge of the etiology, pathophysiology, and effective treatments for depression. 

1.3 Related mHealth Studies for Depression 

In recent decades, numerous mHealth studies for depression have been conducted and 

the details of sample size and digital technologies of these studies are summarized in 

several recent systematic reviews (De Angel et al., 2022; Firth et al., 2017; Rohani, 

Faurholt-Jepsen, Kessing, & Bardram, 2018). A considerable proportion of studies were 

conducted on relatively small cohorts (De Angel et al., 2022). For instance, Wang et al. 

performed the StudentLife study, which gathered passive phone data from 48 

Dartmouth College students for 10 weeks, along with the pre-post evaluations of 

depression severity (PHQ-9) (Wang et al., 2014). Ben-Zeev et al. reported a similar 

study that monitored the speech, sleep, and activity behaviors of 47 college students for 

10 weeks (Ben-Zeev, Scherer, Wang, Xie, & Campbell, 2015). Saeb et al. recruited 40 

adults from the general community to collect their GPS and phone usage data via an 

app for two weeks with the PHQ-9 assessments completed at enrollment (Saeb et al., 

2015).  

Several mHealth studies were conducted on relatively large cohorts but only collected 
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one or two types of behaviors for short study periods. For example, Luik et al. collected 

sleep and activity actigraphy recordings from 1714 participants for 7 days, along with 

one depression assessment for each participant (Luik et al., 2015). Similarly, Li et al. 

presented a study that contains 375 participants’ measurements of depressive symptom 

severity and 1-week accelerometer data (Li, Kearney, & Fitzgerald, 2018). 

Some large longitudinal mHealth datasets for depression (such as GLOBEM (Xu et al., 

2023) and BRIGHTEN (Pratap et al., 2022) datasets) were recently released online. 

GLOBEM dataset consists of 4 college student datasets from 2018 to 2021, containing 

behavioral data from 705 participants (Xu et al., 2023). Each sub-dataset gathered 

students’ phone passive (e.g., phone usage, calls, Bluetooth, and GPS) and wearable 

data streams (e.g., sleep and steps) in the background 24×7 for 10 weeks, along with 

weekly mental health questionnaires (e.g., PHQ-9) (Xu et al., 2023). 

BRIGHTEN (Bridging Research Innovations for Greater Health in Technology, 

Emotion, and Neuroscience) study recruited a total of 2193 adult participants at the 

baseline, of whom approximately 900 participants agreed to share their daily phone 

passive data (GPS and phone usage) and weekly remote surveys (e.g., PHQ-9 and sleep 

questionnaires) for 12 weeks (Pratap et al., 2022). However, approximately 50% of 

participants left the study between week 1 to week 4, and only 15% remained in the 

study at the end of 12 weeks (Pratap et al., 2018), indicating that participant retention 

and engagement are challenges for remote mHealth studies (Pratap et al., 2020). 

1.4 Findings in Previous mHealth Studies 

A number of significant associations between depression and individuals’ behaviors 

have been identified by previous mHealth studies. The following is a summary of 
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previous findings, broken down into seven categories of features, including sleep, 

mobility, sociability, circadian rhythm, environment, phone usage, and physiological 

parameters. 

1.4.1 Sleep 

Mental health research has linked sleep pathologies to depression (Alvaro, Roberts, & 

Harris, 2013; Mendelson, 2012). Depression is commonly accompanied by sleep 

disorders such as insomnia, hypersomnia, and sleep rhythm disturbances (Mendelson, 

2012). However, several conventional sleep assessments, such as polysomnography 

(PSG) and sleep questionnaires, are unsuitable for long-term sleep monitoring in real-

world settings (Sánchez-Ortuño, Edinger, Means, & Almirall, 2010). Therefore, recent 

digital studies have attempted to use mobile technologies for sleep monitoring in home 

settings (Chen et al., 2013; Rébecca Robillard et al., 2015; Van De Water, Holmes, & 

Hurley, 2011; R. Wang et al., 2014; Zhang et al., 2019). 

Several studies used mobile phones to estimate sleep duration through the embedded 

light, microphone, and acceleration sensors, combined with the phone usage 

information (Chen et al., 2013; R. Wang et al., 2014). Some wearable devices could 

classify sleep into specific sleep stages (such as awake, light, deep, and REM sleep) 

and provide several sleep parameters (such as sleep quality and awakening counts) 

using heart rate (extracted from PPG or ECG signals) and accelerometry signals (Van 

De Water et al., 2011; Zhang et al., 2019).  

Previous digital research indicated that higher depression severity was correlated with 

lower sleep quality, large sleep variance, and later sleep offset time (Chen et al., 2013; 

Rébecca Robillard et al., 2015; Van De Water et al., 2011; R. Wang et al., 2014). Notably, 

the total sleep duration showed opposite associations with depression symptom severity 
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across different studies (positive: (R Robillard et al., 2013) and negative: (Kawada, 

Katsumata, Suzuki, & Shimizu, 2007; R. Wang et al., 2014)) which may be due to that 

insomnia and hypersomnia are both symptoms of depression (Alvaro et al., 2013; 

Kaplan & Harvey, 2009). 

1.4.2 Mobility  

A bidirectional link between depression and individuals’ mobility was found in past 

depression studies (Roshanaei-Moghaddam, Katon, & Russo, 2009). Specifically, 

many depression studies reported that depressed people were more sedentary than 

healthy controls (Weyerer & Kupfer, 1994). On the other hand, several therapy trials 

have demonstrated that regular exercise could help lessen depression symptoms and the 

risk of developing depression (Mead et al., 2008; Teychenne, Ball, & Salmon, 2008).  

Recent digital depression studies have attempted to measure individuals’ mobility via 

acceleration and location data gathered via smartphones and wearable devices 

(Difrancesco et al., 2019; Farhan et al., 2016; Lu et al., 2018; Moukaddam, Truong, 

Cao, Shah, & Sabharwal, 2019; Saeb, Lattie, Schueller, Kording, & Mohr, 2016; Saeb 

et al., 2015; Yue et al., 2018). Embedded accelerometers allow smartphones and 

wearables to measure many activity characteristics, including step count, movement 

speed, and activity levels. According to these parameters, higher depression symptom 

severity was found to be associated with less time spent in activity (Lu et al., 2018), 

fewer daily step counts (Moukaddam et al., 2019), slower moving speed (Yue et al., 

2018), and more sedentary behaviors (Difrancesco et al., 2019).  

Several other studies tried to evaluate individuals’ mobility patterns based on location 

features, including homestay (time at home), location entropy (time distribution across 

different locations), the number of location clusters, and moving distance (Farhan et al., 
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2016; Lu et al., 2018; Saeb et al., 2016; Saeb et al., 2015). In these studies, higher 

depression severity was found to be linked with lower location entropy, fewer location 

clusters, shorter moving distances, and longer homestay time (Farhan et al., 2016; Lu 

et al., 2018; Saeb et al., 2016; Saeb et al., 2015). 

1.4.3 Sociability 

The relationships between depression and sociability have been well-documented over 

the years (Cohen, 2004; Rook, 1984). In conventional survey-based studies, those who 

report fewer social network connections or less social support are more likely to have 

higher depressive symptom severity, and a substantial proportion of suicides have a 

history of social isolation (Burgess, Pirkis, Morton, & Croke, 2000; Cacioppo, Hughes, 

Waite, Hawkley, & Thisted, 2006). However, traditional survey-based sociability 

assessments are qualitative and susceptible to subjective bias (Boonstra, Werner-Seidler, 

O'Dea, Larsen, & Christensen, 2017). To address this limitation, several recent digital 

studies have approximated individuals’ sociability using smartphone data, including 

call and message logs (frequency and length of communications) (Ben-Zeev, Schueller, 

et al., 2015; Doryab, Min, Wiese, Zimmerman, & Hong, 2014), Bluetooth sensor data 

(nearby devices) (Boonstra et al., 2017; R. Wang et al., 2014), and microphone sensor 

data (voice detection) (Ben-Zeev, Scherer, et al., 2015). Boonstra et al illustrated the 

feasibility of using Bluetooth data to approximate the social network of participants for 

depression analysis (Boonstra et al., 2017). Wang et al found the number of nearby 

Bluetooth devices is negatively correlated with depression severity (R. Wang et al., 

2014). Ben-Zeev et al found that longer nearby human speech is correlated with lower 

depression severity (Ben-Zeev, Scherer, et al., 2015). The duration and frequency of 

communications (phone calls and text messages) were found to have inverse 
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relationships with depression across genders (Cho et al., 2016; Doryab et al., 2014; 

Rohani, Faurholt-Jepsen, Kessing, & Bardram, 2018). In a past study, higher depression 

severity was found to be correlated with increased outgoing communications in female 

participants; in contrast, male participants who felt more depressed tended to make 

fewer calls than usual (Doryab et al., 2014). Therefore, sociability should be regarded 

as a highly individualized characteristic in the depression study (Rohani et al., 2018). 

1.4.4 Circadian Rhythm 

The circadian rhythm is an internal clock related to endogenous oscillations of about a 

24-hour period, which affects and regulates the timing of almost all behavioral and 

physiological activities and has extensive associations with individuals’ physical and 

mental health (Partch, Green, & Takahashi, 2014). Depression may lead to a 

misalignment of the circadian rhythm and make individuals’ behaviors more irregular 

(Walker, Walton, DeVries, & Nelson, 2020). Dim-light melatonin onset detected from 

blood or saliva samples can be used to track the circadian rhythm (Bowman et al., 2021). 

However, this conventional method is not appropriate for long-term real-world 

monitoring (Bowman et al., 2021). Therefore, several recent digital studies have 

attempted to approximate the circadian rhythm using behavioral data collected by 

smartphones and wearable devices (such as heart rate, step, and GPS data), mainly 

based on two methodologies: the Cosinor model and spectrum analysis (Refinetti, 

Cornélissen, & Halberg, 2007; Saeb et al., 2015). The first method assumes individual 

behaviors follow a Cosinor function (or extended cosine function) (Refinetti et al., 

2007). The circadian rhythms of individuals were represented by parameters of fitted 

Cosinor functions, such as acrophase (a phase marker showing the time when the fitted 

signal reaches its peak) and coefficient of determination of the model (R2; reflecting the 
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strength of circadian rhythm) (Refinetti et al., 2007). The second method for 

approximating the strength of the circadian rhythm is to calculate the power of the 24-

hour frequency bands of an individual’s spectrum generated from behavioral data (Saeb 

et al., 2015). In these past studies, higher depression severity was found to be associated 

with lower daytime activity, later acrophase of activity (Rébecca Robillard et al., 2015; 

Smagula, Krafty, Thayer, Buysse, & Hall, 2018; White, Rumble, & Benca, 2017), 

longer desynchronized phase between heart rate and activity (Carr et al., 2018), and 

lower strength of 24-hour periods in GPS data (Saeb et al., 2015). 

1.4.5 Environment  

It has been demonstrated that environmental factors, such as humidity, ambient 

temperature, and sunlight, are associated with people’s moods (Howarth & Hoffman, 

1984). For example, as an adjunct to antidepressant treatment, bright light therapy has 

been shown to be effective (Even, Schröder, Friedman, & Rouillon, 2008; Reeves et al., 

2012). Several past digital studies have explored associations between environmental 

variables and depression symptom severity utilizing weather information (obtained via 

smartphone location data) and light sensors (Doryab et al., 2014; Moraes et al., 2013). 

Ávila-Moraes et al discovered that the amplitude and stability of light exposure were 

lower in the depressed group compared to the healthy control group (Moraes et al., 

2013). Similar to sociability features, humidity was also found to have contradictory 

relationships with depression across genders; that is, humidity had a significant positive 

correlation with depression severity in female participants but a negative correlation in 

male participants (Doryab et al., 2014). 
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1.4.6 Phone Usage 

The widespread usage of mobile phones has had a significant impact on the 

communication and social interactions of people (Thomée, Härenstam, & Hagberg, 

2011). Several survey-based studies discovered that prolonged phone use had negative 

effects on sleep and mental health (Thomée et al., 2011). Similar to other categories of 

behaviors, self-reported statistics on phone usage are unreliable (Boase & Ling, 2013). 

Therefore, some recent digital research extracted several features, such as unlock 

duration, unlock frequency, and app usage time, to quantify the characteristics of 

individuals’ phone usage (Rohani et al., 2018; Saeb et al., 2015). Duration and 

frequency of phone usage were both found to be positively correlated with depression 

severity in most studies (Rohani et al., 2018; Saeb et al., 2015). In a student population, 

the use of specific apps, such as Instagram, maps, and photo and video apps, was 

connected with more severe depressive symptoms, whereas the use of book apps was 

associated with lower depression severity (David, Roberts, & Christenson, 2018). 

Moreover, Mehrotra et al. discovered that while participants' emotional states have a 

causal influence on several elements of interactions with mobile phones, the usage of 

certain apps has a causal impact on participants' levels of happiness and stress 

(Mehrotra, Tsapeli, Hendley, & Musolesi, 2017). 

1.4.7 Physiological Parameters 

Several previous clinical studies have revealed that depression severity is associated 

with some physiological parameters, including heart rate, body temperature, and skin 

conductance (Kemp et al., 2010; Souetre et al., 1988). For instance, abnormal variations 

in body temperature have been observed in depressed people, which may be the result 



29 

 

of circadian rhythm disorders (Souetre et al., 1988). Depressive disorders have an effect 

on human autonomic nervous system (ANS) function, resulting in decreased 

parasympathetic and/or elevated sympathetic tone, which may raise the risk of 

cardiovascular diseases (Agelink, Boz, Ullrich, & Andrich, 2002). Heart rate variability 

(HRV) and electrodermal activity (EDA) are two basic indicators of the state of ANS 

that can be measured in non-invasive manners (Sarchiapone et al., 2018). In some 

previous studies, depressed people have been found to have lower HRV (Kemp et al., 

2010) and reduced EDA (Sarchiapone et al., 2018) compared to healthy controls. 

In recent digital depression studies, depressed people were found to have a longer time 

in an elevated temperature state compared to healthy controls (Moraes et al., 2013). 

Further, Jepsen et al found a significant positive correlation between heart rate during 

sleep and the severity of depressive symptoms (Faurholt-Jepsen et al., 2015). However, 

few digital studies have directly investigated associations between depression severity 

and individuals’ physiological parameters measured by wearable devices (De Angel et 

al., 2022).  

1.5 Limitations of Previous Digital Depression 

Studies 

Although previous digital studies have shown the feasibility of mobile technologies for 

monitoring depression in naturalistic settings, there are also some limitations. First, the 

primary limitation is that the majority of prior studies were conducted on relatively 

small, homogeneous (e.g., university students), and short-term cohorts. In a recent 

review of 51 digital depression studies, the median sample size was 58 participants and 

the median duration of follow-up was 9 days (De Angel et al., 2022). Small and 
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homogeneous cohorts may restrict the generalizability of their findings, which may be 

the reason for some contradictory results among various studies (Rohani et al., 2018) 

and some unsuccessful replication work (Saeb et al., 2016). 

Second, participant attrition and missing data may result in an unbalanced cohort, which 

may have a substantial impact on the generalizability of real-world findings (De Angel 

et al., 2022; Druce, Dixon, & McBeth, 2019). According to a recent engagement study, 

participant retention and engagement in digital studies were connected with various 

real-world factors, such as age, compensation, referral by clinicians, and clinical 

conditions (Pratap et al., 2020). However, most previous digital depression studies did 

not discuss the impact of participant attrition and missing data on their findings. Further, 

the comparison of participant participation in data collection of different data streams 

(e.g., remote questionnaires, passive phone data, and passive wearable data) has not yet 

been conducted. 

Third, some studies only applied basic statistical features to characterize the behaviors 

of participants, which may lead to some information loss. For example, in a previous 

study, only the total number of nearby Bluetooth devices was calculated to approximate 

sociability (R. Wang et al., 2014), thus the periodicity, complexity, and variance of 

individuals’ behaviors contained in Bluetooth data may be lost. In addition, several 

categories of behavioral characteristics, such as daily-life gait patterns and 

physiological parameters, have not been fully explored in past studies (De Angel et al., 

2022). 

Fourth, the longitudinal relationships (cross-lagged effects) between behavioral 

features and depression severity over time were not fully assessed in most past digital 

depression studies, possibly due to their short study durations. Cross-lagged effects 
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(McNeish & Hamaker, 2020) refer to the impact of present depression status on 

subsequent behaviors and the influence of current behaviors on the depression status at 

subsequent time points. If mobile technology could detect abnormal behavioral changes 

prior to the development of depression, early intervention may be used to avoid 

depression relapse and deterioration. Therefore, there is a need to further investigate 

the longitudinal links between depression and behavioral features derived from mobile 

technology. 

Last but not least, the lack of reporting confounding variables in the analysis is also one 

of the limitations of past digital studies (Rohani et al., 2018, De Angel et al., 2022). 

Some demographic characteristics are associated with both depression and behavioral 

patterns. For example, older age is known to be significantly correlated with lower 

depression severity and decreased mobility (Akhtar-Danesh & Landeen, 2007; Kessler 

et al., 2003). Therefore, demographics must be considered as confounding variables 

when examining the association between depression and behavioral features.  

1.6 Research Questions and Objectives of This 

Thesis 

The main research questions investigated in the present thesis are: a) Can mobile 

technology capture the associations between depression and behaviors? b) Whether 

these associations found in previous studies can be observed consistently in a large 

multicenter (multinational) data set collected over an extended period? c) Can 

depression symptom severity be predicted using behavioral features extracted from 

mobile phones and wearable devices? d) What factors influence participant retention 

and engagement in a longitudinal digital depression study? To answer these research 
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questions and address the limitations of previous digital studies, the objectives of this 

thesis are shown below. 

Feature engineering This thesis aims to design and extract novel features for 

characterizing individuals’ behaviors based on prior clinical findings and commonly 

used features in other research fields (e.g., signal processing). As an example, we 

compute the difference in sleep duration between weekends and weekdays as a novel 

feature to reflect sleep efficiency, based on a finding in previous sleep research: longer 

sleep during weekends than weekdays (weekend catch-up sleep) reflects insufficient 

weekday sleep (Kang et al., 2014; Liu, Zhao, Jia, & Buysse, 2008). On the other hand, 

frequency-domain and multiscale entropy features are widely used in the field of signal 

processing, and they are used in this thesis to describe the periodicity and complexity 

of individuals’ behaviors. 

Association analysis This thesis aims to explore associations between depression 

symptom severity and individuals’ behavioral features derived from smartphones and 

wearables on a large, multicenter, and longitudinal dataset. In the association analysis, 

participants’ demographics are regarded as confounding variables. 

Cross-lagged effects analysis This thesis aims to explore the longitudinal associations 

(cross-lagged effects) between depression and behavioral features over time, testing if 

the current behavioral patterns impact the subsequent depression status and vice versa. 

Long-term participant retention and engagement analysis This thesis aims to 

investigate the participant retention and engagement patterns in a large multinational 

digital study for major depressive disorder, as well as explore potential links between 

real-world factors (such as demographics, clinical characteristics, and types of devices) 

and participant engagement in digital health research.  
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1.7 Outline of Chapters 

Chapter 2 investigates the long-term participant retention and engagement patterns in 3 

data streams (Phone-Active, Phone-Passive, and Fitbit-Passive) of a large multicenter 

depression study. The survival analysis is used to present participant retention in this 

study and explore its connection with real-world factors. The longitudinal engagement 

patterns (levels of data density over time) are identified using unsupervised clustering 

methods. To identify factors substantially influencing engagement levels, participants’ 

characteristics across different clusters are compared. Furthermore, this chapter 

discusses strategies for increasing participant engagement in future digital health 

research. 

In chapter 3, we explore relationships between depression symptom severity and sleep 

measured by the Fitbit device. We extract a number of sleep features from Fitbit 

recordings to characterize the sleep of participants in 5 aspects: sleep architecture, sleep 

stability, sleep quality, insomnia, and hypersomnia. Associations between these sleep 

features and depression symptom severity are evaluated by linear mixed-effects 

regression models. The findings of this chapter are compared to those of previous sleep 

studies with conventional sleep measures (e.g., PSG and sleep surveys).  

In chapter 4, we attempt to predict depression symptom severity using Bluetooth data 

gathered from mobile phones. We design and propose several statistical-based and 

nonlinear Bluetooth features to measure the distribution, regularity, and periodicity of 

participants’ nearby Bluetooth device count data. Likewise, associations between 

Bluetooth features and depression are measured using linear mixed-effects regression 

models. We then predict depression symptom severity using extracted Bluetooth 

features via the hierarchical Bayesian linear regression model, which can capture the 
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cohort’s characteristics with individual differences. 

Chapter 5 explores the longitudinal relationships (cross-lagged effects) between 

depression symptom severity and phone-measured mobility over time. Several mobility 

features are extracted from the location data provided by mobile phones’ GPS sensors 

and networks. The framework of dynamic structural equation modeling is utilized to 

examine if current mobility features significantly affect the subsequent depression 

status and vice versa. The impact of individual differences on these longitudinal 

relationships is also investigated and discussed in this chapter. 

Chapter 6 examines associations between depression symptom severity and daily-life 

gait characteristics derived from long-term acceleration data in real-world settings. 

Although gait patterns have been shown to be closely correlated with depression in 

laboratory settings, daily-life walking patterns and their relationships with depression 

have yet to be fully explored. To fill this gap, in this chapter, we extract several daily-

life gait features from raw accelerometry data to describe the gait cadence and gait force 

over a long term and then examine their associations with depression symptom severity. 

To test whether these relationships can be captured by different devices, we perform 

our analysis on two ambulatory data sets containing acceleration data from wearable 

devices and mobile phones, respectively. 

Chapter 7 explores the associations between depression symptom severity and circadian 

rhythm patterns estimated from wearable data. Since traditional laboratory-based 

measures for the circadian rhythm are unsuitable for long-term monitoring in 

naturalistic settings, this chapter attempts to approximate individuals’ circadian 

rhythms using passive behavioral data gathered from Fitbit devices. I utilize the 

parameters of Cosinor models fitted using wearable data to reflect the characteristics of 
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circadian rhythm patterns and then examine their associations with depression symptom 

severity using linear mixed-effects regression models. Additionally, seasonal influences 

on circadian rhythm patterns are also examined and discussed in this chapter.  

The last chapter (Chapter 8) summarizes and discusses the findings of this thesis as well 

as our analysis plans and suggestions for future digital health studies. 

Chapters 2–6 of this thesis consist of five publications. I am the first author of these 

five papers and did all the data analysis, coding, and writing up work. Other coauthors' 

contributions include data collection, platform development, data storage and 

maintenance, analysis planning, and critical review of manuscripts, which are stated in 

the “Authors’ Contributions” sections of related chapters in detail. In due course, the 

work described in Chapters 7 will be refined and written up for publication. 

Supplementary material to Chapters 2-7 are provided in Appendixes.  
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Chapter 2 

Long-term Participant Retention and 

Engagement Patterns in an App and 

Wearable-based Multinational Remote 

Digital Depression Study 

This chapter is adapted from:  

Zhang Y, Pratap A, Folarin AA, Sun S, Cummins N, Matcham F, Vairavan S, Dineley 

J, Ranjan Y, Rashid Z, Conde P, Stewart C, White KM, Oetzmann C, Ivan A, Lamers F, 

Siddi S, Rambla CH, Simblett S, Nica R, Mohr DC, Myin-Germeys I, Wykes T, Haro 

JM, Penninx BWJH, Narayan VA, Annas P, Hotopf M, Dobson RJB, and RADAR-CNS 

Consortium. Long-term participant retention and engagement patterns in an app and 

wearable-based multinational remote digital depression study. Npj Digital Medicine, 

6(1), 25. 

Background: Recent growth in remote studies has shown the effectiveness of digital 

health technologies in recruiting and monitoring the health and behavior of large and 

diverse populations of interest in real-world settings.  However, retaining and 

engaging participants to monitor their long-term health trajectories has remained a 

significant challenge. Uneven participant engagement combined with attrition over the 

course of the study could lead to an imbalanced study cohort and data collection, which 

may severely impact the generalizability of real-world evidence. 

Objective: To investigate long-term participant retention and engagement patterns, we 
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performed a secondary analysis of a large multinational real-world dataset from an 

observational study for major depressive disorder. 

Methods: The data was collected from 614 participants using Android smartphones 

and Fitbit devices, including three data streams: Phone-Active (surveys), Phone-

Passive, and Fitbit-Passive data streams. Survival analyses (Kaplan-Meier curves and 

Cox Proportional-Hazards models) and unsupervised clustering (K-means) were used 

to explore participant retention and longitudinal engagement patterns, respectively.   

Results: Retention analysis revealed that a considerable proportion of participants 

(54.6%, 47.7%, and 67.6% for three data streams, respectively) were retained during 

the first 43 weeks of the study. The unsupervised clustering identified three distinct 

subgroups with different engagement levels (most, medium, and least) for each data 

stream. Notable findings comparing participants' characteristics across these subgroups 

were: 1) Participants in the least engaged group had the highest depression symptom 

severity (up to 4 points higher PHQ-8 score, p < .01) compared to participants in the 

other two subgroups across all three data streams. 2) For the Phone-Active data, 

participants in the least engaged group (N=204; 33.2%) on average completed 4 bi-

weekly surveys in comparison to participants in the most engaged group (N=231; 

37.6%) who on average completed 20 bi-weekly surveys. The least engaged group also 

took significantly longer to respond to (3.8 hours more, p < .001) and complete (11.3 

seconds more, p < .001) surveys and were younger (age difference = 5 years, p < .01) 

compared to the most engaged group. 3) A considerable proportion of participants 

(44.6%) in the least engaged group (completed 4 bi-weekly surveys) of the Phone-

Active data stream still contributed the Fitbit-Passive data for an average of 42 weeks. 

Conclusions: Our findings show various factors, such as sociodemographics, 
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depression severity, and day-to-day study app usage behavior, could be linked to 

participant retention and engagement in fully remote research studies. In particular, 

passive data gathered from wearables without additional participant burden showed 

great data contiguity over the long term. However, an assessment of daily data 

collection patterns revealed that participants with higher depression severity are less 

likely to engage with a study app in a remote study. Further research is needed to 

understand the sociotechnical and human factors for digital mental health tools to 

engage research participants, particularly those with higher disease severity. The data-

driven findings related to participant engagement in real-world settings could inform 

the design of future remote digital health research studies to enable equitable and 

balanced health data collection from diverse target populations. 

Please refer to Appendix A for supplementary material. 
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2.1 Introduction  

To gain valuable insights into the etiology of depression and identify effective 

treatments tailored to individuals, large diverse cohort-based studies are required to 

assess the underlying temporal patterns in real-world risk and protective factors of 

depression in individuals (Cai, Choi, & Fried, 2020; Klasen et al., 2015). However, 

dynamic day-to-day changes in behavior in naturalistic settings are not captured 

effectively by conventional clinical assessments that rely on infrequent in-person 

assessments and subjective retrospective reporting of symptoms (Snyder & Zhou, 

2019).  Additionally, reaching and recruiting a large and diverse cohort in a cost-

effective and timely manner continues to be challenging for conventional clinical 

studies (Gilchrist & Gunn, 2007).  

Due to increasing ubiquity and cost-effectiveness, smartphones and wearable devices, 

compared to medical devices, allow researchers to monitor personalized daily 

behaviors and physiology over time for a large and diverse population (Bailon et al., 

2019; Bardram & Matic, 2020; Liew, Wah, Shuja, & Daghighi, 2015). Combined with 

scalable data collection platforms, these technologies provide high-fidelity multimodal 

behavior sensing capabilities (Ranjan et al., 2019). Several recent large-scale remote 

digital depression studies have shown the feasibility of technology-based remote data 

collection with real-world behaviors (Cho et al., 2016; Luik et al., 2015; Matcham et 

al., 2019; Pratap et al., 2018). For example, sleep (Zhang et al., 2021a), social 

interactions (Zhang et al., 2021b), and mobility (Laiou et al., 2022; Zhang et al., 2022) 
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features derived from digital apps, smartphones, or wearable devices have been 

demonstrated to be significantly associated with depressive symptoms. Remote digital 

studies also offer an effective medium to reach and recruit from larger and more diverse 

populations (Moore, Tassé, Thorogood, Winship, & Doerr, 2017) thereby considerably 

lowering the costs and time for creating cohorts of interest than conventional clinical 

studies (Pratap et al., 2018).  

Although previous remote digital studies have shown the feasibility and utility of 

leveraging smartphones and wearable technology for assessing behavioral changes in 

naturalistic settings, long-term participant retention and engagement remain significant 

challenges (De Angel et al., 2022; Druce, Dixon, & McBeth, 2019). Moreover, 

differential recruitment and retention of participants can lead to imbalanced cohorts and 

biased data collection that can severely impact the generalizability of real-world 

evidence (O’connor et al., 2016; Pratap et al., 2020; Quisel, Foschini, Zbikowski, & 

Juusola, 2019; Simblett et al., 2018a). For example, Pratap et al. found that four specific 

indicators (referral by clinicians, older age of participants, compensation of participants, 

and having a clinical condition [as opposed to being healthy]) were significantly 

associated with participant retention, and participant demographics were also 

associated with long-term engagement patterns in a cross-study evaluation of eight 

observational digital health studies conducted between 2014–2019 (Pratap et al., 2020). 

However, past studies investigated participant behavior and retention in the study for 

short follow-up periods and were primarily based on active tasks (surveys) completed 

by participants using a limited set of variables of interest (O’connor et al., 2016; Pratap 
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et al., 2020; Quisel et al., 2019; Simblett et al., 2018a). To leverage digital health 

technology for assessing and managing complex chronic conditions (e.g., psychiatric 

and neurological disorders), gathering long-term real-world behavior is necessary. And 

to remotely engage large populations effectively and equitably, there is a further need 

to understand key risk factors that impact long-term participant engagement (months to 

years) in remote digital studies, including the feasibility of collecting active and passive 

data streams. Participants’ behaviors of answering surveys via the study app, such as 

time spent responding to surveys and completing surveys in naturalistic settings, may 

also reflect the participants’ interest early (Bassili, 1996; Fazio, Powell, & Herr, 1983; 

Heerwegh, 2003), which could be indicative of long-term engagement in the study. 

Furthermore, there is a need to understand the feasibility of collecting passive data via 

smartphones (e.g., Bluetooth and GPS data) and wearables (e.g., heart rate and sleep 

data) in comparison to active task-based data (e.g., surveys) requiring active 

participation and with additional user burden. 

Here we present findings from a secondary analysis of data collected from the Remote 

Assessment of Disease and Relapse-Major Depressive Disorder (RADAR-MDD) study 

(Matcham et al., 2019; Matcham et al., 2021) to evaluate the real-world factors 

impacting long-term participant retention and engagement in a large, multinational 

cohort. Specifically, we assessed three specific key questions using participant-level 

usage data of study apps and wearables: A) Is participant retention associated with real-

world factors (such as sociodemographics, medium of data collection [smartphones and 

wearables], and severity of depressive symptoms)? B) Are there potential patterns in 
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participants’ long-term engagement, including differences between active and passive 

data streams collected via the study apps and wearables? C) And if there are significant 

differences in participants’ characteristics in the study across different long-term 

engagement patterns?  

2.2 Methods  

2.2.1 The RADAR-MDD Study Design  

Data used in this study was collected from the EU research program, RADAR-MDD, 

which aimed to investigate the utility of smartphones and wearable devices to monitor 

depression in real-world settings and understand factors that could help predict relapse 

in MDD (Matcham et al., 2019). The study recruited 623 participants from 3 sites across 

3 European countries (United Kingdom - King’s College London [KCL]; Spain - 

Centro de Investigación Biomédican en Red [CIBER]; Netherlands - Vrije Universiteit 

Medisch Centrum [VUmc]) and followed participants for up to 2 years (Matcham et al., 

2019). Nine participants recruited from a second site in Spain were not included in the 

present analysis due to the small sample size. All participants in this study were over 

18 years old and had a history of recurrent MDD with at least one episode within the 

last 2 years that met DSM-5 diagnostic criteria for the diagnosis of MDD. Additionally, 

in order to be enrolled in the study, the participants were asked to use an Android 

smartphone as their primary phone if they had one, or were provided with one to use if 

they did not. 

The study used the RADAR-base, an open-source platform, for smartphone-based 
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health data collection via two Android study apps (active and passive monitoring apps) 

(Ranjan et al., 2019). Participants were asked to regularly complete self-reported 

surveys via the active app (Matcham et al., 2019). Additionally, participants’ real-world 

behavior was gathered passively using the Android passive monitoring app and a Fitbit 

wearable (details below). The participants were also required to complete some clinical 

assessments via research electronic data capture (REDCap) surveys every 3 months. 

Participants’ sociodemographics, medical history, lifetime depression history, and 

baseline mental health status were also collected during the participant enrollment 

session (Matcham et al., 2019). Although participants were not financially reimbursed 

for providing data via study apps and the Fitbit device, participants received £15/€20 

for enrollment, £5/€10 for clinical assessments (REDCap surveys) every 3 months, and 

£10/€10 for every additional qualitative interview completed (Matcham et al., 2019). 

Furthermore, the “Human-in-the-loop” (Goodday et al., 2021) approach was used 

during the observation period. The research team contacted participants for various 

reasons, such as reminding clinical assessments, technical issues (e.g., Fitbit broken, 

problems in study apps, and phone issues), and congratulating participants on reaching 

key study milestones (e.g., one year in the study). The detailed study protocol and 

descriptions of the dataset have been reported by Matcham et al. (Matcham et al., 2019; 

Matcham et al., 2021). 

The first participant was enrolled in November 2017 and the last participant was 

enrolled in June 2020, and the data collection was finished in April 2021 (Matcham et 

al., 2021). As a result of this rolling enrollment, the time in study for RADAR-MDD 
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participants varies from 11 months to 24 months. There were temporal differences in 

participant recruitment across the three sites. The KCL site started participant 

recruitment first (November 2017), followed by the CIBER site (September 2018), and 

the VUmc enrolled participants later again (February 2019) (Matcham et al., 2021). 

The RADAR-MDD protocol was co-developed together with a patient advisory board 

who shared their opinions on several user-facing aspects of the study, including the 

choice and frequency of survey measures, the usability of the study app, participant-

facing documents, selection of optimal participation incentives, selection and 

deployment of wearable devices as well as the data analysis plan (Matcham et al., 2019; 

Simblett et al., 2019). All participants signed informed consent and the study had been 

approved by all local Ethics committees (Matcham et al., 2019). 

2.2.2 Primary Data Streams  

For evaluating long-term participant retention and engagement in the study, we 

classified the data collected by the study apps and Fitbit devices into three distinct 

categories: i) Phone active data - representing active tasks completed by participants 

via the study app, ii) Phone passive data - continuous data streams gathered by the 

smartphones without active input from participants, and iii) Fitbit passive data - 

continual physiological monitoring data collected through a wrist-worn Fitbit device 

during the observation period.   
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Phone Active Data  

A variety of episodic surveys were administered via the study app. The complete list of 

surveys and deployment details are covered in the study protocol (Matcham et al., 2019). 

However, with the focus on present research evaluating long-term engagement, we 

considered the two longitudinal surveys, the 8-item Patient Health Questionnaire 

(PHQ-8 (Kroenke et al., 2009)) and the Rosenberg Self-Esteem Scale (RSES 

(Greenberger, Chen, Dmitrieva, & Farruggia, 2003)), which were conducted via 

smartphones remotely once every two weeks. The completion windows for PHQ-8 and 

RSES are both 3 days. Surveys could not be completed once the window expired. If the 

participants finished at least one of these two surveys, we considered they were 

engaging in the active assessment part of the study for the corresponding 2 weeks. 

Phone Passive Data 

The passive monitoring app unobtrusively and continuously collected information on 

participants’ phone usage (e.g., battery level logs, app usage logs, and phone interaction 

data) and surrounding information (e.g., ambient light, nearby Bluetooth device count, 

and GPS location data) (Matcham et al., 2019). Following the phone passive data 

availability definition presented in (Matcham et al., 2021), we considered a participant 

to be using their study phone and sharing the phone passive data on a given day if at 

least one passive data point was collected from their smartphone during the day. 
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Fitbit Passive Data 

Participants were also required to wear a Fitbit Charge 2 or 3 wrist-worn during the 

follow-up time to provide passive measures of their sleep stages, steps, calorie 

consumption, and heart rate. Matching the phone passive data availability definition, if 

at least one data point from the Fitbit-based data stream was available, we considered 

the participant to be wearing the Fitbit at least once during that given day. 

2.2.3 Primary Outcomes  

Metrics of Engagement 

We defined two key metrics to assess the participant’s engagement. (1) Duration in the 

study: the number of days between the first and last day of data contributed by the 

participant in a selected engagement observation period. (2) Longitudinal data-

availability vector: a binary-encoded vector representing the density of the participant’s 

contributed data in an engagement observation period, where the i-th element of the 

vector represents the i-th day in the study and is set to 1 if a data point is contributed by 

the participant on that day or is set to 0 otherwise. To align the frequency of passive 

data streams (daily), for the Phone-Active data, we set the 14 elements (2-week period) 

of the data-availability vector to 1 in which a survey was completed by a participant. 

We calculated these two metrics of engagement for each of the three data streams 

(Phone-Active, Phone-Passive, and Fitbit-Passive data), respectively. 
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Variables of Interest  

A variety of factors may affect the duration and density of participants’ engagement in 

remote digital studies (Baumel, Muench, Edan, & Kane, 2019; Pratap et al., 2020; 

Torous, Lipschitz, Ng, & Firth, 2020). In this engagement study, we considered a 

variety of factors, including participants' sociodemographics, recruitment study site, 

smartphone brand, baseline depression symptom severity, comorbidity, and depression 

medication, as well as app usage behavior (survey response time and survey completion 

time) as variables of interest. These are briefly described below. 

Sociodemographics: Age, gender, ethnicity (not collected at the CIBER site), 

education, marital status, income, and accommodation type were recorded in the 

enrollment session.  

Study site: Participant recruitment site (KCL, CIBER, and VUmc).  

Smartphone brand: The brand of the participant’s smartphone used in the study was 

also recorded in the enrollment session. 

Baseline depression symptom severity: Depressive symptom severity was estimated 

by the PHQ-8 survey administered through the study app at the time of enrollment and 

every subsequent two weeks. The PHQ-8 contains 8 questions, and the total score of 

the PHQ-8 ranges from 0 to 24 with increasing severity of depressive symptoms 

(Kroenke et al., 2009). We considered the PHQ-8 surveys completed at enrollment to 

represent the participants’ baseline depression severity. 
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Comorbidity and Medication: The participant’s comorbidity information related to 

19 types of common comorbidities (listed in Supplementary Table 11, Appendix A) 

was recorded in the enrolment section. Also, participant use of depression medication 

was recorded at enrollment. For the present analysis, we used a binary variable to 

indicate whether the participant had comorbidities and whether they were taking 

depression medication at the time of enrollment. 

Survey response and completion time: Survey response time is calculated as the time 

that elapsed between the notification arrival time in the study app and the time at which 

the participant started responding to the survey. Survey completion time was the total 

time the participant spent completing the survey. Several studies suggested that the 

response time and the speed of answering questions could reflect the participants’ 

attitude to the survey (Bassili, 1996; Fazio et al., 1983; Heerwegh, 2003). Therefore, 

we used these two metrics to reflect participants’ interests and enthusiasm about the 

study and test whether they are linked to long-term engagement patterns. Both metrics 

were calculated for the two surveys (PHQ-8 and RSES).  

2.2.4 Survival Analysis 

We used a survival modeling approach (Bewick, Cheek, & Ball, 2004) to assess 

participants' overall duration in the study (retention). Survival models are commonly 

used in medical research for exploring associations between the time passed before 

some events occur and one or more predictor variables (Singer & Willett, 1991). The 

survival models were also used in a recent participant retention study (Pratap et al., 
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2020). In our participant retention analysis, the event is the participant disengaging 

from the study app (stopping contributing data to the study) and the elapsed time is the 

duration in the study (described above). 

Data Harmonization 

We conducted our survival analysis on two separate observation periods. The first, 

referred to as our primary cohort, has an observation period of 43 weeks. This period 

matches the number of weeks between the last patient enrolled in the RADAR-MDD 

(June 2020) and the end of data collection in the RADAR-MDD (April 2021). 

Therefore, it represents the common maximum theoretical survival observation period 

for all participants enrolled in the RADAR-MDD study. We used this cohort for the 

presented primary analysis. We also defined a secondary cohort with a survival 

observation period of 94 weeks. This longer period of observation represents the 

maximum survival observation period for 50% of participants enrolled in the RADAR-

MDD. Using this secondary cohort, we aimed to investigate even longer-term 

participant behavior patterns in remote studies. 

Participant Retention Analysis 

We first used Kaplan-Meier curves (Rich et al., 2010) to measure the overall participant 

retention rates over the two observation periods for three data streams, respectively. To 

further assess the joint effect of multiple variables of interest on participants’ retention 

in the study, we used the Cox Proportional-Hazard (CoxPH) model (Kumar & Klefsjö, 
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1994). We considered the baseline PHQ-8 score, comorbidity, depression medication, 

sociodemographics (age, gender, marital status, children, years in education, annual 

income, and accommodation type), study site, and phone brand as predictor variables. 

If the duration in the study of a participant is equal to the cutoff observation period, we 

consider the participant to be engaged in the study (no event). To minimize undue 

influence associated with periodic disengagement (i.e., some participants stop engaging 

for a while, then re-engage), the right-censoring method (Rich et al., 2010) was used 

for participants whose duration in the study was less than the observation period. We 

relaxed the determination of the event by considering 4 more weeks after the cut-off 

day. For example, if a participant’s last active survey was completed on Week 30 within 

the first 43 weeks (using the primary cutoff observation period), but if they completed 

more active surveys between Week 44–Week 47 (4-week extension), we still 

considered this participant engaged in contributing active data to the study (no event). 

Otherwise, if there was no completed survey during the 4 weeks after the cut-off day, 

we considered this participant stopped contributing active data to the study (the event 

happened i.e participant stopped contributing Phone-Active data to the study). Note, 

the same methodology was used to counter periodic disengagement in the Phone-

Passive and Fitbit-Passive data. To assess the joint effect of multiple variables of 

interest on retention, we used separate CoxPH models for Phone-Active, Phone-Passive, 

and Fitbit-Passive data across the two observation periods (43 weeks and 94 weeks). 

The assumptions of proportional hazards (Kleinbaum & Klein, 2012), which means that 

relative hazard remains constant over time with different predictors, of all CoxPH 
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models were tested using the scaled Schoenfeld residuals (Grambsch & Therneau, 

1994).  

2.2.5 Clustering Analysis 

Long-term Participant Engagement Pattern Modeling  

We used an unsupervised K-means clustering method (Syakur, Khotimah, Rochman, 

& Satoto, 2018) to explore potential latent patterns of participant long-term engagement 

in the study using the longitudinal data-availability vector (defined above). The elbow 

method was used to determine the optimal number of clusters (Syakur et al., 2018). The 

Kruskal-Wallis test was used to assess any potential enrichment of variables of interest 

(described above) across the clusters (Ostertagova, Ostertag, & Kováč, 2014). The same 

approach was applied to the three data streams and across the two observation periods. 

Transitions of participants in clusters across the three data streams were recorded and 

visualized by Sankey diagrams (Schmidt, 2008).  

2.3 Results   

2.3.1 Cohort Characteristics  

In total, we analyzed data from 614 participants recruited from three recruitment sites 

(350, 146, and 118 participants from KCL, CIBER, and VUmc, respectively) between 

November 2017 and April 2021. The cohort's median (range) age was 49 (18–80) 

years; Supplementary Figure 1 of Appendix A shows the age distribution. The majority 

of the cohort are females (75.7%, N=465), which is expected because all enrolled 
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participants had a current or prior history of depression, and the prevalence of 

depression is known to be higher in females than in males (Albert, 2015; Noble, 2005; 

Salk, Hyde, & Abramson, 2017; Van de Velde, Bracke, & Levecque, 2010). 

Differences in participant characteristics across study sites were assessed by Kruskal-

Wallis tests (Ostertagova et al., 2014). Participants recruited at the CIBER site had the 

highest median age (54.0 [49.0, 61.0] years) across the three sites (KCL: 45.0 [30.0, 

56.0] years and VUmc: 40.0 [26.0, 57.8] years) (p < .001). In addition, the CIBER site 

cohort also had a significantly higher median baseline PHQ-8 score (15.5 [10.0, 19.0]) 

than the KCL (9.0 [6.0, 13.0] scores) and VUmc (8.0 [6.0, 14.0] scores) sites (p < .001). 

For ethnicity, the majority of recruited participants were white across KCL (84.3%) and 

VUmc (92.4%) sites. Ethnicity data was not collected for participants recruited at the 

CIBER site. Table 2.1 summarizes sociodemographic and clinical characteristics for 

the overall cohort with comparisons stratified by sites. Briefly, the subcohort 

(secondary cohort) with a longer observation period (94 weeks) (See Methods) had 313 

participants with a median age of 51.0 [37.0, 59.0] years, with the majority being 

females (75.1%, N=235). The full set of secondary cohort descriptive statistics is 

summarized in Supplementary Table 1 of Appendix A. 

2.3.2 Participant Retention 

For the primary cohort analysis, the participant retention (survival rate) at the end of 

the common maximum observation period of 43 weeks (described in Methods) as 

quantified using Phone-Active, Phone-Passive, and Fitbit-Passive data streams were 
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54.6% (N=335), 47.7% (N=293), and 67.6% (N=415), respectively. Similarly, for the 

secondary cohort, the participant retention rates in the 94 weeks measured by the three 

data streams were 48.2% (N=151), 39.3% (N=123), and 54.0% (N=169), respectively. 

Figure 2.1 displays the Kaplan-Meier survival curves that show participant retention 

across two observation periods stratified by three data streams.  

Figure 2.1. The Kaplan-Meier survival curves for (a) the primary cohort (N=614) with 

an observation period of 43 weeks, and (b) the secondary cohort (N=313) with a longer 

observation period of 94 weeks stratified by Phone-Active, Phone-Passive, and Fitbit-

Passive data streams. 
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Table 2.1. A summary of characteristics of 614 participants in the RADAR-MDD study, 

with comparisons across the three study sites. 

Characteristics Total KCL CIBER VUmc P value 

Number of participants, n 614 350 146 118  

Age (median [IQR]) 
49.00  

[32.00, 58.75] 

45.00  

[30.00, 56.00] 

54.00  

[49.00, 61.00] 

40.00  

[26.00, 57.75] 
<.001 

Female, n (%) 465 (75.7) 267 (76.3) 106 (72.6) 92 (78.0) .56 

Marital status, n (%)     .005 

    Single/separated/divorced/widowed 328(53.4) 185(52.9) 66 (45.2) 77 (65.3)  

    Married/cohabiting/LTR 286 (46.6) 165 (47.1) 80 (54.8) 41 (34.8)  

Ethnicity, n (%)     <.001 

    White 404 (86.3) 295 (84.3) - 109 (92.4)  

    Black 14 (3.0) 11 (3.1) - 3 (2.5)  

    Asian 16 (3.4) 16 (4.6) - 0 (0)  

    Other 34 (7.3) 28 (8.0) - 6 (5.1)  

Employed, n (%) 258 (42.0) 186 (53.1) 33 (22.6) 39 (33.1) <.001 

Having children, n (%) 304(49.5) 152 (43.4) 111(76.0) 41 (34.8) <.001 

Years in education (median [IQR]) 
16.00  

[13.00, 19.00] 

17.00  

[14.00, 19.00] 

11.00  

[9.00, 15.75] 

16.50  

[14.00, 20.00] 
<.001 

Annual income, n (%)     <.001 

    <15,000 (£/€) 152 (24.8) 74 (21.1) 47 (32.2) 31 (26.3)  

    15,000-55,000 (£/€) 348 (56.7) 203 (58.0) 92 (63.0) 53 (44.9)  

    >55000 (£/€) 98 (16.0) 72 (20.6) 7 (4.8) 19 (16.1)  

Accommodation, n (%)     <.001 

    Own outright/with mortgage 323 (52.6) 169 (48.3) 105 (71.9) 49 (41.5)  

    Renting 236 (38.4) 151 (43.1) 27 (18.5) 58 (49.2)  

    Living rent-free 46 (7.5) 29 (8.3) 10 (6.8) 7 (5.9)  

Baseline PHQ-8 score (median [IQR]) 
10.00  

[7.00, 16.00] 

9.00  

[6.00, 13.00] 

15.50  

[10.00, 19.00] 

8.00  

[6.00, 14.00] 
<.001 

Having comorbidities, n (%) 311 (50.7) 176 (50.3) 96 (65.8) 39 (33.1)  

Taking depression medication, n (%) 400 (65.1) 206 (58.9) 133 (91.1) 61 (51.7)  

Number of contact logs (median [IQR]) 4.00  

[2.00, 7.00] 

5.00  

[3.00, 8.00] 

3.00  

[2.00, 5.00] 

2.00  

[1.00, 3.75] 

<.001 

Brand of smartphone, n (%)     <.001 

Motorola 240 (39.7) 171 (49.7) 30 (20.8) 39 (33.3)  

Samsung 194 (32.1) 94 (27.3) 44 (30.6) 56 (47.9)  

Other 171 (28.3) 79 (23.0) 70 (48.6) 22 (18.8)  
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To further assess the impact of multiple variables of interest (age, gender, marital status, 

employment, children, education, income, accommodation, the baseline PHQ-8 score, 

comorbidity, depression medication, smartphone brand, and study site), we used 

multivariate Cox Proportional-Hazards models (Kumar & Klefsjö, 1994). For each 

covariate, a hazard ratio (HR) greater than 1 indicates the variable is associated with a 

higher risk of participants not contributing data to the study, thus negatively impacting 

participant retention in the study. Across the three data streams, age was found to 

significantly affect participant retention in the study. Compared with the youngest 

group (18–30 years old), participants in older age groups tend to stay in the study for 

a longer time. Participants in the oldest group (>60 years old) had the lowest risks of 

stopping contributing data for all three data streams (Phone-Active: HR = 0.47, p < .05; 

Phone-Passive: HR = 0.54, p < .05; Fitbit-Passive: HR = 0.41, p < .01). Further, for 

Phone-Active data, participants with comorbidities had the higher risk (HR = 1.38, p 

< .05) for leaving the study early than participants with no comorbidities. Of note, 

participants using Motorola (HR = 0.36, p<.001) and Samsung (HR = 0.56, p < .001) 

branded phones contributed Phone-Passive data for significantly longer durations 

compared with other brands of smartphones. Further, participants in the VUmc site had 

the lowest risk of stopping sharing the Fitbit-Passive data (HR = 0.43, p < .01).  

All three Cox Proportional-Hazards models met the global proportional hazards 

assumption tested using the scaled Schoenfeld residuals (Grambsch & Therneau, 1994). 

See Supplementary Tables 2 and 3 of Appendix A for proportional hazard assumption 

tests for each of the variables and the global models. Figure 2.2 shows the hazard ratio 
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plots of the three data streams for the primary cohort. Participants’ age also continued 

to significantly impact retention in the extended observation period (94 weeks) across 

all three data streams assessed in the secondary cohort (Supplementary Figure 2, 

Appendix A). 

Figure 2.2. The hazard ratio plots of Cox Proportional-Hazards models for assessing 

the impact of multiple variables of interest on the participant retention time in the study 

of the primary cohort (43-week observation period) for Phone-Active, Phone-Passive, 

and Fitbit-Passive data streams, respectively. For each, a hazard ratio greater than 1, 

indicates the variable is positively associated with the risk of an event (disengaging 

from the study, i.e., stopping contributing data), thus negatively associated with the 

length of participant retention time in the study. Significance levels:  < .05 *, p < .01 

**, and p < .001 ***. 
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2.3.3 Participants’ Long-term Engagement Patterns in the 

Study  

Patterns in participants’ day-to-day data sharing were assessed using an unsupervised 

K-means method (Wu, 2012) across the three data streams separately (Figure 2.3a). In 

the primary observation period, three subgroups showing distinct participant 

engagement patterns (C1: most engaged, C2: medium engaged, and C3: least engaged) 

emerged across each data stream (Figure 2.3b). Across the three engagement clusters 

in each data stream (Phone-Active, Phone-Passive, and Fitbit-Passive), we found 

notable differences in participants’ behavior (survey response and completion times), 

baseline depression symptom severity, and age (Figure 2.4). Supplementary Tables 4-

6 of Appendix A provide further details for comparisons of all variables across three 

clusters for all three data streams using the Kruskal-Wallis tests. 

a) Long-term engagement patterns across active, passive, and wearable data 

streams: Participants in the most engaged C1 cluster (37.6% of the cohort; N=231) 

completed a median (IQR) of 20.0 (18.0, 21.0) bi-weekly surveys as opposed to 4.0 

(1.0, 6.0) for those in the least engaged cluster (C3; 33.2% of the cohort; N=204). 

Similarly, the data sharing patterns for passive data streams showed significant 

differences as well. Participants (42.2% of the cohort; N=259) in the most engaged C1 

cluster of the Phone-Passive data stream, shared phone-based passive data for a median 

(IQR) of 283 (257.0, 298.0) days as opposed to 32 (4.0, 67.5) days for the participants 

in the least engaged C3 cluster (33.7%; N=207). Similarly, for the Fitbit-based data 
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gathered passively, the most engaged C1 cluster with 66.29% participants (N=407) 

shared the data for median (IQR) 294 (274.0, 301.0) days compared to just 18 (0, 67.0) 

days for the 17.6% participants (N=108) in the least engaged cluster (C3). Of note, we 

found a considerable proportion of participants in the medium (C2) and least (C3) 

engaged clusters of the Phone-Active data stream, despite completing a lesser number 

of active surveys (13 and 4 bi-weekly surveys, respectively), continued contributing 

passive data from Fitbit for an average of 42 weeks. Figure 2.3c shows this marked 

transition where 65.4% of participants (N=151) from the C2 cluster and 44.6% of 

participants (N=91) from the C3 cluster, based on the Phone-Active data stream, 

transitioned to the most engaged C1 cluster of the Fitbit-Passive data stream.  
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Figure 2.3. Participant longitudinal engagement patterns in the RADAR-MDD Dataset. 

a) Schematic representation of a participant’s 3 data streams in the study. b) Heatmaps 

of participant longitudinal engagement patterns, clustered using K-means clustering. In 

each heatmap, each row represents a data-availability vector of one participant 

(described in Methods), and subgroups were arranged from the most engaged cluster to 

the least engaged cluster (C1-C3). c) Sankey plots showing the proportion of common 

participants between clusters determined from Phone-Active (green), Phone-Passive 

(brown), and Fitbit-Passive (pink) data streams. To match passive data streams, if a 

survey that was due every two weeks was completed by a participant, 14 elements of 

the participant’s data-availability vector of Phone-Active corresponding to these two 

weeks are set to 1 (representing the participant was contributing active data). 
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b) Survey response and completion times: We also observed prominent linkages 

between long-term engagement and the survey response time (the time to respond to 

survey notifications) and completion time (total survey completion time). Participants 

in the most engaged C1 cluster of the Phone-Active data stream had significantly 

shorter survey response time (73.7 [31.3, 215.8] minutes) for the PHQ-8 survey 

compared to 302.4 (122.3, 527.1) minutes for the least engaged C3 cluster (Figure 2.4a) 

(p<.001). This finding is also consistent for subgroups in the Fitbit-Passive data stream 

(Figure 2.4a) and the RSES survey (Supplementary Table 4 and Supplementary Table 

6, Appendix A). In terms of survey completion time, participants in the least engaged 

cluster (C3) of the Phone-Active data stream took significantly longer (61.6 [46.1, 83.0] 

seconds) to complete surveys than those in C1 (50.3 [37.9, 69.0] seconds) and C2 (49.4 

[40.0, 67.0] seconds) clusters (Figure 2.4b) (p < .001). Likewise, the finding of survey 

completion time is consistent for the Fitbit-Passive data stream (Figure 2.4b) and the 

RSES survey (Supplementary Table 4 and Supplementary Table 6, Appendix A). 

c) Baseline depression symptom severity: The baseline PHQ-8 scores of participants 

were significantly different across three subgroups (C1, C2, C3) for all three data 

streams. Overall, participants in the least engaged cluster (C3) had a significantly higher 

severity of depressive symptoms at enrollment (Figure 2.4c). For example, participants 

in C3 for the Phone-Active data stream had a 4 points difference in the median baseline 

PHQ-8 score (13.0 [7.0, 17.0]) compared to participants in the most engaged cluster 

(C1) with a median baseline PHQ-8 score of 9.0 (6.0, 15.0) (p < .01). Similarly, in 

participants in cluster C3 of Phone-Passive and Fitbit-Passive data streams showed a 
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statistically significant difference in the baseline PHQ-8 scores compared with the most 

engaged cluster (C1) (Phone-Passive - C1: 9 [6.0, 15.0]; C3: 12 [8.0,17.0] and Fitbit-

Passive - C1: 9 [6.0, 15.0]; C3: 13 [9.0, 17.5]) (p < .001).   

d) Sociodemographics: The age of participants was significantly different across the 

3 clusters of Phone-Active and Phone-Passive data streams. For the Phone-Active data 

stream, participants in C1 cluster had a significantly higher median (IQR) age of 53.0 

(34.0, 61.5) years than participants in C2 (45.0 [31.0, 55.5]) and C3 (48.0 [32.0, 57.3]) 

clusters (p < .01). Similarly, for the Phone-Passive data stream, participants in the most 

active C1 cluster had the significantly highest median (IQR) age of 52.0 (36.5, 61.0) 

years across the 3 clusters (C2: 46.5 [30.8, 56.3] years and C3: 46.0 [30.5, 57.5] years) 

(p < .05). For ethnicity (available for KCL and VUmc sites), we found the proportion 

of white participants was significantly lower in the least engaged C3 group (77.8%) 

than C1 (95.1%) and C2 (84.0%) clusters for the Phone-Active data (p <.001). Likewise, 

Phone-Passive and Fitbit-Passive data had similar findings (Supplementary Table 10, 

Appendix A).  

e) Phone brand and “human-in-the-loop” (research team contacting participants): 

Similar to the results of participant retention analysis, we found the Phone-Passive data 

collection to be significantly different across the smartphone brands. In the Phone-

Passive data stream, the proportion of participants with Motorola brand phones in the 

least engaged C3 cluster (15%) was significantly lower than C1 (57.0%) and C2 (42.9%) 

(p < .001) (Supplementary Table 5, Appendix A). Further, for Phone-Active data stream, 

we found participants in the most engaged C1 cluster were contacted less frequently 
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(3.0 [2.0, 5.0]) than those in the C2 (5.0 [3.0, 7.0]) and C3 (5.0 [2.0, 9.0]) clusters (p 

< .001) (Supplementary Table 4, Appendix A). 

Figure 2.4. Significant differences in participants’ survey response time and survey 

completion time) baseline depression symptom severity (PHQ-8 score), and age across 

three long-term engagement patterns (Cluster 1, Cluster 2, and Cluster 3) for Phone-

Active, Phone-Passive, and Fitbit-Passive data stream, respectively. Note: Cluster 1, 

Cluster 2, and Cluster 3 represent the most engaged, medium engaged, and least 

engaged patterns shown in Figure 2.3b. 
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For the secondary cohort with a longer observation period, unsupervised clustering of 

94 weeks of individual-level engagement data showed 4 clusters (C1-C4) shown in 

Supplementary Figure 2.4 of Appendix A. The results of the participant characteristics 

enriched in the 4 engagement clusters for the secondary cohort are similar to the results 

of the primary cohort and are summarized in Supplementary Tables 7-9 of Appendix A 

for the three data streams, respectively.    

2.4 Discussion 

2.4.1 Principal Findings 

We report findings from a novel investigation into long-term participant retention and 

engagement patterns from a large European multinational remote digital study for 

depression (Matcham et al., 2019; Matcham et al., 2021). Our findings show a 

significantly higher long-term participant retention than in past remote digital health 

studies (Druce et al., 2019; O’connor et al., 2016; Pratap et al., 2020; Quisel et al., 2019; 

Simblett et al., 2018a). However, we show several factors, that can significantly impact 

long-term participant retention and the density of real-world data collection. These 

range from participants' sociodemographics, and depression symptom severity, to study 

app usage behavior e.g., survey response, and completion times. Here we contextualize 

our key findings in the broader digital medicine context that may help inform the design 

and development of remote digital studies. We also compare the utility of using active 

and passive data collection for long-term remote monitoring of behavior and health 

outcomes. Finally, we share some of the participant engagement strategies deployed by 
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the RADAR-MDD consortium (Matcham et al., 2019) and data-driven insights to help 

improve long-term participant engagement in future remote digital studies. 

Key Learnings from Long-term Participant Engagement and Retention 

in the RADAR-MDD Study   

One of the notable findings was that participants with higher severity of depression at 

the time of enrollment contributed less data both actively and passively. For example, 

participants in the least engaged cluster (C3) had the highest depression severity at the 

baseline and were up to 16 times less likely to share active or passive data from 

smartphones and wearables. The finding indicates that participants with higher 

depression symptom severity may be at a higher risk of not engaging in fully remote 

studies. A similar finding that the lowest engaged group had the highest depression and 

anxiety scores was observed in a previous web-based mental health intervention study 

(Chien et al., 2020). Non-uniform engagement in depression study apps, particularly by 

participants with higher depression severity, could bias the real-world data collection, 

impacting the generalizability and robustness of generated evidence. There is an urgent 

need for future research to develop solutions that alleviate non-uniform data collection. 

First, mixed methods research that aims to uncover the context behind quantitative 

findings by using qualitative methods (Tariq & Woodman, 2013) is needed to 

understand issues that impact the engagement of people with high depression severity. 

Second, the use of methods (Papoutsi, Wherton, Shaw, Morrison, & Greenhalgh, 2021; 

Shaw et al., 2018) to co-design study protocols and apps with representative patient 



72 

 

advisory boards can help optimize the acceptability of the technology in real-world 

settings. Third, applying “Human-in-the-loop” (Awais et al., 2020; Goodday et al., 

2021) approaches can help the timely resolution of problems that are encountered by 

participants and may reduce the risk of disengaging from the study. Finally, the present 

study showed that passive data gathered from wearables has greater contiguity and 

participant retention over the long term. Focusing efforts on collecting multimodal 

passive data streams without additional user burden may be a more effective and 

acceptable marker of individual behavior in real-world settings (Pratap et al., 2019).  

We discuss these strategies in further detail below. 

We also observed that participants’ time in responding to and completing surveys is 

significantly associated with their long-term engagement patterns. Participants with 

shorter survey response and completion times tend to engage for the longer term, 

completing more surveys and wearing Fitbit for a significantly longer period. Past 

studies have also reported that if participants are more interested in the study, they are 

quicker to respond and complete study-related assessments (Bassili, 1996; Fazio et al., 

1983; Heerwegh, 2003). Further, survey response and completion time may also be 

correlated with several other factors, such as participants’ familiarity with smartphones 

and study apps, life behaviors, and smartphone latency (battery and memory). To our 

best knowledge, this paper is the first to quantitatively link the survey response and 

completion times to participants’ longitudinal engagement patterns in a remote digital 

health study. Such real-world objective metrics on participants’ app-usage behavior 

may be potentially useful for passively assessing the quality of the active data and 
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predicting long-term engagement early. 

Finally, age is a significant indicator of participant retention and engagement. We found 

that older participants have a lower risk of disengaging from the study app (Figure 2.2) 

and tend to contribute more surveys and phone passive data (Figure 2.4d) than younger 

participants. This finding is consistent with several previous engagement studies 

(Dineley et al., 2021; Li S, 2022; Pratap et al., 2020). 

Feasibility of Collecting Active Data and Passive Data Streams for Long-

term Remote Behavior Monitoring in Major Depression  

While there is growing interest amongst researchers in gathering real-world behavioral 

data without having to rely on episodic in-clinic assessments that may be subject to 

recall bias (Althubaiti, 2016), there is limited empirical research quantifying the long-

term participant engagement differences between active (surveys) and passive data 

streams (smartphones and wearables). We compared the long-term differences in the 

density of active and passive data collected from surveys, smartphones, and wearable 

devices. 

Passively gathered data from wearable devices showed the highest long-term 

engagement (C1 in Figure 2.3b and Supplementary Figure 4 of Appendix A) and the 

highest participant retention rates (Figure 2.1) over both observation periods (43 weeks 

and 94 weeks). The finding clearly shows that wearable devices with minimal 

participant burden could help researchers collect high-density data over a longer period. 

Another potential reason may be that the Fitbit app provides participants with timely 
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feedback about their sleep quality and physical activity, which may increase their 

interest in wearing Fitbit devices. We found a significant proportion of the participants 

who completed fewer longitudinal surveys (C2 and C3 of the Phone-Active data stream) 

but contributed passive Fitbit data for significantly longer (Figure 2.3c). This illustrates 

the value of wearable devices for long-term monitoring of participants who cannot 

routinely actively engage in completing frequent health surveys.  

On the other hand, we found that the passive data gathered from participants' phones 

had the lowest retention rate in both observation periods (Figure 2.1). A potential reason 

for lower compliance in passive data collection from smartphones could be the 

relatively high consumption of battery and users’ data plans. The study app collected 

high-resolution passive data frequently (e.g., GPS [every 10 minutes], Bluetooth 

[hourly], battery levels [every 10 minutes], and phone usage [event trigger]). The 

collection of highly granular passive data could have made some participants stop the 

app from collecting passive data or uninstall it. Future research is needed to understand 

the suitable balance between passive data collection and phone battery consumption 

that is acceptable to participants in real-world settings. Notably, we also found that 

smartphone brands significantly affected the retention and density of phone-passive 

data collection. Smartphone brands may have different policies on the duration for 

which an app can collect granular passive data continuously. However, the sample sizes 

of several phone brands were limited in our cohort. Additional research is needed to 

investigate intra-device/brand differences within and across Android and iOS phones 

to enable the robust and equitable collection of passive data. Finally, a small but 
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significant group of participants were not contributing either active or passive data 

(Figure 2.3c). Further research is needed to understand the concerns of this subgroup to 

avoid the collection of unbalanced data.  

Potential Reasons for High Participant Retention in the RADAR-MDD 

Study 

We discuss four strategies developed and adopted by the RADAR-MDD consortium 

(Matcham et al., 2019), which may have helped increase long-term participant retention 

and engagement. 

a) “Human-in-the-loop” (Goodday et al., 2021). The RADAR-MDD research team 

contacted participants for various reasons, such as reminding 3-month assessments, any 

malfunctions in the Fitbit device, problems in study apps, and congratulating 

participants for completing the 1-year milestone. Timely resolution of technical issues 

and feedback and encouragement from the research team may help keep participants in 

the study (Simblett et al., 2018b). 

b) Monetary incentives. Compensation for participant time and monetary incentives 

are known to enhance engagement (Bentley & Thacker, 2004; Simblett et al., 2018b). 

Although participants were not offered compensation for completing surveys remotely 

and sharing behavior data passively, existing monetary incentives could increase 

participants’ willingness to remain engaged in the study. For example, participants were 

given monetary incentives for enrolling in the study, taking part in clinical assessments 

(every 3 months), and additional interviews (e.g., 1-year interview) (see Method 
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section). This cyclical compensation (every 3 months and 1 year) could have indirectly 

incentivized participants to remain in the study. Furthermore, participants were allowed 

to keep the Fitbit device after the completion of the study, which could have impacted 

their motivation to join and remain engaged in the study for a longer term.    

c) Participant-centric design. Participants' lack of familiarity with how to use digital 

technologies (study apps) and lack of intrinsic motivation (not familiar with the value 

of the study) are two key barriers to long-term engagement (Simblett et al., 2018b). 

Therefore, participants and patients were invited to provide input at all stages of the 

study process (Matcham et al., 2019). A patient advisory board comprising service users 

guided the early study protocol and study app design stages to the implementation and 

analysis phases. They contributed to improving the study design and engagement 

motivation strategy and shaped how the technology was used (Birnbaum, Lewis, Rosen, 

& Ranney, 2015). This approach, called “participant-centered initiative” (Anderson, 

Bragg, Hartzler, & Edwards, 2012; Kaye et al., 2012), treats participants as partners in 

the entire research cycle, which could provide a means to improve participant retention 

and engagement in long-term digital health studies. A recent study demonstrated that 

“participant-centric design” played an essential role in maximizing engagement in 

remote app-based studies (Druce et al., 2019). 

d) Recruiting participants with the target disease of interest.  The inclusion 

criteria in the present study required all participants to have at least one depressive 

episode in the last two years. Therefore, the study contains an enriched population with 

a specific clinical condition. Prior research has shown that participants with clinical 
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conditions of interest in the study tend to remain engaged for significantly longer 

(Pratap et al., 2020; Simblett et al., 2018b). Experiences of having depression may make 

participants aware of the benefits of regularly completing the self-assessment and 

getting feedback from clinical teams to realize their status of mental health (Simblett et 

al., 2018b). 

Potential Solutions to Improve Participant Retention and Engagement 

in Remote Digital Research   

Although the incentives and recruitment strategies discussed above increased 

participant retention in the present cohort, a notable proportion of the cohort (17.59%–

33.71%) across active and passive data streams did not remain engaged in the study 

over the long-term (C3 clusters in Figure 2.3b).  Long-term participant retention and 

engagement in remote digital studies, therefore, remains an active area of research. 

Several potential solutions could be learned from our findings. Participant 

characteristics, such as younger age, more depressive symptoms at baseline, and 

delayed responses to remote surveys, could act as early indicators of a subgroup of 

participants at a higher risk of disengagement from the study. Targeted engagement 

strategies including tailored communication and increased “Human-in-loop” 

interactions could be deployed to this subgroup. An alternative approach is to recruit 

more heavily from participants matching the characteristics of the low-engaged 

subgroup, which may help reduce the overall data imbalance.  

Also, a near-real-time analytical framework could be deployed to monitor the incoming 
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real-world data for known socio-technical biases continually. The system could triage 

participants who are falling below an acceptable level of compliance with the study 

team in terms of data quantity and quality. This could help just-in-time identify 

potential causes of unbalanced data collection in real-world settings and allow for 

timely and targeted interventions to re-engage participants at the highest risk of drop. 

2.4.2 Limitations 

Our findings should be viewed in the context of certain limitations related to the 

collection of real-world data in a fully remote European multinational remote digital 

study for depression. First, the RADAR-MDD study used an open enrollment model to 

gather real-world data and did not stratify or randomize participant recruitment based 

on sociodemographic characteristics, enrollment sites, etc. For example, the overall 

cohort had significantly fewer participants older than 70 years, which can be related to 

known barriers, e.g., lower use of digital technologies and health problems (Forsat, 

Palmowski, Palmowski, Boers, & Buttgereit, 2020; Mody et al., 2008; Pywell, 

Vijaykumar, Dodd, & Coventry, 2020). Further, the study population was 

predominantly white people, with the majority of females. While the higher proportion 

of females in the present study cohort is aligned with previous epidemiological and 

remote observational studies (Arean et al., 2016; Difrancesco et al., 2019; Lu et al., 

2018) and a known higher prevalence of depression in females than in males (Albert, 

2015; Noble, 2005; Salk et al., 2017; Van de Velde et al., 2010), the findings may not 

be generalizable to a more diverse or non-depressed population. Future studies should 
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use randomized designs to investigate the causal impact of various demographic and 

socio-technical factors on participant retention using a representative target population 

linked to the condition of interest. 

Second, although we accounted for many site-level differences, there could be several 

unmeasured and inconsistent factors across study sites. Third, there were some changes 

during the course of the study, such as changes in versions of some surveys, fixing 

technical bugs (e.g., missing notifications), and adding surveys as well as different 

study start times across three sites that could impact participant engagement. Fourth, 

the education system, language, income levels, and currency are also different across 

European countries and could lead to inconsistencies in the comparison of participant 

responses to sociodemographic questions across sites. These potential differences 

limited our interpretation of the different levels of participant engagement across the 

three sites. Fifth, the technical differences between the two versions of Fitbit devices 

deployed in the study (Charge 2 and Charge 3) were not tracked. Also, the present study 

was only based on the Android smartphone operating system. As a result, the impact of 

different versions of wearable devices and different smartphone operating systems on 

participant engagement is unclear.  

Sixth, the specific impact of the number of contact logs on participant engagement may 

be bidirectional. For example, technical issues may decrease participant engagement 

with the study app despite the study team reaching out. On the other hand, reaching out 

to remind participants to complete an assessment or congratulating them for reaching 

the 1-year milestone may increase participant engagement. Also, participants in the 
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most engaged clusters had the lowest number of contact logs, indicating that highly 

engaged participants did not need additional reminders to complete assessments and 

encountered fewer technical issues.  

Seventh, while participants were not paid for completing remote surveys via 

smartphones or sharing passive data, compensation was given for clinical assessments 

every 3 months, which may also affect the generalizability of our findings in cohorts 

without any incentives.  

2.4.3 Conclusions  

This study demonstrated that participant retention in the RADAR-MDD study was 

significantly higher than in past digital studies. Higher retention is likely linked to the 

deployment of several engagement strategies such as “human-in-the-loop”, monetary 

incentives, participant-centric design, and a targeted clinical cohort. We found several 

notable indicators, such as age, depression severity, and survey response and 

competition times in the study app, significantly impacted the depth and density of our 

real-world data collection in fully remote research. Furthermore, passive data gathered 

from wearables without participant burden showed advantages in helping collect 

behavioral data with greater contiguity and over a longer duration. Combined, these 

objective engagement metrics could help identify and triage participants with the 

highest dropout risk for tailored and just-in-time engagement strategies to enable 

equitable and balanced health data collection from diverse target populations. 
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Chapter 3 

Relationship Between Major Depression 

Symptom Severity and Sleep Collected 

Using a Wristband Wearable Device: 

Multicenter Longitudinal Observational 

Study 

This chapter has been published as: 

Zhang Y, Folarin AA, Sun S, Cummins N, Bendayan R, Ranjan Y, Rashid Z, Conde 

P, Stewart C, Laiou P, Matcham F, White KM, Lamers F, Siddi S, Simblett S, Myin-

Germeys I, Rintala A, Wykes T, Haro JM, Penninx BW, Narayan VA, Hotopf M, 

Dobson RJ, and RADAR-CNS Consortium. Relationship Between Major Depression 

Symptom Severity and Sleep Collected Using a Wristband Wearable Device: 

Multicenter Longitudinal Observational Study. JMIR Mhealth Uhealth 2021;9(4): 

e24604. 

Background: Sleep problems tend to vary according to the course of the disorder in 

individuals with mental health problems. Research in mental health has associated sleep 

pathologies with depression. However, the gold standard for sleep assessment, 

polysomnography (PSG), is not suitable for long-term, continuous monitoring of daily 

sleep, and methods such as sleep diaries rely on subjective recall, which is qualitative 

and inaccurate. Wearable devices, on the other hand, provide a low-cost and convenient 

means to monitor sleep in home settings. 
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Objective: The main aim of this study was to devise and extract sleep features from 

data collected using a wearable device and analyze their associations with depressive 

symptom severity and sleep quality as measured by the self-assessed 8-item Patient 

Health Questionnaire (PHQ-8). 

Methods: Daily sleep data were collected passively by Fitbit wristband devices, and 

depressive symptom severity was self-reported every 2 weeks by the PHQ-8. The data 

used in this paper included 2812 PHQ-8 records from 368 participants recruited from 3 

study sites in the Netherlands, Spain, and the United Kingdom. We extracted 18 sleep 

features from Fitbit data that describe participant sleep in the following 5 aspects: sleep 

architecture, sleep stability, sleep quality, insomnia, and hypersomnia. Linear mixed 

regression models were used to explore associations between sleep features and 

depressive symptom severity. The z score was used to evaluate the significance of the 

coefficient of each feature. 

Results: We tested our models on the entire dataset and separately on the data of 3 

different study sites. We identified 14 sleep features that were significantly (P<.05) 

associated with the PHQ-8 score on the entire dataset, among them awake time 

percentage (z=5.45, P<.001), awakening times (z=5.53, P<.001), insomnia (z=4.55, 

P<.001), mean sleep offset time (z=6.19, P<.001), and hypersomnia (z=5.30, P<.001) 

were the top 5 features ranked by z score statistics. Associations between sleep features 

and PHQ-8 scores varied across different sites, possibly due to differences in the 

populations. We observed that many of our findings were consistent with previous 
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studies, which used other measurements to assess sleep, such as PSG and sleep 

questionnaires. 

Conclusions: We demonstrated that several derived sleep features extracted from 

consumer wearable devices show potential for the remote measurement of sleep as 

biomarkers of depression in real-world settings. These findings may provide the basis 

for the development of clinical tools to passively monitor disease state and trajectory, 

with minimal burden on the participant. 
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3.1 Introduction 

According to the report of the World Health Organization, the total number of people 

with depression was estimated to exceed 300 million in 2015, equivalent to 4.4% of the 

world’s population (World Health Organization, 2017). There are several depression-

related adverse outcomes, including premature mortality (Cuijpers & Schoevers, 2004), 

decline in quality of life (Lenox-Smith et al., 2013), and loss of occupational function 

(Lerner et al., 2004). 

Sleep disturbances are prevalent among depression patients; more than 90% of patients 

with depression reported poor sleep quality (Mendelson, 2012). Sleep disturbances 

cover a wide range of different symptoms and disorders including insomnia, 

hypersomnia, excessive daytime sleepiness, and circadian rhythm disturbance (Alvaro 

et al., 2013). Insomnia and sleep quality have been observed to be bidirectionally 

related to depression in several longitudinal studies (Alvaro et al., 2013). Hypersomnia 

is more frequently present in depressive episodes of bipolar patients (Detre et al., 1972; 

Thase et al., 1989). Changes in sleep architecture, such as reduced deep sleep, increased 

rapid eye movement (REM) sleep, and shortened REM latency, are also significant 

predictors of depression (Palagini et al., 2013; Riemann et al., 2001). 

The gold standard for sleep evaluation is polysomnography (PSG), which involves 

several physiological measurements including electroencephalogram, 

electrocardiogram, electromyogram, and accelerometers (Berry et al., 2012). Using 

PSG to assess sleep lacks ecological validity and is time-consuming, expensive, and 
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labor-intensive, requiring dedicated equipment and separate laboratory rooms as well 

as experts to analyze the physiological signals. Since depression can affect patients for 

an extended period, long-term monitoring of sleep quality is essential. Due to the above 

shortcomings, PSG is not suitable for long-term sleep monitoring (Sánchez-Ortuño et 

al., 2010). A sleep questionnaire, such as the Pittsburgh Sleep Quality Index (PSQI) 

(Buysse et al., 1989), is another useful method to assess sleep. This method relies on 

the self-reporting of subjective factors, like low recall of sleep, that may affect the 

accuracy of the assessment (Moore et al., 2015). 

Several recent studies have used wearable devices to estimate sleep quality and sleep-

related parameters (Beattie et al., 2017; Van de Water et al., 2011; Zhang et al., 2018, 

2019) and analyzed the relationship between sleep and depression (Demasi et al., 2016; 

Mark et al., 2016; Miwa et al., 2007). Miwa et al estimated sleep quality by detecting 

rollover movements during sleep and observed a significant difference in sleep quality 

between nondepressed and depressed people (Miwa et al., 2007). Mark et al estimated 

the sleep duration of 40 information workers for 12 days using a Fitbit wristband and 

found that sleep duration was positively correlated with mood (Mark et al., 2016). 

DeMasi et al found that sleep was significantly related to changes in depressive 

symptoms (Demasi et al., 2016). These studies have mostly been performed on single 

center and relatively small datasets (number of participants fewer than 100). Moreover, 

most of these studies only used basic sleep parameters, such as sleep duration; detailed 

information on sleep architecture, sleep patterns, and stability of sleep was not 
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considered. The relationship between detailed sleep features, as estimated from data 

supplied by wearable devices, and depression is yet to be fully explored. 

The first aim of this study was to design more sleep-related features, from wearable 

device data, that reflect the sleep architecture, sleep stability, sleep quality, and sleep 

disturbances (insomnia and hypersomnia) of the participant. The second aim was to 

explore associations between these sleep features and depressive symptom severity on 

a relatively large, multisite dataset. The third aim was to compare our findings with 

previous studies that used other measurements to assess sleep such as PSG and sleep 

questionnaires. 

3.2 Methods 

3.2.1 Data set 

Study Participants and Settings 

The data we used in this paper were collected from a major EU Innovative Medicines 

Initiative research project, Remote Assessment of Disease and Relapse–Central 

Nervous System (RADAR-CNS) (Khoulji et al., 2017). This project aims to investigate 

the use of remote measurement technologies to monitor people with depression, 

epilepsy, and multiple sclerosis in real-world settings. The study protocol for the 

depression component (Remote Assessment of Disease and Relapse–Major Depressive 

Disorder [RADAR-MDD]) is described in detail in Matcham et al (Matcham et al., 

2019). The RADAR-MDD project aims to recruit 600 participants with a recent history 
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of depression in 3 study sites (King’s College London [KCL], UK; Vrije Universiteit 

Medisch Centrum [VUmc], Amsterdam, The Netherlands; and Centro de Investigación 

Biomédican en Red [CIBER], Barcelona, Spain). Recruitment procedures vary slightly 

across sites and eligible participants are identified either through existing research 

cohorts (in KCL and VUmc) who had given consent to be contacted for research 

purposes; advertisements in general practices, psychologist practices, newspapers, and 

Hersenonderzoek.nl (https://hersenonderzoek.nl/), which is a Dutch online registry 

(VUmc); or through mental health services (in KCL and CIBER) (Matcham et al., 2019). 

Participants from KCL and VUmc are community-based, while the participants from 

CIBER come from a clinical population. As part of the study, participants are asked to 

install several remote monitoring technology apps and use an activity tracker for up to 

2 years of follow-up. Many categories of passive and active data are being collected 

and uploaded to an open-source platform, RADAR-base (Ranjan et al., 2019). In this 

paper, we focus on the sleep and 8-item Patient Health Questionnaire (PHQ-8) data 

(Kroenke et al., 2009). 

Sleep Data 

According to the American Academy of Sleep Medicine manual for the scoring of sleep 

and associated events, sleep can be divided into 2 phases, REM sleep and non-REM 

(NREM) sleep, and NREM sleep can be subdivided into N1, N2, and N3 stages 

according to characteristic patterns of brain waves collected by PSG (Berry et al., 2012). 

In our project, the daily sleep records of participants were collected by the Charge 2 or 
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Charge 3 (Fitbit Inc). An entire night’s sleep is divided into 4 stages: awake, light, deep, 

and REM. The light stage provides estimates for the N1 and N2 stages in PSG, while 

the deep stage provides estimates for the N3 stage in PSG. According to several 

validation studies of Fitbit, the Fitbit wristband had limited specificity in sleep stages 

estimation (de Zambotti et al., 2018; Haghayegh et al., 2019; Liang & Chapa-Martell, 

2019). Therefore, in this study, we were not expecting the Fitbit devices to provide 

information as accurate as PSG would have provided. However, the Fitbit devices were 

deemed sensitive enough to detect changes in sleep-wake states (de Zambotti et al., 

2018; Haghayegh et al., 2019; Liang & Chapa-Martell, 2019); therefore, the provided 

sleep stage information could be used to determine estimates for detailed sleep 

parameters based on known sleep pathology. 

PHQ-8 Data 

The variability of each participant’s depressive symptom severity was measured via the 

PHQ-8, conducted by mobile phone every 2 weeks. The questionnaire contains 8 

questions, with the score of each subitem ranging from 0 to 3. The total score (range 0 

to 24) of all subitems is the PHQ-8 score, which can evaluate depressive symptom 

severity of the participant for the past 2 weeks. A PHQ-8 score ≥10 is the most 

commonly recommended cutpoint for clinically significant depressive symptoms 

(Kroenke et al., 2009) (i.e., if the PHQ-8 of a participant is ≥10, the participant is likely 

to have had depressive symptoms in the previous 2 weeks). In the PHQ-8, subitem 3 

refers to sleep. The content of subitem 3 is “Trouble falling or staying asleep, or 



97 

 

sleeping too much” (Kroenke et al., 2009). A higher score in subitem 3 indicates worse 

self-reported sleep in the past 2 weeks. For reading convenience, we denoted the score 

of subitem 3 as the sleep subscore in this paper. 

Sociodemographics 

Sociodemographic of participants were collected during the enrollment session. 

According to previous studies on the associations between depression and 

sociodemographic characteristics (Akhtar-Danesh & Landeen, 2007; Aluoja et al., 

2004), we considered baseline age, gender, education level, and annual income as 

potential confounding variables in our analyses. Due to the different educational 

systems in different countries, we simply divided the education level into 2 levels: 

degree (or above) and below degree. The annual income levels of Spain and the 

Netherlands were transformed into equivalent British levels. 

3.2.2 Feature Extraction 

Feature Window Size 

For each PHQ-8 record, we extracted sleep features from a 2-week time window prior 

to the PHQ-8 completion time, as the PHQ-8 score is used to represent the depressive 

symptom severity of the participant for the past 2 weeks. The feature window is denoted 

as ∆t in this paper. 
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Sleep Features 

According to known sleep pathology and our experience, 18 sleep features extracted in 

this paper were divided into the following 5 categories (Table 3.1): sleep architecture, 

representing the basic and cyclical patterns of sleep; sleep stability, representing the 

variance of sleep in the feature window; sleep quality, measures relating to total sleep 

and wake times; insomnia, trouble falling or staying asleep; and hypersomnia, 

excessive sleepiness. 

a) Sleep Architecture 

The features of sleep architecture were intended to describe the basic and cyclical 

patterns of sleep. Therefore, we extracted some features similar to those in the PSG 

report (total sleep time, time in bed, sleep onset time, sleep offset time, and REM 

latency) (Ohayon et al., 2017), and features of the percentages of all sleep stages. Total 

sleep time of one night is defined as the sum of all nonawake stages (light, deep, and 

REM) (Ohayon et al., 2017). The mean total sleep time in ∆t was denoted as Av_tst. 

Time in bed of one night is defined as the sum of all sleep stages (awake, light, deep, 

and REM) of the entire night (Ohayon et al., 2017). The mean time in bed in ∆t was 

denoted as Av_time_bed. Percentage of each sleep stage is defined as the percentage of 

the time in the sleep stage to the time in bed of the entire night. Different sleep stages 

have different functions and can reflect the quality of sleep. Deep sleep is considered 

essential for memory consolidation (Walker, 2008), and REM sleep favors the 

preservation of memory (Rasch & Born, 2013). A previous sleep report has shown that 
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more deep sleep and fewer awakenings represent better sleep quality (Ohayon et al., 

2017). Therefore, we extracted the mean percentages of these 4 sleep stages in ∆t, and 

denoted them as Deep_pct, Light_pct, REM_pct, Awake_pct, respectively. The 

combination of deep and light sleep is NREM sleep. The mental activity that occurs in 

NREM and REM sleep is a result of 2 different mind generators, which also explains 

the difference in mental activity (Manni, 2005). So, we extracted the mean percentage 

of NREM sleep in ∆t, which was denoted as NREM_pct. We calculated the mean sleep 

onset time (the first nonawake stage) in ∆t, denoted as Av_onset. Mean sleep offset time 

(the last nonawake stage) in ∆t was calculated and denoted as Av_offset. Previous 

literature has shown that shortened REM latency can be considered as a biological mark 

of depression relapse (Palagini et al., 2013). REM latency is defined as the interval 

between sleep onset and occurrence of the first REM stage. The mean REM latency in 

∆t was denoted as REM_L. 

b) Sleep Stability 

The features in this category were used to estimate the variance of sleep during ∆t. We 

extracted the standard deviation of total sleep time, sleep onset time, and sleep offset 

time in ∆t, which were denoted as Std_tst, Std_onset, and Std_offset, respectively. 

c) Sleep Quality 

In this paper, we used features of sleep efficiency, awakenings, and weekend catch-up 

sleep to describe sleep quality. The definition of sleep efficiency is the percentage of 

total sleep time to time in bed (Ohayon et al., 2017). Mean sleep efficiency in ∆t was 
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denoted as Efficiency. The definition of awakenings (>5 minutes) for one night is the 

number of episodes in which an individual is awake for more than 5 minutes (Ohayon 

et al., 2017). The average number of awakenings in ∆t was denoted as Awake_5. 

Weekend catch-up sleep is an indicator of insufficient weekday sleep, which might be 

associated with depression level (Kang et al., 2014). A longer total sleep time during 

the weekend compared with weekdays may reflect the actual sleep needed (Liu et al., 

2008). Therefore, we calculated the mean total sleep time difference between weekend 

and weekdays in ∆t, which was denoted as WKD_diff. 

d) Insomnia 

A review of several longitudinal studies suggested that insomnia is bidirectionally 

related to depression (Alvaro et al., 2013). According to the diagnostic features 

provided in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 

(American Psychiatric Association, 2013), insomnia manifests as initial insomnia 

(difficulty initiating sleep at bedtime), middle insomnia (frequent or prolonged 

awakening throughout the night), and late insomnia (early-morning awakening with an 

inability to return to sleep). 

For initial insomnia and late insomnia, mean sleep onset time (Av_onset) and sleep 

offset time (Av_offset) can be used to partially reflect them, respectively. We define 

potential middle insomnia to be whether the total sleep time is less than 6 hours and 

there is at least one prolonged awakening (≥30 minutes) during the night. The 
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percentage of days with potential middle insomnia in the feature window was denoted 

as M_Insomnia. 

e) Hypersomnia 

Hypersomnia can be another symptom of depression (Detre et al., 1972). The 

hypersomnia criteria used in Tam et al (Tam et al., 1997) is sleeping more than 10 hours 

per day, 3 days per week. In this paper, the percentage of days with total sleep time 

greater than 10 hours was extracted in ∆t and denoted as Dur_10. 

Table 3.1. A list of sleep features used in this study and their short descriptions. 

Features Description Unit 

Sleep architecture  
Av_tst Mean total sleep time Hour  
Av_time_bed Mean time in bed Hour  
Deep_pct Mean percentage of deep sleep  %  
Light_pct Mean percentage of light sleep  %  
REM_pct Mean percentage of REMa sleep  %  
NREM_pct Mean percentage of NREMb sleep  %  
Awake_pct Mean percentage of awake time %  
Av_onset Mean sleep onset time Hour  
Av_offset Mean sleep offset time Hour  
REM_L Mean REM latency time Hour 

Sleep stability  
Std_tst Standard deviation of total sleep time Hour  
Std_onset Standard deviation of sleep onset time Hour  
Std_offset Standard deviation of sleep offset time Hour 

Sleep quality  
Efficiency Mean sleep efficiency %  
Awake_5 Mean number of awakenings (>5 minutes) per night Times  
WKD_diff Total sleep time difference between weekend and weekdays Hour 

Insomnia  
M_insomnia Percentage of days with potential middle insomnia % 

Hypersomnia  
Dur_10 Percentage of days with total sleep time >10 hours % 

aREM: rapid eye movement. 
bNon-REM: non–rapid eye movement. 
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3.2.3 Statistical Method 

Data Inclusion Criteria 

Sleep and PHQ-8 records were missing in our data cohort for a variety of expected 

reasons, including the participants not wearing the Fitbit wristband when they slept, 

participants forgetting to complete the PHQ-8, and the Fitbit wristband being damaged 

during follow-up. We, therefore, specified the following inclusion criteria: (1) PHQ-8 

record should be completed (i.e., participant answered all 8 questions in the 

questionnaire); (2) number of days with sleep records in the feature window should be 

at least 12 days (approximately 85% of the feature window size) (Farhan et al., 2016); 

(3) number of PHQ-8 records for each participant should be greater than or equal to 3 

(Singer & Willett, 2003); (4) date of PHQ-8 records should be before February 2020, 

because the impact of the COVID-19 pandemic on sleep needs to be excluded (Sun et 

al., 2020). 

Statistical Analyses 

In our study, each participant had multiple PHQ-8 records and repeated sleep measures. 

For this reason, we used linear mixed models, which allow for accounting of both 

within and between-individual variability over time (Laird & Ware, 1982). For each 

sleep feature, a 3-level linear mixed model with a participant-specific random intercept 

and a site-specific random intercept was built on the entire dataset to explore the 

association between this sleep feature and depressive symptom severity (PHQ-8) by 
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bivariate analysis. We then used 2-level linear mixed models with participant-specific 

random intercepts to test these associations on the 3 subsets (KCL, CIBER, and VUmc) 

separately. We similarly analyzed the associations between sleep features and sleep 

subscore. All models were adjusted for baseline age, gender, education level, and 

annual income, which were specified as fixed effects. Model assumptions were checked 

by the histograms of residuals and Q-Q plots. If the residuals are not normally 

distributed, the Box-Cox transformation was performed (Box & Cox, 1964). The z score 

was used to evaluate the statistical significance of the coefficient of each model. All P 

values of these tests were corrected by using the Benjamini-Hochberg method 

(Benjamini & Hochberg, 1995) for multiple comparisons, and the significance level of 

the corrected P value was set to .05. All linear mixed models were implemented by 

using the lme4 package for R software version 3.6.1 (R Foundation for Statistical 

Computing). 

In order to identify and compare the relationship between self-reported sleep and self-

reported depression among different study sites, Spearman correlations were calculated 

between the PHQ-8 score and sleep subscore on the 3 study sites separately. 

An example of such a 3-level linear mixed model is as follows: 

Sleepijk = 𝛿000 + V00k + U0jk + 𝛽1(PHQ-8ijk) + 𝛽2(agejk) + 𝛽3(genderjk) + 

𝛽4(educationjk) + 𝛽5(incomejk) + 𝜀ijk , 

where PHQ-8ijk is the ith PHQ-8 score of the participant j of the site k, Sleepijk is one 

sleep feature extracted in ∆t before the ith PHQ-8 record of the participant j of the site 
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k, agejk , genderjk , educationjk, and incomejk are potential confounding variables of the 

participant j of the site k, 𝜀ijk is the residual, 𝛿000 is the fixed effect on intercept, U0jk is 

the random intercept of the participant j in the site k, and V00k is the random intercept 

of the site k. 

3.3 Results 

3.3.1 Data Summary 

According to our data inclusion criteria, from June 2018 to February 2020, 2812 PHQ-

8 records from 368 participants collected from 3 study sites were included for our 

analysis. A summary of the sociodemographic characteristics of these participants at 

baseline and scores of all PHQ-8 records is shown in Table 3.2. The Kruskal-Wallis 

test was used to determine whether there were any significant differences for these 

characteristics between the sites. These tests revealed that, except for gender, 

sociodemographic characteristics and distribution of PHQ-8 scores differed between 

the study sites. The histograms of PHQ-8 scores of the study sites and the entire dataset 

are shown in Figure 1. We can observe that the KCL site had the most PHQ-8 records 

among the sites. PHQ-8 scores from the CIBER site were relatively high, probably 

because participants in the CIBER site came from a clinical population. Figure 2 

presents pairwise Spearman correlation coefficients between all 18 sleep features. 

Table 3.3 shows the results of Spearman correlation analysis; we can observe there was 

a strong positive correlation between the sleep subscore and PHQ-8 score (r=.73, 



105 

 

z=54.48, P<.001) on the entire dataset, but this correlation was relatively weaker on the 

VUmc data (r=.64, z=18.75, P<.001). 

Table 3.2. A summary of sociodemographic characteristics and PHQ-8 records of 

participants from the 3 study sites and results of Kruskal-Wallis tests on these 

characteristics. 

Characteristic KCLa CIBERb VUmcc P valued 

Participants, n 189 96 83 —e 

PHQ-8f records, n 1547 708 557 — 

PHQ-8 scores, median (Q1, Q3) 8 (4, 12) 14 (8, 19) 9 (5, 13) <.001 

The PHQ-8 score ≥10, n (%)  599 (38.7) 492 (69.5) 248 (44.5) <.001 

Age at baseline, median (Q1, Q3) 46 (30.3, 

59.0) 

55 (49.3, 60.8) 42 (28.0, 

57.0) 

<.001 

Female sex, n (%) 144 (76.2) 69 (71.9) 65 (81.9) .62 

Educationg , n (%) — — — <.001  
Degree or above 116 (61.4) 21 (21.9) 40 (48.2) —  
Below degree 73 (38.6) 75 (78.1) 43 (51.8) — 

Annual incomeh (₤), n (%) — — — .009  
<15,000 40 (21.2) 28 (29.2) 24 (28.9) —  
15,000-40,000 80 (42.3) 53 (55.2) 34 (41.0) —  
>40,000 67 (35.5) 15 (15.6) 14 (16.9) —  
Not mentioned 2 (1.1) 0 (0) 11 (13.3) — 

aKCL: King’s College London. 
bCIBER: Centro de Investigación Biomédican en Red. 
cVUmc: Vrije Universiteit Medisch Centrum. 
dP value of Kruskal-Wallis test. 
eNot applicable. 
fPHQ-8: 8-item Patient Health Questionnaire. 
gEducation levels of Spain and the Netherlands transformed into equivalent Brit

ish education levels. 
hAnnual income levels of Spain and the Netherlands transformed into equivalen

t British levels. 
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Figure 3.1. Histograms of the PHQ-8 scores of the three study sites and the entire 

dataset.  

 

Figure 3.2. Correlation plot of pairwise Spearman correlations between all sleep 

features. Descriptions of abbreviations of sleep features are shown in Table 3.1. 
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Table 3.3. Spearman correlation coefficients between the PHQ-8 score and sleep 

subscorea on the 3 study sites and their 95% confidence intervals, z score statistics, 

and P values. 

Study site r 95% CI z score P value 

KCLb .74 0.71, 0.76 41.99 <.001 

CIBERc .78 0.75, 0.81 32.09 <.001 

VUmcd .64 0.58, 0.69 18.75 <.001 

Total .73 0.71, 0.74 54.48 <.001 
aSleep subscore represents the score of subitem 3 in the PHQ-8. 
bKCL: King’s College London. 
cCIBER: Centro de Investigación Biomédican en Red. 
dVUmc: Vrije Universiteit Medisch Centrum. 

3.3.2 Three-Level Linear Mixed Models on the Entire Dataset 

Table 3.4 shows the results from 3-level linear mixed regression models that reflect the 

associations between sleep features and the PHQ-8 score and sleep subscore, 

respectively. A total of 14 sleep features were found to be significantly associated with 

the PHQ-8 score, among them awake percentage (z=5.45, P<.001), awakening times 

(z=5.53, P<.001), insomnia (z=4.55, P<.001), mean sleep offset time (z=6.19, P<.001), 

and hypersomnia (z=5.30, P<.001) were the top 5 features ranked by z score statistics. 

The percentages of light sleep (Light_pct) and NREM sleep (NREM_pct) and sleep 

efficiency (Efficiency) were significantly and negatively associated with the PHQ-8 

score, whereas the rest of the significant features were positively associated with the 

PHQ-8 score. 

For sleep subscore, we can notice that deep sleep percentage (Deep_pct), REM sleep 

percentage (REM_pct), and sleep efficiency (Efficiency) were significantly and 

negatively associated with the sleep subscore, whereas features of the percentage of 

awake time (Awake_pct), unstable sleep (Std_tst, Std_onset, Std_offset), awakening 
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times (Awake_5), weekend catch-up sleep (WKD_diff), sleep onset time (Av_onset), 

sleep offset time (Av_offset), insomnia (M_insomnia), and hypersomnia (Dur_10) were 

significantly and positively associated with the sleep subscore. 

Table 3.4. Slope coefficient estimates, 95% confidence intervals, z score statistics, 

and P values from 3-level linear mixed models on the entire dataset for exploring 

associations between sleep featuresa and the PHQ-8 score and sleep subscoreb. 

Features PHQ-8c score Sleep subscore  

Coeff.d 95% CI z score P value Coeff. 95% CI z score P value 

Av_tst 0.013 0.006, 0.019 3.93 <.001 –0.004 –0.034, 0.025 –0.28 .78 

Av_time_bed 0.016 0.009, 0.023 4.45 <.001 0.005 –0.028, 0.038 0.29 .77 

Deep_pct –0.007 –0.026, 0.011 –0.75 .45 –0.104 –0.191, –0.017 –2.34 .02 

Light_pct –0.032 –0.064, –0.001 –2.02 .04 0.090 –0.057, 0.237 1.20 .23 

REM_pct 0.003 –0.021, 0.027 0.25 .80 –0.125 –0.238, –0.012 –2.17 .03 

NREM_pct –0.038 –0.062, –0.014 –3.12 .002 –0.014 –0.127, 0.098 –0.25 .80 

Awake_pct 0.035 0.022, 0.048 5.45 <.001 0.139 0.079, 0.199 4.58 <.001 

Av_onset 0.007 –0.001, 0.015 1.71 .09 0.078 0.040, 0.115 4.03 <.001 

Av_offset 0.025 0.017, 0.033 6.19 <.001 0.097 0.060, 0.135 5.10 <.001 

REM_L 0.034 –0.021, 0.088 1.21 .23 0.085 –0.178, 0.347 0.63 .53 

Std_tst 0.008 0.004, 0.012 4.07 <.001 0.047 0.028, 0.067 4.77 <.001 

Std_onset 0.012 0.004, 0.019 3.11 .002 0.060 0.022, 0.097 3.13 .002 

Std_offset 0.012 0.005, 0.018 3.58 <.001 0.069 0.037, 0.100 4.26 <.001 

Efficiency –0.025 –0.037, –0.012 –3.91 <.001 –0.108 –0.167, –0.050 –3.65 <.001 

Awake_5 0.016 0.010, 0.022 5.53 <.001 0.038 0.011, 0.065 2.77 .006 

WKD_diff 0.134 0.039, 0.230 2.76 .006 0.747 0.255, 1.240 2.98 .003 

M_insomnia 0.370 0.211, 0.530 4.55 <.001 2.373 1.595, 3.151 5.98 <.001 

Dur_10 0.309 0.195, 0.423 5.30 <.001 0.909 0.357, 1.462 3.23 .001 

aDefinitions of sleep features in this table are shown in Table 3.1. 
bSleep subscore represents the score of subitem 3 in the PHQ-8. 
cPHQ-8: 8-item Patient Health Questionnaire. 

dSlope coefficient estimates for all sleep features. 

3.3.3 Two-Level Linear Mixed Models on Different Research 

Sites 

Table 3.5 provides the results from 2-level linear mixed models which show the 

associations between sleep features and the PHQ-8 score on different research sites 
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separately. On the KCL data, most associations between sleep features and depression 

were consistent with the results on the entire dataset. On the CIBER data, some features 

were no longer significantly associated with the PHQ-8 score. However, on the VUmc 

data, most features lost their significance except features of total sleep time (Av_tst), 

time in bed (Av_time_bed), REM latency (REM_L), and awakenings (Awake_5). 

Table 3.6 shows associations between sleep features and the sleep subscore on different 

research sites. The significance of associations between sleep features and the sleep 

subscore were different among the 3 study sites. Notably, the insomnia feature 

(M_insomnia) and at least one feature of sleep stability were significantly positively 

associated with sleep subscore on the data of all 3 sites. 
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Table 3.5. Coefficient estimates, 95% confidence intervals, and P values from 2-level 

linear mixed models on the 3 study sites for exploring associations between sleep 

featuresa and the PHQ-8 score. 

Features KCLb CIBERc VUmcd  

Coeff.e 95% CI P  Coeff. 95% CI P  Coeff. 95% CI P  

Av_tst 0.013 0.005, 0.020 .001 0.016 –0.001, 0.033 .06 0.011 0, 0.022 .049 

Av_time_bed 0.016 0.008, 0.024 <.001 0.021 0.002, 0.040 .03 0.013 0.001, 0.025 .04 

Deep_pct –0.005 –0.028, 0.018 .69 0.024 –0.022, 0.071 .31 –0.037 –0.074, 0.001 .06 

Light_pct –0.046 –0.087, –0.006 .03 –0.081 –0.155, –0.007 .03 0.019 –0.043, 0.082 .55 

REM_pct 0.013 –0.018, 0.043 .43 0.015 –0.042, 0.071 .62 –0.007 –0.055, 0.041 .77 

NREM_pct –0.049 –0.080, –0.018 .002 –0.060 –0.116, –0.005 .04 –0.016 –0.062, 0.030 .50 

Awake_pct 0.037 0.020, 0.054 <.001 0.043 0.015, 0.071 .003 0.022 –0.003, 0.047 .09 

Av_onset 0.010 0.000, 0.020 .047 0.004 –0.018, 0.025 .74 –0.005 –0.021, 0.010 .52 

Av_offset 0.029 0.018, 0.039 <.001 0.024 0.004, 0.043 .02 0.012 –0.004, 0.029 .14 

REM_L 0.019 –0.049, 0.088 .58 0.106 –0.026, 0.237 .12 –0.126 –0.231, –0.020 .02 

Std_tst 0.008 0.003, 0.013 .001 0.009 0, 0.019 .06 0.002 –0.006, 0.010 .62 

Std_onset 0.007 –0.002, 0.016 .14 0.019 –0.001, 0.039 .06 0.001 –0.011, 0.013 .93 

Std_offset 0.009 0.001, 0.017 .03 0.019 0.002, 0.036 .03 0.003 –0.008, 0.015 .56 

Efficiency –0.025 –0.041, –0.008 .004 –0.043 –0.071, –0.016 .002 –0.012 –0.037, 0.013 .34 

Awake_5 0.014 0.006, 0.022 <.001 0.022 0.009, 0.035 .001 0.016 0.005, 0.027 .01 

WKD_diff 0.211 0.084, 0.339 .001 0.071 –0.126, 0.268 .48 0.077 –0.144, 0.299 .49 

M_insomnia 0.472 0.259, 0.685 <.001 0.381 0.028, 0.734 .04 –0.048 –0.385, 0.289 .78 

Dur_10 0.331 0.191, 0.472 <.001 0.340 0.052, 0.627 .02 0.181 –0.051, 0.413 .13 

aDefinitions of sleep features in this table are shown in Table 3.1. 

bKCL: King’s College London. 
cCIBER: Centro de Investigación Biomédican en Red. 
dVUmc: Vrije Universiteit Medisch Centrum. 
eSlope coefficient estimates for all sleep features. 
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Table 3.6. Coefficient estimates, 95% confidence intervals, and P values from 2-level 

linear mixed models on the 3 study sites for exploring associations between sleep 

featuresa and the sleep subscoreb. 

Features KCLc CIBERd VUmce  

Coeff.f 95% CI P Coeff. 95% CI P  Coeff. 95% CI P  

Av_tst 0.015 –0.021, 0.050 .41 –0.035 –0.116, 0.047 .41 –0.017 –0.070, 0.035 .52 

Av_time_bed 0.026 –0.013, 0.066 .19 –0.025 –0.116, 0.065 .58 –0.015 –0.074, 0.043 .61 

Deep_pct –0.027 –0.134, 0.081 .63 –0.196 –0.412, 0.020 .07 –0.191 –0.369, –0.014 .04 

Light_pct –0.024 –0.213, 0.166 .81 0.098 –0.250, 0.445 .58 0.312 0.016, 0.608 .04 

REM_pct –0.116 –0.260, 0.028 .12 –0.037 –0.304, 0.230 .79 –0.169 –0.398, 0.060 .15 

NREM_pct –0.048 –0.194, 0.098 .52 –0.123 –0.389, 0.143 .37 0.125 –0.096, 0.346 .27 

Awake_pct 0.165 0.085, 0.245 <.001 0.150 0.020, 0.280 .02 0.049 –0.073, 0.170 .43 

Av_onset 0.055 0.008, 0.101 .02 0.075 –0.023, 0.172 .13 0.128 0.054, 0.202 .001 

Av_offset 0.102 0.053, 0.150 <.001 0.048 –0.040, 0.135 .29 0.133 0.056, 0.210 .001 

REM_L 0.073 –0.255, 0.401 .66 0.146 –0.494, 0.787 .65 –0.171 –0.683, 0.340 .51 

Std_tst 0.046 0.022, 0.071 <.001 0.046 –0.002, 0.094 .06 0.043 0.004, 0.082 .03 

Std_onset 0.028 –0.015, 0.070 .21 0.089 –0.018, 0.195 .10 0.079 0.020, 0.139 .01 

Std_offset 0.046 0.008, 0.084 .02 0.109 0.022, 0.195 .01 0.072 0.016, 0.127 .01 

Efficiency –0.118 –0.196, –0.041 .003 –0.152 –0.280, –0.024 .02 –0.044 –0.162, 0.074 .46 

Awake_5 0.047 0.011, 0.083 .01 0.037 –0.022, 0.097 .22 0.013 –0.042, 0.067 .65 

WKD_diff 1.169 0.534, 1.804 <.001 0.210 –0.864, 1.284 .70 0.283 –0.830, 1.395 .62 

M_insomnia 2.302 1.274, 3.329 <.001 2.777 1.070, 4.485 .001 1.823 0.180, 3.465 .03 

Dur_10 1.057 0.387, 1.728 .002 0.576 –0.844, 1.995 .43 0.706 –0.411, 1.823 .22 

aThe definitions of sleep features in this table are shown in Table 3.1. 
bThe sleep subscore represents the score of subitem 3 in the PHQ-8. 

cKCL: King’s College London. 
dCIBER: Centro de Investigación Biomédican en Red. 
eVUmc: Vrije Universiteit Medisch Centrum. 
fSlope coefficient estimates for all sleep features. 

3.4 Discussion 

3.4.1 Principal Findings 

In this study, we extracted 18 sleep features through Fitbit data to quantitatively 

describe participant sleep characteristics in 5 categories (sleep architecture, sleep 

stability, sleep quality, insomnia, and hypersomnia) associated with the severity of 

depression. Along with the depressive status worsening, the following changes may be 
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seen in the past 2 weeks: (1) percentage of light/NREM sleep decreased and the 

percentage of wakefulness during sleep increased (sleep architecture); (2) sleep 

duration/onset/offset were unstable (sleep stability); (3) reduced sleep efficiency, more 

awakenings during sleep, and longer weekend catch-up sleep were observed (sleep 

quality); (4) more days with insomnia were observed (insomnia); (5) more days with 

hypersomnia were observed (hypersomnia). Table 3.4 illustrated that our sleep features 

of these 5 categories could reflect both the participant sleep condition (sleep subscore) 

and depressive symptom severity (PHQ-8 score) of the past 2 weeks. 

3.4.2 Potential Factors Affecting Associations 

We evaluated our models on the research sites separately. From Table 3.5 and Table 

3.6, we can notice that the associations between sleep features and PHQ-8 score/sleep 

subscore varied across different sites. Several factors may affect the associations. First, 

the populations of the 3 sites were significantly different (Table 3.2). For example, 

participants in the CIBER site came from a clinical population and their average age 

was oldest, so one speculation is that there was less difference between their weekday 

sleep and weekend sleep for inpatients or people in retirement. Therefore, this may be 

the reason why the feature of weekend catch-up sleep (WKD_diff) lost significance on 

the CIBER data. In addition, the reduced significance of features related to sleep onset 

and offset time on the CIBER site might be related to the regular sleep pattern in CIBER 

site favors going to bed later, as seen in our previous study (Sun et al., 2020). 
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The associations between sleep features and the sleep subscore on the VUmc data 

(Table 3.6) were similar to that in the entire dataset (Table 3.4), which demonstrated 

sleep features have the same ability to capture the sleep condition of participants on the 

VUmc data. However, the significance of associations between these sleep features and 

the PHQ-8 score was reduced in the VUmc data (Table 3.5). One possible reason is that, 

as seen on Table 3.3, the correlation between the sleep subscore and PHQ-8 score in 

the VUmc data (r=.64) was weaker than other 2 study sites (KCL: r=.74 and CIBER: 

r=.78), which may be caused by confounding variables that we did not consider or 

record in the VUmc population such as medication and occupational status. 

Sample size and heterogeneity of the dataset were other possible factors that may affect 

results. Table 3.2 shows that the KCL site had the most PHQ-8 records, whereas VUmc 

had the least data. As depression manifests itself in distinctive symptoms on different 

people, it may be difficult to fully explore the associations between sleep and 

depression on a relatively smaller dataset (VUmc). For example, hypersomnia is 

specifically related to bipolar patients (Detre et al., 1972; Thase et al., 1989); therefore, 

if the dataset did not contain enough bipolar patients or bipolar patients were not in 

depressive episodes when they completed their PHQ-8 records, it would be hard to find 

the association between hypersomnia and depression. 
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Figure 3.3. The PHQ-8 scores and a select 4 sleep features of one participant with an 

obvious increasing trend in PHQ-8 score at 13th PHQ-8 record. Descriptions of 

abbreviations of sleep features in this figure are shown in Table 3.1. 

 

3.4.3 Comparison with Prior Work 

Our study has a relatively larger sample size and a longer follow-up duration than 

previous studies on monitoring depression by using wearable devices and mobile 

phones (Demasi et al., 2016; Mark et al., 2016; Miwa et al., 2007). Each participant has 

multiple PHQ-8 records and repeated measurements of sleep, so we can not only 

explore the relationships between sleep and depression between individuals but also 

find the associations within individuals by using the linear mixed model. Figure 3 is an 

example of a possible depression relapse of one participant, showing an obvious 

increasing trend in PHQ-8 scores at the 13th PHQ-8 record of this participant. We can 

observe the sleep features in Figure 3 are significantly associated with the PHQ-8 score. 
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This indicates that the sleep features extracted in this paper have the potential to be the 

biomarkers of depression. 

We also compared our findings with previous studies that used other measurements to 

assess sleep, such as PSG and sleep questionnaires. Although the sample size, 

population, measurements, duration of these studies are different, the comparison may 

help to find more general associations between sleep and depression. Table 3.7 provides 

a summary of the comparison. Several longitudinal studies based on sleep 

questionnaires have shown that insomnia and hypersomnia are both symptoms of 

depression (Alvaro et al., 2013; Kaplan & Harvey, 2009), which we found in our 

research. Kang et al found the weekend catch-up sleep was significantly positively 

correlated with the severity of depression by analyzing the self-sleep questionnaires of 

4553 Korean adolescents, and this is consistent with the finding in our paper (Kang et 

al., 2014). A sleep report has shown that higher sleep efficiency, more deep sleep, and 

fewer awakenings after sleep onset represent better sleep quality (Ohayon et al., 2017), 

which is also consistent with the relationships we found between deep sleep percentage, 

awake percentage, and awakenings (>5 minutes) with sleep subscore. A review showed 

that according to PSG research, the shortened REM latency and increased percentage 

of REM sleep are biological markers of depression relapse (Palagini et al., 2013); 

however, relationships between depressive symptom severity with REM sleep 

percentage and REM latency were not significant in our results. 
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Table 3.7. Summary of the comparisons with previous studies using other 

measurements to assess sleep. 

Type of 

feature 

Findings in previous studies Consistenta Measurement 

Insomnia Insomnia is significantly related to depression 

(Alvaro et al., 2013). 

Yes Questionnaire 

Hypersomnia Prevalence of hypersomnia is high in 

depressed patients (Kaplan & Harvey, 2009). 

Yes Questionnaire 

Weekend 

catch-up sleep 

Weekend catch-up sleep is significantly 

positively correlated with the severity of 

depression (Kang et al., 2014). 

Yes Questionnaire 

Deep sleep 

percentage 

More deep sleep represents higher sleep 

quality (Ohayon et al., 2017). 

Yes Questionnaire 

Awake 

percentage, 

Awakenings 

(>5 mins) 

Fewer awakenings after sleep onset represents 

better sleep quality (Ohayon et al., 2017). 

Yes Questionnaire 

Sleep 

efficiency 

Higher sleep efficiency represents better sleep 

quality (Ohayon et al., 2017). 

Yes Questionnaire 

REM sleep 

percentage 

Increased REM sleep percentage can be 

biomarkers of depression (Palagini et al., 

2013). 

No PSG 

REMb latency Shortened REM latency can be biomarkers of 

depression (Palagini et al., 2013). 

No PSG 

aWhether it is consistent with our findings. 
bREM: rapid eye movement. 

3.4.4 Limitations 

Missing data is the major hindrance in our study. For various reasons, there were many 

missing records of sleep. We set the completion rate of sleep records greater than 85% 

(12 days) as one of the data inclusion criteria. However, the optimum threshold is 

unclear, which needs to be further studied in future research. Missingness could also be 

associated with depressive status and could be a useful marker of relapse of depression; 
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for example, participants may not feel like complying if they are feeling depressed. In 

future research, we will consider missingness as a potential feature. 

Although we adjusted our models for age, gender, education level, and annual income, 

it is hard to consider all potential confounding variables. For example, some 

participants with sleep disorders may take sleep medications. Sleep medications have a 

significant influence on the features of sleep. Unfortunately, there was no daily record 

of whether the participant took medication. This confounding variable may affect the 

result. 

The data of sleep stages used in this paper were provided by the Fitbit wristband. 

According to their validation studies, the Fitbit wristband showed promise in detecting 

sleep-wake states but limitations in other sleep stages estimation (de Zambotti et al., 

2018; Haghayegh et al., 2019; Liang & Chapa-Martell, 2019). This may be the reason 

the features of REM percentage and REM latency in our paper did not show significant 

relationships with depressive symptoms. For detecting insomnia, the sleep onset latency 

(SOL) in the PSG report is a reliable indicator of insomnia, but the Charge 2 and 3 are 

not able to measure SOL directly. The features related to insomnia in our paper can 

partially reflect insomnia, but they may be affected by factors (such as work schedules 

or activities) other than insomnia. Therefore, in future research, we will combine 

multiple features (such as a late sleep onset time accompanied by a short total sleep 

time) to determine whether a participant has insomnia and try to use activity 

information (e.g., steps) provided by Fitbit to approximate SOL. Although there are 
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some limitations of Fitbit data, it provides a means to investigate sleep characteristic in 

home settings. 

In feature extraction, we did not consider the impact of individual circumstances on 

sleep features. For example, some participants may need to shift work at night, which 

our features are unable to capture. We will consider the impact of sleep habits and 

lifestyles on sleep features in the future. Further, we did not explore the impact of 

individual patterns of depression (Brailean et al., 2020)—for example, the distinction 

between people with typical and atypical depression who report reduced and increased 

sleep, respectively, during depressive episodes. In future work, we will explore whether 

including this dimension improves specificity of our findings. 

In this paper, we focused on analyzing the manifestations of depression in sleep 

characteristics. We will investigate whether these relationships are bidirectional in 

future research. We only performed bivariate analysis (ie, separately analyzing the 

association between each feature and the PHQ-8 score). The combination of features 

and nonlinear relationships was not considered. We will try to apply machine/deep 

learning models to predict the severity of depression by using sleep features in future 

research. 

3.4.5 Conclusions 

Although consumer wearable devices may not be a substitute for PSG to assess sleep 

quality accurately, we demonstrated that some derived sleep features extracted from 

these wearable devices show potential for remote measurement of sleep and 
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consequently can act as a biomarker of depression in real-world settings. These findings 

may provide the basis for the development of clinical tools that could be used to 

passively monitor disease state and trajectory with minimal burden on the participant. 
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Chapter 4  

Predicting Depressive Symptom Severity 

Through Individuals’ Nearby Bluetooth 

Device Count Data Collected by Mobile 

Phones: Preliminary Longitudinal Study 

This chapter has been published as: 

Zhang Y, Folarin AA, Sun S, Cummins N, Ranjan Y, Rashid Z, Conde P, Stewart C, 

Laiou P, Matcham F, Oetzmann C, Lamers F, Siddi S, Simblett S, Rintala A, Mohr 

DC, Myin-Germeys I, Wykes T, Haro JM, Penninx BWJH, Narayan VA, Annas P, 

Hotopf M, Dobson RJB, and RADAR-CNS Consortium. Predicting Depressive 

Symptom Severity Through Individuals’ Nearby Bluetooth Device Count Data 

Collected by Mobile Phones: Preliminary Longitudinal Study. JMIR Mhealth Uhealth 

2021;9(7): e29840 

Background: Research in mental health has found associations between depression 

and individuals’ behaviors and statuses, such as social connections and interactions, 

working status, mobility, and social isolation and loneliness. These behaviors and 

statuses can be approximated by the nearby Bluetooth device count (NBDC) detected 

by Bluetooth sensors in mobile phones.  
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Objective: This study aimed to explore the value of the NBDC data in predicting 

depressive symptom severity as measured via the 8-item Patient Health Questionnaire 

(PHQ-8). 

Methods: The data used in this paper included 2886 biweekly PHQ-8 records collected 

from 316 participants recruited from three study sites in the Netherlands, Spain, and the 

United Kingdom as part of the EU Remote Assessment of Disease and Relapse-Central 

Nervous System (RADAR-CNS) study. From the NBDC data 2 weeks prior to each 

PHQ-8 score, we extracted 49 Bluetooth features, including statistical features and 

nonlinear features for measuring the periodicity and regularity of individuals’ life 

rhythms. Linear mixed-effect models were used to explore associations between 

Bluetooth features and the PHQ-8 score. We then applied hierarchical Bayesian linear 

regression models to predict the PHQ-8 score from the extracted Bluetooth features.  

Results: A number of significant associations were found between Bluetooth features 

and depressive symptom severity. Generally speaking, along with depressive symptom 

worsening, one or more of the following changes were found in the preceding 2 weeks 

of the NBDC data: (1) the amount decreased, (2) the variance decreased, (3) the 

periodicity (especially the circadian rhythm) decreased, and (4) the NBDC sequence 

became more irregular. Compared with commonly used machine learning models, the 

proposed hierarchical Bayesian linear regression model achieved the best prediction 

metrics (R2=0.526) and a root mean squared error (RMSE) of 3.891. Bluetooth features 

can explain an extra 18.8% of the variance in the PHQ-8 score relative to the baseline 

model without Bluetooth features (R2=0.338, RMSE=4.547).  
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Conclusions: Our statistical results indicate that the NBDC data have the potential to 

reflect changes in individuals’ behaviors and statuses concurrent with the changes in 

the depressive state. The prediction results demonstrate that the NBDC data have a 

significant value in predicting depressive symptom severity. These findings may have 

utility for the mental health monitoring practice in real-world settings. 
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4.1 Introduction  

Existing studies have demonstrated that depression is significantly associated with 

individuals’ behaviors and statuses, such as social connections and interactions, 

working status, mobility, and social isolation and loneliness (Burgess et al., 2000; 

Cacioppo et al., 2006; Lampinen & Heikkinen, 2003; Rizvi et al., 2015). For example, 

individuals reporting fewer social network connections or less social support tend to 

have higher depressive symptomatology (Cacioppo et al., 2006). As the depressive 

mood and medical comorbidity can make people unable to work, the unemployment 

rate in depression is high (Rizvi et al., 2015). Reduced mobility and physical activity 

are associated with depressive symptoms (Lampinen & Heikkinen, 2003). Loneliness 

is a specific risk factor for depression, and a significant proportion of suicides have a 

history of social isolation (Burgess et al., 2000; Cacioppo et al., 2006). Although these 

findings have been replicated in different populations, these studies relied on participant 

self-report, which is susceptible to recall bias and typically does not capture dynamic 

information (Boonstra et al., 2017). 

Mobile phone technology provides an unobtrusive, continuous, and cost-efficient 

means to capture individuals’ daily behaviors and statuses using a number of embedded 

sensors, such as accelerometers, GPS sensors, and Bluetooth sensors (Rohani et al., 

2018). The embedded Bluetooth sensor can be used to record individuals’ local 

proximity information, such as the nearby Bluetooth device count (NBDC) that 

includes the Bluetooth signal of other phone users (Yan et al., 2013). The continuously 
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recorded NBDC data represents a mixed signal that has been used to estimate 

individuals’ behaviors and statuses, including face-to-face social interactions (Dissing 

et al., 2019; Eagle et al., 2009; Eagle & (Sandy) Pentland, 2006), working status (Clark 

et al., 2018), mobility (Nordström et al., 2007), and isolation and loneliness (Doryab et 

al., 2019; Wu et al., 2021). Therefore, the NBDC data have the potential to reflect 

changes in people’s behaviors and statuses during the depressive state.  

There have been a few studies exploring the relationship between the NBDC data and 

depression directly. Wang et al found a negative association (r=−0.362, P=.03) between 

the NBDC and self-reported depressive symptoms on the StudentLife data set, which 

contained mobile phone data from 48 students across a 10-week term at Dartmouth 

College (Wang et al., 2014). Boonstra et al illustrated the feasibility of collecting nearby 

Bluetooth device information for the depression recognition task, but they did not 

provide further findings (Boonstra et al., 2017). 

Several recent studies have investigated the relationships between Bluetooth proximity 

data and mental health (Bogomolov et al., 2013, 2014; Moturu et al., 2011). Moturu et 

al found that individuals with lower sociability (estimated by the NBDC) tend to report 

lower mood more often (Moturu et al., 2011). Bogomolov et al established machine 

learning models to recognize happiness and stress with features of Bluetooth records, 

calls, and text messages, which obtained accuracy rates of 80.81% and 72.28%, 

respectively (Bogomolov et al., 2013, 2014). The above three studies were all 

performed on the “Friends and Family” data set, including 8 weeks of mobile phone 
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data from 117 participants living in a major US university’s married graduate student 

residency.  

Previous studies (Bogomolov et al., 2013, 2014; Moturu et al., 2011; Wang et al., 2014) 

have been performed on relatively small (approximately 100 participants) 

homogeneous (e.g., university students) cohorts of participants over relatively short 

periods (8-10 weeks), which may limit their generalizability. Besides, Bluetooth 

features used in these studies have been limited to basic statistical features (e.g., sum, 

mean, and standard deviation), which are unable to characterize some nonlinear aspects 

(such as complexity, regularity, and periodicity) of the Bluetooth data. These nonlinear 

characteristics can reflect individuals’ life rhythms, such as circadian and social 

rhythms, which are affected by depressive symptoms (Walker et al., 2020). Therefore, 

the associations between the NBDC data and depression are yet to be fully explored.  

In this paper, we aimed to explore the value of the NBDC data in predicting self-

reported depressive symptom severity in a relatively large cohort of individuals with a 

history of recurrent major depressive disorder. Our first objective was to explore the 

associations between statistical Bluetooth features and depressive symptom severity. 

Our second objective was to extract nonlinear features for quantifying complexity, 

regularity, and periodicity from the NBDC data and test their associations with 

depression. The third objective was to leverage appropriate machine learning models 

to predict the severity of depressive symptoms using extracted Bluetooth features. 
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4.2 Methods 

4.2.1 Data Set 

Study Participants and Settings 

The data used in this study were collected from a major EU Innovative Medicines 

Initiative (IMI) research program Remote Assessment of Disease and Relapse-Central 

Nervous System (RADAR-CNS) (Khoulji et al., 2017). The project aimed to 

investigate the use of remote measurement technologies (RMTs) to monitor people with 

depression, epilepsy, and multiple sclerosis in real-world settings. The study protocol 

for the depression component (Remote Assessment of Disease and Relapse-Major 

Depressive Disorder; RADAR-MDD) has been described in detail by Matcham et al 

(Matcham et al., 2019). The RADAR-MDD project aimed to recruit 600 participants 

with a recent history of depression from three study sites in Spain (Centro de 

Investigación Biomédican en Red [CIBER], Barcelona), the Netherlands (Vrije 

Universiteit Medisch Centrum [VUmc], Amsterdam]), and the United Kingdom 

(King’s College London [KCL]). Recruitment procedures varied slightly across sites 

with eligible participants identified through existing research infrastructures (in KCL 

and VUmc) where consent to be contacted for research purposes exists; advertisements 

in general practices, psychologist practices, and newspapers; Hersenonderzoek.nl 

(https://hersenonderzoek.nl), a Dutch online registry (VUmc); and mental health 

services (in KCL and CIBER) (Matcham et al., 2019).  
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Participants were asked to install passive and active remote monitoring technology 

(pRMT and aRMT, respectively) apps and use an activity tracker for up to 2 years of 

follow-up. Many categories of passive and active data were collected and uploaded to 

an open-source platform, RADAR-base (Ranjan et al., 2019).  

As the purpose of this paper was to explore the value of the NBDC data in predicting 

self-reported depressive symptom severity, we focused on the NBDC data, 8-item 

Patient Health Questionnaire (PHQ-8) data (Kroenke et al., 2009), and baseline 

demographics. However, according to our previous research, the COVID-19 pandemic 

and related lockdown policies greatly impacted the behaviors (particularly mobility, 

social interactions, and working environment [working from home]) of European 

people (Sun et al., 2020). To exclude the impact of the COVID-19 pandemic, we 

performed a preliminary analysis with the data before February 2020.  

PHQ-8 Data 

The variability of each participant’s depressive symptom severity was measured via the 

PHQ-8, conducted by mobile phones every 2 weeks. The PHQ-8 score ranges from 0 

to 24 (increasing severity) (Kroenke et al., 2009). According to the PHQ-8 score, the 

severity of depression can usually be divided into the following five levels: 

asymptomatic (PHQ-8 <5), mild (5 ≤ PHQ-8 < 10), moderate (10 ≤ PHQ-8 < 15), 

moderately severe (15 ≤ PHQ-8 < 20), and severe (PHQ-8 ≥20) (Kroenke et al., 2009). 
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NBDC Data 

The RADAR-base pRMT app scanned other Bluetooth devices in the participant’s 

physical proximity once every hour. To avoid privacy leaks from participants and 

passers, the Media Access Control (MAC) address and types of Bluetooth devices were 

not recorded in this study. The NBDC was uploaded to the RADAR-base platform for 

further analyses.  

Figure 4.1. A schematic diagram showing an individual’s Nearby Bluetooth devices 

count (NBDC) in different scenarios in daily activities and life. 

 

Figure 4.1 is a schematic diagram showing an individual’s NBDC in different scenarios 

in daily activities and life. At home, the NBDC is related to the number of family 

members and Bluetooth devices in the house, reflecting the participant’s connections 

with family (whether living alone) and the number of other Bluetooth devices. In public 

transportation (such as the train, subway, and bus), the NBDC is affected by the number 

of surrounding passengers’ Bluetooth devices, reflecting the participant’s social 

connections with strangers. Studies have shown that whether feeling comfortable in the 

presence of strangers is related to the intensity of social connections (Lee et al., 2001). 
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In the company, the NBDC can reflect the participant’s social connections and 

interactions with co-workers. After work, the NBDC can reflect whether the participant 

joins other social activities, such as going to the park or bar. Therefore, the NBDC data 

contain information about participants’ social connections and interactions with family, 

friends, co-workers, and strangers, and the data can also reflect participants’ time at 

home, mobility, social isolation, and working status, as well as the number of other 

Bluetooth devices in the house and working environment.  

Figure 4.2 shows an example of two NBDC sequences collected over 14 days (336 

hours) before two PHQ-8 records from one participant at two different depression 

severity levels (mild vs moderately severe).  

Figure 4.2. An example of two 14-days nearby Bluetooth devices count (NBDC) 

sequences from the same participant at the mild depression level (left) and moderately 

severe level (right). 
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Demographics 

Participants’ demographics were recorded during the enrollment session. According to 

previous studies (Akhtar-Danesh & Landeen, 2007; Aluoja et al., 2004), baseline age, 

gender, and education level were considered as covariates in our analyses. Due to the 

different educational systems in the three countries in our data set, we used the number 

of years in education to represent education level. 

Data Inclusion Criteria and Data Preprocessing 

For each PHQ-8 record, we considered a “PHQ-8 interval” of 14 days before the day 

when the participant fills in the PHQ-8 questionnaire, as the PHQ-8 score is used to 

represent the depressive symptom severity of the participant for the past 2 weeks. To 

reduce the impact of the COVID-19 pandemic and missing data on our analysis, we 

specified the following two data inclusion criteria:  

1. As mentioned in the data set section, to exclude the impact of the COVID-19 

pandemic, we restricted our analysis to PHQ-8 records prior to February 2020.  

2. Saeb et al (Saeb et al., 2015) and Farhan et al (Farhan et al., 2016) used 50% as each 

day’s completeness threshold for passive data. In our data set, 89.62% of days have 50% 

(12 hours) or more of the NBDC data. We considered one day as a “valid day” if it 

contained at least 12 hours of the NBDC data. Then, we empirically selected PHQ-8 

intervals with at least 10 valid days as valid PHQ-8 intervals to retain the majority 

(81.78%) of PHQ-8 intervals. 
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For the NBDC sequence in each selected PHQ-8 interval, we used linear interpolation 

to impute the missing hours in all valid days and discarded the NBDC data that did not 

belong to a valid day. The “NBDC sequence” in the rest of this paper refers to the 

preprocessed NBDC data in the 14-day PHQ-8 interval. 

4.2.2 Feature Extraction 

According to past Bluetooth-related research (Bogomolov et al., 2013, 2014; Moturu et 

al., 2011; Wang et al., 2014) and research on nonlinear features of signal processing 

(Broughton & Bryan, 2018; Costa et al., 2005), we extracted 49 Bluetooth features from 

the NBDC sequence in the PHQ-8 interval in the following three categories: second-

order statistics, multiscale entropy (MSE), and frequency domain (FD). Table 4.1 

summarizes all Bluetooth features extracted in this paper. 

Second-Order Statistical Features 

We first calculated four daily features (max, min, mean, and standard deviation) of daily 

NBDC data from all valid days in the PHQ-8 interval. For each daily feature, we 

calculated four second-order features (max, min, mean, and standard deviation) to 

reflect the amount and variance of the NBDC in the PHQ-8 interval. These features 

were denoted in the following format: [Second-order feature]_[Daily feature]. For 

example, the average value of the daily maximum number of the NBDC in the PHQ-8 

interval was denoted as Mean_Max. A total of 16 second-order statistical features were 

extracted. 
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Nonlinear Bluetooth Features 

The second-order statistical features can only reflect the amount (max, min, and mean) 

and variance (standard deviation) of the NBDC data. To exploit more information 

embedded in the NBDC data, we proposed MSE and FD features to measure the 

nonlinear characteristics, such as regularity, complexity, and periodicity, of the NBDC 

sequence.  

a) Multiscale Entropy Features 

MSE analysis has been used to provide insights into the complexity and periodicity of 

signals over a range of timescales since the method was proposed by Costa et at (Costa 

et al., 2005). It has been widely used in the field of signal analysis, such as heart rate 

variability analysis (Silva et al., 2015), electroencephalogram analysis (T. Mizuno et 

al., 2010), and gait dynamics analysis (Costa et al., 2003). Compared with other entropy 

techniques (e.g., sample entropy and approximate entropy), the advantage of MSE 

analysis is that the assessments of complexity at shorter and longer timescales can be 

analyzed separately (Busa & van Emmerik, 2016). The MSE at short timescales reflects 

the complexity of the sequence. The larger the MSE at short timescales, the more 

chaotic and irregular the signal. The MSE at relatively long timescales assesses 

fluctuations occurring at a certain period, reflecting the periodicity of the signal.  

To explore the complexity and periodicity of the NBDC sequence on different 

timescales (from 1 hour to 24 hours), we calculated MSE features of the NBDC 

sequences from scale 1 to scale 24, denoted as MSE_1, MSE_2, …, MSE_24. Figure 4.3 
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shows an example of MSE features calculated on two NBDC sequences at different 

depression severity levels from the same participant shown in Figure 4.2. In this 

example, the NBDC sequence at the mild depression level (PHQ-8=7) has lower MSE 

at relatively short timescales (scale 1-3) and higher MSE at relatively long timescales 

than the sequence at the moderately severe depression level (PHQ-8=15). This 

indicated that this participant’s NBDC sequence at the mild depression level was more 

regular and periodic than the NBDC sequence at the moderately severe depression level. 

Figure 4.3. An example of multiscale entropy (scale 1- 24) of two 14-days nearby 

Bluetooth device count (NBDC) sequences at the mild depression level (blue) and the 

moderately severe level (orange) from the same participant in Figure 4.2. 

 

b) FD Features 

FD analysis has been widely used in the signal processing field, especially for signals 

with periodic characteristics (Broughton & Bryan, 2018). People’s behaviors follow a 
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quasiperiodic routine, such as sleeping at night, working on weekdays, and gathering 

with friends on weekends (K. Mizuno, 2014; Walker et al., 2020). We therefore 

leveraged FD analysis to explore the periodic patterns in the NBDC data. Fast Fourier 

transformation (FFT) was performed to transform the NBDC sequence from the time 

domain to the FD. We set the sample rate to 24 hours, and then, the spectrum generated 

by FFT had the frequency axis scaled to reflect cycles per day. 

Figure 4.4. An example of a 14-days NBDC sequence in the time domain (left) and 

its spectrum in the frequency domain (right). 

 

Figure 4.4 is an example of a NBDC sequence in the time domain and its spectrum in 

the FD. According to the spectrum’s definition, spectrum power around 1 cycle per day 

reflects the participant’s circadian rhythm (approximately 24-hour rhythm) (Walker et 

al., 2020). To explore the periodic rhythms of different period lengths, we empirically 

defined the following three frequency intervals: low frequency (LF) (0-0.75 cycles/day), 

middle frequency (MF) (0.75-1.25 cycles/day), and high frequency (HF) (>1.25 
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cycles/day). The power in MF represents the circadian rhythm. Similarly, the power in 

LF represents the long-term (>1 day) rhythm, while the power in HF represents the 

short-term (<1 day) rhythm. 

The sums of spectrum power in these three frequency intervals were calculated and 

denoted as LF_sum, MF_sum, and HF_sum, respectively. The percentages of spectrum 

powers in these three frequency intervals to the total spectrum power were extracted 

and denoted as LF_pct, MF_pct, and HF_pct, respectively. To estimate the complexity 

and regularity of the spectrum, we calculated spectral entropy (SE) (Shannon, 1948) in 

these three intervals, denoted as LF_se, MF_se, and HF_se, respectively.  
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Table 4.1. Summary of 49 Bluetooth features used in this paper and their short 

descriptions. 

Category Abbreviation Description Number of 

features 

(N=49) 

Statistical 

features 

[Second-order 

feature]_[Daily feature], 

eg, Max_Mean 

Second-order features (max, min, 

mean, and standard deviation) 

calculated in the PHQ-8a interval 

based on daily statistical 

Bluetooth features (max, min, 

mean, and standard deviation). 

16 

Multiscale 

entropy (MSE) 

MSE_1, MSE_2, …, 

MSE_24 

Multiscale entropy of the NBDCb 

sequences from scale 1 to scale 

24. 

24 

Frequency 

domainc 

LF_sum, MF_sum, 

HF_sum 

The sums of spectrum power in 

LF, MF, and HF. 

3 

Frequency 

domain 

LF_pct, MF_pct, HF_pct The percentages of spectrum 

power in LF, MF, and HF to the 

total spectrum power. 

3 

Frequency 

domain 

LF_se, MF_se, HF_se Spectral entropy in LF, MF, and 

HF. 

3 

aPHQ-8: 8-item Patient Health Questionnaire. 
bNBDC: nearby Bluetooth device count. 
cLF: low frequency (0-0.75 cycles/day); MF: middle frequency (0.75-1.25 

cycles/day); HF: high frequency (>1.25 cycles/day). 

4.2.3 Statistical Methods 

The linear mixed-effect model contains both fixed and random effects, allowing for 

both within-participant and between-participants variations over repeated 
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measurements (Laird & Ware, 1982). Therefore, we used linear mixed-effect models 

in our statistical analyses. 

Pairwise Association Analyses 

To explore the association between each Bluetooth feature and depression severity, a 

series of pairwise linear mixed-effect models with random participant intercepts were 

performed to regress the PHQ-8 score with each of the Bluetooth features. All mixed-

effect models, baseline age, gender, and years in education were considered as 

covariates. The z-test was used to evaluate the statistical significance of the coefficient 

of each model. The Benjamini-Hochberg method (Benjamini & Hochberg, 1995) was 

used for correction of multiple comparisons, and the significant level for the adjusted P 

value was set to .05. All linear mixed-effect models were implemented by using the R 

package “lmerTest,” and the Benjamini-Hochberg method was performed by using the 

command “p.adjust” in R software (R Foundation for Statistical Computing). 

Likelihood Ratio Test 

One objective of this paper was to assess what value these Bluetooth features provide 

beyond other information that might be readily available, such as baseline 

demographics. The likelihood ratio test is a statistical test of goodness of fit between 

two nested models (Glover & Dixon, 2004). If the model with more parameters fits the 

data significantly better, it indicates that additional parameters provide more 

information and improve the model’s fitness (Glover & Dixon, 2004). Therefore, we 
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built three nested linear mixed-effect models with random participant intercepts (model 

A, model B, and model C). The predictors of model A were only demographics. The 

predictors of model B were demographics and 16 second-order statistical features. The 

predictors of model C were demographics and all 49 Bluetooth features. The likelihood 

ratio tests were performed to test whether these Bluetooth features have a significant 

value in fitting the PHQ-8 score regression model. 

4.2.4 Prediction Models 

Another objective of this paper was to examine whether it is possible to predict 

participants’ depressive symptom severity using Bluetooth features combined with 

some known information (demographics and previous PHQ-8 scores). A subset of 

PHQ-8 intervals was selected for the prediction task based on the following two 

additional criteria: 

1. To ensure that each participant had sufficient PHQ-8 intervals for the time-series 

cross-validation (described in the following model evaluation section), the number of 

valid PHQ-8 intervals for each participant should be at least 3. 

2. To test whether the model can predict variability of depression severity, the 

difference of one participant’s PHQ-8 scores should be more than or equal to 5 

(clinically meaningful change) (Saeb et al., 2016). 



144 

 

Hierarchical Bayesian Linear Regression Model 

The hierarchical Bayesian approach is an intermediate method compared to the 

completely pooled model and individualized model, capturing the whole population’s 

characteristics while allowing individual differences (Gelman et al., 2013). We 

leveraged the hierarchical Bayesian linear regression model to predict participants’ 

PHQ-8 scores using Bluetooth features, demographics (age, gender, and years in 

education), and the last observed PHQ-8 score. In this study, we implemented the 

hierarchical Bayesian linear regression using the “PyMC3” package (Salvatier et al., 

2016) in Python. To compare the results with other commonly used machine learning 

models, we also implemented the LASSO regression model (Tibshirani, 1996) and 

XGBoost regression model (Chen & Guestrin, 2016) using the Scikit-learn machine 

learning library (Pedregosa et al., 2011) in Python. As depressive mood has a strong 

autocorrelation (Busk et al., 2020), we considered a baseline hierarchical Bayesian 

linear regression model with the last observed PHQ-8 score and demographics as 

predictors. 

Model Evaluation 

We selected root mean squared error (RMSE) and the predicted coefficient of 

determination (R2) as two metrics for model discrimination evaluation. As we used the 

temporal data, “future data” should not predict “past data.” Therefore, only the data 

observed before test data can be included in the training set. We applied leave-all-out 

(LAO) and leave-one-out (LOO) time-series cross-validation (Busk et al., 2020). As 
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the number of PHQ-8 intervals of each participant in our data was different, we made 

some minor modifications to these two schemes (Figure 4.5).  

a) LAO Time-Series Cross-Validation  

Each participant’s data were divided into a sequence of t consecutive same-sized test 

sets, where the size of each test set is the length of one PHQ-8 interval (14 days) and t 

is the number of PHQ-8 intervals of this participant. The corresponding training set 

included all PHQ-8 intervals before each test set. Then, test sets and training sets were 

pooled across all participants. This process generated T-1 test and training set pairs (no 

prior data to predict the first PHQ-8 score), where T is the maximum number of PHQ-

8 intervals of one participant in our data set (t≤T).  

b) LOO Time-Series Cross-Validation  

Each participant’s data were divided into a training set and a test set. The training set 

was constructed using the first two PHQ-8 intervals of a participant, with the test set 

containing the rest of the participant’s PHQ-8 intervals. Then, the training set was 

pooled with all data from all other participants. This scheme generated J training and 

test set pairs, where J is the number of participants in our data set.  
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Figure 4.5. Two schematic diagrams of leave-all-out time-series cross-validation 

(left) and leave-one-out time-series cross-validation (right), where T is the maximum 

number of PHQ-8 intervals of one participant, J is the number of participants, the 

training set is indicated by blue, the test set is indicated by orange, and unused data is 

indicated by green. 

 

4.3 Results 

4.3.1 Data Summary 

According to our date inclusion criteria, from June 2018 to February 2020, 2886 PHQ-

8 intervals from 316 participants collected from three study sites were selected for our 

analysis. Table 4.2 presents a summary of the demographics and distribution of PHQ-

8 records of all selected participants. Table 4.3 shows the descriptive statistics for all 
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49 Bluetooth features, and Figure 4.6 presents pairwise Spearman correlation 

coefficients between all features. Figure 4.7 presents boxplots of the NBDC for every 

hour in the whole population. 

Table 4.2. Summary of the demographics and 8-item Patient Health Questionnaire 

(PHQ-8) record distribution of all selected participants. 

Characteristic Value 

Number of participants 316 

Demographics  

 Age at baseline, median (Q1, Q3) 51.0 (35.0, 59.0) 

 Female sex, n (%) 234 (74.1%) 

 Number of years in education, median (Q1, Q3) 16.0 (14.0, 19.0) 

PHQ-8a record distribution  

 Number of PHQ-8 intervals 2886 

 Number of PHQ-8 intervals for each participant, 

median (Q1, Q3) 

8.0 (3.0, 14.0) 

 PHQ-8 score, median (Q1, Q3) 9.0 (5.0, 15.0) 

aPHQ-8: 8-item Patient Health Questionnaire. 
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Figure 4.6. A correlation plot of pairwise Spearman correlations between all 49 

Bluetooth features. Definitions of Bluetooth features in this figure are shown in Table 

4.1. 

Figure 4.7. Boxplots of nearby Bluetooth devices count (NBDC) for every hour on 

the whole population. Boxes extend between 25th and 75th percentiles, and green 

solid lines inside the boxes are medians. Note the relative stationary NBDC during the 

night-time hours. 
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Table 4.3. Descriptive statistics for all 49 Bluetooth features. 

Featurea Mean SD Min Q1 Median Q3 Max 

Second-order statistics 
       

 
Max_Max 49.79 48.48 1.00 25.00 40.00 60.00 621.00  
Min_Max 5.09 6.22 0.00 2.00 4.00 6.00 90.00  
Mean_Max 18.56 18.94 0.75 9.23 14.07 21.62 268.29  
Std_Max 13.14 14.05 0.00 6.14 10.45 16.22 195.19  
Max_Min 1.59 2.08 0.00 0.00 1.00 2.00 43.00  
Min_Min 0.06 0.27 0.00 0.00 0.00 0.00 3.00  
Mean_Min 0.58 0.88 0.00 0.00 0.21 0.79 13.71  
Std_Min 0.50 0.62 0.00 0.00 0.42 0.70 11.94  
Max_Std 12.31 12.76 0.34 5.60 9.51 15.39 185.98  
Min_Std 1.20 1.45 0.00 0.56 0.87 1.32 21.61  
Mean_Std 4.55 4.87 0.16 2.17 3.25 5.24 70.65  
Std_Std 3.24 3.71 0.09 1.34 2.43 4.04 62.52  
Max_Mean 9.32 9.34 0.17 4.38 6.88 11.04 136.10  
Min_Mean 1.88 2.14 0.00 0.50 1.42 2.50 32.00  
Mean_Mean 4.42 4.19 0.07 2.19 3.40 5.28 49.55  
Std_Mean 2.13 2.59 0.05 0.84 1.45 2.54 49.37 

Multiscale entropy (MSE) 
       

 
MSE_1 0.80 0.46 0.05 0.42 0.71 1.13 2.44  
MSE_2 0.97 0.54 0.04 0.56 0.85 1.31 3.58  
MSE_3 1.12 0.66 0.09 0.70 1.01 1.42 9.41  
MSE_4 1.23 0.69 0.05 0.82 1.15 1.51 8.83  
MSE_5 1.35 0.82 0.10 0.93 1.27 1.62 8.51  
MSE_6 1.38 0.84 0.08 0.97 1.28 1.63 8.00  
MSE_7 1.47 0.97 0.10 1.01 1.33 1.70 7.72  
MSE_8 1.50 1.07 0.10 1.00 1.30 1.67 7.40  
MSE_9 1.58 1.22 0.10 0.99 1.32 1.72 7.30  
MSE_10 1.58 1.23 0.08 0.97 1.30 1.72 7.08  
MSE_11 1.58 1.29 0.09 0.95 1.25 1.67 7.02  
MSE_12 1.59 1.33 0.10 0.92 1.23 1.66 6.70  
MSE_13 1.74 1.46 0.11 0.98 1.30 1.79 6.55  
MSE_14 1.85 1.53 0.11 1.01 1.36 1.87 6.70  
MSE_15 1.96 1.62 0.13 1.03 1.39 1.95 6.55  
MSE_16 1.98 1.62 0.13 1.03 1.39 1.95 6.40  
MSE_17 2.04 1.67 0.14 1.02 1.39 2.08 6.14  
MSE_18 2.03 1.65 0.15 1.01 1.39 2.08 6.04  
MSE_19 2.09 1.69 0.17 1.01 1.39 2.08 6.04  
MSE_20 2.09 1.67 0.17 0.98 1.39 2.08 5.94  
MSE_21 2.10 1.66 0.18 0.98 1.39 2.20 5.83  
MSE_22 2.13 1.68 0.18 0.98 1.39 2.30 5.83  
MSE_23 2.17 1.69 0.18 0.98 1.39 4.28 5.61  
MSE_24 2.27 1.70 0.20 0.98 1.39 4.28 5.35 
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Feature Mean SD Min Q1 Median Q3 Max 

Frequency domain (FD) 
       

 
LFb_sum 330.66 2469.74 0.05 17.41 53.87 184.80 85956.16  
MFc_sum 157.24 1166.32 0.02 8.16 25.77 83.05 34970.35  
HFd_sum 602.22 3272.44 0.47 55.72 151.74 403.38 64127.16  
LF_pcte 0.25 0.10 0.03 0.17 0.23 0.31 0.63  
MF_pct 0.13 0.10 0.01 0.07 0.11 0.17 0.74  
HF_pct 0.62 0.15 0.12 0.53 0.64 0.72 0.92  
LF_sef 0.83 0.10 0.38 0.78 0.85 0.90 1.00  
MF_se 0.82 0.09 0.40 0.77 0.83 0.88 0.99  
HF_se 0.90 0.04 0.72 0.88 0.90 0.92 0.99 

aDefinitions of Bluetooth features in this table are shown in Table 4.1. 
bLF: low frequency (0-0.75 cycles/day). 
cMF: middle frequency (0.75-1.25 cycles/day). 
dHF: high frequency (>1.25 cycles/day). 
epct: percentage of spectrum power. 
fse: spectral entropy. 

4.3.2 Association Analysis Results 

The significant associations between depression severity (the PHQ-8 score) and 

Bluetooth features are presented in Table 4.4.  

Associations Between the PHQ-8 Score and Second-Order Statistical 

Features  

There were 10 second-order statistical features significantly associated with the PHQ-

8 score. All these significant associations were negative, that is, the larger the value of 

these features, the lower the PHQ-8 score. Notably, Min_Max (the minimum value of 

daily maximum NBDC in the past 14 days) had the strongest association (z=−4.431, 

P<.001), which indicated that participants with a lower PHQ-8 score tended to have 

more daily social activities (such as social interactions and traveling) in the past 2 weeks. 
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In addition, four features related to daily variance (Max_Std, Min_Std, Mean_Std, and 

Std_Std) of the NBDC were all significantly and negatively associated with depression.  

Table 4.4. Coefficient estimates, standard error, z-test statistics, and P values from 

pairwise linear mixed-effect models for exploring associations between Bluetooth 

features and the depressive symptom severity (8-item Patient Health Questionnaire). 

Featurea Estimate SE z score  Adjusted P valueb,c 

Second-order statistics     

 Min_Max −0.052  0.012  −4.431  <.001 

 Mean_max  −0.016  0.006  −2.809  .005 

 Max_Std −0.015  0.006  −2.657  .008 

 Min_Std −0.215  0.056  −3.838  <.001 

 Mean_Std −0.065  0.023  −2.802  .005 

 Std_Std −0.048  0.020  −2.385  .02 

 Max_Mean −0.030  0.008  −3.498  <.001 

 Min_Mean −0.093  0.046  −2.036  .04 

 Mean_Mean −0.083  0.026  −3.225  .001 

 Std_Mean −0.095  0.027  −3.464  .001 

Multiscale entropy 

(MSE) 

       

 MSE_1 0.642  0.225  2.853 .005 

 MSE_2 0.433  0.192  2.255 .02 

 MSE_3 0.401  0.202  1.985 .04 

 MSE_16 −0.102  0.042  −2.429 .01 

 MSE_22 −0.123  0.043  −2.860 .005 

Frequency domain (FD)        

 LFd_sum −0.021  0.005  −3.865  <.001 

  MFe_sum −0.067  0.014  −4.766  <.001 

 HFf_sum −0.027  0.010  −2.606  .009 

 MF_pctg −1.834  0.812  −2.259  .02 

 HF_seh 3.821  1.820  2.099  .04 

aDefinitions of Bluetooth features in this table are shown in Table 4.1. 
bOnly significant associations (adjusted P value <.05) are reported. 
cP values were adjusted by the Benjamini-Hochberg method for correction of multiple 

comparisons. 
dLF: low frequency (0-0.75 cycles/day). 
eMF: middle frequency (0.75-1.25 cycles/day). 
fHF: high frequency (>1.25 cycles/day). 
gpct: percentage of spectrum power. 
hse: spectral entropy. 
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Associations Between the PHQ-8 Score and Multiscale Entropy Features  

MSE at scale 1, scale 2, and scale 3 (MSE_1, MSE_2, and MSE_3) were significantly 

and positively associated with the PHQ-8 score, while MSE at scale 16 and scale 22 

(MSE_16 and MSE_22) were significantly and negatively associated with depressive 

symptom severity. According to the explanations of MSE we mentioned in the Methods 

section, these associations indicated that participants with more irregular and chaotic 

NBDC sequences were likely to have more severe depressive symptoms, while those 

with periodic and regular NBDC sequences may have lower PHQ-8 scores.  

Associations Between the PHQ-8 Score and FD Features 

There were five FD features significantly associated with the PHQ-8 score. The 

spectrum power was related to both the amount and frequency components of the 

NBDC sequence, so it had relatively strong correlations with second-order statistical 

features (Figure 4.6). Therefore, the spectrum power of three frequency intervals 

(LF_sum, MF_sum, and HF_sum) were all significantly and negatively associated with 

the PHQ-8 score. Among them, the MF_sum had the strongest association (z=−4.766, 

P<.001) with depression, which indicated that the circadian rhythm of the NBDC 

sequence is important to reflect the severity of depression. Likewise, the percentage of 

middle-frequency power (MF_pct) was significantly and negatively associated with 

depressive symptom severity. The spectral entropy of HF (HF_se) was significantly 

and positively associated with depression. This indicated that participants with irregular 

short-term (<1 day) rhythms were likely to have more severe depressive symptoms. 
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4.3.3 Results of Likelihood Ratio Tests 

The results of the likelihood ratio tests are presented in Table 4.5. Model B (with 

second-order statistical Bluetooth features) and model C (with all Bluetooth features) 

fitted data significantly better than model A (without Bluetooth features), indicating 

that Bluetooth features could improve the statistical model significantly. The goodness 

of fit of model C was significantly better than that of model B, indicating that nonlinear 

Bluetooth features (MSE and FD features) provided additional information to the 

statistical model. 

Table 4.5. Results of the likelihood ratio tests of the three nested linear mixed-effect 

models. 

Model Difference of 

parameters 

Chi-square
a P value 

Model Bb vs model Ac 16 31.04 .01 

Model Cd vs model A 49 135.19 <.001 

Model C vs model B 33 104.15 <.001 

aThe critical values of the likelihood ratio statistic are as follows: χ2
0.05(16)=26.296, 

χ2
0.05(33)=47.400, and χ2

0.05(49)=66.339.  
bPredictors of model B: demographics + 16 second-order statistical features. 

cPredictors of model A: demographics.  
dPredictors of model C: demographics + 16 second-order statistical features + 24 

multiscale entropy features + 9 frequency domain features. 

4.3.4 Performance of Prediction Models 

A subset of 183 participants was selected for the prediction models. The results of the 

LAO and LOO time-series cross-validation are presented in Table 4.6. The R2 score of 

the baseline model was 0.338 in LAO time-series cross-validation, which showed that 

more than 30% variance could be explained by the last observed PHQ-8 score and 
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baseline demographics. In LOO time-series cross-validation, the R2 score of the 

baseline model was negative, which indicated that the baseline model did not explain 

any variance in the LOO time-series cross-validation. To assess the improvement from 

nonlinear Bluetooth features, we tested the hierarchical Bayesian model with and 

without nonlinear Bluetooth features separately. 

Table 4.6. Results of the leave-all-out time-series cross-validation and leave-one-out 

time-series cross-validation of the hierarchical Bayesian linear regression model, 

commonly used machine learning models, and the baseline model.  

 

Model Leave-all-out Leave-one-out 

R2 RMSEa R2 RMSE 

Baseline modelb  0.338  4.547  −0.074  5.802  

LASSO regression 0.458  4.114  0.144  5.178  

XGBoost regression 0.464  4.092  0.346  4.523  

Hierarchical Bayesian linear (second-

order statistical features) 

0.481 4.026 0.353 4.501 

Hierarchical Bayesian linear (all 

Bluetooth features) 

0.526  3.891  0.387  4.426  

aRMSE: root mean squared error. 
bThe baseline model is the hierarchical Bayesian linear regression model with only the 

last observed 8-item Patient Health Questionnaire score and demographics as 

predictors. 

 

In the subset, the maximum number of PHQ-8 intervals of one participant was 27, so 

the LAO time-series cross-validation went through T-1=26 iterations. The hierarchical 

Bayesian linear regression model with all Bluetooth features achieved the best result 

(R2=0.526, RMSE=3.891), beating the LASSO and XGBoost regression models. 
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Compared with the result of the baseline model (R2=0.338), the improvement in the R2 

score was 0.188, which means the Bluetooth features explained an additional 18.8% of 

data variance. The nonlinear Bluetooth features explained an additional 4.5% of data 

variance in the hierarchical Bayesian model. 

The number of subset participants was 183, so J=183 iterations of the LOO time-series 

cross-validation were performed. The hierarchical Bayesian linear model with all 

Bluetooth features had the best performance (R2=0.387, RMSE=4.426), but the result 

was close to that of the XGBoost regression model (R2=0.346, RMSE=4.523).  

The performance of the hierarchical Bayesian linear regression model evaluated by the 

LAO cross-validation was better than the LOO cross-validation performance. One 

potential reason is that only the first two PHQ-8 intervals of one participant were used 

for training in the LOO cross-validation, which may have caused the model to underfit 

the patterns at the participant level. 

4.4 Discussion 

4.4.1 Principal Findings 

This paper explored the value of the NBDC data in predicting depression severity. 

Compared with previous Bluetooth-related studies (Bogomolov et al., 2013, 2014; 

Moturu et al., 2011; Wang et al., 2014), our study was performed on a larger (N=316) 

multicenter data set with a longer follow-up (median 4 months). We extracted 49 

features from the NBDC sequences in the following three categories: second-order 
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statistical features, MSE features, and FD features. To the best of our knowledge, this 

is the first time that MSE and FD features have been used in NBDC and depression data 

analyses. According to the results of association analyses (Table 4.4), when depression 

symptoms worsened (increase in the PHQ-8 score), one or more of the following 

changes were seen in the preceding 14 days of the NBDC sequence: (1) the amount 

decreased, which is consistent with the finding by Wang et al (Wang et al., 2014), (2) 

the variance decreased, (3) the periodicity (especially the circadian rhythm) decreased, 

and (4) the NBDC sequence became more irregular and chaotic. 

These changes in the NBDC data can be explained by depression symptoms. The main 

manifestations of depression include negative feelings (such as sadness, guilt, stress, 

and tiredness) and loss of interest or pleasure (World Health Organization, 2017). This 

may lead to changes in behaviors, such as increased time at home (Chow et al., 2017; 

Saeb et al., 2015), decreased mobility (Lampinen & Heikkinen, 2003; Saeb et al., 2015), 

loss of the ability to work or study (Rizvi et al., 2015; World Health Organization, 2017), 

reduced intensity of social interactions (Cacioppo et al., 2006), unstable and irregular 

sleep (Zhang et al., 2021), and decreased engagement in activities (Goldberg et al., 

2002). The increased time at home, inability to work or study, and diminished social 

interactions are reflected in the reduced amount of the NBDC sequence. The decreased 

mobility and engagement in activities may be possible reasons why participants with 

higher PHQ-8 scores have lower variance-related features (Max_Std, Min_Std, 

Mean_Std, and Std_Std). Depression also may lead to misalignment of the circadian 

rhythm and make people’s life rhythms (such as sleep rhythms and social rhythms) 
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more irregular (Walker et al., 2020). This can be reflected in reduced periodicity and 

increased irregularity of the NBDC sequence. Saeb et al (Saeb et al., 2015) and Farhan 

et al (Farhan et al., 2016) found similar findings in GPS data, and showed that the 

circadian rhythm of the GPS signal was significantly and negatively correlated with 

depression. 

From the perspective of the statistical model, Bluetooth features extracted in this paper 

significantly improved the goodness of fit for the PHQ-8 score, and nonlinear Bluetooth 

features (MSE and FD features) can provide additional information to second-order 

statistical features (Table 4.5). From the perspective of the prediction model, these 49 

Bluetooth features explained an extra 18.8% of the variance in the PHQ-8 score relative 

to the baseline model, containing only the last PHQ-8 score and demographics, and 

MSE and FD features explained an extra 4.5% of data variance in the hierarchical 

Bayesian model (Table 4.6). From the perspective of the correlations between 

Bluetooth features (Figure 4.6), we can observe that, except for three FD features 

related to the spectrum power that had relatively strong correlations with second-order 

statistical features, the correlations between other nonlinear Bluetooth features and 

second-order statistical features were not obvious. This indicated that the MSE and FD 

features captured dimensions of information to second-order statistical features.  

In our prediction model, the hierarchical Bayesian linear regression model achieved the 

best results in both the LAO and LOO time-series cross-validation. Compared with 

other models, one of the advantages of the hierarchical Bayesian model is that it 

performs individual predictions while considering the population’s common 
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characteristics (Gelman et al., 2013). Therefore, the hierarchical Bayesian model can 

be considered a suitable prediction modelling method for longitudinal data. The LOO 

time-series cross-validation results illustrated that the hierarchical Bayesian model 

could predict depression for participants with few observations (only two PHQ intervals 

in the training set) that overcomes the cold start problem. The hierarchical Bayesian 

linear model achieved a better result in the LAO time-series cross-validation, which 

indicated that the prediction results gradually became more accurate and individualized 

when each participant had more data available in the training set. 

4.4.2 Limitations 

The RADAR-MDD project was designed for long-term monitoring (up to 2 years) and 

collecting many other passive data, such as GPS data, acceleration data, app usage, and 

screen lightness, which need to be collected simultaneously through the mobile phone. 

Therefore, to avoid excessive battery consumption, nearby Bluetooth devices were 

scanned hourly in this study. However, some past studies suggested scanning nearby 

Bluetooth devices every 5 minutes to achieve high enough temporal resolution 

(Bogomolov et al., 2014; Eagle & (Sandy) Pentland, 2006). Although hourly NBDC 

data can also reflect individuals’ behaviors and statuses, our lower data resolution may 

cause the loss of some dynamic information. On the other hand, using the relatively low 

resolution enabled us to collect multimodal data without excessive battery consumption. 

As the NBDC data are related to individuals’ movement and location information, we 
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will combine the NBDC data with GPS and acceleration data for future analysis to 

understand the context of the Bluetooth data. 

As we mentioned in the Methods section, the MAC addresses and types of Bluetooth 

devices were not recorded for private issues. This made it impossible to distinguish 

between mobile phones and other Bluetooth devices (such as headphones, printers, and 

laptops), and between strangers’ and acquaintances’ devices. The advantage of the 

NBDC data is that the data contain mixed and rich information. The disadvantage is 

that it is difficult to explain the specific reasons for changes in the NBDC, that is, we 

cannot know whether the changes in the NBDC are caused by social interactions, 

working status, traveling, or isolation. Therefore, this paper did not explain in depth the 

actual meaning behind the Bluetooth features. For this limitation, we plan to use hashed 

MAC addresses in future research. 

For the FD features, the division of the frequency intervals of the spectrum of the 

NBDC sequence in this paper was manually specified by our experience. The purpose 

of extracting these FD features was to prove that the NBDC sequence’s FD has the 

potential to provide more information about individuals’ behaviors and life rhythms. It 

is necessary to discuss the optimal boundaries of frequency intervals of the NBDC data 

in future research. 

This paper applied the hierarchical Bayesian linear regression model to explore the 

linear relationships between Bluetooth features and depression. However, there may be 

nonlinear relationships between social connections and depressive symptom severity. 



160 

 

The Gaussian process (Dearmon & Smith, 2016), using the kernel method to find 

nonlinear relationships, will be considered in future research. 

4.4.3 Conclusions 

Our statistical results indicated that the NBDC data have the potential to reflect changes 

in individuals’ behaviors and statuses during a depressive state. The prediction results 

demonstrated that the NBDC data have significant value in predicting depressive 

symptom severity. The nonlinear Bluetooth features proposed in this paper provide 

additional information to statistical and prediction models. The hierarchical Bayesian 

model is an appropriate prediction model for predicting depression with longitudinal 

data, as both participant-level and population-level characteristics are considered in the 

model. These findings may support the mental health monitoring practice in real-world 

settings. 
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Chapter 5 

Longitudinal Relationships Between 

Depressive Symptom Severity and Phone-

Measured Mobility: Dynamic Structural 

Equation Modeling Study 

This chapter has been published as: 

Zhang Y, Folarin AA, Sun S, Cummins N, Vairavan S, Bendayan R, Ranjan Y, Rashid 

Z, Conde P, Stewart C, Laiou P, Sankesara H, Matcham F, White KM, Oetzmann C, 

Ivan A, Lamers F, Siddi S, Vilella E, Simblett S, Rintala A, Bruce S, Mohr DC, Myin-

Germeys I, Wykes T, Haro JM, Penninx BW, Narayan VA, Annas P, Hotopf M, 

Dobson RJ, and RADAR-CNS consortium. Longitudinal Relationships Between 

Depressive Symptom Severity and Phone-Measured Mobility: Dynamic Structural 

Equation Modeling Study. JMIR Ment Health 2022;9(3): e34898 

Background: The mobility of an individual measured by phone-collected location data 

has been found to be associated with depression; however, the longitudinal 

relationships (the temporal direction of relationships) between depressive symptom 

severity and phone-measured mobility have yet to be fully explored. 

Objective: We aimed to explore the relationships and the direction of the relationships 

between depressive symptom severity and phone-measured mobility over time. 
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Methods: Data used in this paper came from a major EU program, called the Remote 

Assessment of Disease and Relapse–Major Depressive Disorder, which was conducted 

in 3 European countries. Depressive symptom severity was measured with the 8-item 

Patient Health Questionnaire (PHQ-8) through mobile phones every 2 weeks. 

Participants’ location data were recorded by GPS and network sensors in mobile phones 

every 10 minutes, and 11 mobility features were extracted from location data for the 2 

weeks prior to the PHQ-8 assessment. Dynamic structural equation modeling was used 

to explore the longitudinal relationships between depressive symptom severity and 

phone-measured mobility. 

Results: This study included 2341 PHQ-8 records and corresponding phone-collected 

location data from 290 participants (age: median 50.0 IQR 34.0, 59.0) years; of whom 

215 (74.1%) were female, and 149 (51.4%) were employed. Significant negative 

correlations were found between depressive symptom severity and phone-measured 

mobility, and these correlations were more significant at the within-individual level 

than the between-individual level. For the direction of relationships over time, 

Homestay (time at home) (φ=0.09, P=.01), Location Entropy (time distribution on 

different locations) (φ=−0.04, P=.02), and Residential Location Count (reflecting 

traveling) (φ=0.05, P=.02) were significantly correlated with the subsequent changes 

in the PHQ-8 score, while changes in the PHQ-8 score significantly affected (φ=−0.07, 

P<.001) the subsequent periodicity of mobility. 
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Conclusions: Several phone-derived mobility features have the potential to predict 

future depression, which may provide support for future clinical applications, relapse 

prevention, and remote mental health monitoring practices in real-world settings. 
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5.1 Introduction 

Depression is a prevalent and serious mental health disorder that is a leading cause of 

disability worldwide (Ferrari et al., 2013). It can cause physical health and 

psychological function problems, resulting in loss of productivity and a high social 

burden (Beck et al., 2011; Cuijpers & Schoevers, 2004; Katon & Ciechanowski, 2002; 

Simon, 2003). Currently, diagnosis of depression relies on skilled clinicians and self-

report questionnaires, which have limitations that include subjective bias and dynamic 

information loss (Zhang et al., 2021). Consequently, many people with depression do 

not receive timely and effective treatment (Kessler et al., 2005), and more efficient 

methods for detecting and monitoring depression are needed. Recently, the use of 

mobile phones with embedded sensors for depression detection and monitoring, to 

provide new ways for supporting both depressed people and clinicians, has been 

investigated (Donker et al., 2013).  

We focused on exploring how phone-collected location data could link individuals’ 

mobility and depression. Past survey-based studies found that mobility is significantly 

and negatively associated with depression (Perrino et al., 2010; Roshanaei-Moghaddam 

et al., 2009; Weyerer & Kupfer, 1994). Several longitudinal survey–based studies 

reported a bidirectional relationship between depression and mobility over time, that is, 

decreased mobility worsened subsequent depressive symptoms and vice versa (Perrino 

et al., 2010; Roshanaei-Moghaddam et al., 2009). If the changes in mobility that occur 

before changes in depression can be captured by mobile phone technologies, early 
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intervention can take place, which could prevent depression relapse or deterioration. 

Therefore, it is valuable to investigate relationships between depressive symptom 

severity and phone location data over time. 

In recent years, there have been several studies (Ben-Zeev et al., 2015; Chow et al., 

2017; Farhan et al., 2016; Laiou et al., 2022; Lu et al., 2018; Meyerhoff et al., 2021; 

Pratap et al., 2019; Saeb et al., 2015, 2016; Wang et al., 2014, 2018) exploring the 

associations between depressive symptom severity and mobility features extracted from 

phone-collected location data that have shown that mobility measured by phones is 

negatively associated with the severity of depressive symptoms which is consistent with 

past survey-based studies; however, not many have explored the direction of the 

relationships between depression and mobility over time. Meyerhoff et al recently 

found that phone-derived mobility features were correlated with subsequent changes in 

depression, but not vice versa (Meyerhoff et al., 2021). However, the autoregressive 

nature of depressive states and mobility levels (Gana et al., 2017; Rhodes & Courneya, 

2003; Wichers, 2014) and the influence of individual differences may affect the results. 

In addition, the limitations of many previous phone-based studies included relatively 

small and homogeneous (e.g., university students) populations and the lack of 

comparison of between-individual and within-individual differences. To address these 

limitations, we aimed to explore the relationships and the direction of relationships over 

time between phone-derived mobility features and depressive symptom severity on a 

large multicenter data set.  
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5.2 Methods 

5.2.1 Study Design 

We used a large longitudinal data set of an EU research program called Remote 

Assessment of Disease and Relapse–Major Depressive Disorder, which explored the 

utility of remote measurement technologies in long-term (up to 2 years) depression 

monitoring (Matcham et al., 2019). We first used existing mobility features and then 

designed several new mobility features, which were extracted from this data set. Then, 

we assessed the relationships and direction of the relationships between depressive 

symptom severity and mobility features over time using dynamic structural equation 

models (Asparouhov et al., 2018). Furthermore, we investigated the effects of 

individual differences (such as demographics) on the models at the between-individual 

level. 

5.2.2 Study Participants and Settings 

All participants in the study had at least one diagnosis of depression in the most recent 

2 years and were recruited from 3 countries (Netherlands, Spain, and the United 

Kingdom); additional details descriptions are reported in (Matcham et al., 2022). 

Participants’ passive data (e.g., location, steps, and sleep) and active data (e.g., 

questionnaires) were respectively collected via passive remote measurement 

technologies and active remote measurement technologies apps provided by an open-

source platform (RADAR-base) (Ranjan et al., 2019). A patient advisory board 
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comprising service users co-developed the study and were involved in the choice of 

measures, the timing, and issues of engagement and in developing the analysis plan.  

5.2.3 Ethics 

Ethical approval was obtained from the Camberwell St. Giles Research Ethics 

Committee (17/LO/1154) in London, from the Fundacio Sant Joan de Deu Clinical 

Research Ethics Committee (CI: PIC-128-17) in London, and from the Medische 

Ethische Toetsingscommissie VUms (2018.012–NL63557.029.17) in the Netherlands. 

5.2.4 Phone Location and Depression Questionnaire Data 

We focused on phone location data and data from the 8-item Patient Health 

Questionnaire (PHQ-8) (Kroenke et al., 2009). The passive remote measurement 

technologies app measured participants’ location coordinates (longitude and latitude) 

using 2 providers (GPS and network sensors) periodically every 10 minutes. To protect 

participants’ private information, raw locations were obfuscated by adding a unique 

and random reference location which was assigned to each participant at the start of the 

study (RADAR-Base, 2022). The participant’s self-reported depressive symptom 

severity was measured via the PHQ-8, with a score between 0 and 24 (Kroenke et al., 

2009), which was assessed through the active remote measurement technologies app 

every 2 weeks (thus, the 2 weeks preceding each PHQ-8 record was the PHQ-8 interval).  
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5.2.5 Data Inclusion Criteria 

Several factors may affect our analysis, such as the COVID-19 pandemic, location data 

accuracy, and missing data. Notably, the COVID-19 pandemic and related lockdown 

policies greatly impacted European people’s mobility behaviors (Sun et al., 2020). 

Therefore, according to suggestions in previous studies (Farhan et al., 2016; Lu et al., 

2018; Saeb et al., 2015) and our experiences, we selected a subset of the data set 

(Matcham et al., 2019) using the 3 criteria: (1) data from before February 2020 (prior 

to COVID-19 interventions in Europe) (Zhang et al., 2021) were included, (2) location 

records with an error larger than 165 meters were removed (Farhan et al., 2016; Lu et 

al., 2018), and (3) the amount of missing location data in a given PHQ-8 interval was 

limited to 50% (Farhan et al., 2016; Lu et al., 2018; Saeb et al., 2015).  

5.2.6 Data Preprocessing 

We calculated the distances between consecutive location records and the instantaneous 

speeds at all location records. The distance between 2 consecutive location records was 

computed by using the Haversine formula (Depp et al., 2019). The instantaneous speed 

was approximated by dividing the distance by the time between 2 consecutive location 

records. We regarded one location record as a stationary point if its instantaneous speed 

was less than 1 km/h; otherwise, we considered it a moving point (Farhan et al., 2016; 

Saeb et al., 2015). 

The second procedure was location clustering. Since the density-based spatial 

clustering of applications with noise method (Ester et al., 1996) can treat low-density 
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location points as outliers, avoiding overestimating the number of locations clusters 

(Farhan et al., 2016), we used this method for location clustering, using 

hyperparameters and the method for handling unequal sampling intervals from (Farhan 

et al., 2016). 

5.2.7 Feature Extraction 

We extracted 11 mobility features (Table 5.1) from location data in each PHQ-8 interval 

(14 days), of which 4 features (3 frequency-domain features to reflect periodic 

characteristics of mobility and 1 feature to represent the number of temporary 

residential locations during the past 14 days) are new. 

Table 5.1. A list of mobility features used in this study and their short descriptions. 

Feature Description 

Location Variance Variance of longitude and latitude coordinates 

Moving Time  Percentage of time spent in moving 

Moving Distance Distance between all location points weighted by available time 

Number of Clusters The number of location clusters found using density-based spatial 

clustering of applications with noise  

Location Entropy Entropy of time distribution over different locations 

Normalized Entropy Location Entropy normalized by the number of clusters 

Homestay Percentage of time spent at home 

Residential Location Count The number of temporary residential locations 

Long-term Rhythm Percentage of frequency bins within the long-term period (>1 day) 

of spectrum for longitude and latitude coordinates 

Circadian Rhythm Percentage of frequency bins within the circadian period (24 

hours) of spectrum for longitude and latitude coordinates 

Short-term Rhythm Percentage of frequency bins within the short-term period (<1 day) 

of spectrum for longitude and latitude coordinates 
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5.2.8 Time-Domain Features 

Location Variance 

The Location Variance represented the variability of each participant’s locations (Saeb 

et al., 2015) and is calculated as log(Var(Lon)+Var(Lat)), where log is the logarithm, 

and Var(Lon) and Var(Lat) represent the variances of the longitude and latitude 

coordinates, respectively, in one PHQ-8 interval. 

Moving Time 

The Moving Time represented the percentage of time that a participant spent in moving 

in one PHQ-8 interval (Saeb et al., 2015). The feature was computed by dividing the 

sum duration for all moving points by the sum of available time in one PHQ-8 interval. 

Moving Distance 

The Moving Distance was adjusted by dividing the total distance by the available time 

(in hours) in one PHQ-8 interval. In previous studies (Saeb et al., 2015, 2016), the total 

distance obtained by accumulating distances between all location records; however, this 

total distance was affected by the missing data rate.  

Number of Clusters 

The number of the unique location clusters that a participant visited in one PHQ-8 

interval was calculated using density-based spatial clustering of applications with noise 

(Farhan et al., 2016).  
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Location Entropy 

Location Entropy represented the distribution of time spent by a participant at different 

location clusters in one PHQ-8 interval (Saeb et al., 2015) and was calculated as 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖𝑙𝑜𝑔 𝑝𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑖

 

where pi is the percentage of time spent at location cluster i, thus the greater the average 

time, the higher the Location Entropy and vice versa (Saeb et al., 2015).  

Normalized Entropy 

Because the number of location clusters varies across participants and the number of 

clusters is positively correlated with Location Entropy (Farhan et al., 2016; Lu et al., 

2018; Saeb et al., 2015), we also used Normalized Entropy which is given by 

Normalized Entropy = Location Entropy / log (Number of Clusters) 

Homestay 

In previous studies (Chow et al., 2017; Farhan et al., 2016; Lu et al., 2018; Saeb et al., 

2015, 2016; Wang et al., 2018), each participant was assigned only one home location, 

which was the most visited location cluster between 12 AM to 6 AM; however, in our 

study, due to the long follow-up time and community-based population, participants 

may have more than one residential location in one PHQ-8 interval (for example, for 

reasons, such as traveling, business trips, or moving to a new house). Therefore, we 

adjusted the method of determining the residential locations. We first selected all 
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location clusters visited at night (12 AM to 6 AM) in one PHQ-8 interval. Then, if 

multiple clusters were visited in the same night, the location cluster with the most 

location records was selected as the home location. This step partially excluded the 

impact of activities at night. The Homestay was the time spent at all stationary location 

points belonging to all home locations as the percentage of the available time in one 

PHQ-8 interval. 

Residential Location Count 

This new feature represented the number of residential locations. Since temporary home 

locations could reflect traveling (Isabelle et al., 2019), we used the number of 

residential locations in one PHQ-8 interval to reflect traveling.  

5.2.9 Frequency-Domain Features 

People’s life rhythms (such as circadian rhythm, sleep rhythm, and social rhythm) are 

related to depression (Walker et al., 2020). We propose 3 frequency-domain features to 

reflect the periodicity of participants’ mobility. To compute frequency-domain features, 

we used linear interpolation and the fast Fourier transformation to get the spectrums of 

longitude and latitude data, respectively (Figure 5.1). The frequency axis of the 

spectrum was scaled in cycles per day to reflect the number of periodic patterns that 

occurred daily. To explore the periodic rhythms of different period lengths, we used the 

same frequency-domain division as in our previous publication (Zhang et al., 2021), 

that is, frequency bands of low frequency (0 to 0.75 cycles per day), middle frequency 
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(0.75 to 1.25 cycles per day), and high frequency (>1.25 cycles per day). The power in 

the middle frequency was used to represent the strength of the circadian rhythm (around 

1 cycle/day) of the participant’s mobility. Likewise, the power in low frequency and 

high frequency represents the long-term (>1 day) periodic rhythm and short-term (<1 

day) rhythm, respectively. We extracted 3 features to reflect the percentages of these 3 

periodic rhythms (long-term, circadian, and short-term rhythms) in individuals’ 

mobility. We summed the power in the same frequency band of longitude and latitude, 

then divided it by the sum of the total spectral power of longitude and latitude. The 

formulas of these 3 features are 

Long-term Rhythm=(PSDlon(LF) + PSDlat(LF)) / (PSDlon(Total) + PSDlat(Total)) 

Circadian Rhythm=(PSDlon(MF) + PSDlat(MF)) / (PSDlon(Total) + PSDlat(Total)) 

Short-term Rhythm=(PSDlon(HF) + PSDlat(HF)) / (PSDlon(Total) + PSDlat(Total)) 

where PSDlon and PSDlat represent the power spectral density of longitude and latitude, 

respectively, and LF, MF, HF, and Total are the low frequency, middle frequency, high 

frequency, and total spectral power, respectively. If the individuals’ mobility is regular, 

the Long-term Rhythm or Circadian Rhythm will be high, otherwise, Short-term 

Rhythm will be high. 

 

 

 



182 

 

Figure 5.1. A schematic diagram showing the transformation of location data from time 

domain to frequency domain. (LF=low frequency (0-0.75 cycles/day), MF=middle 

frequency (0.75-1.25 cycles/day), and HF=high frequency (>1.25 cycles/day)). 

 

5.2.10 Data Analyses 

We used dynamic structural equation modeling to explore the relationships and the 

direction of relationships between mobility features and PHQ-8 scores over time. 

Dynamic structural equation modeling is a broad integrated framework that blends 

multilevel, time-series, and structural equation modeling (Asparouhov et al., 2018; 

McNeish, 2019; McNeish & Hamaker, 2020) and which has shown to be particularly 

useful for intensive longitudinal data (McNeish, 2019; McNeish & Hamaker, 2020). 



183 

 

Specifically, the 2-level vector autoregressive model can estimate the lagged effects 

and cross-lagged effects between 2 outcome variables while considering the variability 

at both within-individual and between-individual levels (Asparouhov et al., 2018; 

McNeish & Hamaker, 2020). The lagged effect is the impact of one variable on itself 

over time, which was used to represent the autoregressive nature of depressive states 

and mobility levels (Gana et al., 2017; Rhodes & Courneya, 2003; Wichers, 2014). The 

cross-lagged effect is the impact of one variable on the other variable over time, which 

was used to explore the direction of relationships between mobility features and PHQ-

8 score. In this study, we only considered the Lag-1 model (Figure 5.2), that is, the 

lagged effects and cross-lagged effects between a time point t and the immediately 

subsequent (2 weeks later) time point (t + 1).  

We built a vector autoregressive model with each mobility feature and PHQ-8 score as 

outcome variables and used age, gender, and work status as covariates (Akhtar-Danesh 

& Landeen, 2007; Aluoja et al., 2004; Rizvi et al., 2015) at the between-individual level 

for adjusting individual differences. The correlations between the PHQ-8 score and the 

mobility feature (Figure 5.2) at both within-individual and between-individual levels 

were also estimated by the vector autoregressive model. We established a total of 11 

vector autoregressive models for all mobility features. All P values of coefficients in 

vector autoregressive models and correlations were adjusted using the Benjamini-

Hochberg method (Benjamini & Hochberg, 1995) for multiple comparisons. Findings 

were considered significant at adjusted P value<.05. Vector autoregressive models were 
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implemented in Mplus (version 8) (Muthén et al., 2016) and multiple comparison 

corrections were performed in R software (version 3.6.3). 

Figure 5.2. The path diagram of the VAR (1) model used in this paper. 𝑃𝐻𝑄8𝑖𝑡 and 

𝑀𝑜𝑏𝑖𝑡 respectively represent the score of 8-item Patient Health Questionnaire and 

one of mobility features (Table 5.1) of participant i at time point t (the interval 

between two time points is 2 weeks), and age, gender, and work status were 

considered as covariates at the between-individual level. 
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5.3 Results 

5.3.1 Data Summary 

The 2341 PHQ-8 intervals of 290 participants collected between November 2017 and 

February 2020 were included in our analysis. The sample had a median age of 50.0 

(IQR 34.0, 59.0) years, with 215 (74.14%) female participants and 149 (51.38%) 

employed participants, with a median of 10 (IQR 5, 15) PHQ-8 scores and a median of 

8.0 (IQR 3.0, 14.0) PHQ-8 intervals for each participant. The pairwise Spearman 

correlations between all 11 mobility features are presented in Figure 5.3. 

Figure 5.3. A heatmap of pairwise Spearman correlations between all 11 mobility 

features extracted in this paper. Definitions of mobility features in this figure are shown 

in Table 5.1 and the Feature Extraction section. 
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5.3.2 Vector Autoregressive Models 

Correlation 

Except for Moving Time (P=.11), all mobility features were significantly correlated 

with the PHQ-8 score at the within-individual level (Table 5.2); Homestay (ρ=0.11, 

P<.001) and Short-term Rhythm (ρ=0.07; P=.004) were positively correlated, while 

other mobility features were negatively correlated. Between individuals, Location 

Variance (ρ=−0.22, P=.04) and Moving Distance (ρ=−0.26, P=.04) were significantly 

and negatively correlated with PHQ-8 scores. 

Table 5.2. Mobility features’ correlations with PHQ-8 scores at within- and between-

individual levels. 

Mobility feature Within-individual level Between-individual level 

 ρ Adjusted P value ρ Adjusted P value 

Location Variance −0.10 <.001 −0.22 .04 

Moving Time  0.03 .11 −0.09 .28 

Moving Distance −0.08 .002 −0.26 .04 

Number of Clusters −0.09 .001 −0.02 .44 

Location Entropy −0.15 <.001 −0.09 .22 

Normalized Entropy −0.05 .02 −0.14 .11 

Homestay 0.11 <.001 0.10 .20 

Residential Location Count −0.09 .001 −0.09 .27 

Long-term Rhythm −0.07 .004 −0.17 .09 

Circadian Rhythm −0.12 <.001 −0.16 .11 

Short-term Rhythm 0.07 .004 0.16 .09 

Lagged and Cross-lagged Effects 

There were significant and positive lagged effects exist in both PHQ-8 scores (φ1=0.45-

0.51, P<.001) and mobility features (φ2=0.11-0.53, P<.001) (Table 5.3). For cross-

lagged effects, PHQ-8 scores were significantly and negatively correlated with the 
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subsequent Circadian Rhythm of mobility (φ3=−0.07, P<.001), while Location Entropy 

(φ4=−0.04, P=.02), Homestay (φ4=0.09, P=.01), and Residential Location Count 

(φ4=0.05, P=.02) were significantly correlated with subsequent PHQ-8 scores.  

Table 5.3. Lagged and cross-lagged effects between mobility features and PHQ-8 

scores estimated by vector autoregressive models. 

Mobility feature Lagged effects Cross-lagged effects 

 φ1 Adjusted 

P value 

φ2 Adjusted 

P value 

φ3 Adjusted 

P value 

φ4 Adjusted 

P value Location Variance 0.49 <.001 0.2 <.001 −0.03 .22 0.02 .23 

Moving Time  0.47 <.001 0.53 <.001 0.02 .22 0.02 .31 

Moving Distance 0.48 <.001 0.38 <.001 0.03 .21 0.03 .21 

Number of Clusters 0.49 <.001 0.3 <.001 0.005 .50 −0.01 .32 

Location Entropy 0.47 <.001 0.22 <.001 −0.01 .33 −0.04 .02 

Normalized Entropy 0.46 <.001 0.14 <.001 −0.004 .44 0.003 .45 

Homestay 0.45 <.001 0.34 <.001 −0.01 .30 0.09 .01 

Residential Location Count 0.51 <.001 0.11 <.001 −0.01 .34 0.05 .02 

Long-term Rhythm 0.49 <.001 0.21 .001 −0.05 .06 0.001 .45 

Circadian Rhythm 0.48 <.001 0.11 <.001 −0.07 <.001 0.03 .12 

Short-term Rhythm 0.48 <.001 0.11 <.001 0.05 .06 −0.03 .34 

The Influence of Individual Differences 

Older and employed participants had significantly lower intercepts of the PHQ-8 score 

than younger and unemployed participants (Table 5.4). For mobility features, age was 

significantly and negatively correlated with Number of Clusters (γ=−0.12, P=.01), 

Location Entropy (γ=−0.18, P<.001), and Residential Location Count (γ=−0.16, 

P<.001), while work status was significantly correlated with most mobility features 

(except for Moving Time [P=.42] and Residential Location Count [P=.09]). For lagged 

effects, older participants had significantly lower lagged effects on Moving Distance 

(γ=−0.16, P=.02) and Homestay (γ=−0.14, P=.03) than younger participants. Female 
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participants had significantly lower lagged effects on Location Entropy (γ=−0.15, 

P=.02) and Residential Location Count (γ=−0.24, P=.01) than male participants. 

Compared with unemployed participants, employed participants have significantly 

lower lagged effects on the PHQ-8 score (γ=−0.14, P=.03) and significantly higher 

lagged effects on Normalized Entropy (γ=0.25, P=.01). For cross-lagged effects, age 

was significantly and negatively correlated with the φ3 coefficient of Circadian Rhythm 

(γ=−0.49, P=.004) in the corresponding vector autoregressive model.  

Table 5.4. Significant effects of individual difference at the between level of the vector 

autoregressive models. Only significant effects of at least one covariate are reported. 

Characteristic Age Female Employed 

 γ Adjusted 

P value 

γ Adjusted 

P value 

γ Adjusted 

P value Effects on the intercept of 
      

 Patient Health Questionnaire–8 −0.21 <.001 0.07 .09 −0.10 .01 

 Location Variance −0.08 .06 0.03 .29 0.12 .01 

 Moving Distance 0.01 .47 −0.01 .40 0.07 .01 

 Number of Clusters −0.12 .01 0.02 .36 0.09 .03 

 Location Entropy −0.18 <.001 0.01 .40 0.20 <.001 

 Normalized Entropy −0.09 .09 −0.01 .45 0.26 <.001 

 Homestay 0.01 .32 0.03 .16 −0.15 <.001 

 Residential Location Count −0.16 <.001 0.04 .17 0.06 .09 

 Long-term Rhythm −0.07 .07 0.02 .34 0.14 .01 

 Circadian Rhythm −0.07 .08 0.06 .10 0.13 <.001 

 Short-term Rhythm 0.10 .06 −0.06 .13 −0.16 <.001 

Effects on the lagged effect of  
      

 Patient Health Questionnaire–8 0.01 .47 −0.07 .13 −0.14 .03 

 Moving Distance −0.16 .02 −0.04 .31 −0.08 .06 

 Location Entropy −0.01 .46 −0.15 .02 0.02 .38 

 Normalized Entropy 0.09 .19 −0.19 .05 0.25 .01 

 Homestay −0.14 .03 −0.09 .13 0.05 .27 

 Residential Location Count 0.01 .48 −0.24 .01 −0.04 .36 

Effects on the cross-lagged effect of  
      

 Circadian Rhythm (φ3)a −0.49 .004 0.01 .48 0.164 .25 

aφ3 represents the effect of the Patient Health Questionnaire–8 on the subsequent 

mobility feature. 
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5.4 Discussion 

5.4.1 Principal Findings 

This study provides a comprehensive understanding of the relationships and the 

direction of the relationships between depressive symptom severity and phone-

measured mobility over time by using dynamic structural equation modeling on a large 

longitudinal data set and considering correlations at both individual and population 

levels, lagged effects (the autoregressive nature over time), cross-lagged effects 

(direction of the relationships over time), and the influences of individual differences 

(demographic characteristics). 

Most mobility features extracted in this paper were significantly correlated with the 

PHQ-8 score at the within-individual level (Table 5.2), which indicated that, for a 

participant, the higher the severity of depressive symptoms, the lower mobility. This is 

consistent with both past survey-based (Weyerer & Kupfer, 1994) and phone-based 

studies (Saeb et al., 2015, 2016). These findings reaffirmed that the link between 

depressive symptom severity and mobility can be captured by mobile phones. However, 

many of the mobility features’ correlations with PHQ-8 score were not significant at 

the between-individual level, possibly due to the significant effects of individual 

differences (age and work status) on both PHQ-8 score and mobility features (Table 

5.4). Notably, features of Location Variance (ρ=−0.22, P=.04) and Moving Distance 

(ρ=−0.26, P=.04) were still significantly correlated with PHQ-8 score at the between-

individual level, which indicated these features are relatively robust for reflecting 
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depressive symptom severity in the whole population. Compared with the results of 

previous phone-based studies, our results showed that population diversity affects 

correlations between mobility features and the depression score. Most mobility features 

were significantly correlated with depression scores in student-based studies (Lu et al., 

2018; Saeb et al., 2016), while several features lost their significance in a community-

based population with a wide age distribution (Saeb et al., 2015). These findings 

indicated that individual differences need to be considered during exploring 

relationships between depression and mobility. 

PHQ-8 score and mobility features both had significant and positive lagged effects 

(Table 5.3), indicating that the autoregressive nature of individuals’ depressive states 

(Wichers, 2014) and movement habits (Rhodes & Courneya, 2003) could be captured 

by mobile phones. For the direction of relationships over time, we found 3 mobility 

features significantly correlated with the subsequent PHQ-8 score. Specifically, 

increases in PHQ-8 score are probably preceded by one or more following changes in 

the mobility: (1) lower average time spent at different places (Location Entropy), (2) 

more time at home (Homestay), and (3) more traveling (Residential Location Count). 

Conversely, change in PHQ-8 score was significantly and negatively correlated 

(φ3=−0.07, P<.001) with the subsequent circadian rhythm measured by location data. 

The findings of a recent study (Meyerhoff et al., 2021) showed changes in several 

mobility features were associated with subsequent depression changes, but not vice 

versa. The differences in populations and applied methods could be potential reasons 

for the slightly inconsistent results. Both our study and that study (Meyerhoff et al., 



191 

 

2021) have shown that the changes in mobility prior to changes in depressive symptom 

severity can be captured by mobile phones. An interesting finding is that the number of 

residential locations was positively correlated (φ4=0.05, P=.02) with the subsequent 

PHQ-8 score (Table 5.3), which is opposite to their negative correlation (ρ=−0.09, 

P=.001) at the within-individual level (Table 5.2). As the number of temporary 

residential locations could reflect traveling (Isabelle et al., 2019), this finding indicated 

that traveling may reduce the current depressive symptoms but may worsen some 

existing depressive feelings. This finding may provide insight into a phenomenon called 

“post-travel depressed feelings (Jafari, 1987; Post-Vacation Blues, 2022).” The causes 

of “post-travel depressed feelings” are fatigue from trips, the shock of re-entry of 

ordinary life, and jet lag (Jafari, 1987; Katz et al., 2001).  

For influences of individual differences on the levels of depressive symptom severity 

and mobility, we found that PHQ-8 scores tended to be lower in participants who are 

older or have jobs, which can be expected because previous survey-based studies have 

shown that depression is negatively correlated with age, and the unemployment rate in 

the depressed population is high (Akhtar-Danesh & Landeen, 2007; Aluoja et al., 2004; 

Rizvi et al., 2015). Gender was not significantly correlated with the PHQ-8 score 

(γ=0.07, P=.09) in our population, possibly due to all participants in our study having 

at least one diagnosis of depression in recent 2 years (Matcham et al., 2019), which may 

reduce the link between gender and depressive symptom severity. For the effects of 

demographic characteristics on mobility features, we found that the mobility in older 

participants or participants without jobs tended to be lower, which is also expected. For 
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influences of individual differences on the lagged and cross-lagged effects, we found 

the participants with jobs had lower autocorrelation of the PHQ-8 score, indicating 

more depressive symptoms severity changes over time in employed participants than 

unemployed participants. Female participants, older participants, and unemployed 

participants tended to have lower autocorrelations of some mobility features than male 

participants, young participants, and employed participants, which indicated that 

variabilities of mobility over time were larger in these participants. For influences of 

age on cross-lagged effects, the impact of changes in PHQ-8 score on the subsequent 

circadian rhythm for older participants was significantly lower than that of young 

participants (γ=−0.49, P=.004), indicating that the mobility rhythm of the older 

participants is affected by depressive symptoms for a shorter period than the young 

participants. 

We proposed 3 frequency-domain features to reflect the periodic characteristics of 

individuals’ mobility (Figure 5.1). They were all significantly correlated with the PHQ-

8 score at the within-individual level. Higher values of Long-term Rhythm and 

Circadian Rhythm represent more regular movement and activity, which were 

correlated with lower depressive symptom severity. Notably, Circadian Rhythm had 

the strongest correlation (ρ=−0.12, P<.001) among these 3 features, and it had 

significant cross-lagged effect (φ3=−0.07, P<.001) with the preceding PHQ-8 score. 

These findings demonstrated that the frequency-domain of location data can provide 

some additional information for evaluating depressive symptom severity in future 

research. 
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5.4.2 Limitations 

We obfuscated the raw location data due to privacy issues. Therefore, we did not have 

access to contextual information, which may mean some information was lost. Another 

limitation is that we only used the Lag-1 vector autoregressive models. We did not use 

high-order vector autoregressive models because we wanted to make our preliminary 

model simple to allow easier explanation and to avoid convergence problems in the 

procedure of coefficient estimations. We will attempt high-order vector autoregressive 

models in future research when we have more data without the impact of the COVID-

19. 

We chose to build 11 dynamic structural equation modeling models, one for each 

mobility feature. Since each mobility feature has a specific meaning, the bivariate 

model can better explain changes of the feature before and after the changes in PHQ-8 

scores indicating the longitudinal relationships. We attempted multivariate dynamic 

structural equation modeling with all mobility features, but the model failed to converge, 

possibly due to the multicollinearity between mobility features and complexity of the 

model. As all mobility features were devised for describing characteristics of 

individuals’ mobility, there were high correlations between mobility features (Figure 

5.3). In future research, we plan to solve the multicollinearity in the multivariate model 

through further feature engineering and feature selection methods or by using other 

multivariate time series models which are robust to multicollinearity (Garg & Tai, 

2013). 
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5.4.3 Conclusions 

This study provides initial evidence of the relationship and the direction of the 

relationship between depressive symptom severity and phone-measured mobility over 

time. We found several mobility features affected depressive symptom severity, while 

changes in the depression score were associated with the subsequent periodic rhythm 

of mobility. These mobility features have the potential to be used as indicators for 

assessing depression risk in future clinical applications, which could provide timely 

suggestions for both people with depression risk (eg, encouraging to attend more 

activities) and physicians (eg, early interventions). This work may provide support for 

remote mental health monitoring practice in real-world settings. 
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Chapter 6 

Associations Between Depression Symptom 

Severity and Daily-Life Gait Characteristics 

Derived from Long-Term Acceleration 

Signals in Real-World Settings: 

Retrospective Analysis 

This chapter has been published as: 

Zhang Y, Folarin AA, Sun S, Cummins N, Vairavan S, Qian L, Ranjan Y, Rashid Z, 

Conde P, Stewart C, Laiou P, Sankesara H, Matcham F, White KM, Oetzmann C, Ivan 

A, Lamers F, Siddi S, Simblett S, Rintala A, Mohr DC, Myin-Germeys I, Wykes T, Haro 

JM, Penninx BWJH, Narayan VA, Annas P, Hotopf M, Dobson RJB, and RADAR-CNS 

Consortium. Associations Between Depression Symptom Severity and Daily-Life Gait 

Characteristics Derived from Long-Term Acceleration Signals in Real-World Settings: 

Retrospective Analysis. JMIR Mhealth Uhealth 2022;10(10): e40667 

Background: Gait is an essential manifestation of depression. However, the gait 

characteristics of daily walking and their relationships with depression have yet to be 

fully explored. 

Objective: The aim of this study was to explore associations between depression 

symptom severity and daily-life gait characteristics derived from acceleration signals 

in real-world settings. 
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Methods: We used two ambulatory data sets (N=71 and N=215) with acceleration 

signals collected by wearable devices and mobile phones, respectively. We extracted 12 

daily-life gait features to describe the distribution and variance of gait cadence and force 

over a long-term period. Spearman coefficients and linear mixed-effects models were 

used to explore the associations between daily-life gait features and depression 

symptom severity measured by the 15-item Geriatric Depression Scale (GDS-15) and 

8-item Patient Health Questionnaire (PHQ-8) self-reported questionnaires. The 

likelihood-ratio (LR) test was used to test whether daily-life gait features could provide 

additional information relative to the laboratory gait features.  

Results: Higher depression symptom severity was significantly associated with lower 

gait cadence of high-performance walking (segments with faster walking speed) over a 

long-term period in both data sets. The linear regression model with long-term daily-

life gait features (R2=0.30) fitted depression scores significantly better (LR test P=.001) 

than the model with only laboratory gait features (R2=0.06). 

Conclusions: This study indicated that the significant links between daily-life walking 

characteristics and depression symptom severity could be captured by both wearable 

devices and mobile phones. The daily-life gait patterns could provide additional 

information for predicting depression symptom severity relative to laboratory walking. 

These findings may contribute to developing clinical tools to remotely monitor mental 

health in real-world settings.  

Please refer to appendix B for supplementary material.
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6.1 Introduction 

Depression affects the lives of over 300 million people worldwide (Friedrich, 2017) 

and is associated with many adverse outcomes, including decreased quality of life, loss 

of occupational function, disability, premature mortality, and suicide (Hawton et al., 

2013; Lenox-Smith et al., 2013; Lerner et al., 2004; Lewinsohn et al., 2000). While 

early treatment can be effective and prevent more serious adverse outcomes (Kamphuis 

et al., 2012), more than half of depressed people do not receive timely treatment 

(Harman et al., 2004; Young et al., 2001). Current questionnaire-based depression 

assessments may be affected by recall bias and may not be able to collect dynamic 

information (Althubaiti, 2016; Devaux & Sassi, 2016). Therefore, several recent studies 

have attempted to explore the associations between depression and changes in 

individuals’ behaviors using mobile technologies (Rohani et al., 2018). 

Changes in gait are essential manifestations of depression (Schrijvers et al., 2008; Sobin 

& Sackeim, 1997). The main hypothesis linking gait with depression is a bidirectional 

interaction between the brain motor system and cortical and subcortical structures, 

which are related to emotions and cognitive functions (Deligianni et al., 2019; R. D. 

Sanders & Gillig, n.d.; Yogev-Seligmann et al., 2008). Many studies have explored the 

relationships between depression and gait characteristics based on “gold-standard” 

laboratory walking tests. Longer gait cycles, reduced stride length, and slower gait 

cadence were observed in participants with depression compared with healthy controls, 

which have been consistently shown in several studies (Brandler et al., 2012; Lemke et 

al., 2000; Michalak et al., 2009, 2011; Pieruccini-Faria et al., 2018; Radovanović et al., 



205 

 

2014; J. B. Sanders et al., 2016; Sloman et al., 1987; van Iersel et al., 2005). Other gait 

abnormalities such as reduced gait force (Sloman et al., 1987), increased double support 

time (Radovanović et al., 2014), reduced swing time variability (Brandler et al., 2012), 

slumped postures (Michalak et al., 2009), and increased body sway (Pieruccini-Faria et 

al., 2018) have been reported, but with less consistency across studies.  

Laboratory gait tests are hard to be applied in real-world settings because of the need 

for expensive equipment (e.g., video camera and force plates), specialized laboratories, 

and the inconvenience of wearing sensors on the knees and ankles, for example 

(Deligianni et al., 2019; Wang et al., 2021). Some researchers have suggested that 

people’s daily-life activity characteristics should have stronger links to their health 

conditions than laboratory tests (Atrsaei et al., 2021; Notthoff et al., 2018; Rispens et 

al., 2015). Therefore, it is necessary to monitor and evaluate daily-life walking using 

efficient methods. 

In recent years, several studies have used mobile technologies to measure daily-life 

walking patterns and explored their associations with depression. However, most of 

these studies only measured the number of cumulative steps of daily-life walking 

(Abedi et al., 2015; Große et al., 2021; McKercher et al., 2009), which is more related 

to individuals’ mobility and physical activity than to gait patterns (e.g., gait cadence 

and gait force). To our knowledge, there have been only a few studies exploring the 

associations between daily-life gait patterns and depression directly. Adolph et al found 

that depressed participants had reduced walking speed, reduced vertical up-and-down 

movements, and more slumped postures compared with controls by placing two 
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accelerometers on the participant’s trunk and right leg for 2 days (Adolph et al., 2021). 

However, wearing multiple sensors on the body may not be suitable for long-term 

monitoring. With the development of sensors, the mobile phone provides a cost-

effective, continuous, and unobtrusive means to measure individuals’ behaviors, 

including daily walking. Therefore, the mobile phone may be a potential tool for long-

term gait monitoring. 

The aim of this study was to explore the value of daily-walking monitoring for 

improving the evaluation of depression symptom severity. Our first objective was to 

design and extract gait features from raw acceleration signals to describe the 

characteristics of daily walking. The second objective was to explore the associations 

between gait features and depression symptom severity, and to test whether these 

associations could be captured by different acceleration devices. The third objective 

was to test whether daily-life walking could provide additional information for 

predicting depression relative to laboratory walking. To achieve the second and third 

objectives, we performed our analyses on two ambulatory data sets, the Long Term 

Movement Monitoring (LTMM) and Remote Assessment of Disease and Relapse–

Major Depressive Disorder (RADAR-MDD) data sets (Matcham et al., 2019; Weiss et 

al., 2013), with acceleration signals collected by a wearable device and mobile phone, 

respectively. Importantly, the LTMM data set contains data related to both laboratory 

and daily walking, which could address the third study objective.  
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6.2 Methods 

6.2.1 Data Sets 

LTMM Data Set 

The LTMM data set includes demographics (age and gender), depression scores (15-

item Geriatric Depression Scale [GDS-15] (D’Ath et al., 1994)), and raw acceleration 

signals (100 Hz) of laboratory walking tests and 3-day activities for 71 elderly adults 

(Weiss et al., 2013), which can be downloaded at PhysioNet (Goldberger et al., 2000). 

Participants were included if they did not have any cognitive or gait/balance disorders 

(Weiss et al., 2013). Participants were asked to walk at a self-selected and comfortable 

speed for 1 minute in the laboratory while wearing a 3-axis accelerometer on their lower 

back (Weiss et al., 2013). The GDS-15 questionnaire contains 15 easy-to-understand, 

yes/no format questions, which is suitable for depression screening in the older 

population (Williams & Wallace, 1993; Yesavage & Sheikh, 1986). After the laboratory 

walking test, all participants were asked to wear the accelerometer for the next 3 

consecutive days to record daily activities (Weiss et al., 2013). 

Ethics Considerations 

RADAR-MDD was conducted per the Declaration of Helsinki and Good Clinical 

Practice, adhering to principles outlined in the National Health Service (NHS) Research 

Governance Framework for Health and Social Care (2nd edition). Ethical approval has 

been obtained in London from the Camberwell St Giles Research Ethics Committee 
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(REC reference 17/LO/1154), in Spain from the CEIC Fundació Sant Joan de Deu (CI 

PIC-128-17), and in the Netherlands from the Medische Ethische Toetsingscommissie 

VUms (METc VUmc registratienummer 2018.012–NL63557.029.17). 

RADAR-MDD Data Set 

The EU research program RADAR-MDD aimed to investigate the utility of mobile 

technologies for the long-term monitoring of participants with depression in real-world 

settings (Matcham et al., 2019, 2022). Adult participants with a depression history were 

included in the study if they did not meet the following criteria: (1) have other 

psychiatric disorders (eg, bipolar disorder, schizophrenia, and dementia), (2) have 

received treatment for drug or alcohol use in the past 6 months, (3) a major medical 

diagnosis that affects daily activities, and (4) pregnancy (Matcham et al., 2019). A 

detailed study protocol was published previously (Matcham et al., 2019). In this study, 

we used a subset of RADAR-MDD data collected from a study site in the United 

Kingdom (King’s College London [KCL]) between November 2017 and April 2021, 

because the KCL site was the only site to acquire ethical approval for collecting the 

phone’s acceleration signals. We hereafter denote this subset as the RADAR-MDD-

KCL data set for convenience. The phone’s acceleration signals were collected at 50 Hz 

and uploaded to an open-source platform, RADAR-base (Ranjan et al., 2019). The 

participants’ depression symptom severity was assessed by the 8-item Patient Health 

Questionnaire (PHQ-8) (Kroenke et al., 2009) self-reported through mobile phones 

every 2 weeks. A patient advisory board comprising service users co-developed the 
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study. They were involved in the choice of measures, timing, and issues of engagement, 

and have also been involved in developing the analysis plan. 

6.2.2 Step Detection Algorithm 

Since we needed to respectively detect steps on the acceleration signals collected by 

wearable devices and mobile phones, we chose to use the step detection algorithm 

(Marron et al., 2016), which was based on mobile phones (Figure 6.1). Given a segment 

of 3-axis acceleration signals (xi, yi, zi), the magnitude of the acceleration of the segment 

of acceleration signals was calculated to combine 3D signals to a single series, ri, where 

𝑟𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2. The magnitude of the acceleration signals does not depend on the 

orientation and tilt of the mobile phone during walking (Marron et al., 2016). 

Subsequently, ri was filtered by a weighted moving-average filter to remove noise 

(Equation 1, w=150 milliseconds) Next, the filtered ri was subtracted by the mean of r̄i 

to make r̄i symmetric to the x-axis. We calculated two new series, B1i and B2i, based on 

two thresholds to detect the walking swing phase and stance phase, respectively (see 

Equations 2 and 3). If a swing phase ends and a stance phase starts, we can identify a 

step that occurred. The formal detection rule of a step Si at sample i is that the following 

two conditions must be satisfied: (1) a change from –0.5 to 0 in B1 (B1i=0 and B1i–

1=0.5); (2) there is at least one detection of B2=–0.5 in a window of size w=150 

milliseconds in sample i (Min(B2i:i+w)=–0.5). 

𝑟𝑖̅ =
1

2𝜔+1
∑ 𝑟𝑗

𝑖+𝜔
𝑗=𝑖−𝜔  (1) 

𝐵1𝑖 = {
0.5, 𝑖𝑓 𝑟𝑖̅ ≥ 0.5
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 
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𝐵2𝑖 = {
−0.5, 𝑖𝑓 𝑟𝑖̅ ≤ −0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

Then, the gait cycle series could be derived by calculating time intervals between 

consecutive steps, which was denoted as Cycles. During each gait cycle, the amplitude 

from the peak to the valley of the magnitude of the acceleration signals was used to 

reflect the gait force of each step. The force of all steps in the given acceleration signal 

was denoted as the series Force. 

Figure 6.1. Step detection algorithm. ACC is the 3-axis acceleration signals, B1 and 

B2 are two series calculated by thresholds to detect walking swing and stance phase 

respectively, and pink dash lines represent detected steps. 
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6.2.3 Feature Extraction 

Feature Window Size 

Since the PHQ-8 score is used to estimate depression symptom severity for the past 2 

weeks (Kroenke et al., 2009), we extracted gait features from a 14-day time window 

prior to each PHQ-8 record from the RADAR-MDD-KCL data set. For the LTMM data 

set, we extracted gait features from 3-day activities to link daily-life walking with the 

GDS-15 score.  

Step Detection Window and the Continuous Walking Segment 

Daily-life walking in real-world settings is complex and contains some intermittent 

walking segments (such as walking in a crowded environment or a walking-rest 

transition status). These intermittent walking segments may not fully reflect a 

participant’s normal walking patterns. Therefore, to distinguish between continuous 

and intermittent walking, we used a 1-minute sliding window (Ihlen et al., 2015) to 

detect steps from the long-term raw acceleration signals. If the participant was walking 

most of the time in this minute, we considered this minute as the continuous walking 

segment. Based on our experience, we set 50 seconds as the threshold for selecting the 

continuous walking segment; that is, the segment with more than 50 seconds of walking 

time (sum of all gait cycles in the minute) was selected for further analysis (Figure 6.2b). 
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Gait Features 

a) Overview 

The performance of walking varies over time due to several factors such as mood, 

energy, and environment. Therefore, the long-term gait features need to represent the 

distribution and variance of walking patterns over the feature window. We first 

extracted three short-term gait features from every detected continuous walking 

segment in the feature window. Then, for each short-term gait feature, we calculated 

four statistical second-order features (long-term features) across all values of 

continuous walking segments. In total, 12 long-term gait features were extracted in this 

study, and a summary of these features is shown in Table 6.1. A schematic diagram of 

long-term gait feature extraction is shown in Figure 6.2. 

b) Short-Term Gait Features from the 1-Minute Continuous Walking 

Segment 

Gait cadence and gait force are essential characteristics of walking. Gait cadence is the 

rate at which the individual feet contact the ground (Levine et al., 2012). Gait force 

reflects the ground reaction force during walking (Herzog et al., 1989). For every 

continuous walking segment, the median of the gait cycle series (Cycles) was calculated 

to reflect the gait cadence of this minute from the time domain, which was denoted as 

median cycle. To assess the gait cadence from the frequency domain, the power spectral 

density (PSD) of walking was obtained by applying the fast Fourier transformation to 

the filtered magnitude (r̄i) of the acceleration signals of every continuous walking 

segment. The peak frequency (Sun et al., 2010) of the 0.5-3–Hz band (reflecting 
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walking) (Weiss et al., 2013) of the PSD was used to reflect the main rhythm of steps 

from the frequency domain, which was denoted as peak frequency. For gait force, we 

calculated the median of the Force series (median force) to represent the average power 

of all steps in the minute. 

Table 6.1. Short-term and long-term gait features extracted and their short descriptions. 

Gait feature Description 

Short-term gait features 

 Median cycle (seconds) Median of gait cycles in the 1-minute walking segment 

 Peak frequency (Hz) Peak frequency in the PSDa of the magnitude of 1-minute 

acceleration signals 

 Median force (m/s2) Median of gait force in the 1-minute walking segment 

Long-term gait features  

 25th percentile of median cycle 25th percentile of median gait cycle values of all walking 

segmentsb 

 50th percentile of median cycle Median of median gait cycle values of all walking segments 

 75th percentile of median cycle 75th percentile of median gait cycle values of all walking 

segments 

 SD of median cycle Standard deviation of median gait cycle values of all walking 

segments 

 25th percentile of peak frequency 25th percentile of peak frequency values of all walking segments 

 50th percentile of peak frequency Median of peak frequency values of all walking segments 

 75th percentile of peak frequency 75th percentile of peak frequency values of all walking segments 

 SD of peak frequency Standard deviation of peak frequency values of all walking 

segments 

 25th percentile of median force 25th percentile of median gait force values of all walking 

segments 

 50th percentile of median force Median of median gait force values of all walking segments 

 75th percentile of median force 75th percentile of median gait force values of all walking 

segments 

 SD of median force Standard deviation of median gait force values of all walking 

segments 

aPSD: power spectral density (from 0.5 Hz to 3 Hz). 
bAll detected continuous walking segments (defined in the Methods section) in a feature 

window (3 days for the Long Term Movement Monitoring data set and 14 days for the 

Remote Assessment of Disease and Relapse–Major Depressive Disorder data set). 



214 

 

c) Long-Term Gait Features 

For each of the short-term gait features (median cycle, peak frequency, and median 

force), we calculated four statistical second-order features (25th percentile, median, 

75th percentile, and SD) from all detected continuous walking segments during a 

feature window.  

Previous studies suggested that the extreme values of gait characteristics over the long 

term could reflect the optimal or worst walking performance of the participant, which 

could in turn reflect physical or mental conditions better than the median value (Rispens 

et al., 2015). Therefore, we used 25th percentile, median, and 75th percentile second-

order statistics to represent three levels of walking performance (low, medium, and high) 

during a feature window. For example, faster walking during a feature window could 

represent high-performance walking, which may not be affected by other factors such 

as fatigue and the crowded environment. High-performance walking could be 

represented by the 75th percentile of peak frequency and the 25th percentile of median 

cycle in a feature window, which is expected to be closely associated with depression 

status. The variance of daily-life walking in a feature window was measured by the SD. 

d) Laboratory Gait Features Extracted from Laboratory Walking Tests in 

the LTMM Data Set 

We also extracted median cycle, peak frequency, and median force from the 1-minute 

acceleration signals of laboratory walking tests in the LTMM data set. For reading 

convenience, we denote these as laboratory gait features. 
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Inclusive Criteria for Data Missingness in the RADAR-MDD-KCL Data 

Set 

The raw acceleration signals were remotely collected by mobile phones in the RADAR-

MDD-KCL study. Possibly due to the high battery consumption and network traffic for 

uploading the raw signal, the missing rate of acceleration signals was relatively high. 

To reduce the impact of missingness, a PHQ-8 period (14 days) included in this study 

should have at least 3 days (aligned with the LTMM data set) with more than 50% 

acceleration signals (Saeb et al., 2016; Zhang et al., 2021). 
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Figure 6.2. A schematic diagram of long-term gait feature extraction for the Long-Term 

Movement Monitoring dataset. a) 3-axis acceleration signals of 3 consecutive days; b) 

examples of continuous and discontinuous walking segments and three short-term gait 

features (definitions in Table 6.1) were extracted from each continuous walking 

segment; c) long-term gait feature extraction: 25th percentile, median, 75th percentile, 

and standard deviation of short-term gait feature values of all continuous walking 

segments over 3 days for each participant. 

 

6.2.4 Statistical Analyses 

For the LTMM data set, Spearman coefficients (Spearman, 1987) were calculated to 

assess associations between the GDS-15 score and gait features (3 laboratory gait 
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features and 12 long-term gait features). As the data in the RADAR-MDD-KCL data 

set are longitudinal (repeated PHQ-8 measurements for each participant), a series of 

pairwise linear mixed-effects regression models (Laird & Ware, 1982) with random 

participant intercepts were performed to explore the association between the PHQ-8 

score and each of the 12 long-term gait features (no laboratory tests were included in 

the RADAR-MDD-KCL data set). Age, gender, and the number of comorbidities (see 

Supplementary Table 1, Appendix B) were considered as covariates. The Benjamini-

Hochberg method was used for multiple-comparison corrections in both data sets 

(Benjamini & Hochberg, 1995). 

To test whether long-term gait features could explain additional data variance in 

depression scores relative to laboratory gait features, we built two nested multivariate 

linear regression models without and with long-term gait features for the GDS-15 score 

(denoted as Model A and Model B; Equations 4 and 5) in the LTMM data set. 

Specifically, predictors of Model A are age, gender, and the 3 laboratory gait features, 

while predictors of Model B are age, gender, the 3 laboratory gait features, and the 12 

long-term gait features. The coefficient of determination (R2) was calculated for both 

models to estimate how much data variance was explained by predictors. Then, the 

likelihood ratio test (Glover & Dixon, 2004) was used to test whether Model B fit the 

GDS-15 score better than Model A. Since the laboratory walking test was not included 

in the RADAR-MDD-KCL data set, the likelihood ratio test was only performed in the 

LTMM data set. 

Model A: GDS-15=Age+Gender+3 laboratory gait features (4) 
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Model B: GDS-15=Age+Gender+3 laboratory gait features+12 long-term gait 

features (5) 

6.3 Results 

6.3.1 Data Summary 

The 71 participants in the LTMM data set have a mean age of 78.36 (SD 4.71) years 

with 18 (25%) participants having potential depressive disorders (GDS-15≥5) and 

69.82 (SD 9.65) hours of acceleration signals per participant. The RADAR-MDD-KCL 

data set, according to the data inclusion criteria, contains 659 PHQ-8 records collected 

from 215 participants and corresponding 99,445 hours (average 463 hours per 

participant). The cohort in the RADAR-MDD-KCL data set has a mean age of 43.36 

(SD 15.12) years with the majority being women (75%), and half of the PHQ-8 records 

indicated potential depression symptoms (PHQ-8≥10). The average missing rate of 

acceleration signals collected by phones in the RADAR-MDD-KCL data set (70.60%) 

was significantly higher than that of the acceleration signals collected by the wearable 

device in the LTMM data set (3.03%). A summary of the demographics, and 

distributions of depression scores and available acceleration signals for participants in 

the LTMM and the RADAR-MDD-KCL data sets is shown in Table 6.2. The heatmaps 

of correlations between the 12 long-term gait features of the LTMM and RADAR-

MDD-KCL data sets are presented in Figure 6.3. 
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Table 6.2. Demographics and distributions of depression scores and available 

acceleration signals of participants in the two data sets. 

Characteristic LTMMa (N=71) RADAR-MDD-KCLb (N=215) 

Age (years), mean (SD) 78.36 (4.71) 43.36 (15.12) 

Female, n (%) 46 (65%) 162 (75%) 

Depression score, mean (SD) GDS-15c: 3.18 (2.81) PHQ-8d: 9.67 (5.84) 

Potential depressive episode (GDS-15≥5) and PHQ-

8≥10), n (%)e 
18 (25%) 330 (50%) 

Number of completed depression questionnairesf 71 659 

Number of completed depression questionnaires per 

participant, mean (SD) 
1 (0) 3.09 (2.76) 

Length of total available acceleration signals (hours) 4817 99,445 

Length of available acceleration signals (hours) for 

each GDS-15/PHQ-8 recordg, mean (SD) 
69.82 (9.65) 98.77 (105.20) 

Average missing rate of acceleration signals (%) 3.03 70.60 

Number of continuous walking segmentsh detected 

from each GDS-15/PHQ-8 record, mean (SD) 
73.48 (66.98) 113.24 (170.48) 

aLTMM: Long Term Movement Monitoring. 
bRADAR-MDD-KCL: subset of the Remote Assessment of Disease and Relapse–

Major Depressive Disorder data set collected from King’s College London, United 

Kingdom. 
cGDS-15: 15-item Geriatric Depression Scale. 
dPHQ-8: 8-item Patient Health Questionnaire. 
eBased on the total number of completed questionnaires. 
fThe RADAR-MDD-KCL data set has multiple PHQ-8 records for each participant, 

which was conducted every 2 weeks. 
gWe regarded acceleration signals in the 14 days before a PHQ-8 record. For the GDS-

15 record, we considered acceleration signals of all 3-day activities after enrollment. 
hContinuous walking segment was defined as 1-minute acceleration signals with at least 

50 seconds of walking (see Methods section). 
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Figure 6.3. Heatmaps of correlations between 12 long-term gait features of the Long-

term Movement Monitoring dataset (a) and RADAR-MDD-KCL dataset (b). 

 

6.3.2 Associations Between Gait Features and the GDS-15 

Score in the LTMM Data Set 

The Spearman correlations between the GDS-15 score and gait features (both 

laboratory and long-term gait features) in the LTMM data set are shown in Table 6.3. 

We found that a higher GDS-15 score was significantly correlated with a larger median 

of gait cycles, lower peak frequency, and smaller median gait force in the 1-minute 

laboratory walking test. For the long-term period, a higher GDS-15 score was 

significantly correlated with lower variance of gait force and slower cadence of high-

performance walking and 75th percentile of peak frequency during 3-day activities. 
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Table 6.3. Spearman correlations between the 15-item Geriatric Depression Scale score 

and gait features, including laboratory and long-term gait features, in the Long-Term 

Movement Monitoring data set. 

Featurea ρ P valueb 

Laboratory gait features extracted from the 1-minute laboratory walking test 

 Median cycle 0.39 .001 

 Peak frequency –0.32 .01 

 Median force –0.25 .04 

Long-term gait feature extracted from 3-day activities  

 25th percentile of median cycle 0.31 .01 

 50th percentile of median cycle 0.13 .29 

 75th percentile of median cycle 0.02 .86 

 SD of median cycle –0.24 .06 

 25th percentile of peak frequency –0.02 .85 

 50th percentile of peak frequency –0.09 .45 

 75th percentile of peak frequency –0.27 .03 

 SD of peak frequency –0.12 .33 

 25th percentile of median force 0.02 .85 

 50th percentile of median force –0.01 .98 

 75th percentile of median force –0.10 .41 

 SD of median force –0.30 .02 
aDefinitions of gait features in this table are provided in Table 6.1 and the Methods 

section. 
bP values were adjusted by the Benjamini-Hochberg method for correction of multiple 

comparisons. 

6.3.3 Associations Between Long-Term Gait Features and the 

PHQ-8 Score in the RADAR-MDD-KCL Data Set 

The pairwise linear mixed-effects models performed in the RADAR-MDD-KCL data 

set revealed a significant and negative link between the PHQ-8 score and the gait 

cadence of high-performance walking during the 14 days before submitting PHQ-8 

records. Specifically, the 25th percentile of median cycle was positively associated with 

the PHQ-8 score; that is, for every increase of 0.1 seconds in the median gait cycle of 

high-performance walking, the PHQ-8 score increased by 0.606 points. Likewise, the 
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75th percentile of peak frequency was negatively associated with the PHQ-8 score, 

indicating that a reduction of 0.1 Hz in the peak frequency of high-performance walking 

was associated with an increase of 0.26 PHQ-8 points. Other long-term gait features 

were not found to be significantly associated with the PHQ-8 score in the RADAR-

MDD-KCL data set. A summary of all 12 linear mixed-effects regression models is 

provided in Table 6.4.  

Table 6.4. Twelve pairwise linear mixed-effects models for exploring associations 

between long-term gait features and depression symptom severity (8-item Patient 

Health Questionnaire) in the RADAR-MDD-KCL data seta. 

 

Long-term gait featureb Estimate SE df t value P valuec 

25th percentile of median cycle 6.06 2.72 648.75 2.23 .03 

50th percentile of median cycle 3.98 2.51 639.41 1.59 .11 

75th percentile of median cycle 2.49 2.08 653.72 1.20 .23 

SD of median cycle 2.87 4.41 631.11 0.65 .52 

25th percentile of peak frequency –1.50 1.02 656.44 –1.46 .15 

50th percentile of peak frequency –1.93 1.05 650.76 –1.83 .07 

75th percentile of peak frequency –2.62 1.01 634.70 –2.60 .01 

SD of peak frequency 0.21 1.86 600.50 0.12 .91 

25th percentile of median force –0.57 2.24 637.46 –0.25 .80 

50th percentile of median force 0.88 1.79 655.77 0.49 .62 

75th percentile of median force 0.44 1.66 656.37 0.26 .79 

SD of median force 2.05 3.78 602.90 0.54 .59 
aRADAR-MDD-KCL: Subset of Remote Assessment of Disease and Relapse–Major 

Depressive Disorder collected from King’s College London. 
bDefinitions of daily-life gait features are provided in Table 6.1 and the Methods section. 
cP values were adjusted by the Benjamini-Hochberg method for correction of multiple 

comparisons. 

6.3.4 Results of the Likelihood Ratio Test in the LTMM Data 

Set 

The regression model with long-term gait features (Model B) achieved better 

performance (R2=0.30) than the model without long-term gait features (Model A) 



223 

 

(R2=0.06). We found that the 12 long-term gait features extracted from 3-day activities 

could explain an extra 24% data variance (an increase of 0.24 in R2) of GDS-15 scores 

relative to the laboratory gait features and participants’ demographics. The likelihood 

ratio test showed that Model B fitted GDS-15 scores significantly better than Model A 

(χ2=32.91>χ2
0.05(12), P=.001). The detailed results of the two nested regression models 

are shown in Supplementary Table 2 Appendix B. 

6.4 Discussion 

6.4.1 Principal Findings 

This study retrospectively used two ambulatory data sets for exploring the associations 

between depression symptom severity and daily-life gait characteristics. We extracted 

12 long-term gait features to describe the distribution and variance of gait cadence and 

force over a long-term period and link daily-life gait patterns with a self-reported 

depression score. The main findings of this study are (1) higher depression symptom 

severity is significantly associated with lower gait cadence of high-performance 

walking (faster walking in all continuous walking segments) over a long-term period; 

(2) long-term daily-life walking has the potential to provide additional information for 

predicting depression symptom severity relative to laboratory gait characteristics and 

demographics; and (3) wearable devices and mobile phones both have potential to 

capture the associations between daily gait and depression. 

The results of Spearman correlations between laboratory gait features and the GDS-15 

score in the LTMM data set are consistent with previous studies  (Brandler et al., 2012; 
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Lemke et al., 2000; Michalak et al., 2009, 2011; Pieruccini-Faria et al., 2018; 

Radovanović et al., 2014; J. B. Sanders et al., 2016; Sloman et al., 1987; van Iersel et 

al., 2005); that is, the participants with more severe depression symptoms were more 

likely to have slower gait cadence (longer median of gait cycles and lower gait 

frequency) and smaller gait force in laboratory walking tests.  

For daily-life walking, this study used the faster walking (75th percentile of peak 

frequency and 25th percentile of median cycle) in all detected continuous walking 

segments to represent high-performance walking during a feature window (3 days for 

LTMM and 14 days for RADAR-MDD-KCL). Only gait cadence of high-performance 

walking was found to be significantly and negatively associated with depression 

symptom severity, whereas gait patterns under medium/low-performance walking were 

not significantly associated with the depression score. This finding was consistent in 

both the LTMM and RADAR-MDD-KCL data sets. A potential reason is that the 

walking performance in real-world scenarios may be affected by multiple factors (such 

as walking during the day or at night, walking under fatigue or walking after rest, and 

walking to a destination or navigating a crowded supermarket) (Rispens et al., 2015); 

therefore, the lower walking performance may not fully reflect the participant’s 

physical or mental conditions. Therefore, from the main finding of this study, we 

speculated that faster steps over a long-term period could represent the high 

performance of participants’ walking, which could be closely associated with their 

depression status.  

In the LTMM data set, we found that the variance of gait force (SD of median force) in 
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3-day activities was significantly and negatively associated with the depression 

symptom severity, indicating that participants with higher depression symptom severity 

were likely to have relatively monotonous walking over 3 days. However, the feature 

was not significantly associated with the PHQ-8 score in the RADAR-MDD-KCL data 

set. One reason is that the magnitude (ri) (explained in the Step Detection Algorithm 

section) of the acceleration signals depends on the location of the accelerometers 

attached to the body (Derawi & Bours, 2013). As acceleration signals in the RADAR-

MDD-KCL data set were collected by mobile phones, the variable locations of phones 

when attached to participants’ bodies (such as in the hand, handbag, and pocket) 

affected the magnitude of acceleration signals. Therefore, the magnitude of phone-

collected acceleration signals cannot fully reflect the gait force. 

Results of regression models and the likelihood test in the LTMM data set illustrated 

the importance of monitoring daily-life gait in real-world settings. Laboratory gait 

features and demographics in LTMM data only explained a small proportion of data 

variance of the GDS-15 score (R2=0.06), whereas long-term gait features extracted 

from 3-day activities could explain an extra 24% of data variance (R2=0.30). This 

finding supported that long-term daily-life walking has the potential to provide 

additional information for predicting depression symptom severity relative to 

laboratory gait characteristics and demographics. Further, this finding also indicated 

that the laboratory walking test may be affected by several factors such as subjective 

psychological factors and laboratory-controlled conditions, which may not fully reflect 

the condition of a participant’s mental health (Notthoff et al., 2018; Rispens et al., 2015). 
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Since there were no laboratory tests in the RADAR-MDD-KCL data set, the 

comparison between laboratory gait features and long-term daily-life gait features was 

not performed in the RADAR-MDD-KCL. We will consider adding laboratory tests at 

enrollment in future digital depression studies.  

6.4.2 Limitations 

Although we found that wearables and mobile phones have the potential to capture the 

associations between depression and daily-life gait patterns, both devices have some 

limitations. Wearables could collect relatively complete walking data; however, 

wearing sensors may not be suitable for long-term monitoring. Mobile phones could be 

used for long-term monitoring without user burden, but the missing rate of mobile 

phone acceleration signals is relatively high. The findings of this study support that the 

links between gait and depression could still be revealed from the limited and sparse 

daily-life walking acceleration signals. Missingness is a common challenge in remote 

digital studies (Onnela, 2021), which may be caused by high battery consumption, 

network traffic for uploading the raw acceleration signals, and the Android operating 

system moderation of resources. According to the findings of this study, a possible 

solution to reduce missingness is uploading gait cycles instead of uploading raw 

acceleration signals in future long-term monitoring research. This is not difficult to 

implement, as most current smartphones have real-time step detection functions or apps 

(Silva et al., 2020; Stavropoulos et al., 2020). Furthermore, the self-reported PHQ-8 

data may be subject to recall bias. We may consider implementing ecological 
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momentary assessments with passive gait data collection in future research.  

The hyperparameters in step detection and feature extraction need further investigation. 

We considered using a 1-minute window size for step detection and 50 seconds for 

continuous walking segment selection based on previous studies (Ihlen et al., 2015; 

Weiss et al., 2013) and our experience. The feature window sizes for the two data sets 

are different due to the different study designs. However, the optimal hyperparameters 

are still unclear and will be investigated in future research. 

Gait features extracted in this study were simple and statistically based, which were 

used to illustrate the importance of daily walking in our initial analysis. More features 

such as nonlinear features will be considered in future research.  

Gait characteristics could be affected by some physical diseases, neurological disorders, 

and age (Del Din et al., 2016; Helbostad et al., 2007; Rodgers et al., 1999). Although 

none of the participants had any cognitive or gait/balance disorders in the LTMM data 

set and the number of comorbidities and age were considered as covariates in the 

RADAR-MDD-KCL data set, physical comorbidities and other comorbidities may 

have different impacts on the gait characteristics. We will consider a wider range of 

comorbidities and investigate them further in future research. 

6.4.3 Conclusion 

In summary, the findings of this study showed that significant links between depression 

symptom severity and daily-life gait characteristics could be captured in different data 

sets and by different accelerometer devices. Long-term daily-life walking patterns 
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could provide additional value for understanding depression manifestations relative to 

gait patterns in laboratory walking tests, which illustrated the importance of long-term 

gait monitoring. The gait cadence of high-performance walking in daily life has the 

potential to be an indicator for monitoring depression severity, which may contribute to 

developing clinical tools to remotely monitor mental health in real-world settings. 
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Chapter 7 

Associations Between Depression Symptom 

Severity and the Circadian Rhythm Patterns 

Extracted from Passive Wearable Data 

Background: Depression is known to be closely associated with the circadian rhythm 

of individuals. Estimating the circadian rhythm can help to monitor the evolution of 

depression. However, the traditional assessments of the circadian rhythm are 

laboratory-based and unsuitable for larger cohorts and long-term monitoring in real-

world settings.  

Objectives: This chapter aimed to approximate the circadian rhythm using passive 

wearable data and explore the associations between depression symptom severity and 

circadian rhythm patterns in a large, multicenter, longitudinal data set.  

Methods: Participants’ depression symptom severity was self-reported by the 8-item 

Patient Health Questionnaire (PHQ-8) via mobile phones every 2 weeks. Fitbit’s heart 

rate, steps, and sleep data in the preceding 2 weeks of each PHQ-8 record were analyzed 

respectively using the Cosinor models. Then, the parameters of these Cosinor models 

were extracted as features to represent the average level, variance, peak hour, and 

strength of circadian rhythmicity of participants’ behaviors. Linear mixed-effect models 

were used to explore associations between the PHQ-8 score and circadian rhythm 

features. Likewise, the seasonal impact on circadian rhythm features was also 

investigated by linear mixed-effect models. 
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Results: This study included 8090 PHQ-8 records with corresponding Fitbit data from 

489 participants (median [IQR] age of 48 [31.0, 58.0] years; 378 [77.30%] females). 

Higher depression symptom severity was found to be significantly associated with 

lower circadian rhythmicity, lower level and variance of activity, lower heart rate 

variance, later peak hour of heart rate, and later sleep time. In agreement with the 

literature, the season was found to have a significant impact on the extracted circadian 

rhythm features. 

Conclusion: This chapter indicated that the circadian rhythm patterns derived from 

wearable data have the potential to be indicators of depression. Findings in this chapter 

may provide a basis for the development of clinical applications of remote mental health 

monitoring in real-world settings. 

  



239 

 

7.1 Introduction 

The circadian rhythm is an internal clock related to endogenous oscillations of an 

approximately 24-hour period, which affects and regulates the timing of nearly all 

human behavioral and physiological activities and has extensive associations with 

individuals’ physical and mental health (Partch, Green, & Takahashi, 2014). Mental 

disorders, such as depression, are associated with disturbances in the circadian rhythm 

and manifest as abnormal behaviors (Walker, Walton, DeVries, & Nelson, 2020). For 

example, depressed people have been reported to have a larger variance in sleep and 

more irregular behaviors than healthy controls (Alvaro, Roberts, & Harris, 2013; 

Weyerer & Kupfer, 1994). Therefore, measuring individuals’ circadian rhythm could be 

useful for tracking the progression of depression. The gold standard for estimating the 

circadian rhythm of individuals is tracking melatonin in blood, urine, or saliva samples 

in a constant light environment (Duffy & Dijk, 2002; Keijzer, Smits, Duffy, & Curfs, 

2014). However, these methods are unsuitable for large cohort studies and long-term 

monitoring in real-world settings (Bowman et al., 2021). Thus, there is a need for easy-

to-use approaches for estimating the circadian rhythm of participants in long-term 

cohort studies. 

With the development of sensor technologies, wearable devices can passively and cost-

efficiently capture individuals’ daily behaviors in real-world settings (Lee, Kim, Park, 

& Jeon, 2021). Several past studies have attempted to approximate the circadian rhythm 

using some behavioral rhythms (such as Sleep-Wake rhythm, Rest-Activity rhythm, and 



240 

 

circadian rhythm in heart rate [CRHR]) measured by passive data from wearable 

devices (Carr et al., 2018; Moraes et al., 2013; Robillard et al., 2015; Slyepchenko et 

al., 2019; Smagula et al., 2018; White, Rumble, & Benca, 2017). Several significant 

associations between depression severity and wearable-derived circadian rhythm 

patterns were found in these studies (Carr et al., 2018; Moraes et al., 2013; Robillard et 

al., 2015; Slyepchenko et al., 2019; Smagula et al., 2018; White et al., 2017). It was 

shown that disruptions in sleep-wake cycles, such as later sleep onset time, insomnia, 

hypersomnia, and worse sleep quality, were associated with higher depression severity 

(Robillard et al., 2015; Slyepchenko et al., 2019; White et al., 2017). For the Rest-

Activity rhythm, higher depression severity was correlated with a later activity peak, 

lower activity level, and weaker circadian rhythmicity (Moraes et al., 2013; Smagula et 

al., 2018; White et al., 2017). Further, Carr et al found that depressed people tend to 

have desynchronized CRHR with Sleep-Wake and Rest-Activity rhythms compared to 

healthy controls (Carr et al., 2018).  

However, because the majority of previous studies were cross-sectional, associations 

between wearable-measured circadian rhythm patterns and depression at both 

individual and cohort levels have not been fully explored. Further, the seasonal effects 

(Adamsson, Laike, & Morita, 2017) on circadian rhythm were not considered in 

previous studies, perhaps due to their short study durations. To address these limitations, 

this chapter explored associations between depression symptom severity and wearable-

derived circadian rhythm patterns using a large, multicenter, longitudinal digital 

depression dataset. Sleep-Wake rhythm, Rest-Active rhythm, and CRHR were 
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estimated from Fitbit’s sleep, step, and heart rate data, respectively. Multilevel analysis 

was used to investigate the patterns of data at both between-participant and within-

participant levels, with the season and demographics as confounding variables.  

7.2 Methods 

7.2.1 Data Set 

Participants and Settings 

The data used in this chapter came from an EU digital depression study, Remote 

Assessment of Disease and Relapse-Major Depressive Disorder (RADAR-MDD), 

which remotely monitored over 600 participants’ daily activities for up to 2 years 

(Matcham et al., 2019). More details about participant retention and data availability of 

the RADAR-MDD data set are reported in (Matcham et al., 2022).  

Depression Symptom Severity 

The participant’s depression symptom severity was self-reported by the 8-item Patient 

Health Questionnaire (PHQ-8) (Kroenke et al., 2009) every two weeks via mobile 

phone. The total score of the PHQ-8 ranges from 0 to 24, with increasing severity of 

depression symptom severity (Kroenke et al., 2009).  

Fitbit Data 

Participants’ sleep, steps, and heart rates (HR) were continuously monitored by Fitbit 

devices. HR data: Fitbit provides an estimate of HR every 5 seconds based on the 
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embedded photoplethysmography sensor. However, due to signal quality and other 

technical factors, some sample points lack heart rate data. Therefore, to obtain robust 

heart rate trends, the average heart rate value for every minute was calculated. Step 

data: Fitbit continuously measures the number of steps taken in one minute. Sleep data: 

Fitbit provides a sleep label (“awake”, “light sleep”, “deep sleep”, and “rapid eye 

movement [REM]”) every 30 seconds based on the integrated algorithm (Bian et al., 

2017). Although Fitbit has limited accuracy in discriminating different sleep phases 

(light, deep, and REM sleep), Fitbit shows promise in identifying sleep-wake status (de 

Zambotti, Goldstone, Claudatos, Colrain, & Baker, 2018; Liang & Chapa-Martell, 

2019). Therefore, a binary time series was used to represent sleep-wake status, where 0 

indicates awake and 1 represents sleep (light, deep, and REM sleep). For the time period 

without sleep labels but having HR data, it was labeled as 0 (awake); otherwise, it is 

regarded as missing data. Figure 7.1 shows an example of a participant’s processed 

Fitbit data during the preceding 14 days of a PHQ-8 record. 

 

 

 

 

 

 

 



243 

 

Figure 7.1. An example of a participant’s processed HR, step, and sleep Fitbit data 

during the preceding 14 days of a PHQ-8 record.  

 

7.2.2 Data Inclusion Criteria  

The time interval of 14 days before each of the PHQ-8 records was regarded as a “PHQ-

8 interval”. To reduce the impact of missing data, PHQ-8 intervals included in the 

present analysis should have at least 70% of HR and step data and 10 days of sleep 

recordings.  
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7.2.3 Circadian Rhythm Feature Extraction 

There were several mathematic methods were developed to evaluate the circadian 

rhythm from passive behavioral signals, such as spectrum approaches and Cosinor-

based models (Refinetti, Cornélissen, & Halberg, 2007). Compared with spectrum 

techniques (e.g., Fourier method (Duhamel & Vetterli, 1990)), the Cosinor-based 

method is more practical for estimating characteristics (such as mesor, amplitude, and 

acrophase) of circadian rhythms (Refinetti et al., 2007) and applicable to missing data 

(Cornelissen, 2014). Since the aim of this chapter is to explain the association between 

the circadian rhythm and depression severity, it is important to extract more explanatory 

characteristics of the circadian rhythm. Therefore, the Cosinor model is adopted for the 

subsequent analyses. 

The Cosinor model makes the following assumptions: 1) the individuals’ behavioral 

data follow a Cosinor function with a period of 24 hours; and 2) the parameters do not 

change during the estimated time interval (Cornelissen, 2014). In this chapter, three 

Cosinor models were fitted with the processed HR, step, and sleep data of each PHQ-8 

interval, respectively, using the “cosinor” R package.  

The parameters of the Cosinor models were regarded as circadian rhythm features to 

describe the participant’s behavioral patterns in a PHQ-8 interval. These parameters 

include 1) mesor (the average value of the fitted behavioral curve), 2) amplitude (the 

difference between the maximum value and the mean value of the cosine wave, 

providing a measure of the variance of rhythm), 3) acrophase (a time index indicating 
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the time when the modeled behavioral rhythm reaches its peak), and 4) R2 (a goodness-

of-fit measure of the Cosinor model, providing a measure of the strength of the 

circadian rhythmicity). These four parameters were extracted from both HR and step 

data and were denoted as HR_Mesor, HR_Amplitude, HR_Acrophase, HR_R2, 

Step_Mesor, Step_Amplitude, Step_Acrophase, and Step_R2, respectively. Since sleep 

status was represented by a binary variable, only the acrophase and R2 of the fitted 

Cosinor model were extracted and denoted as Sleep_Acrophase and Sleep_R2, 

respectively. In total, 10 circadian rhythm features were extracted from each PHQ-8 

interval.  

7.2.4 Statistical Analysis 

The linear mixed-effects regression model was used (Singer, Willett, & Willett, 2003) 

to explore associations between depression symptom severity and circadian rhythm 

features at both between-participant and within-participant levels (Singer et al., 2003). 

A two-level linear mixed-effects regression model with a random participant-specific 

intercept was built to regress the PHQ-8 score with each circadian rhythm feature. At 

the between-participant level, age, gender, and season (summer and winter) were 

considered as covariates to adjust the individual differences. Note that in this chapter, 

summer (April to October) and winter were distinguished based on daylight saving time 

in the EU. 

To further investigate the seasonal impact on the circadian rhythm, I also constructed a 

series of linear mixed-effect regression models considering each of the circadian 
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rhythm features as the outcome variable and the season as the predictor variable. 

Likewise, age and gender were also regarded as confounding variables at the between-

participant level.  

The Benjamini-Hochberg approach was applied to all models for multiple comparison 

corrections (Benjamini & Hochberg, 1995). Data preprocessing and analyses were 

performed in R software, and linear mixed-effect models were implemented using the 

“lmerTest” R package. The significant level was set to adjusted P value < .05.  

7.3 Results 

7.3.1 Data Summary 

According to our data inclusion criteria, 8090 PHQ-8 intervals from 489 participants 

were selected in this study. The median (IQR) age of the cohort is 48 (31.0, 58.0) years, 

and the majority (77.30%; N=378) are females. The median score (IQR) of all selected 

PHQ-8 records is 9.0 (5.0, 14.0) and the median (IQR) number of PHQ-8 intervals per 

participant is 15.0 (5.0, 25.0).  

7.3.2 Associations Between Circadian Rhythm Features and 

Depressive Symptom Severity 

Table 7.1 summarizes the results of 10 linear mixed-effects models, each of which 

explored the association between the PHQ-8 score and one of the circadian rhythm 

features. Except for HR_Mesor and Step_Acrophase, the remaining 8 circadian rhythm 

features were significantly associated with the PHQ-8 score. 
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For both Step_Mesor and Step_Amplitude, strong negative associations with the PHQ-

8 score were observed. For example, an increase of 10 steps in step mesor was 

associated with a reduction of 3.8 points in the PHQ-8 score (Beta = -0.38 t =-14.09, P 

<.001). Similarly, there was a decrease of 2.4 PHQ-8 points for every increase of 10 

steps in step amplitude (Beta = -0.24, t =-11.24, P <.001). The amplitude of the Cosinor 

model of HR data (HR_Amplitude) was also negatively associated with depression 

symptom severity (Beta = -0.20, t =-8.83, P <.001), that is, with a decrease of 2.0 points 

in the PHQ-8 score for every 10 BPM (beats per minute) rise in the HR amplitude. 

The R2 coefficients of three Cosinor models (HR, step, and sleep) were all significantly 

and negatively associated with the PHQ-8 score. Among them, the R2 of the step 

Cosinor model had the greatest impact on the severity of depressive symptoms, with a 

decrease of 1.57 PHQ-8 scores for every 0.1 increase in R2 (Beta = -15.72, t =-8.14, P 

<.001). The R2 of the sleep and HR models had relatively small impacts on PHQ-8 

scores, for every 0.1 increase in R2, the PHQ-8 score increased by around 0.27 points 

(Sleep: Beta = -2.70, t =-5.57, P <.001; HR: Beta = -2.73, t =-4.71, P <.001).  

Further, positive but relatively weak associations between the PHQ-8 score and the 

acrophase of sleep and HR models (Sleep: Beta = 0.16, t =3.86, P <.001; HR: Beta = 

0.1, t =2.91, P =.004) were found. For every hour late in the Sleep_Acrophase and 

HR_Acrophase, the PHQ-8 score increased by 0.1 and 0.16 points, respectively. 
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Table 7.1. A summary of results of 10 linear mixed-effect models, each of which 

explored the association between the PHQ-8 score and one of circadian rhythm features 

considering age, gender, and season as covariates at the between-participant level.    

Featurea Coeff SE t value P valueb 

HR_Mesor -0.01 0.01 -1.00 .32 

HR_Amplitude -0.20 0.02 -8.83 <.001 

HR_Acrophase 0.10 0.03 2.91 .004 

HR_R2 -2.73 0.58 -4.71 <.001 

Step_Mesor -0.38 0.03 -14.09 <.001 

Step_Amplitude -0.24 0.02 -11.24 <.001 

Step_Acrophase 0.02 0.04 0.44 .66 

Step_R2 -15.72 1.93 -8.14 <.001 

Sleep_Acrophase 0.16 0.04 3.86 <.001 

Sleep_R2 -2.70 0.49 -5.57 <.001 
aDefinitions of circadian rhythm features are explained in the Method section. 
bAll P values were adjusted by the Benjamini-Hochberg method for multiple 

comparisons. 

7.3.3 The Seasonal Impact on Circadian Rhythm Features 

The results of linear mixed-effect models for exploring the seasonal impact on circadian 

rhythm features are summarized in Table 7.2. A considerable seasonal impact on the 

acrophase of Cosinor models was observed. Specifically, compared with winter, 

summer has approximately 1 hour later acrophase of the HR and sleep models (HR: 

Beta = 1.05, P < .001; Sleep: Beta = 0.96, P < .001), and about 20 minutes later 

acrophase of the step model (Beta = 0.37, P <.001). The boxplots of the acrophase of 

HR, step, and sleep models for every month and season (winter and summer) are 

respectively shown in Figure 7.2. Further, the seasonal impacts on several other 

circadian rhythm features were significant but relatively small. Notably, gender also 

has significant effects on the acrophase of all three Cosinor models. Compared with 

females, males have 44.4, 28.8, and 19.2 minutes later acrophase of HR, step, and sleep 

models, respectively. 
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Table 7.2. A summary of results for 10 linear mixed-effect models, each of which 

explored the seasonal impact on one of the circadian rhythm features with considering 

age and gender as covariates.  

Featurea Summer P valueb Age P value Male P value 

HR_Mesor -0.17 .01 -0.05 .05 -2.21 .01 

HR_Amplitude 0.54 <.001 -0.03 <.001 0.81 .01 

HR_Acrophase 1.05 <.001 -0.03 <.001 0.74 <.001 

HR_R2 0.03 <.001 0.001 .06 0.01 .46 

Step_Mesor 0.16 <.001 -0.003 .67 0.43 .10 

Step_Amplitude -0.01 .89 0.01 .36 0.01 .98 

Step_Acrophase 0.37 <.001 -0.04 <.001 0.48 <.001 

Step_R2 0.001 .19 0.001 <.001 -0.01 .05 

Sleep_Acrophase 0.96 <.001 -0.01 <.001 0.32 .03 

Sleep_R2 0.003 .11 0.001 .92 -0.04 <.001 
aDefinitions of circadian rhythm features are explained in the Method. 
bAll P values were adjusted by the Benjamini-Hochberg method for multiple 

comparisons. 
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Figure 7.2. The boxplots of the acrophase of HR, step, and sleep Cosinor models for 

every month and season (winter and summer). 

7.4 Discussion 

7.4.1 Principal Findings 

This study approximated individuals’ circadian rhythm using passive Fitbit data and 

explored associations between depression symptom severity and circadian rhythm 

patterns. In our large, multicenter, longitudinal data set, I found that higher depression 
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symptom severity was associated with the following two-week behavioral patterns: 1) 

weaker circadian rhythmicity, 2) later sleep time, 3) later peak hour of HR, 4) lower HR 

variation, and 5) lower average level and variance in movement. Furthermore, in 

agreement with the literature, the season was found to have a significant impact on the 

extracted circadian rhythm features. 

The R2 of the Cosinor model was used to measure the circadian rhythmicity of 

participants’ behaviors. The greater the goodness-of-fit (R2), the better the Cosinor 

model can explain the passive Fitbit data, and the more regular the 24-hour periodicity 

of the participants’ behaviors. The negative link between circadian rhythmicity and 

depression symptom severity found in this study may be explained by the fact that 

participants with high PHQ-8 scores may have some depressive symptoms, such as 

insomnia, hypersomnia, low motivation, and decreased organization, which may result 

in irregular behaviors. Saeb et al also found a similar link between 24-hour movement 

and depression severity using GPS data (Saeb et al., 2015). In our previous studies, we 

found that the circadian rhythmicity in Bluetooth and location data was significantly 

and negatively associated with depression symptom severity using a frequency-domain 

measure (Zhang et al., 2021b; Zhang et al., 2022).  

The mesor and amplitude of Cosinor models were used to represent the average level 

and variance of behaviors (HR and steps). The average level and variance of movements 

are both found to have substantial and negative associations with depression symptom 

severity, which is expected and consistent with previous research (McKercher et al., 

2009; Saeb et al., 2015; Weyerer & Kupfer, 1994). In previous survey-based research, 
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depressed people were found to be more sedentary than healthy controls (Weyerer & 

Kupfer, 1994). This finding has also been demonstrated in several digital depression 

studies using passive mobile data, such as steps and GPS data (McKercher et al., 2009; 

Saeb et al., 2015). 

Heart rate can be influenced by many individual and environmental factors, such as age 

(Antelmi et al., 2004), cardiovascular disease (Fox et al., 2007), autonomic nervous 

system (Agelink, Boz, Ullrich, & Andrich, 2002), and environmental temperature 

(Schnell et al., 2013). Therefore, this may explain why the average heart rate level was 

not significantly correlated with depression symptom severity in our diverse cohort. I 

found that the amplitude of the HR model is significantly and negatively correlated with 

depression symptom severity. The range of heart rate fluctuations may be affected by 

activity level (Mølgaard, Sørensen, & Bjerregaard, 1991), and sleep (Viola et al., 2002). 

A larger range in heart rate fluctuations indicates a higher level of activity and more 

deep sleep time (Mølgaard et al., 1991; Viola et al., 2002), both of which are correlated 

with reduced depression severity.  

The peak hour of the highest level of daily behavior was represented using the 

acrophase of the Cosinor model. I found that later sleep time was associated with higher 

depression symptom severity, which is consistent with previous studies (Robillard et 

al., 2015; White et al., 2017; Zhang et al., 2021a). However, past research revealed that 

depressed people have a later peak hour of movement than healthy controls (Smagula 

et al., 2018; White et al., 2017), which is inconsistent with the results in this chapter. A 

potential reason is that the seasonal impacts on circadian rhythms are large in high-
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latitude regions (Adamsson et al., 2017). In our EU data set, I found that the peak hours 

of individuals’ behaviors during summer are much later than those during winter (Table 

7.2). In places of high latitude, extreme differences in the amount of daily light exposure 

between summer and winter may influence the variation of individuals’ melatonin and 

cortisol concentrations (Adamsson et al., 2017).  

7.4.2 Limitations 

The causal relationships between depression and wearable-derived circadian rhythm 

were not investigated in this initial study. Previous longitudinal studies have reported 

some bidirectional relationships between depression and the circadian rhythm over time 

(Maglione et al., 2014; Smagula et al., 2015). In future research, we will investigate if 

these causal relationships could be captured by wearable devices in our data set. Also, 

as nearly half of our data were gathered during the COVID-19 pandemic, COVID-19 

and some of its restrictions (such as national lockdown, keeping social distance, and 

the encouragement of working from home) may have influenced participants’ behaviors 

(particularly activities) (Sun et al., 2020). Future data collection will be required to 

investigate the generalizability of the findings in this chapter. Furthermore, the division 

of seasons in this study is based on daylight saving time (summertime) in the EU. 

However, other factors, such as temperature and light exposure, can also affect the 

circadian rhythm (Adamsson et al., 2017). Therefore, the seasonal impact on circadian 

rhythm needs further investigation in future research. Circadian rhythm features 

extracted in this chapter are only based on the Cosinor model. I will also use other 
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approaches, such as Fourier methods, to measure the circadian rhythms and compare 

the results in future research. 

7.4.3 Conclusions 

This study found significant and negative links between depression symptom severity 

and circadian rhythmicity derived from passive wearable data. The higher depression 

symptom severity was also found to be associated with some other extracted circadian 

rhythm patterns, including lower movement level and variability, lower HR variance, 

and later sleep time. Furthermore, I found the season has a considerable impact on the 

patterns of circadian rhythm, which needs further investigation. This chapter indicated 

that wearable-derived circadian rhythm patterns have the potential to be indicators of 

depression, which may help the development of clinical applications for remote mental 

health monitoring in the future.  

References 

Adamsson, M., Laike, T., & Morita, T. (2017). Annual variation in daily light exposure 

and circadian change of melatonin and cortisol concentrations at a northern 

latitude with large seasonal differences in photoperiod length. Journal of 

physiological anthropology, 36(1), 1-15.  

Agelink, M. W., Boz, C., Ullrich, H., & Andrich, J. (2002). Relationship between major 

depression and heart rate variability.: Clinical consequences and implications 

for antidepressive treatment. Psychiatry Research, 113(1-2), 139-149. 

Alvaro, P. K., Roberts, R. M., & Harris, J. K. (2013). A systematic review assessing 

bidirectionality between sleep disturbances, anxiety, and depression. Sleep, 

36(7), 1059-1068.  

Antelmi, I., De Paula, R. S., Shinzato, A. R., Peres, C. A., Mansur, A. J., & Grupi, C. J. 

(2004). Influence of age, gender, body mass index, and functional capacity on 

heart rate variability in a cohort of subjects without heart disease. The American 

journal of cardiology, 93(3), 381-385.  

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical 



255 

 

and powerful approach to multiple testing. Journal of the Royal statistical 

society: series B (Methodological), 57(1), 289-300.  

Bian, J., Guo, Y., Xie, M., Parish, A. E., Wardlaw, I., Brown, R., . . . Perry, T. T. (2017). 

Exploring the association between self-reported asthma impact and Fitbit-

derived sleep quality and physical activity measures in adolescents. JMIR 

mHealth and uHealth, 5(7), e7346.  

Bowman, C., Huang, Y., Walch, O. J., Fang, Y., Frank, E., Tyler, J., . . . Sen, S. (2021). 

A method for characterizing daily physiology from widely used wearables. Cell 

reports methods, 1(4), 100058.  

Carr, O., Saunders, K. E., Bilderbeck, A. C., Tsanas, A., Palmius, N., Geddes, J. R., . . . 

Goodwin, G. M. (2018). Desynchronization of diurnal rhythms in bipolar 

disorder and borderline personality disorder. Translational psychiatry, 8(1), 1-

9.  

Cornelissen, G. (2014). Cosinor-based rhythmometry. Theoretical Biology and Medical 

Modelling, 11(1), 1-24.  

de Zambotti, M., Goldstone, A., Claudatos, S., Colrain, I. M., & Baker, F. C. (2018). A 

validation study of Fitbit Charge 2™ compared with polysomnography in adults. 

Chronobiology international, 35(4), 465-476.  

Duffy, J. F., & Dijk, D.-J. (2002). Getting through to circadian oscillators: why use 

constant routines? Journal of biological rhythms, 17(1), 4-13.  

Duhamel, P., & Vetterli, M. (1990). Fast Fourier transforms: a tutorial review and a state 

of the art. Signal processing, 19(4), 259-299.  

Fox, K., Borer, J. S., Camm, A. J., Danchin, N., Ferrari, R., Lopez Sendon, J. L., . . . 

Tendera, M. (2007). Resting heart rate in cardiovascular disease. Journal of the 

American College of Cardiology, 50(9), 823-830.  

Keijzer, H., Smits, M. G., Duffy, J. F., & Curfs, L. M. (2014). Why the dim light 

melatonin onset (DLMO) should be measured before treatment of patients with 

circadian rhythm sleep disorders. Sleep medicine reviews, 18(4), 333-339.  

Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B., Berry, J. T., & Mokdad, A. H. 

(2009). The PHQ-8 as a measure of current depression in the general population. 

Journal of affective disorders, 114(1-3), 163-173.  

Lee, S., Kim, H., Park, M. J., & Jeon, H. J. (2021). Current advances in wearable 

devices and their sensors in patients with depression. Frontiers in Psychiatry, 

12, 672347.  

Liang, Z., & Chapa-Martell, M. A. (2019). Accuracy of Fitbit wristbands in measuring 

sleep stage transitions and the effect of user-specific factors. JMIR mHealth and 

uHealth, 7(6), e13384.  

Maglione, J. E., Ancoli-Israel, S., Peters, K. W., Paudel, M. L., Yaffe, K., Ensrud, K. E., 

& Stone, K. L. (2014). Subjective and objective sleep disturbance and 

longitudinal risk of depression in a cohort of older women. Sleep, 37(7), 1-9.  

Matcham, F., Barattieri di San Pietro, C., Bulgari, V., De Girolamo, G., Dobson, R., 

Eriksson, H., . . . Lamers, F. (2019). Remote assessment of disease and relapse 

in major depressive disorder (RADAR-MDD): a multi-centre prospective 

cohort study protocol. BMC psychiatry, 19(1), 1-11.  



256 

 

Matcham, F., Leightley, D., Siddi, S., Lamers, F., White, K. M., Annas, P., . . . Horsfall, 

M. (2022). Remote Assessment of Disease and Relapse in Major Depressive 

Disorder (RADAR-MDD): recruitment, retention, and data availability in a 

longitudinal remote measurement study. BMC psychiatry, 22(1), 1-19.  

McKercher, C. M., Schmidt, M. D., Sanderson, K. A., Patton, G. C., Dwyer, T., & Venn, 

A. J. (2009). Physical activity and depression in young adults. American journal 

of preventive medicine, 36(2), 161-164.  

Mølgaard, H., Sørensen, K. E., & Bjerregaard, P. (1991). Circadian variation and 

influence of risk factors on heart rate variability in healthy subjects. The 

American journal of cardiology, 68(8), 777-784.  

Moraes, C. Á., Cambras, T., Diez-Noguera, A., Schimitt, R., Dantas, G., Levandovski, 

R., & Hidalgo, M. P. (2013). A new chronobiological approach to discriminate 

between acute and chronic depression using peripheral temperature, rest-

activity, and light exposure parameters. BMC psychiatry, 13(1), 1-10.  

Partch, C. L., Green, C. B., & Takahashi, J. S. (2014). Molecular architecture of the 

mammalian circadian clock. Trends in cell biology, 24(2), 90-99.  

Refinetti, R., Cornélissen, G., & Halberg, F. (2007). Procedures for numerical analysis 

of circadian rhythms. Biological rhythm research, 38(4), 275-325.  

Robillard, R., Hermens, D. F., Naismith, S. L., White, D., Rogers, N. L., Ip, T. K., . . . 

Smith, K. L. (2015). Ambulatory sleep-wake patterns and variability in young 

people with emerging mental disorders. Journal of Psychiatry and Neuroscience, 

40(1), 28-37.  

Saeb, S., Zhang, M., Karr, C. J., Schueller, S. M., Corden, M. E., Kording, K. P., & 

Mohr, D. C. (2015). Mobile phone sensor correlates of depressive symptom 

severity in daily-life behavior: an exploratory study. Journal of medical Internet 

research, 17(7), e4273.  

Schnell, I., Potchter, O., Epstein, Y., Yaakov, Y., Hermesh, H., Brenner, S., & Tirosh, E. 

(2013). The effects of exposure to environmental factors on Heart Rate 

Variability: An ecological perspective. Environmental Pollution, 183, 7-13.  

Singer, J. D., Willett, J. B., & Willett, J. B. (2003). Applied longitudinal data analysis: 

Modeling change and event occurrence: Oxford university press. 

Slyepchenko, A., Allega, O. R., Leng, X., Minuzzi, L., Eltayebani, M. M., Skelly, M., . . . 

Frey, B. N. (2019). Association of functioning and quality of life with objective 

and subjective measures of sleep and biological rhythms in major depressive 

and bipolar disorder. Australian & New Zealand Journal of Psychiatry, 53(7), 

683-696.  

Smagula, S. F., Ancoli-Israel, S., Blackwell, T., Boudreau, R., Stefanick, M. L., Paudel, 

M. L., . . . Group, O. F. i. M. R. (2015). Circadian rest–activity rhythms predict 

future increases in depressive symptoms among community-dwelling older men. 

The American Journal of Geriatric Psychiatry, 23(5), 495-505.  

Smagula, S. F., Krafty, R. T., Thayer, J. F., Buysse, D. J., & Hall, M. H. (2018). Rest-

activity rhythm profiles associated with manic-hypomanic and depressive 

symptoms. Journal of psychiatric research, 102, 238-244.  

Sun, S., Folarin, A. A., Ranjan, Y., Rashid, Z., Conde, P., Stewart, C., . . . Simblett, S. 



257 

 

(2020). Using smartphones and wearable devices to monitor behavioral changes 

during COVID-19. Journal of medical Internet research, 22(9), e19992.  

Viola, A. U., Simon, C., Ehrhart, J., Geny, B., Piquard, F., Muzet, A., & Brandenberger, 

G. (2002). Sleep processes exert a predominant influence on the 24-h profile of 

heart rate variability. Journal of biological rhythms, 17(6), 539-547.  

Walker, W. H., Walton, J. C., DeVries, A. C., & Nelson, R. J. (2020). Circadian rhythm 

disruption and mental health. Translational psychiatry, 10(1), 1-13.  

Weyerer, S., & Kupfer, B. (1994). Physical exercise and psychological health. Sports 

Medicine, 17(2), 108-116.  

White, K. H., Rumble, M. E., & Benca, R. M. (2017). Sex differences in the relationship 

between depressive symptoms and actigraphic assessments of sleep and rest-

activity rhythms in a population-based sample. Psychosomatic medicine, 79(4), 

479.  

Zhang, Y., Folarin, A. A., Sun, S., Cummins, N., Bendayan, R., Ranjan, Y., . . . Dobson, 

R. J. B. (2021a). Relationship between major depression symptom severity and 

sleep collected using a wristband wearable device: multicenter longitudinal 

observational study. JMIR mHealth and uHealth, 9(4), e24604.  

Zhang, Y., Folarin, A. A., Sun, S., Cummins, N., Ranjan, Y., Rashid, Z., . . . Dobson, R. 

J. B. (2021b). Predicting depressive symptom severity through individuals’ 

nearby bluetooth device count data collected by mobile phones: preliminary 

longitudinal study. JMIR mHealth and uHealth, 9(7), e29840.  

Zhang, Y., Folarin, A. A., Sun, S., Cummins, N., Vairavan, S., Bendayan, R., . . . Dobson, 

R. J. B. (2022). Longitudinal Relationships Between Depressive Symptom 

Severity and Phone-Measured Mobility: Dynamic Structural Equation 

Modeling Study. JMIR mental health, 9(3), e34898.  

  



258 

 

Chapter 8 

Discussion and Future Work 

8.1 Summary of Key Findings and Contributions 

Chapter 2 performed a novel investigation into long-term participant retention and 

engagement from a large European multinational remote digital study for depression, 

the RADAR-MDD study. A significantly higher participant retention rate was found in 

the RADAR-MDD study than in previous remote digital health studies. Several real-

world factors, including sociodemographics, usage of study apps, and depression 

severity, were shown to be associated with participant retention and engagement 

patterns in the remote digital health study. Our key findings were as follows: 1) 

Participants with higher depression severity at the time of enrollment contributed fewer 

data both actively and passively. 2) Participants with shorter survey 

response/completion times tend to complete more surveys and keep wearing the Fitbit 

device for a significantly longer period. 3) We found that older participants contributed 

more data and had a lower risk of disengaging from the study app. 4) Passive data 

gathered from wearables without additional participant burden showed greater data 

contiguity and participant retention than active survey data over the long term. We 

found a considerable proportion of the participants who completed fewer surveys 

continued to share passive Fitbit data for significantly longer. Together, these data-

driven findings could help improve the design of future remote digital health research 

studies to enable equitable and balanced health data collection from diverse target 
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populations. 

Using the RADAR-MDD data set, Chapters 3–7 of this thesis sequentially extracted 

features of sleep, sociability, mobility, daily gait, and circadian rhythm from passive 

data streams gathered from mobile phones and Fitbit devices and analyzed relationships 

between these behavioral features and depression symptom severity. The main findings 

and contributions of these chapters are summarized below in terms of feature 

engineering and associations with depression symptom severity.  

Feature engineering. Several novel behavioral features were proposed in this thesis. 

Based on sleep-related knowledge, Chapter 3 proposed several Fitbit features to 

characterize participants' sleep in the following 5 aspects: sleep architecture, sleep 

stability, sleep quality, insomnia, and hypersomnia. This thesis also attempted to adapt 

several widely used features from other research fields (e.g., signal processing) to 

digital depression research. Specifically, Chapter 4 utilized multiscale entropy and 

frequency-domain features to measure the complexity and periodicity of sociability via 

Bluetooth data. Likewise, Chapter 5 leveraged frequency-domain features to estimate 

the periodicity of movement through location data. Finally, this thesis also adjusted 

several existing features to make them more suitable for long-term monitoring. For 

instance, previous digital studies with short study periods only estimated one home 

location for calculating the Homestay feature, whereas Chapter 5 estimated multiple 

home locations for the Homestay feature for several complex conditions (e.g., moving 

house, traveling, and business trips) in the long-term follow-up. These novel behavioral 

features can aid in a more accurate description of individuals’ behaviors in real-world 
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settings and improve the performance of depression prediction models. 

Associations with depression symptom severity. A number of significant associations 

between behavioral features and depression symptom severity were observed in these 

chapters. Specifically, Chapter 3 found that higher depression symptom severity was 

associated with more awakenings during sleep, higher sleep variation, worse sleep 

efficiency, and more days of insomnia or hypersomnia. In Chapter 4, we observed that 

as participants’ depression symptoms worsen, their Bluetooth device count data 

becomes lower, more monotonous, and less regular, indicating abnormalities in their 

social activities. Chapter 6 revealed that higher depression severity was associated 

with slower gait cadence during high-performance walking. Chapter 7 demonstrated 

that higher depression severity was associated with weaker circadian rhythmicity 

approximated from passive behavioral data of Fitbit devices. Notably, in Chapter 5, 

we found not only the negative linkage between mobility and depression (association), 

but also that several mobility features (Homestay, Location Entropy, and Residential 

Location Count) might influence the subsequent changes in depression symptom 

severity (longitudinal association or cross-lagged effects).   

The contributions of these findings are outlined as follows. First, some previously 

discovered associations between depression and specific behaviors (sleep, circadian 

rhythms, and mobility) were examined and reaffirmed in a large multicenter digital 

dataset, which indicated the generalizability and robustness of these associations. 

Second, we also found some significant associations of depression with additional data 

streams that had not been explored in previous work (Bluetooth and daily walking data), 
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illustrating the need to gather these data streams. Third, the analysis of the cross-lagged 

effects indicated that some behavioral features have the potential to predict the severity 

of depression in advance, which may aid in preventing depression relapse or 

deterioration. Together, these findings highlighted the importance of passive long-term 

monitoring of individuals’ behaviors in naturalistic settings for depression research and 

provided a basis for future clinical applications in remote digital health research. 

8.2 Future Work 

8.2.1 Suggestions for Data Collection in Future Digital Health 

Studies 

Participant Engagement 

We found several real-world characteristics, especially depression severity, had 

substantial effects on participant participation in a digital depression study. Non-

uniform participant engagement in study apps may introduce bias into the real-world 

data collection, impacting the generalizability and robustness of findings. There is an 

urgent need for further research to understand the underlying causes that influence 

participant engagement. Several techniques and strategies, including co-developing 

research apps, reducing the user burden, collecting passive data effectively, and 

dynamic motivation based on real-time engagement analysis, may be utilized in future 

digital health studies to increase participant engagement. 
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Operating System and Brand of Mobile Devices 

The RADAR-MDD study is based on the Android operating system only. The impact 

of the types of smartphone operating systems on passive data collection is unclear. Also, 

we observed in Chapter 2 that the phone brand has a considerable influence on passive 

data collection. Therefore, additional research is needed to investigate intra-

device/brand differences within and across Android and iOS phones to enable the robust 

and equitable collection of passive data. 

Private Passive Data Collection 

The strategies for private passive data collection need to be improved in future digital 

research. Several passive data streams related to private information were obfuscated 

or not recorded in the RADAR-MDD study. For example, the MAC address and types 

of Bluetooth devices were not recorded in the study, and the raw locations were 

obfuscated by adding a unique and random reference location. Several contextual 

details, such as the types of locations and owners of Bluetooth devices, were lost. Future 

research may leverage other techniques to overcome these limitations, such as using the 

hashed MAC address for Bluetooth data and the Places API of Google Maps (Google 

Maps Platform, 2022) for collecting location context. 

Passive Data Resolution 

The resolution of some passive data streams may need to be adjusted. Bluetooth count 

data was gathered on an hourly basis in the RADAR-MDD study. However, previous 
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research suggests scanning nearby Bluetooth devices every five minutes to acquire 

sufficient temporal resolution for capturing dynamic changes. Therefore, I recommend 

increasing the resolution of Bluetooth data collection. Regarding the gait data, we found 

a high missing rate of phone accelerometry data, which may be the result of the high 

battery/network consumption of uploading the raw acceleration signals (50Hz). Based 

on our findings in Chapter 6, one of the potential options for future gait monitoring is 

to record gait features (e.g., gait cycles) provided by phone functions or passive apps 

instead of gathering raw signals. 

8.2.2 Analysis Plans for Future Research  

Feature Engineering 

Depression is characterized by a variety of symptoms and manifestations (American 

Psychiatric Association, 2013; Lewinsohn, 1975). The extraction of features from a 

range of passive behavioral data streams can better characterize the behaviors of 

individuals and understand the associations of these behaviors with depression. This 

thesis did not conduct an in-depth investigation into several data streams, such as phone 

usage, app usage, battery consumption, and weather information. Some patterns in 

these data streams were reported to be associated with depression severity by previous 

research, but they were not examined using large data sets (David, Roberts, & 

Christenson, 2018; Doryab, Min, Wiese, Zimmerman, & Hong, 2014; Rohani, 

Faurholt-Jepsen, Kessing, & Bardram, 2018; Saeb et al., 2015). Therefore, we planned 

to design and extract features from these data streams in the RADAR-MDD data set in 
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future research. In addition, we will combine several data streams and extract additional 

features. For example, features of heart rate during walking or sleeping can be 

computed using multiple passive data streams from Fitbit. Additionally, Bluetooth and 

location data streams can be combined to produce a more accurate approximation of 

sociability.   

Some features extracted in this thesis and corresponding data streams need more future 

investigations. For example, regarding the behaviors in answering remote surveys, 

there is a need to extract more features (such as time spent on each subitem) and explore 

their relationships with depression severity in future research. Additionally, although 

the Fitbit data streams of heart rate and steps were used to estimate the circadian 

rhythms in Chapter 7, additional features (e.g., heart rate variability and step count) can 

be extracted in the future to correlate heart rate/activity with depression directly.     

Furthermore, the selection of the window size for feature extraction needs further 

discussion. In this thesis, one of the strategies for describing individuals’ behaviors over 

time is to first extract behavioral features for each day and then extract second-order 

statistics (e.g., mean and SD) for each of these daily features over a period (e.g., 14 

days) preceding a depression assessment (e.g., PHQ-8). However, the optimal feature 

window size is still unclear. In future studies, we will attempt smaller slots (e.g., 

morning, afternoon, evening, and night) for each day and different lengths of time 

windows before depression assessments in future research.  
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Missing Data, Data Quality, and Data Imputation 

Missing data has always been a challenge in mobile health research (Onnela, 2021). 

This thesis applied the threshold method for data inclusion criteria. Specifically, if the 

integrity of passive data of a certain day falls below a specified threshold (50% used in 

this thesis), the behavioral features for that day will not be calculated. However, the 

optimal threshold is still unclear, and different missing rates may have different impacts 

on feature values. For example, according to a threshold of 50%, data completeness of 

60% and 90% both exceed the threshold; however, their effects on the feature values 

may vary. Therefore, further sensitivity analysis for threshold selection is required in 

future research.  

For machine and deep learning, missing data must be imputed before being inputted 

into models. There are several data imputation techniques, including linear 

interpolation, spline interpolation, the Gaussian Process, and machine learning-based 

methods (Hasan et al., 2021). Finding adequate imputation algorithms for missing data 

in longitudinal smartphone and wearable data gathered from the real world is a valuable 

and challenging topic in future research. 

Subgroup Analysis 

Depression manifests differently in various people. Similarly, behaviors are also 

affected by various characteristics of people, such as age, gender, physical condition, 

and employment status, in real-world settings. Consequently, several previous research 

demonstrated that depression had varying correlations with behaviors across genders 
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and age groups (Doryab et al., 2014; Pratap et al., 2020). As the RADAR-MDD study 

is an observational cohort study with an open enrollment strategy, performing 

association analysis directly on the entire diverse population may obscure or distort 

some connections. Therefore, it may be helpful to identify subgroups of participants 

with similar patterns in behavioral trajectories and then perform subgroup analysis to 

understand various depressive manifestations and their correlations with behaviors. 

Common techniques for trajectory clustering include K-means, hierarchical clustering, 

and the hidden Markov model (Casolla, Cuomo, Di Cola, & Piccialli, 2019; Morris & 

Trivedi, 2011). Using K-means clustering models, we have identified three long-term 

participant engagement patterns in Chapter 2 based on the completeness of the gathered 

data. We will perform appropriate clustering methods on passive behavioral data for 

future subgroup analysis. 

Synthetic and external control groups for the RADAR-MDD study 

The RADAR-MDD study is an observational cohort study, that is, all participants who 

met the eligibility criteria were recruited without stratifying or randomizing participants’ 

sociodemographic characteristics (Matcham et al., 2019). With this recruitment strategy, 

the RADAR-MDD study successfully recruited a large cohort of participants. However, 

the absence of a control group limits some data analysis. If we divide the cohort into 

depressed and asymptomatic groups based on scores of depression questionnaires, the 

sociodemographic characteristics of these two groups will be imbalanced. The group 

comparison would be biased by confounding variables. Fortunately, some statistical 
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methods, such as propensity matching scores (Caliendo & Kopeinig, 2008), can create 

a synthetic control group (Ko et al., 2021; Thorlund, Dron, Park, & Mills, 2020). In 

future research, we will apply this methodology to the RADAR-MDD cohort to 

generate the depressed and asymptomatic groups with similar distributions of 

sociodemographics. 

Furthermore, we also have access to some other large observational cohort data sets, 

e.g., Covid Collab (Stewart et al., 2021) and GLAD (Davies et al., 2019) data sets, with 

similar data collection settings (Fitbit data and depression questionnaires). We are 

planning to use the propensity matching scores to create external synthetic healthy 

control groups for the RADAR-MDD cohort. 

Free Speech Analysis 

In the RADAR-MDD study, a subset of participants was asked to do some speech tasks 

every two weeks (Dineley et al., 2021; Matcham et al., 2019). One of these tasks was a 

free-speech activity in which participants were asked to talk about their expectations 

and plans for the next week (Dineley et al., 2021). We plan to apply an open-source 

automatic speech recognition system, Whisper (Radford et al., 2022), to transfer these 

unscripted speech records to text and then leverage some NLP approaches (e.g., 

sentiment analysis and topic models (Stappen et al., 2021)) to explore the sentiment and 

topics reflected in the free speech task and their links with depression. 
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Mixed-effects Machine Learning Models 

The linear mixed-effects regression model is the most utilized statistical model in this 

thesis. Since the depression assessments and corresponding passive data used in this 

thesis are longitudinal (i.e., repeated measurements for each participant), the linear 

mixed-effects regression model is an appropriate method to estimate data patterns at 

both individual and cohort levels. However, linear models can only explore linear 

connections, which are insufficient for real-world circumstances. Therefore, some past 

studies leveraged machine learning models to predict the severity of depression, 

considering nonlinear correlations (De Angel et al., 2022). However, conventional 

machine learning models assume training data are independently and identically 

distributed (i.i.d. assumption). Nevertheless, this assumption is violated in longitudinal 

studies where a high degree of correlation is exhibited at the individual level. 

Consequently, ignoring the data’s underlying correlations may lead to mediocre model 

performance and misleading findings (Hajjem, Bellavance, & Larocque, 2010; Sela & 

Simonoff, 2012). To address this limitation, GPBoost, a mixed-effects machine learning 

model, combining boosting tree models with mixed effects, was developed recently 

(Sigrist, 2020). This innovative algorithm performed better than conventional machine 

learning techniques (e.g., Random Forest and XGBoost) in some recent applications of 

longitudinal research, including driver fatigue prediction (Zhou et al., 2022), COVID-

19 disease severity prediction (Sokhansanj & Rosen, 2022), and colon cancer analysis 

(Levy et al., 2021). We plan to leverage this algorithm to predict depression symptom 

severity in our longitudinal data set in the future. 
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Deep Learning Models 

Shallow machine learning methods (e.g., Support Vector Machine, Random Forest, and 

XGBoost) significantly rely on time-consuming and domain-specific manual feature 

engineering (Janiesch, Zschech, & Heinrich, 2021). Although these hand-crafted 

features can assist in explaining model results, some data patterns may not be fully 

explored due to human bias (Janiesch et al., 2021). Deep learning models with deeply 

nested network architectures have the capability to automatically extract discriminative 

features with minimal human effort (Janiesch et al., 2021). In particular, there are many 

excellent time-series deep learning structures, including LSTM (Graves, 2012), 

DeepGlo (Sen et al., 2019), and LSTNet (Lai et al., 2018), that can learn the temporal 

patterns in time series data. Several past studies (Espino-Salinas et al., 2022; Jacobson 

& Bhattacharya, 2022) have leveraged deep learning methods for assessing mental 

health status using passive monitoring data and achieved satisfactory results. However, 

due to the limited sample size and study length, the generalizability and robustness of 

their models need to be validated in large longitudinal data sets. In future research, we 

will develop suitable deep learning frameworks for evaluating depression severity using 

smartphone and wearable data in the RADAR-MDD data set. 

8.3 Final Remarks 

This thesis demonstrated that the associations between depression and the behaviors of 

individuals can be captured by mobile phones and wearable devices in real-world 

settings. The behavioral characteristics derived from passive data streams have the 
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potential to predict the severity of depressive symptoms. The findings of this thesis 

provide the basis for developing future clinical tools for remote monitoring of mental 

health status and trajectory with minimal user burden. Future research will require the 

collaborative efforts of participants, clinicians, software engineers, and data scientists 

to overcome challenges including data quality, participant retention, and individual 

differences as discussed above.  
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Appendix A 

Supplementary Material to Chapter 2 

Supplementary Table 1. A summary of characteristics of 313 participants with a 

longer observation period (94 weeks) in the RADAR-MDD study, with comparisons 

across the three study sites. 

Characteristics Total KCL CIBER VUmc P value 

Number of participants, n 313 206 91 16  

Age (median [IQR]) 
51.00  

[37.00, 59.00] 

47.00  

[32.00, 58.00] 

54.00  

[47.50, 60.00] 

39.50  

[33.50, 52.25] 
<.001 

Female, n (%) 235 (75.1) 155 (75.2) 67 (73.6) 13 (81.3) .81 

Marital status, n (%)     .06 

    Single/separated/divorced/widowed 155 (49.5) 109 (52.9) 36 (39.6) 10 (62.5)  

    Married/cohabiting/LTR 158 (50.5) 97 (47.1) 55 (60.4) 6 (37.5)  

Ethnicity, n (%)     <.001 

    White 188 (84.7) 174 (84.5) - 14 (87.5)  

    Black 9 (4.1) 8 (3.9) - 1 (6.2)  

    Asian 9 (4.1) 9 (4.4) - 0 (0)  

    Other 16 (7.2) 15 (7.3) - 1 (6.2)  

Employed, n (%) 135 (43.1) 106 (51.5) 19 (20.9) 10 (62.5) <.001 

Having children, n (%) 173 (55.3) 97 (47.1) 70 (76.9) 6 (37.5) <.001 

Years in education (median [IQR]) 
15.00  

[12.00, 18.00] 

17.00  

[14.00, 19.00] 

11.00  

[9.00, 14.00] 

17.00  

[15.00, 21.50] 
<.001 

Annual income, n (%)     .003 

    <15,000 (£/€) 86 (27.5) 53 (25.7) 32 (35.2) 1 (6.3)  

    15,000-55,000 (£/€) 181 (57.8) 116 (56.3) 53 (58.2) 12 (75.0)  

    >55000 (£/€) 44 (14.1) 36 (17.5) 6 (6.6) 2 (12.5)  

Accommodation, n (%)     .04 

    Own outright/with mortgage 177 (56.6) 105 (51.0) 63 (69.2) 9 (56.3)  

    Renting 110 (35.1) 82 (39.8) 21 (23.1) 7 (43.8)  

    Living rent-free 23 (7.4) 18 (8.7) 5 (5.5) 0 (0)  

Baseline PHQ-8 score (median [IQR]) 
11.00  

[7.00, 16.00] 

8.00  

[5.25, 13.00] 

15.00  

[10.00, 18.00] 

9.00  

[7.00, 10.00] 
<.001 

Having comorbidities, n (%) 176 (56.2) 113 (54.9) 60 (65.9) 3 (18.8) .002 

Taking depression medication, n (%) 208 (66.5) 116 (56.3) 84 (92.3) 8 (50.0) <.001 

Number of contact logs (median [IQR]) 9.00  

[6.00, 14.00] 

12.00  

[8.00, 16.00] 

5.00  

[3.00, 8.00] 

3.50  

[2.75, 5.25] 
<.001 

Smartphone brand, n (%)     <.001 

Motorola 136 (43.7) 109 (53.2) 22 (24.4) 5 (31.2)  

Samsung 85 (27.3) 54 (26.3) 23 (25.6) 8 (50.0)  

Other 90 (28.9) 42 (20.5) 45 (50.0) 3 (18.8)  
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Supplementary Table 2. Proportional hazards assumption tests (using the scaled 

Schoenfeld residuals) for 3 Cox Proportional-Hazards models of Phone-Active, 

Phone-Passive, and Fitbit-Passive data streams during the first 43 weeks of the 

RADAR-MDD study, respectively. All 3 Cox models passed the global proportional 

hazards assumption tests. 

 

Predictor           Phone-Active Phone-Passive Fitbit-Passive 

𝜒2  P value 𝜒2  P value 𝜒2  P value 

Age 0.39  0.98  5.34  0.25  6.23  0.18  

Gender 0.63  0.43  5.37  0.02  0.65  0.42  

Marital status 1.82  0.18  2.19  0.14  0.78  0.38  

Employment 1.86  0.17  1.08  0.30  1.72  0.19  

Having children          0.11  0.74  0.13  0.72  1.34  0.25  

Years in education         2.69  0.10  0.15  0.70  0.86  0.35  

Annual income 1.43  0.49  1.40  0.50  0.66  0.72  

Accommodation 2.03  0.36  2.76  0.25  2.37  0.31  

Baseline PHQ-8 score 0.23  0.63  0.76  0.38  0.36  0.55  

Having comorbidities           1.74  0.19  0.04  0.85  0.04  0.84  

Taking depression medication 0.72  0.40  0.68  0.41  0.10  0.75  

Study Site 0.50  0.78  3.23  0.20  4.42  0.11  

Brand of smartphone 0.46  0.79  4.16  0.13  0.61  0.74  

GLOBAL                   12.80  0.89  30.11  0.07  21.90  0.35  
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Supplementary Table 3. Proportional hazards assumption tests (using the scaled 

Schoenfeld residuals) for 3 Cox Proportional-Hazards models of Phone-Active, 

Phone-Passive, and Fitbit-Passive data streams during the first 94 weeks of the 

RADAR-MDD study, respectively. All 3 Cox models passed the global proportional 

hazards assumption tests. 

Predictor           Phone-Active Phone-Passive Fitbit-Passive 

𝜒2  P value 𝜒2  P value 𝜒2  P value 

Age 9.90  0.04  1.93  0.75  6.69  0.15  

Gender 1.58  0.21  2.26  0.13  2.86  0.09  

Marital status 0.07  0.79  0.01  0.91  0.05  0.82  

Employment 1.39  0.24  0.02  0.89  3.69  0.06  

Having children          2.25  0.13  1.26  0.26  5.14  0.02  

Years in education         0.39  0.54  0.75  0.39  1.58  0.21  

Annual income 0.13  0.94  0.32  0.85  2.15  0.34  

Accommodation 0.88  0.65  1.55  0.46  2.45  0.29  

Baseline PHQ-8 score 0.62  0.43  1.28  0.26  0.33  0.56  

Having comorbidities           2.38  0.12  0.10  0.76  1.48  0.22  

Taking depression medication 2.83  0.09  0.67  0.41  0.02  0.88  

Study Site 1.64  0.44  0.88  0.65  0.04  0.98  

Brand of smartphone 0.73  0.69  0.01  0.99  2.90  0.23  

GLOBAL                   25.18  0.20  13.70  0.85  25.52  0.18  
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Supplementary Table 4. Summary participants’ characteristics across three distinct 

engagement subgroups of Phone-Active data for the first 43 weeks of the RADAR-

MDD study. The median and interquartile range (IQR) of continuous variables and the 

count number and percentage of category variables are reported in the table. 

Characteristics C1 C2 C3 P value 

Number of participants, n 231 179 204  

Age  53.00 [34.00, 61.50] 45.00 [31.00, 55.50] 48.00 [32.00, 57.25] .003 

Male, n (%)  52 (22.5) 42 (23.5) 55 (27.0) .53 

Number of biweekly surveys  20.00 [18.00, 21.00] 13.00 [11.00, 15.00] 4.00 [1.00, 6.00] <.001 

PHQ-8 response time (minutes) 73.68 [31.31, 215.77] 148.08 [54.05, 322.27] 302.36 [122.30, 527.10] <.001 

PHQ-8 completion time (seconds)  50.29 [37.92, 68.96] 49.42 [40.01, 66.95] 61.56 [46.12, 83.00] <.001 

RSES response time (minutes) 67.94 [24.11, 198.42] 134.96 [44.55, 304.56] 274.09 [108.18, 518.50] <.001 

RSES completion time (seconds)  54.54 [43.78, 72.39] 55.75 [43.99, 74.28] 69.24 [50.34, 100.52] <.001 

Site, n (%)    <.001 

CIBER 47(20.3) 48 (26.8) 51 (25.0)  

KCL 119 (51.5) 102 (57.0) 129 (63.2)  

VUmc 65 (28.1) 29 (16.2) 24 (11.8)  

Married Status, n (%)    .24 

Single/separated/divorced/widowed 114 (49.4) 97 (54.2) 117 (57.4)  

Married/cohabiting/LTR 117 (50.6) 82 (45.8) 87 (42.6)  

Years in education 16.00 [12.00, 19.00] 16.00 [13.00, 19.00] 15.00 [12.00, 19.00] .90 

Having children, n (%) 116 (50.2) 88 (49.2) 100 (49.0) .78 

Employed, n (%) 90 (39.0)  80 (44.7)  88 (43.1)  .06 

Annual income, n (%)    .73 

   <15,000 (£/€) 48 (20.8) 48 (26.8) 56 (27.5)  

   15,000-55,000 (£/€) 135 (58.4) 102 (57.0) 111 (54.4)  

   more than 55000 (£/€) 40 (17.3) 25 (14.0) 33 (16.2)  

Accommodation, n (%)    .47 

   Own outright/with mortgage 131 (56.7) 90 (50.3) 102 (50.0)  

   Renting 82 (35.5) 73 (40.8) 81 (39.7)  

   Living rent-free 13 (5.6) 15 (8.4) 18 (8.8)  

Baseline PHQ-8 score  9.00 [6.00, 15.00] 10.00 [8.00, 15.00] 13.00 [7.00, 17.00] .003 

Having comorbidities, n (%) 109 (47.2)     86 (48.0)    116 (56.9)  .09 

Taking depression medication, n (%)   145 (62.8)    126 (70.4)    129 (63.2)  .22 

Number of contact logs 3.00 [2.00, 5.00] 5.00 [3.00, 7.00] 5.00 [2.00, 9.00] <.001 

Brand of smartphone, n (%)    .56 

Motorola  99 (43.4)     66 (37.1)     75 (37.7)   

Samsung  72 (31.6)     56 (31.5)     66 (33.2)   

Other  57 (25.0)     56 (31.5)     58 (29.1)   
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Supplementary Table 5. Summary participants’ characteristics across three distinct 

engagement subgroups of Phone-Passive data for the first 43 weeks of the RADAR-

MDD study. The median and interquartile range (IQR) of continuous variables and the 

count number and percentage of category variables are reported in the table. 

 

Characteristics C1 C2 C3 P value 

Number of participants, n 259 148 207  

Age  52.00 [36.50, 61.00] 46.50 [30.75, 56.25] 46.00 [30.50, 57.50] .01 

Male, n (%) 66 (25.5) 36 (24.3) 47 (22.7) .79 

Days with phone passive data 283.00 [257.00, 298.00] 167.00 [142.25, 205.25] 32.00 [4.00, 67.50] <.001 

PHQ-8 response time (minutes) 121.70 [45.13, 327.68] 99.76 [40.89, 289.39] 150.94 [52.23, 340.70] .21 

PHQ-8 completion time (seconds)  53.63 [41.84, 72.91] 48.08 [36.46, 66.11] 55.29 [39.75, 74.47] .01 

RSES response time (minutes) 116.13 [36.36, 347.98] 81.50 [31.10, 254.39] 160.42 [39.65, 321.28] .14 

RSES completion time (seconds)  61.08 [47.33, 83.46] 51.87 [41.31, 70.32] 63.55 [46.68, 82.90] .001 

Site, n (%)    <.001 

CIBER 60 (23.2) 24 (16.2) 62 (30.0)  

KCL 165 (63.7) 82 (55.4) 103 (49.8)  

VUmc 34 (13.1) 42 (28.4) 42 (20.3)  

Married Status, n (%)    .26 

Single/separated/divorced/widowed 131 (50.6) 77 (52.0) 120 (58.0)  

Married/cohabiting/LTR 128 (49.4) 71 (48.0) 87 (42.0)  

Years in education 15.00 [12.00, 18.00] 17.00 [14.00, 20.00] 16.00 [12.00, 19.00] .005 

Having children, n (%) 142 (54.8) 66 (44.6) 96 (46.4) .15 

Employed, n (%) 106 (40.9)   64 (43.2)  88 (42.5)  .87 

Annual income, n (%)    .80 

   <15,000 (£/€) 65 (25.1) 31 (20.9) 56 (27.1)  

   15,000-55,000 (£/€) 151 (58.3) 83 (56.1) 114 (55.1)  

   more than 55000 (£/€) 37 (14.3) 29 (19.6) 32 (15.5)  

Accommodation, n (%)    .08 

   Own outright/with mortgage 150 (57.9) 71 (48.0) 102 (49.3)  

   Renting 90 (34.7) 67 (45.3) 79 (38.2)  

   Living rent-free 17 (6.6) 7 (4.7) 22 (10.6)  

Baseline PHQ-8 score  9.00 [6.00, 15.00] 10.00 [7.00, 14.00] 12.00 [8.00, 17.00] .001 

Having comorbidities, n (%) 135 (52.1)     75 (50.7)    101 (48.8)   .78 

Taking depression medication, n (%)  161 (62.2)     95 (64.2)    144 (69.6)   .24 

Number of contact logs 5.00 [2.00, 7.00] 4.00 [2.00, 7.00] 4.00 [2.00, 7.00] .30 

Brand of smartphone, n (%)    <.001 

Motorola 147 (57.0)     63 (42.9)     30 (15.0)   

Samsung 71 (27.5)     55 (37.4)     68 (34.0)   

Other 40 (15.5)     29 (19.7)    102 (51.0)   
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Supplementary Table 6. Summary participants’ characteristics across three distinct 

engagement subgroups of Fitbit-Passive data for the first 43 weeks of the RADAR-

MDD study. The median and interquartile range (IQR) of continuous variables and the 

count number and percentage of category variables are reported in the table. 

 

Characteristics C1 C2 C3 P value 

Number of participants, n 407 99 108  

Age  48.00 [32.00, 58.50] 45.00 [31.50, 54.00] 51.50 [36.00, 61.00] .06 

Male, n (%) 99 (24.3) 26 (26.3) 24 (22.2) .79 

Days with Fitbit passive data 294.00 [274.00, 301.00] 156.00 [132.00, 190.00] 18.00 [0.00, 67.00] <.001 

PHQ-8 response time (minutes) 113.51 [38.68, 288.84] 170.78 [53.70, 470.75] 161.81 [65.91, 410.24] .007 

PHQ-8 completion time (seconds)  50.28 [39.19, 66.99] 52.80 [37.71, 81.08] 64.20 [50.71, 84.31] <.001 

RSES response time (minutes) 97.68 [29.95, 288.16] 143.47 [56.43, 423.82] 177.56 [65.53, 381.02] .009 

RSES completion time (seconds)  56.40 [44.29, 73.28] 60.74 [44.95, 87.61] 69.43 [53.61, 96.26] <.001 

Site, n (%)    <.001 

CIBER 77 (18.9) 29 (29.3) 40 (37.0)  

KCL 237 (58.2) 54 (54.5) 59 (54.6)  

VUmc 93 (22.9) 16 (16.2) 9 (8.3)  

Married Status, n (%)    .06 

Single/separated/divorced/widowed 204 (50.1) 61 (61.6) 63 (58.3)  

Married/cohabiting/LTR 203 (49.9) 38 (38.4) 45 (41.7)  

Years in education 16.00 [13.00, 19.00] 15.00 [13.00, 20.00] 14.50 [11.00, 18.00] .004 

Having children, n (%) 191 (46.9) 48 (48.5) 65 (60.2) .03 

Employed, n (%) 179 (44.0)  37 (37.4)  42 (38.9)  .47 

Annual income, n (%)    .08 

   <15,000 (£/€) 90 (22.1) 35 (35.4) 27 (25.0)  

   15,000-55,000 (£/€) 232 (57.0) 53 (53.5) 63 (58.3)  

   more than 55000 (£/€) 75 (18.4) 8 (8.1) 15 (13.9)  

Accommodation, n (%)    .30 

   Own outright/with mortgage 215 (52.8) 44 (44.4) 64 (59.3)  

   Renting 157 (38.6) 46 (46.5) 33 (30.6)  

   Living rent-free 30 (7.4) 8 (8.1) 8 (7.4)  

Baseline PHQ-8 score  9.00 [6.00, 15.00] 11.00 [7.00, 16.00] 13.00 [9.00, 17.50] <.001 

Having comorbidities, n (%) 197 (48.4)     49 (49.5)     65 (60.2)  .09 

Taking depression medication, n (%) 264 (64.9)     63 (63.6)     73 (67.6)  .82 

Number of contact logs 4.00 [2.00, 7.00] 5.00 [3.00, 8.00] 4.00 [2.00, 6.50] .09 

Brand of smartphone, n (%)    .047 

Motorola 168 (41.6)     39 (39.4)     33 (32.4)   

Samsung 137 (33.9)     27 (27.3)     30 (29.4)   

Other   99 (24.5)     33 (33.3)     39 (38.2)   
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Supplementary Table 7. Summary participants’ characteristics across four distinct 

engagement subgroups of Phone-Active data for the first 94 weeks of the RADAR-

MDD study. The median and interquartile range (IQR) of continuous variables and the 

count number and percentage of category variables are reported in the table. 

Characteristics C1 C2 C3 C4 P value 

Number of participants, n 82 63 59 109  

Age  56.00 [46.25, 63.00] 49.00 [32.50, 59.00] 48.00 [30.00, 57.50] 47.00 [35.00, 54.00] <.001 

Male, n (%) 24 (29.3) 15 (23.8) 13 (22.0) 26 (23.9) .75 

Number of biweekly surveys  41.00 [37.25, 44.00] 25.00 [22.00, 30.00] 18.00 [14.50, 24.00] 5.00 [1.00, 8.00] <.001 

PHQ-8 response time (minutes) 84.20 [31.44, 204.10] 114.91 [71.77, 275.07] 158.96 [48.80, 338.91] 185.82 [71.58, 469.91] .01 

PHQ-8 completion time (seconds)  50.78 [37.80, 66.44] 47.26 [38.60, 57.76] 49.67 [39.45, 64.32] 55.58 [41.74, 81.56] .04 

RSES response time (minutes) 62.88 [25.62, 195.36] 104.12 [41.94, 359.53] 176.02 [40.42, 351.18] 194.83 [53.30, 457.22] .008 

RSES completion time (seconds)  52.23 [42.13, 71.35] 52.09 [44.01, 67.51] 54.67 [42.18, 69.99] 66.35 [49.14, 98.78] <.001 

Site, n (%)     .001 

CIBER 27 (32.9) 14 (22.2) 19 (32.2) 31 (28.4)  

KCL 45 (54.9) 49 (77.8) 35 (59.3) 77 (70.6)  

VUmc 10 (12.2) 0 (0.0) 5 (8.5) 1 (0.9)  

Married Status, n (%)     .43 

Single/separated/divorced/widow

ed 

35 (42.7) 33 (52.4) 28 (47.5) 59 (54.1)  

Married/cohabiting/LTR 47 (57.3) 30 (47.6) 31 (52.5) 50 (45.9)  

Years in education 15.50 [12.00, 18.00] 16.00 [12.00, 19.00] 15.00 [12.00, 18.00] 15.00 [12.00, 19.00] .87 

Having children, n (%) 32 (39.0) 25 (39.7) 28 (47.5) 54 (49.5) .47 

Employed, n (%) 28 (34.1) 34 (54.0) 25 (42.4) 48 (44.0) .13 

Annual income, n (%)     .84 

   <15,000 (£/€) 20 (24.4) 18 (28.6) 18 (30.5) 30 (27.5)  

   15,000-55,000 (£/€) 50 (61.0) 38 (60.3) 34 (57.6) 59 (54.1)  

   more than 55000 (£/€) 12 (14.6) 7 (11.1) 6 (10.2) 19 (17.4)  

Accommodation, n (%)     .08 

   Own outright/with mortgage 58 (70.7) 33 (52.4) 31 (52.5) 55 (50.5)  

   Renting 20 (24.4) 28 (44.4) 22 (37.3) 40 (36.7)  

   Living rent-free 3 (3.7) 2 (3.2) 5 (8.5) 13 (11.9)  

Baseline PHQ-8 score  9.00 [5.75, 13.00] 10.00 [7.00, 14.00] 13.00 [8.50, 17.50] 13.00 [7.00, 17.00] .005 

Having comorbidities, n (%) 39 (47.6) 39 (61.9) 32 (54.2) 66 (60.6) .24 

Taking depression medication, n (%) 57 (69.5) 38 (60.3) 41 (69.5) 72 (66.1) .65 

Number of contact logs 7.00 [5.00, 10.00] 11.00 [7.00, 17.00] 9.00 [5.00, 13.50] 10.00 [5.00, 14.00] .002 

Brand of smartphone, n (%)     .13 

Motorola 45 (55.6) 23 (36.5) 22 (37.3) 46 (42.6)  

Samsung 17 (21.0) 18 (28.6) 15 (25.4) 35 (32.4)  

Other 19 (23.5) 22 (34.9) 22 (37.3) 27 (25.0)  
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Supplementary Table 8. Summary participants’ characteristics across four distinct 

engagement subgroups of Phone-Passive data for the first 94 weeks of the RADAR-

MDD study. The median and interquartile range (IQR) of continuous variables and 

the count number and percentage of category variables are reported in the table. 

Characteristics C1 C2 C3 C4 
P 

value 

Number of participants, n 122 53 61 77  

Age  54.00 [41.00, 62.75] 46.00 [35.00, 53.00] 48.00 [37.00, 55.00] 50.00 [36.00, 59.00] .009 

Male, n (%) 33 (27.0) 9 (17.0) 16 (26.2) 20 (26.0) .54 

Days with phone passive data 607.00 [538.25, 639.00] 417.00 [362.00, 465.00] 230.00 [179.00, 286.00] 31.00 [3.00, 86.00] <.001 

PHQ-8 response time (minutes) 107.42 [40.78, 320.76] 123.17 [35.15, 246.15] 107.89 [37.38, 329.76] 174.82 [63.87, 261.17] .81 

PHQ-8 completion time (seconds)  51.78 [41.09, 66.86] 47.00 [37.99, 61.73] 46.49 [37.06, 61.44] 55.58 [41.17, 75.53] .16 

RSES response time (minutes) 105.32 [33.88, 336.49] 104.53 [21.69, 290.55] 83.92 [33.37, 280.32] 178.30 [64.61, 336.32] .55 

RSES completion time (seconds)  57.42 [45.97, 74.53] 53.36 [43.56, 68.84] 50.79 [41.02, 72.28] 64.11 [48.09, 97.14] .06 

Site, n (%)     .007 

CIBER 26 (21.3) 15 (28.3) 17 (27.9) 33 (42.9)  

KCL 92 (75.4) 35 (66.0) 37 (60.7) 42 (54.5)  

VUmc 4 (3.3) 3 (5.7) 7 (11.5) 2 (2.6)  

Married Status, n (%)     .85 

Single/separated/divorced/wido

wed 

60 (49.2) 24 (45.3) 30 (49.2) 41 (53.2)  

Married/cohabiting/LTR 62 (50.8) 29 (54.7) 31 (50.8) 36 (46.8)  

Years in education 14.50 [12.00, 18.00] 17.00 [13.00, 18.00] 16.00 [13.00, 19.00] 15.00 [12.00, 19.00] .55 

Having children, n (%) 69 (56.6) 26 (49.1) 35 (57.4) 43 (55.8) .85 

Employed, n (%) 52 (42.6) 24 (45.3) 29 (47.5) 30 (39.0) .89 

Annual income, n (%)     .15 

   <15,000 (£/€) 32 (26.2) 14 (26.4) 15 (24.6) 25 (32.5)  

   15,000-55,000 (£/€) 69 (56.6) 29 (54.7) 39 (63.9) 44 (57.1)  

   more than 55000 (£/€) 21 (17.2) 8 (15.1) 7 (11.5) 8 (10.4)  

Accommodation, n (%)     .82 

   Own outright/with mortgage 71 (58.2) 32 (60.4) 33 (54.1) 41 (53.2)  

   Renting 41 (33.6) 18 (34.0) 23 (37.7) 28 (36.4)  

   Living rent-free 10 (8.2) 3 (5.7) 4 (6.6) 6 (7.8)  

Baseline PHQ-8 score  8.50 [5.25, 14.00] 11.00 [6.00, 17.00] 10.50 [7.25, 15.75] 13.00 [9.00, 17.00] .02 

Having comorbidities, n (%) 74 (60.7) 26 (49.1) 33 (54.1) 43 (55.8)  .53 

Taking depression medication, n 

(%) 

73 (59.8) 36 (67.9) 44 (72.1) 55 (71.4)  .24 

Number of contact logs 10.50 [7.00, 17.00] 9.00 [6.00, 14.00] 10.00 [6.00, 15.00] 6.00 [3.00, 10.00] <.001 

Brand of smartphone, n (%)     <.001 

Motorola 81 (66.9) 22 (41.5) 19 (31.1) 14 (18.4)  

Samsung 17 (14.0) 11 (20.8) 19 (31.1) 43 (56.6)  

Other 23 (19.0) 20 (37.7) 23 (37.7) 19 (25.0)  
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Supplementary Table 9. Summary participants’ s characteristics across four distinct 

engagement subgroups of Fitbit-Passive data for the first 94 weeks of the RADAR-

MDD study. The median and interquartile range (IQR) of continuous variables and 

the count number and percentage of category variables are reported in the table. 

Characteristics C1 C2 C3 C4 
P 

value 

Number of participants, n 153 58 52 50  

Age  53.00 [40.00, 60.00] 45.00 [32.00, 54.75] 43.00 [30.50, 53.00] 54.50 [40.75, 63.00] <.001 

Male, n (%) 38 (24.8) 18 (31.0) 10 (19.2) 12 (24.0) .56 

Days with Fitbit passive data 634.00 [586.00, 655.00] 426.50 [358.25, 480.00] 218.00 [162.75, 264.00] 61.50 [2.50, 100.50] <.001 

PHQ-8 response time (minutes) 106.57 [38.25, 252.87] 166.12 [59.78, 305.03] 198.13 [39.73, 378.89] 160.82 [63.15, 259.01] .56 

PHQ-8 completion time (seconds)  47.46 [39.41, 58.66] 48.08 [39.29, 63.49] 57.93 [41.96, 77.13] 67.27 [48.78, 92.50] .001 

RSES response time (minutes) 100.70 [27.77, 234.81] 143.48 [38.42, 316.74] 180.24 [18.92, 425.51] 149.08 [50.24, 331.34] .56 

RSES completion time (seconds)  52.44 [43.61, 66.07] 53.18 [42.18, 73.52] 67.99 [48.09, 94.11] 71.15 [54.14, 106.58] .001 

Site, n (%)     .11 

CIBER 35 (22.9) 15 (25.9) 20 (38.5) 21 (42.0)  

KCL 109 (71.2) 39 (67.2) 30 (57.7) 28 (56.0)  

VUmc 9 (5.9) 4 (6.9) 2 (3.8) 1 (2.0)  

Married Status, n (%)     .39 

Single/separated/divorced/widowed 70 (45.8) 34 (58.6) 27 (51.9) 24 (48.0)  

Married/cohabiting/LTR 83(54.2) 24 (41.4) 25 (48.1) 26 (52.0)  

Years in education 16.00 [12.00, 19.00] 15.00 [13.00, 18.00] 15.00 [12.00, 20.00] 14.00 [11.00, 17.00] .19 

Having children, n (%) 84 (54.9) 27 (46.6) 26 (50.0) 36 (72.0) .17 

Employed, n (%) 74 (48.4) 24 (41.4) 18 (34.6) 19 (38.0) .27 

Annual income, n (%)     .32 

   <15,000 (£/€) 37 (24.2) 17 (29.3) 17 (32.7) 15 (30.0)  

   15,000-55,000 (£/€) 87 (56.9) 34 (58.6) 31 (59.6) 29 (58.0)  

   more than 55000 (£/€) 29 (19.0) 6 (10.3) 4 (7.7) 5 (10.0)  

Accommodation, n (%)     .08 

   Own outright/with mortgage 94 (61.4) 26 (44.8) 23 (44.2) 34 (68.0)  

   Renting 50 (32.7) 23 (39.7) 24 (46.2) 13 (26.0)  

   Living rent-free 8 (5.2) 8 (13.8) 5 (9.6) 2 (4.0)  

Baseline PHQ-8 score  9.00 [7.00, 13.75] 12.00 [6.00, 18.00] 13.00 [7.00, 17.00] 13.00 [8.75, 17.00] .11 

Having comorbidities, n (%) 81 (52.9) 31 (53.4) 27 (51.9) 37 (74.0)  .05 

Taking depression medication, n (%) 102 (66.7) 37 (63.8) 37 (71.2) 32 (64.0)  .84 

Number of contact logs 10.00 [7.00, 16.00] 8.00 [5.00, 14.00] 9.00 [5.75, 12.25] 6.00 [3.00, 9.75] <.001 

Brand of smartphone, n (%)     .45 

Motorola 72 (47.4) 27 (46.6) 20 (38.5) 17 (34.7)  

Samsung 39 (25.7) 17 (29.3) 17 (32.7) 12 (24.5)  

Other 41 (27.0) 14 (24.1) 15 (28.8) 20 (40.8)  
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Supplementary Table 10. Summary of ethnicity difference across three distinct 

engagement subgroups of Phone-Active, Phone-Passive, and Fitbit-Passive data 

streams for the first 43 weeks of the RADAR-MDD study (ethnicity data was 

available for KCL and VUmc sites).  

Data stream  C1 C2 C3 P value 

Phone-Active 

   

<.001 

White 175 (95.1%) 110 (84.0%) 119 (77.8%) 

 

Black 3 (1.6%) 3 (2.3%) 8 (5.2%) 

 

Asian 2 (1.1%) 2 (1.5%) 12 (7.8%) 

 

Other 4 (2.2%) 16 (12.2%) 14 (9.2%) 

 

Phone-Passive 

   

.001 

White 174 (87.4%) 115 (92.7%) 115 (79.3%) 

 

Black 10 (5.0%) 1 (0.8%) 3 (2.1%) 

 

Asian 2 (1.0%) 4 (3.2%) 10 (6.9%) 

 

Other 13 (6.5%) 4 (3.2%) 17 (11.7%) 

 

Fitbit-Passive 

   

.003 

White 296 (89.7%) 57 (81.4%) 51 (75.0%) 

 

Black 9 (2.7%) 4 (5.7%) 1 (1.5%) 

 

Asian 6 (1.8%) 4 (5.7%) 6 (8.8%) 

 

Other 19 (5.8%) 5 (7.1%) 10 (14.7%) 
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Supplementary Table 11. A list of 19 comorbidities that recorded at the enrollment of 

the RADAR-MDD study. 

Number  Comorbidity 

1 Asthma 

2 Chronic bronchitis 

3 Other chest trouble 

4 Diabetes 

5 Stomach or other digestive disorder 

6 Liver trouble 

7 Kidney trouble 

8 Rheumatoid arthritis 

9 Osteoarthritis 

10 Heart trouble 

11 Cancer 

12 High blood pressure 

13 Multiple Sclerosis 

14 Epilepsy/fits 

15 Stroke 

16 Other neurological trouble 

17 Migraine 

18 Back trouble 

19 Other 
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Supplementary Figure 1. The histogram of age distribution for 614 participants in 

the RADAR-MDD study. 
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Supplementary Figure 2. The hazard ratio plots of Cox Proportional-Hazards models 

for assessing the impact of multiple variables of interest on the participant retention 

time in the study of the secondary cohort (94-week observation period) for the Phone-

Active, Phone-Passive, and Fitbit-Passive data streams, respectively. Significance 

levels: p < .05 *, p < .01 **, and p < .001 ***. 
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Supplementary Figure 3. Comparison of within-cluster variations across data 

streams using different cluster sizes (N=1-10) for K-means clustering. The optimal 

numbers of clusters for primary (43-week observation period) and secondary (94-

week observation period) cohorts are 3 and 4, respectively. 
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Supplementary Figure 4. Heatmaps of participant longitudinal engagement patterns 

for the three data streams in the longer observation period (94 weeks), clustered using 

K-means clustering. In each heatmap, each row represents a data-availability vector of 

one participant (described in Methods), and subgroups were arranged from the most 

engaged cluster to the least engaged cluster (C1-C4). 
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Appendix B 

Supplementary Material to Chapter 6 

Supplementary Table 1. The list of comorbidities that recorded at the enrollment 

session of the RADAR-MDD-KCL dataseta. 

Number  Comorbidity 

1 Asthma 

2 Chronic bronchitis 

3 Other chest trouble 

4 Diabetes 

5 Depression 

6 Stomach or other digestive disorder 

7 Liver trouble 

8 Kidney trouble 

9 Rheumatoid arthritis 

10 Osteoarthritis 

11 Heart trouble 

12 Cancer 

13 High blood pressure 

14 Multiple Sclerosis 

15 Epilepsy/fits 

16 Stroke 

17 Other neurological trouble 

18 Migraine 

19 Back trouble 

20 Other 
a RADAR-MDD-KCL: A subset of the Remote Assessment of Disease and Relapse – 

Major Depressive Disorder data set, which was collected from King’s College London, 

United Kingdom. 
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Supplementary Table 2. Results and performance of two nested linear regression 

models with (Model B) and without (Model A) long-term gait features in the Long-

Term Movement Monitoring dataset. 

Featurea 

  

Model A Model B 

Estimate  SEb P value Estimate  SE P value 

(Intercept)   9.49  11.57  0.42  17.36  22.98  0.45  

Age             -0.08  0.08  0.35  -0.07  0.09  0.46  

Gender          -0.06  0.85  0.95  -0.90  1.03  0.39  

Median Cycle     0.02  0.08  0.77  0.05  0.13  0.67  

Peak Frequency     0.38  1.92  0.85  -0.43  2.10  0.84  

Median Force       -2.43  2.22  0.28  -1.81  2.82  0.52  

25th percentile of Median Cycle  —c  —  — 0.19  0.24  0.42  

50th percentile of Median Cycle  —  —  — -0.54  0.39  0.17  

75th percentile of Median Cycle  —  —  — 0.29  0.16  0.08  

SD of Median Cycle  —  —  — -0.11  0.09  0.25  

25th percentile of Peak Frequency  —  —  — 8.54  7.07  0.23  

50th percentile of Peak Frequency  —  —  — -4.25  8.70  0.63  

75th percentile of Peak Frequency  —  —  — -8.33  4.30  0.06  

SD of Peak Frequency  —  —  — 12.45  8.12  0.13  

25th percentile of Median Force  —  —  — 2.75  21.69  0.90  

50th percentile of Median Force  —  —  — 1.23  22.37  0.96  

75th percentile of Median Force  —  —  — 5.38  28.31  0.85  

SD of Median Force  —  —  — -27.53  53.83  0.61  

𝑅2 0.06 0.30 

LR testd: 𝜒2  32.91 

LR test: P value .001 

a Definitions of gait features in this table are shown in Table 1.     
b SE: standard error. 
c Not applicable. 
d The critical value of the likelihood ratio statistic: 𝜒0.05

2 (12) = 21.03. 
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Appendix C 

Supplementary Material to Chapter 2 

Participant Retention and Response Rates  

Supplementary Table 1 provides an overview of participant retention and response rates 

for the three data streams in the RADAR-MDD study. The participant retention rates 

were 54.6% (N = 335), 47.7% (N = 293), and 67.6% (N = 415) after 43 weeks (primary 

cohort defined in Chapter 2) for Phone-Active, Phone-Passive, and Fitbit-Passive data 

streams, respectively. Participants shared 12.00 [5.00, 18.00] bi-weekly surveys, 182.50 

[54.25, 272.00] days of phone passive data, and 267.50 [135.25, 299.00] days of Fitbit 

passive data. The median passive data availability of a smartphone is 12.05 [2.34, 18.82] 

hours per day whereas the median Fitbit wear time is 19.79 [12.46, 22.38] hours per 

day. Supplementary Table 1 also provides the participant retention rates and response 

rates for a longer observation (94 weeks, as stated in Chapter 2).  

Monetary Incentive 

It is recognized that compensation for participant time and monetary incentives increase 

participation (Bentley & Thacker, 2004; Simblett et al., 2018). Although participants 

were not compensated for completing surveys, sharing phone passive data, and wearing 

Fitbit devices, they did receive £15/€20 for enrollment, £5/€10 for clinical assessments 

(every 3 months), and £10/€10 for each additional qualitative interview (e.g., 1-year 

interview) and were permitted to keep the Fitbit device after the study was complete. 

The existing monetary incentives could increase participants’ willingness to remain 
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engaged in the study, which may be one of the reasons for the high participant retention 

of the RADAR-MDD study. However, the monetary incentives may affect the 

generalizability of the findings in real-world settings (i.e., no incentives). 

Supplementary Table 1. A summary of participant retention rates and response rates 

for the three data streams (phone active surveys, phone passive data, and Fitbit data) in 

the RADAR-MDD study. The primary cohort (43 weeks) and Secondary cohort (94 

weeks) are defined in Chapter 2. Note, for data density and daily data, medians and 

interquartile ranges (IQR) are reported. 

  Primary Cohort (43 weeks) Secondary Cohort (94 weeks) 

Number of participants, n  614 313 

Participant retention 
  

Phone-Active, n (%) 335 (54.6) 151 (48.2) 

Phone-Passive, n (%) 293 (47.7) 123 (39.3) 

Fitbit-Passive, n (%) 415 (67.6) 169 (54.0) 

Data Density 
  

Phone-Active (Bi-weeks) 12.00 [5.00, 18.00] 21.00 [7.00, 33.00] 

Phone-Passive (Days) 182.50 [54.25, 272.00] 369.00 [147.00, 584.00] 

Fitbit-Passive (Days) 267.50 [135.25, 299.00] 480.00 [221.00, 630.00] 

Daily Data 
  

Phone-Passive (Hours) 12.05 [2.34, 18.82] 12.99 [4.44, 18.33] 

Fitbit-Passive (Hours) 19.79 [12.46, 22.38] 18.25 [11.99, 21.61] 

 

Supplementary Material to Chapters 3-7 

Behavioral Characteristics and Demographics 

The baseline behavioral characteristics (sleep, sociability, mobility, steps, and circadian 

rhythm) stratified by participant demographics are summarized in Supplementary Table 

2. Older participants had shorter sleep duration, lower sociability, lower mobility, and 

fewer daily steps than younger participants. Compared with males, female participants 

slept longer. Participants who have children had shorter sleep, lower sociability, and 

fewer daily steps than those without children. Employed participants had higher 
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sociability and mobility, and more daily steps than participants without jobs. Among 

income levels, participants of the highest income level had the highest levels of 

sociability, mobility, and daily steps. 

Supplementary Table 2. A summary of baseline behavioral characteristics stratified 

by participant demographics. Note, median values and interquartile ranges (IQR) are 

displayed in this table. 

  Sleepa Sociabilityb Mobilityc Stepd Circadian Rhythme 

Age 
     

<30 8.06 [7.58, 8.49] 20.47 [13.16, 30.13] -8.79 [-11.75, -7.56] 8376 [6142, 10582] 0.24 [0.19, 0.31] 

30-39 8.08 [7.39, 8.58] 17.75 [11.65, 27.27] -10.05 [-11.85, -8.15] 8724 [6405, 11123] 0.26 [0.20, 0.32] 

40-49 7.73 [7.11, 8.38] 19.15 [11.57, 25.92] -9.32 [-10.96, -8.12] 8503 [5535, 10854] 0.22 [0.15, 0.27] 

50-59 7.67 [6.99, 8.13] 14.02 [10.29, 22.43] -10.52 [-12.90, -8.73] 7908 [5659, 10683] 0.25 [0.19, 0.32] 

>60 7.48 [6.84, 8.07] 12.82 [9.36, 19.21] -11.25 [-14.31, -9.64] 7929 [5600, 10628] 0.26 [0.20, 0.34] 

Gender 
     

Female 7.84 [7.25, 8.38] 16.01 [10.68, 25.02] -10.30 [-12.77, -8.21] 8216 [5675, 10628] 0.25 [0.19, 0.32] 

Male 7.48 [6.78, 8.28] 14.69 [10.43, 23.28] -10.19 [-12.35, -8.41] 8402 [6117, 11182] 0.24 [0.19, 0.31] 

Marital Status 
     

Married 7.83 [7.24, 8.38] 15.09 [10.86, 22.80] -10.15 [-12.49, -8.32] 8395 [5878, 10811] 0.25 [0.20, 0.32] 

Single 7.76 [7.04, 8.31] 16.79 [10.31, 26.71] -10.43 [-12.81, -8.20] 8063 [5593, 10737] 0.25 [0.17, 0.31] 

Children 
     

No 8.00 [7.42, 8.56] 18.93 [12.25, 29.55] -9.57 [-11.86, -7.72] 8487 [6153, 10866] 0.24 [0.18, 0.31] 

Yes 7.51 [6.83, 8.13] 13.91 [9.73, 20.59] -10.82 [-13.29, -8.95] 7954 [5348, 10573] 0.25 [0.19, 0.32] 

Employment 
     

No 7.77 [7.12, 8.37] 13.67 [9.50, 21.26] -11.01 [-13.65, -9.02] 7833 [5460, 10663] 0.25 [0.19, 0.33] 

Yes 7.82 [7.09, 8.37] 19.86 [12.50, 29.62] -9.14 [-11.04, -7.41] 8609 [6582, 10804] 0.24 [0.19, 0.30] 

Income 
     

below minimum 7.82 [7.13, 8.56] 13.62 [9.20, 25.73] -11.67 [-13.80, -9.07] 7774 [5278, 10128] 0.25 [0.18, 0.32] 

15,000-55,000 7.75 [7.07, 8.24] 15.32 [10.65, 22.91] -10.19 [-12.10, -8.30] 8235 [5845, 10860] 0.25 [0.19, 0.31] 

more than 55000 7.84 [7.25, 8.42] 20.05 [13.25, 32.25] -9.02 [-11.30, -7.38] 8988 [7414, 11182] 0.24 [0.20, 0.31] 

a Sleep is measured by total sleep time (hours) defined in Chapter 3. 
b Sociability is measured by the mean Bluetooth count defined in Chapter 4. 
c Mobility is measured by location variance defined in Chapter 5 (larger location variance higher 

mobility) 
d Step is the daily step count. 
e Circadian rhythm is the strength of rhythmicity measured by the R2 of the fitted Cosinor function 

using the step and HR signals (defined in Chapter 7). 

 

The Mixed-Effect Linear Regression Model 
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Since the dataset utilized in this thesis (RADAR-MDD) is longitudinal (each participant 

had repeated measurements), the independence assumption of some widely used 

association methods (e.g., Pearson correlations and simple linear regression) is violated. 

Since the life habits and behavioral patterns of participants differed across distinct 

demographics, ignoring underlying correlations at the participant level may obscure or 

distort the associations between behavioral characteristics and depression severity 

(Hajjem, Bellavance, & Larocque, 2010). Supplementary Figure 1 illustrates this issue: 

Variable 1 has a positive effect on Variable 2 at the individual level (represented by 

colors), but a negative (incorrect) association (blue) is found by the pooled data directly 

(ignore the data dependence).   

Supplementary Figure 1. A schematic plot for the issue of data dependence in 

longitudinal data (adapted from Oskolkov, 2020). 

 

The mixed-effect linear regression model is an appropriate method for accounting both 
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within and between participant patterns across time in longitudinal data (Laird & Ware, 

1982). Specifically, the linear mixed model incorporates fixed and random effects 

(Laird & Ware, 1982). A fixed effect is a parameter that does not change (represents the 

general association in the cohort), whereas the random effect might vary among 

participants (e.g., average activity level for each participant) (Laird & Ware, 1982). In 

addition, the linear relationships are easy to be used to explain the effect magnitude and 

direction (positive or negative) of behavioral features on depression severity. Hence, 

the mixed-effect linear regression models were leveraged in this thesis.  

Normality Test 

The linear mixed model assumes the errors (residuals) are normally distributed. As 

mentioned in Chapter 3, this assumption was checked by the histograms of residuals 

and the Shapiro-Wilk test (Yap & Sim, 2011). If the residuals are not normally 

distributed, the Box-Cox transformation was performed (Box & Cox, 1964).  

Limitation of Linear Mixed-Effect Model 

However, linear models can only explore linear connections, which are insufficient for 

real-world circumstances. To address this limitation, I plan to leverage GPBoost (a 

mixed-effects machine learning model) (Sigrist, 2020) to explore the non-linear 

relationships in future research (mentioned in Chapter 8). 

Supplementary Material to Chapter 4 

Multiscale Entropy Feature 
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Some nonlinear characteristics (e.g., complexity and periodicity) of individuals’ 

behaviors are associated with the severity of depression. For instance, depression may 

lead to a misalignment of the circadian rhythm and make people’s life rhythms more 

irregular, which could be reflected in the behavioral signals that are more complicated 

and chaotic (Walker, Walton, DeVries, & Nelson, 2020). However, it is difficult to 

measure these nonlinear characteristics using statistical features. Multiscale entropy 

(MSE) analysis has been widely used in the signal processing field, which can measure 

the complexity of the signal at different time scales (Costa, Goldberger, & Peng, 2005). 

Therefore, I selected to apply MSE to measure the complexity of the Bluetooth 

sequence from 1-hour timescale to 1-day (24 hours) timescale in this chapter. 

Leave-All-Out and Leave-One-Out Training Strategies  

Individual variation in behavioral patterns (e.g., average activity/social level) due to 

diverse life habits and demographics is a challenge that can affect the accuracy of 

forecasting depression severity. The aim of this chapter is to utilize a hierarchical 

Bayesian linear regression model to conduct individualized (personalized) depression 

prediction. Specifically, for each participant, the individual parameters (intercept and 

slope) are trained based on this participant’s historical data (Bluetooth features and 

PHQ-8 score) while these individual parameters are drawn from the cohort parameter 

distribution (Busk et al., 2020). This training strategy guaranteed that both individual 

and cohort patterns are considered in the hierarchical Bayesian linear regression model. 

This method can also be implemented in real-world settings, such as requiring a new 

user to remotely complete PHQ-8 questionnaires during the first few weeks and then 
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predicting the user’s depression status in the subsequent weeks. 

Based on this strategy, we examined two potential application-specific scenarios: 

1. Leave all out (LAO): For all participants, the individual parameters are trained on 

all historical data, and only PHQ-8 scores at the next time point will be predicted. 

The advantage of LAO is that all participants have more and more historical data to 

train the individual parameters over time, which may allow the model to learn the 

individual patterns more effectively. The disadvantage of LAO is that users are 

required to continually complete questionnaires, which causes a high user burden. 

2. Leave one out (LOO): For one participant, the individual parameters (intercept and 

slope) were trained only based on the first two PHQ-8 questionnaires (4 weeks), 

while the cohort parameters are trained using all data of other participants. The 

advantage of LOO is that a new participant just only needs to complete 2 PHQ-8 

questionnaires (low user burden). However, the disadvantage is that the individual 

patterns may not be trained sufficiently (lack of data).  

These two training strategies are described in detail in Chapter 4 and a prior study (Busk 

et al., 2020).  

Limitations  

One of the limitations of Chapter 4 is that the types and the MAC addresses of Bluetooth 

devices were not recorded in order to protect the privacy of participants and passers. 

This makes it difficult to estimate the number of people in the vicinity of the participant. 

Due to this limitation, this chapter did not explain in depth the actual meaning behind 
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the changes in the Nearby Bluetooth device count data. It is indeed a limitation of the 

software implementation for this data modality and stems from the design of an earlier 

version of the RADAR-base platform. Our research team noted that MAC address hash 

and device types should be collected in future research and implementation of these 

improvements is currently under review in the RADAR-base platform and will likely 

be available in the next version release.   

The time-series cross-validation method utilized in this chapter is another limitation. 

As mentioned above, the scenario considered in this chapter is to predict participants’ 

subsequent depressive severity based on some of their history data (behavioral features 

and PHQ8 scores). However, this strategy is not suitable for “new” users who lack past 

data. To address this limitation, I will hold out some participants as test data and train a 

prediction model on the rest of the participants in future research.  

Supplementary Material to Chapter 6 

Gait Patterns and Step Count 

Gait patterns and cumulative step count are two distinct measures of a person’s walking. 

Gait reflects walking characteristics, such as cadence and force, whereas step count 

shows an individual’s mobility or activity level. Since changes in gait and mobility are 

both essential manifestations of depression (Sobin & Sackeim, 1997; Weyerer & Kupfer, 

1994), it is valuable to extract these two measures of daily walking for depression 

monitoring. Several prior studies have revealed a negative link between the step count 

and depression severity via wearables or mobile phones (Abedi, Nikkhah, & Najar, 
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2015; McKercher et al., 2009). For gait patterns, although laboratory gait parameters 

are found to be significantly correlated with depression, the gait characteristics of daily 

life walking in real-world settings have yet to be fully investigated (Zhang et al., 2022). 

Since the step count data provided by Fitbit devices (Charge 2 and Charge 3) cannot 

evaluate the cadence and force of steps, Chapter 6 aimed to extract gait patterns of 

daily-life walking and investigate their associations with depression using raw 

acceleration signals gathered by smartphones and wearables. In future research, I will 

include gait and step features as well as other behavioral features (e.g., sleep, Bluetooth, 

and GPS) in multimodal models for predicting depression. 

Supplementary Material to Chapter 7 

Measurements for Circadian Rhythm  

Many mathematic techniques were developed to evaluate the circadian rhythm using 

passive behavioral data (Refinetti, Cornélissen, & Halberg, 2007). Spectrum 

approaches estimate the strength of circadian rhythm by calculating the frequency 

power in the circadian range of the signal spectrum obtained via some specific time-

frequency transform techniques (such as Fourier analysis, Enright method, and Lomb 

– Scargle periodogram). Since the circadian rhythms can be thought of as smooth 

rhythms with added noise, the Cosinor-based methods estimate the circadian rhythm by 

fitting behavioral data to a Cosinor function (Cornelissen, 2014). With the aim of 

Chapter 7 to explain the association between the circadian rhythm and depression 

severity, it is required to extract more explanatory characteristics of the circadian 
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rhythm. Generally speaking, ideal rhythmic processes can be fully characterized by four 

parameters: MESOR (mean level), period, amplitude, and phase (Refinetti et al., 2007). 

Based on the assumption of a known circadian period (24h), the Cosinor-based method 

is a reliable and practical tool for the computation of MESOR, amplitude, and phase 

(acrophase) of circadian rhythms (Cornelissen, 2014), whereas the spectrum method 

cannot extract these temporal characteristics (Duhamel & Vetterli, 1990). Moreover, 

Cosinor-based models are suitable for non-equidistant data (e.g., missing data) which 

is prevalent in wearable data (Cornelissen, 2014). Therefore, the Cosinor-based model 

is utilized in this chapter. 
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