84 research outputs found

    AM-FM Analysis of Structural and Functional Magnetic Resonance Images

    Get PDF
    This thesis proposes the application of multi-dimensional Amplitude-Modulation Frequency-Modulation (AM-FM) methods to magnetic resonance images (MRI). The basic goal is to provide a framework for exploring non-stationary characteristics of structural and functional MRI (sMRI and fMRI). First, we provide a comparison framework for the most popular AM-FM methods using different filterbank configurations that includes Gabor, Equirriple and multi-scale directional designs. We compare the performance and robustness to Gaussian noise using synthetic FM image examples. We show that the multi-dimensional quasi-local method (QLM) with an equiripple filterbank gave the best results in terms of instantaneous frequency (IF) estimation. We then apply the best performing AM-FM method to sMRI to compute the 3D IF features. We use a t-test on the IF magnitude for each voxel to find evidence of significant differences between healthy controls and patients diagnosed with schizophrenia (n=353) can be found in the IF. We also propose the use of the instantaneous phase (IP) as a new feature for analyzing fMRI images. Using principal component analysis and independent component analysis on the instantaneous phase from fMRI, we built spatial maps and identified brain regions that are biologically coherent with the task performed by the subject. This thesis provides the first application of AM-FM models to fMRI and sMRI

    Human Attention Detection Using AM-FM Representations

    Get PDF
    Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos

    The Importance of the Instantaneous Phase in Detecting Faces with Convolutional Neural Networks

    Get PDF
    Convolutional Neural Networks (CNN) have provided new and accurate methods for processing digital images and videos. Yet, training CNNs is extremely demanding in terms of computational resources. Also, for simple applications, the standard use of transfer learning also tends to require far more resources than what may be needed. Furthermore, the final systems tend to operate as black boxes that are difficult to interpret. The current thesis considers the problem of detecting faces from the AOLME video dataset. The AOLME dataset consists of a large video collection of group interactions that are recorded in unconstrained classroom environments. For the thesis, still image frames were extracted at every minute from 18 24-minute videos. Then, each video frame was divided into 9x5 blocks with 50x50 pixels each. For each of the 19440 blocks, the percentage of face pixels was set as ground truth. Face detection was then defined as a regression problem for determining the face pixel percentage for each block. For testing different methods, 12 videos were used for training and validation. The remaining 6 videos were used for testing. The thesis examines the impact of using the instantaneous phase for the AOLME block-based face detection application. For comparison, the thesis compares the use of the Frequency modulation image based on the instantaneous phase, the use of the instantaneous amplitude, and the original gray scale image. To generate the FM and AM inputs, the thesis uses dominant component analysis that aims to decrease the training overhead while maintaining interpretability. The results indicate that the use of the FM image yielded about the same performance as the MobileNet V2 architecture (AUC of 0.78 vs 0.79), with vastly reduced training times. Training was 7x faster for an Intel Xeon with a GTX 1080 based desktop and 11x faster on a laptop with Intel i5 with a GTX 1050. Furthermore, the proposed architecture trains 123x less parameters than what is needed for MobileNet V2. The FM-based neural network architecture uses a single convolutional layer. In comparison, the full LeNet-5 on the same image block using the original image could not be trained for face detection (AUC of 0.5)

    The Importance of the Instantaneous Phase in Detecting Faces with Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNN) have provided new and accurate methods for processing digital images and videos. Yet, training CNNs is extremely demanding in terms of computational resources. Also, for specific applications, the standard use of transfer learning also tends to require far more resources than what may be needed. Furthermore, the final systems tend to operate as black boxes that are difficult to interpret. The current thesis considers the problem of detecting faces from the AOLME video dataset. The AOLME dataset consists of a large video collection of group interactions that are recorded in unconstrained classroom environments. For the thesis, still image frames were extracted at every minute from 18 24-minute videos. Then, each video frame was divided into 9x5 blocks with 50x50 pixels each. For each of the 19440 blocks, the percentage of face pixels was set as ground truth. Face detection was then defined as a regression problem for determining the face pixel percentage for each block. For testing different methods, 12 videos were used for training and validation. The remaining 6 videos were used for testing. The thesis examines the impact of using the instantaneous phase for the AOLME block-based face detection application. For comparison, the thesis compares the use of the Frequency Modulation image based on the instantaneous phase, the use of the instantaneous amplitude, and the original gray scale image. To generate the FM and AM inputs, the thesis uses dominant component analysis that aims to decrease the training overhead while maintaining interpretability.Comment: Master Thesi

    Multiple Sclerosis Identification Based on Fractional Fourier Entropy and a Modified Jaya Algorithm

    Full text link
    Aim: Currently, identifying multiple sclerosis (MS) by human experts may come across the problem of “normal-appearing white matter”, which causes a low sensitivity. Methods: In this study, we presented a computer vision based approached to identify MS in an automatic way. This proposed method first extracted the fractional Fourier entropy map from a specified brain image. Afterwards, it sent the features to a multilayer perceptron trained by a proposed improved parameter-free Jaya algorithm. We used cost-sensitivity learning to handle the imbalanced data problem. Results: The 10 × 10-fold cross validation showed our method yielded a sensitivity of 97.40 ± 0.60%, a specificity of 97.39 ± 0.65%, and an accuracy of 97.39 ± 0.59%. Conclusions: We validated by experiments that the proposed improved Jaya performs better than plain Jaya algorithm and other latest bioinspired algorithms in terms of classification performance and training speed. In addition, our method is superior to four state-of-the-art MS identification approaches

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications
    • …
    corecore