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Abstract

Convolutional Neural Networks (CNN) have provided new and accurate methods for

processing digital images and videos. Yet, training CNNs is extremely demanding in

terms of computational resources. Also, for specific applications, the standard use of

transfer learning also tends to require far more resources than what may be needed.

Furthermore, the final systems tend to operate as black boxes that are difficult to

interpret.

The current thesis considers the problem of detecting faces from the AOLME

video dataset. The AOLME dataset consists of a large video collection of group

interactions that are recorded in unconstrained classroom environments. For the

thesis, still image frames were extracted at every minute from 18 24-minute videos.

Then, each video frame was divided into 9× 5 blocks with 50× 50 pixels each. For

each of the 19440 blocks, the percentage of face pixels was set as ground truth. Face

detection was then defined as a regression problem for determining the face pixel
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percentage for each block. For testing different methods, 12 videos were used for

training and validation. The remaining 6 videos were used for testing.

The thesis examines the impact of using the instantaneous phase for the AOLME

block-based face detection application. For comparison, the thesis compares the use

of the Frequency Modulation image based on the instantaneous phase, the use of the

instantaneous amplitude, and the original gray scale image. To generate the FM and

AM inputs, the thesis uses dominant component analysis that aims to decrease the

training overhead while maintaining interpretability.

The results indicate that the use of the FM image yielded about the same perfor-

mance as the MobileNet V2 architecture (AUC of 0.78 vs 0.79), with vastly reduced

training times. Training was 7x faster for an Intel Xeon with a GTX 1080 based

desktop and 11x faster on a laptop with Intel i5 with a GTX 1050. Furthermore, the

proposed architecture trains 123x less parameters than what is needed for MobileNet

V2. The FM-based neural network architecture uses a single convolutional layer. In

comparison, the full LeNet-5 on the same image block using the original image could

not be trained for face detection (AUC of 0.5).
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Chapter 1

Introduction

Image representations are of extreme relevance in digital image processing methods

and applications. From Fourier representations to Amplitude-Modulation Frequency-

Modulation (AM-FM) representations, there is a great need to effectively describe

image content. The current research aims to highlight the importance of using the

dominant frequency modulation component in the application of face detection with

Convolutional Neural Networks.

CNNs have been widely used in image processing applications in recent years.

Their ability of learning patterns make them suitable for complex problems where

there is not a defined procedure to attempt a solution. One of this hardest image

processing problems is the detection of faces in unconstrained environments, in which

the face image can vary significantly based on the camera imaging geometry. At the

same time, the training process of modern deep learning methods requires a massive

amount of data to learn from. The dataset then, is apt to be modified according to

the necessities of such imaging conditions.
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Chapter 1. Introduction

1.1 Motivation

The main motivation of this thesis is to explore the relevance of instantaneous phase

representations of images as a key part of face detection methods using Convolutional

Neural Networks. Motivated by earlier research in the importance of the phase infor-

mation [3] and the development of recent AM-FM representations [4], the importance

of the instantaneous phase in images needs to be investigated in the context of the

current explosive use of CNNs.

The initial motivation of this research was to use machine learning methods to

analyze videos collected from the Advancing Out-of-school Learning in Mathematics

and Engineering (AOLME) [5] after-school program. Despite having almost the

same camera position and the same group every video, kids go around the table

and the lighting conditions changes significantly. This makes this dataset suitable

for studying real-life unconstrained environments as it resembles the actual hard

problems machine learning methods are facing.

The thesis is focused on the development of multiscale AM-FM demodulation

method that can be implemented using a small number of fixed-point digital filters.

Ultimately, the goal is to support fast training for large-scale video datasets.

1.2 Thesis Statement

The thesis of this research is that the use of AM-FM techniques can provide efficient

methods for deep learning methods. To validate the thesis claims, the proposed

approach is compared against the use of deep learning methods on raw images.
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Chapter 1. Introduction

1.3 Contributions

The contributions include:

• A low parameter Gabor filterbank to estimate the dominant FM component

of each input image. It consist of 8-directions using a rotated ellipsoidal set of

gaussians and gabor filters using 11× 11 coefficients.

• For implementing fixed-point designs the thesis provides a Simulated Annealing

approach. The approach is demonstrated on the design of the Hilbert filter

using 8-bit fixed-point arithmetic.

• A hybrid Neural Net architecture based on both single and multi region re-

gression to implement face detection using dominant FM components. The

proposed approach allows for fast training for face detection while the original

LeNet-5 architecture cannot be trained on the raw image data from the same

region, and the use of modern MobileNet V2 architectures require significantly

more training to give slightly improved results.

1.4 Thesis Overview

Chapter 2 provides background in basic AM-FM demodulation methods and relevant

Deep-Learning architectures. Chapter 2 also includes the discussion of what was

used to generate the ground truth on the AOLME dataset. Chapter 3 describes the

low-parameter AM-FM demodulation approach and the low-parameter regression

architecture for detecting faces in independent image blocks as well as by combining

results from different blocks. Chapter 4 gives a summary of the results from the

different approaches. Chapter 5 gives the conclusion and a summary of future work.
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Chapter 2

Background

The first section describes the source of the data and the generation of the ground

truth dataset used in this research. The following section provides background in

AM-FM methods relevant to the current thesis. The last section describes two deep

learning (LeNet-5 and MobileNet V2).

2.1 AOLME Dataset

The Advancing Out-of-school Learning in Mathematics and Engineering (AOLME)

project [5] is an after school program implemented by the department of Electrical

and Computer Engineering and the department of Language, Literacy and Sociocul-

tural Studies. AOLME generated a large amount of video data that includes around

2000 hours of groups interactions, monitor data and screen recordings. Each AOLME

video camera recorded how a small group of middle school students interacted with

each other and their facilitator. For each student, AOLME collected a video each

week, up to 11 weeks, for a total of 20 hours. Video are characterized by strong

illuminations variations and the students moving around within their group or to

4



Chapter 2. Background

join other groups.

A sample of still images was used for the purpose of establishing ground truth

for face detection. The image samples were selected to reflect the variations in the

data.

The AOLME dataset has also been used in related prior research. In [6], the

authors used a scalable and distributed architecture in the cloud to analyze cropped

videos to determine (a) writing versus non-writing and (b) typing versus non-typing.

In contrast, in [7] the author worked in detecting hand movements in full videos.

One recent example of video analysis to detect human interactions can be found

in [8]. In this research, color-based segmentation was applied to identify potential

regions of interest. Then, context-based rules are applied to further filter the regions

of interest of the interaction. Motion vectors were extracted to determine the in-

teraction. Then, K-nearest neighborhood classifiers and deep neural networks were

used to classify the activity.

Another example of research using the AOLME dataset is concerned with Human

Attention Detection [9]. This research uses single frames to extract AM-FM features

to identify regions of interest. This is followed by face detection and back of the

head detection, and further processing to determine where students are looking.

The methods were extended in [10] and [11].

From the AOLME video collection, the group interactions videos were selected to

create the dataset used in this research. Each session comprises of 4 video clips of 24

minutes each. The training set consists of 12 video clips extracted from 12 sessions.

The test set consists of 6 video clips extracted from 6 different sessions.

In order to have diversity of faces, one of those video clips were taken from a total

of 18 sessions. 12 videos were used to create the training set and 6 for the testing

set, so there is no chance of mixing these 2 sets. Then the process is divided into

5



Chapter 2. Background

Training 
80 %

Testing videosValidation
20 %

- 12 videos
- 24 frames per video

- 9x5 blocks per frame

▪ 12960 blocks for training and validation

- 6 videos
- 24 frames per video

- 9x5 blocks per frame

▪ 6480 blocks for testing

Figure 2.1: Training, validation, and testing video frames.

generating the image data, X train and X test 3D arrays, and the overlap percentages

for the y train and y test 1D arrays.

One frame is extracted for each minute in each video clip, resulting in 24 frames

per video. After this, a decimation is used to shrink the frame to half the original

resolution: 240 × 429. Each frame is zero padded to extend the size to the nearest

multiple of 5 for the rows and 9 for the columns, giving a total of 45 blocks of the

same size: 50× 50 pixels. Figure 2.1 gives a summary of the training, validation and

testing datasets.

We next describe the process of generating ground truth for each block. Each

block is assigned the percentage of face pixels that lie within the block. The shrank

frames from the previous process are loaded into a video labeler software. Here, each

face is manually selected by a rectangle and assigned a tag for each person. This

process is shown in figure 2.2.

The software exports an array with the coordinates of the location of each of the

faces. The next step is to allocate these coordinates into the 9 by 5 grid used in the

image data generation. Figures 2.3 and 2.4 presents an example of the face rectangles

being allocated into the blocks. For each of the blocks, the amount of pixels from

6



Chapter 2. Background

Figure 2.2: Process for generating ground truth for face locations.

the face rectangle are counted, then divided by the block area. The same process is

repeated for all of the blocks. Figure 2.5 shows the area of the face rectangle over

the first block in green. After all of the blocks have been assigned an overlap value,

the data is stored in a 1D array to be used by the machine learning methods. A

summary of both process is depicted in figure 2.6.

2.2 AM-FM Demodulation

Let a 2D image I(x, y) be a function of spatial coordinates x and y. I(x, y) can be

represented as linear combination of AM-FM components:

I(x, y) =
K∑

n=1

An(x, y) cosψn(x, y) (2.1)

7



Chapter 2. Background

Figure 2.3: Example of zero padded frame divided into 9 by 5 blocks of 50 × 50
pixels.

Figure 2.4: Face rectangles from ground truth overlapped with the block image.
Refer to figure 2.3 for the original image.

8



Chapter 2. Background

Col1 Col2 Col3 …

…

Row1

Row2

Image frame divided in blocks – Face region (in green)

Face coordinate 1

Face coordinate 2

Figure 2.5: Overlap ratio calculation based on the percentage of the face pixels that
lie within each predefined block.

where the An represents the Instantaneous Amplitude (IA) components and ψn rep-

resent the Instantaneous Phase (IP) components.

The amplitude modulated components An(x, y) are non-negative. In addition to

the IA, the Frequency modulated components cosψn(x, y) capture the fast changes in

spatial variability among the image intensity values [4]. The Instantaneous Frequency

(IF) components are defined as the gradient of the phase functions:

∇ψn(x, y) =

(
∂ψn

∂x
(x, y),

∂ψn

∂y
(x, y)

)
. (2.2)
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Chapter 2. Background

Divide 
video in 
frames.      

1 frame per 
minute

AOLME 
Video       

24 min

Manually label each 
box coordinates for 

each face in the 
frame.
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Figure 2.6: Summary of ground truth process for assigning the overlap percentage
for each block. X data corresponds to the array of all the blocks (in order) within
each frame. Y data is a 1D array of all the overlapping percentages for each of the
blocks in X data.

In what follows, we will describe Dominant Component Analysis (DCA) for esti-

mating a single AM-FM component. First we compute the analytic image using:

IAS(x, y) = I(x, y) + H {I(x, y)} (2.3)

where H denotes the 1D Hilbert operatos applied along each row. After filtering

the analytic image through a collection of band pass filters, we obtain:

In(x, y) ≈ An(x, y) exp[ψn(x, y)] (2.4)

where n represents the index of each filter. The IA and IP can be estimated by using:

An(x, y) = |InAS(x, y)| (2.5)

and

ψn(x, y) = arctan

[
Im(In(x, y))

Re(In(x, y))

]
. (2.6)

Dominant Component Analysis (DCA) extracts one Instantaneous Amplitude

(IA) and one Instantaneous Phase (IP) for each filterbank. DCA consists of selecting
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Figure 2.7: Dominant Component Analysis.

estimates from the channel with the largest IA, the dominant component, from all

the filter outputs for each pixel. Subsequently, the IP is obtained from the selected

pixel using equation (2.6). DCA is summarized in figure 2.7.

According to the focus of this research, in [12], the authors used the phase mod-

ulation components to model tree growth. Additional references for the AM-FM

theory were used from [13]. Also, regarding the Gabor filterbank with DCA, AM-

FM methods has been used as a feature extraction for head and hair detection in

group interactions, refer to [10] and [11].

We also provide a summary of related AM-FM research. Early applications of

AM-FM models for image analysis include alternative fingerprint representations for

fingerprint classification [14]. Also, Foveated Video Compression using a nonuniform

filtering scheme is presented in [15]. An extension of this research presents a frame-

work for assessing the quality of foveated images and video streams [16]. Orthogonal

AM-FM transforms can be interpreted as a permutation of signal samples followed

by the regular DFT, in [17] permutations are applied to compact broadband signal.
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In [18], the authors described the development of FM transforms based on the use

of permutations and the 2D FFT or 2D DCT.

Biomedical applications in computer aided diagnosis (CAD) had use multiscale

AM-FM methods, examples of this methods are presented in the rest of the para-

graph. Multiscale AM-FM to identify repetitive structures in [19]. Optimal thresh-

olding of the IA components to generate candidate regions as in [20]. Feature ex-

traction from fundus images to characterize normal and pathologic structures in [21],

[22] and [23]. Feature extraction from ultrasound images for despeckle filtering in

[24], an extension of this research also uses multiscale feature extraction to determine

texture differences between classification groups can be found in [25]. In [26], au-

thors used AM-FM features that provided additional information from MRI images,

resulting in better classification results when using the combination of the low-scale

IA and IF magnitude with the medium-scale IA. In [27], authors shown AM-FM fea-

tures along SVM classification methods obtained 78% in classifying neuromuscular

disorders from surface electromyographic (SEMG) signals.

2.3 Low complexity CNN architectures for large

video dataset training

There is no truly formal scientific understanding on how a Neural network works.

Yet, there is no doubt on their effectiveness in revealing patterns and predicting

or classifying data. Convolutional Deep learning methods have greatly advanced,

becoming an essential part of many successful image and video processing systems.

Specific to the current research, there are two Convolutional Neural Networks

(CNN) architectures of interest: (a) the LeNet-5 by Yann LeCun [28] and (b) Mo-

bileNetV2 as presented in [2]. These networks represent two extremes in the develop-

12
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Layer Type Maps Size Kernel Size Stride Activation

Output Fully Connected - 10 - - RBF
F6 Fully Connected - 84 - - tanh
C5 Convolution 120 1x1 5x5 1 tanh
S4 Avg Pooling 16 5x5 2x2 2 tanh
C3 Convolution 16 10x10 5x5 1 tanh
S2 Avg Pooling 6 14x14 2x2 2 tanh
C1 Convolution 6 28x28 5x5 1 tanh
In Input 1 32x32 - - -

Table 2.1: Architecture of LeNet-5 [1].

ment of these techniques. LeNet-5 represents of the earliest examples of convolutional

neural networks associated with the deep learning revolution. MobileNet V2 repre-

sents the state of the art in low complexity neural nets with low power consumption

for embedded devices.

2.3.1 LeNet-5

Figure 2.8 depicts the general structure of the LeNet-5. LeNet-5 consists of: (i)

convolutional layers followed by a pooling layer and (ii) fully connected layers. For

our application, we modified the activations functions to enable better training. Refer

to table 2.1 for details.

2.3.2 MobileNetV2 Architecture

MobileNetV2 comprises the state of the art in CNN for embedded devices, featur-

ing a novel Bottlenecks Residual block that comprises the convolution layer stage,

providing low power consumption with different quantization capabilities [2]. This

network outperforms the simple LeNet-5 when using regular RGB or grayscale data

13
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Conv2D Max-Pool Conv2D Max-Pool Conv2D

1@32x32
6@28x28 6@14x14

16@10x10 16@5x5 1x120
1x84

1x10

Figure 2.8: Representation of the LeNet-5 architecture and their layers.

Layer Type Size t c n s

In conv2D 224x224x3 - 32 1 2
B1 bottleneck 112x112x32 1 16 1 1
B2 bottleneck 112x112x16 6 24 2 2
B3 bottleneck 56x56x24 6 32 3 2
B4 bottleneck 28x28x32 6 64 4 2
B5 bottleneck 14x14x64 6 96 3 1
B6 bottleneck 14x14x96 6 160 3 2
B7 bottleneck 7x7x160 6 320 1 1
C8 conv2D 1x1 7x7x320 - 1280 1 1
S9 Avg Pool 7x7x1280 - - 1 7

C10 conv2D 1x1 7x7x1280 - k - -

Table 2.2: MobileNet V2 architecture [2]. Refer to [2] for a description of bottleneck.
The top row of the table represents the input layer. C20 represents the output layer.

2.2. This network was chosen because it was already optimized to operate fast and

in a quantization framework, hence allowing fixed-point hardware implementations.

The general architecture is described in table 2.2. The Bottleneck layer mentioned

in the table makes reference to the inverted residual convolution layer, where a low

dimensional input is expanded to extract features and then compressed again.

MobileNet V2 has been trained with ImageNet for image classification and the

COCO dataset for object detection. For ImageNet, 3.4 million parameters were
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trained using 300 million Multiply-Adds. For object detection, training included a

SSD prediction layer [29] in which the convolutional layers used separable convolu-

tions to reduce the number of parameters and computational cost. The paramaters

for training the COCO dataset were 4.3 million, requiring a total of 0.8 million

Multiply-Adds.
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Methodology

In the following chapter the methods for preprocessing the dataset will be detailed.

According to the AM-FM theory presented in the previous chapter, the first step will

consist in the generation of the analytic image, using the Hilbert Transform. Then,

the real plus imaginary component will be processed in a Gabor filterbank with DCA

to obtain an Instantaneous Amplitude and Instantaneous Phase representation. In

the next chapters, the method for using these two representations as an alternative

for the original image will be discussed.

3.1 System Overview

In this section, a general description of the system workflow is presented. The frames

are processed by Dominant Component Analysis (see figure 2.7). Then, the output

FM components are fed to the Single-Block regression system to produce block pre-

dictions. Last, the block predictions are arranged into frames to enter the Multi-

Block regression systems to produce a block-based detection image. A summary of

the process is shown in figure 3.1.
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DCA
Block-based 
regression

Multi-block 
regression

Image 
Block-based 
Face Detection 
Image 

Figure 3.1: System overview for block face detection.

3.2 Fixed-Point Design of Hilbert Transform us-

ing Simulated Annealing

Fixed-point realizations of digital filters can enable faster processing of large datasets.

Fixed-point filters can also be implemented efficiently on FPGAs. To reduce compu-

tational complexity, this section describes the use of a Simulated Annealing method

for determining the optimal 8-bit filtering coefficients without sacrificing accuracy.

The Hilbert Transform filter (in blue) depicted in figure 3.2 was designed using

Frequency domain sampling. Then, a Kaiser Window method is applied using a 51

double-precision floating point coefficients. An odd number of coefficients was used

so that the zeroth sample represents the zeroth sample of the filter, allowing the

filter to be linear phase. Also, this forces a half of sample delay in the filter, which

should be taken into account for further testing of the linear phase. In color red is

shown the ideal magnitude frequency response of the Hilbert Filter. Here, all the

negative frequencies are reduced to zero, except for the double precision coefficients

at the transition and edge bands. Later, we will use non-zero transition bands to

allow efficient fixed-point implementations.

The testing of the FIR filter had two steps. First, we need to check that the

negatives frequencies are successfully wiped out. For doing this, a simple experiment

is designed, where a sinusoidal function is input with the expected result being that

there would be only one magnitude peak in the positive part of the spectrum, while
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Figure 3.2: Fast Fourier Transform Magnitude representation of a double-precision
floating point filter against the ideal frequency response (in red).

zero everywhere else. The figure 3.3 clearly shows the result of the filtered sine, in

blue, against the original sine function magnitude plot in red.

Second, the linearity of the phase should be tested. To test this, we use a si-

nusoidal function given by cos(2 ∗ pi/N ∗ (u ∗ x1)), where u = 20, N = 300, x1 is

a 1D vector of samples from 0 to N .Then, the phase is delayed by 4.5 samples to

accommodate for the processing delay of the filter.This delayed phase is the one that

will be compared against the filtered phase. Later, using with the 51 fixed-point co-

efficients along a 1D convolution function, the sinusoidal function and filtered phase

is extracted using the arc tangent function. The filtered phase is depicted in figure
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Figure 3.3: Magnitude plot for input sine and filtered sine. The negative sine peak
is filtered out at the output signal.

3.4 in red color, while the delayed phase is in blue. As it can be seen, the matching

is almost identical, confirming the linearity of the phase.

We used Simulated Annealing to design the Hilbert Filters (see fig. 3.5). Simu-

lated Annealing (SA) is a stochastic optimization method to find the global maximum

over a certain objective function. SA has the characteristic of accepting steps that

do not necessarily resolve in immediate improvement of the objective function, thus

allowing the method to escape from a local minimum according to a certain proba-

bility calculated at each iteration. This probability is compared to a random number

to determine whether it would be a jump to another set of input vector. Initially the
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Figure 3.4: Phase from input sine against filtered sine.

probability of a jump is higher, and it gets lowered for later jumps.

Here, a neighborhood is defined in terms of the vector coefficients. Vector y

is calculated by adding/subtracting a delta step to 1 coefficient in x. Delta step

depends on the number of bits used for quantization. From the theory [30], it is

required for the neighborhood to be completely reachable from every point by using

the delta steps defined previously.

The objective function to be maximized is the negative MSE between the zero-

padded FFT magnitude of the input vector and the ideal FFT desired :
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fx = mse(abs(fft(x)), abs(fft(ideal))). (3.1)

A visual debugging is possible when comparing the plots of the FFT Magnitude

from (a) the input coefficients without modification and (b) output coefficients of

the Simulated Annealing. Figures 3.6 and 3.7 show the variations in the magnitude

for the filter generated by quantizing with 8 and 6 bits (top subplot), and the filter

after the Simulated Annealing correction was applied (bottom subplot).

The increase, or decrease, on the coefficients depends on the number of bits used

for the quantization. For numbers higher than 14 bits, 2e−11 was used for the step

size. For fixed-point designs for fewer than 8 bits, the best results were accomplished

by setting the step to the negative power equal to the number of bits used (i.e., 2e−8

for 8 bit quantization). A good practice for setting the parameter C is to check the

mean between the error of the outputs of the objective function to be minimized,

fy − fx. For all the cases presented here, the best results were achieved setting

C = eY , where Y is the power of the error.

3.3 Gabor Filterbank

This research will use a Gabor filterbank along with a DCA to estimate AM-FM

components. The Gabor equation from [31] is presented in equation (3.3). Further-

more, the Gabor function is a Gaussian function shifted in frequency. Then, it is

possible to generalize directional a Gaussian filter with σ variable in x and y (see

equation (3.2)). In this equation, θ defines the orientation of the filter with respect

to the X-axis.
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We write:

Gaussian(x, y) = exp
[
−(ax2 + 2bxy + cy2)

]
(3.2)

Gabor(x, y) =
1

2πλσ2
exp

[
−(x2 + y2)/2σ2

]
exp

[
2π

( u
N
x+

v

N
y
)]

(3.3)

where:

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

(3.4)

b = −sin2 θ

4σ2
x

+
sin2 θ

4σ2
y

(3.5)

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

(3.6)

The FFT magnitude of equation (3.2) is shown in figure 3.8 with σx = σy/4. This

directional Gaussian centered in the origin is then rotated 8 times using a step of

θ+ = 0.39 radians each time. The 8 orientations of the directional Gaussian are

plotted together in figure 3.9.

The directional Gaussian is then shifted in frequency to produce the next scale

in the filterbank. The number of rotations and the step of the angle are the same as

the centered Gaussian, while the difference is the initial angle: θ = 0.19. The shift

corresponds to N/2, where N is the number of samples for the FFT representation.

Figure 3.12 shows the 8 orientations of the shifted Gaussian, the circle in the figure

recalls the rotation nature, while the green lines indicate the x-axis of the previous

centered Gaussians, while the purple lines depicts the current x-axis for the new

shifted Gaussians. The FFT from the Directional Gaussian maximum magnitudes

values are presented in 3.13, similar representation from the Directional Gabor in

3.14.

The following figures depict the FFT magnitude plots of the low-parameter Di-

rectional Gabor filterbank. The filters were designed taking into account the imple-

mentation in fixed-point hardware. The low parameter implies a small kernel size.
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Here we used an 11 × 11 kernel size with σx = 1.5 and σy = 1.5/4. Figure 3.11

shows the directional Gabor centered with the same orientations values as described

in figure 3.9. On the other hand, figure 3.12 shows the second scale of the Gabor

filterbank, where wrap around artifacts that would be diminished when the filter is

applied to the analytical image.

The analytical image is the input for the Gabor filterbanks described here, as it

is shown in the lower left subplot of figure 3.15. Thus, the upper and bottom left

quadrants of the frequency spectrum are zero. The subplots on the right show the

DCA output. The estimated phase was input to the cosine function to obtain the

FM image.

3.4 Low-Parameter Block-based Face Detection us-

ing AM-FM features

This section describes the methodology for the Single-Block and Multi-Block regres-

sion architecture. The latter one is an extension of the Single-Block using their

predicted values as input. Multi-Block regression aims to use the localization of the

block to better generalize the blocks that contains faces.

3.4.1 Block-based Regression Architecture

The Single-Block architecture started as an exploration of the impact that the type

of input data have over the effectiveness of a CNN architecture. The first architecture

selected was the simple and well tested LeNet-5. LeNet-5, despite it’s simplicity, has

proven to be an effective baseline architecture for regression based on the dominant

FM component.
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Starting from the LeNet-5 as the baseline architecture, hyper-parameter tuning

was used to reduce over-fitting. Without sacrificing performance, the number of

convolutional layers was reduced from 3 to 1, followed by an increased Max Pooling

size of 5× 5, reduced-parameter fully connected layers, augmented by an additional

fully connected layer. The final architecture is given in table 3.1.

Layer Type Maps Size Kernel Size Stride Activation

In Input 1 50x50 - - -
C1 Convolution 6 46x46 5x5 1 selu
S2 Max Pooling 6 23x23 5x5 2 selu
F3 Fully Connected - 40 - - selu
F4 Fully Connected - 24 - - selu

Output Fully Connected - 1 - - sigmoid

Table 3.1: Block-based regression architecture for face detection. The input block is
of size 50× 50.

To compare against the proposed approach, we consider the MobileNet V2 for

Single-Block regression. The model was imported to the Keras framework and then

customized to meet the design approach used in the Reduced LeNet-5.

The top layer was modified to be a sigmoid for percentage prediction. The input

size was changed to 50× 50. Since the original size was 225× 225× 3, α was set to

0.7 for the gradual reduction of the network. The weights were randomly initialized.

3.4.2 Multi-Block Regression Architecture

Is important to mention that the blocks where randomly shuffled during the training

of the Single-Block regressor. Hence, no location information was used by the Single-

Block regression architecture. To take advantage of block locations, a Multi-Block

regression architecture was designed to process the outputs from each block.
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The architecture of this Multi-Block Neural Network was inspired by the 2 fully

connected layers of the Single-Block CNN. The input and output parameters were

determined by the number of blocks in each frame. The architecture accepts and

input of 45 Single-Block regression values and generates predictions for each block

(also 45). The middle layers use roughly the same number of neurons as the previous

CNN. The architecture is given in table 3.2.

Layer Type Maps Size Kernel Size Stride Activation

In Input 1 5x9x1 - - -

F1 Fully Connected - 60 - - selu
F2 Fully Connected - 40 - - selu

Output Fully Connected - 45 - - sigmoid

Table 3.2: Multi-Block regression architecture.

The training of the Multi-Block Neural Network is based on the predicted values

of the Single-Block CNN. The training process is shown in figure 3.16.

Multiple-Block
.fit()

Organize 
predictions into  
5x9 to resemble 

a frame

Single-Block
.fit() 

X_data : Frame 
blocks of 50x50 
y_data: overlap 

value of a face in a 
block from 0 to 1 

Weights

Single-Block
.predict() 

Figure 3.16: Training of Multi-Block regression architecture.
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1 # Extra v a r i a b l e s
2 s e c t i o n s = 1/ length ( x0 ) ;
3

4 f o r i t e r = 1 : MaxIterat ions
5 # Se l e c t a ne ighbor from 4 p o s s i b i l i t i e s :
6 p = rand # Uniform random va r i ab l e from 0 to 1
7 index x = c e i l (p/( s e c t i o n s ) )
8 s i g n f l a g = mod( f l o o r (p∗10) ,2 )
9

10 % Generate symmetry f l a g s and index
11 s i g n f l a g = mod( f l o o r (p∗10) ,2 ) ;
12 i f ( s i g n f l a g==0)
13 s ign f lag symm = 1 ;
14 e l s e
15 s ign f lag symm = 0 ;
16 end
17 middle indx = ( length ( x0 )+1) /2 ;
18 index x symm = 2∗middle indx − index x ;
19

20 % Apply the s e l e c t e d cho i c e with wrap−around :
21 y=x ;
22 y ( index x ) = x( index x ) + ((−1)ˆ s i g n f l a g ) ∗ s t ep x ;
23 y ( index x symm ) = x( index x symm ) + ((−1)ˆ s ign f lag symm ) ∗

s t ep x ;
24 # New func t i on eva lua t i on :
25 fy = ob j fun (y , band pass percentage , edge s pe rcentage ) ;
26

27 # Evaluate the p r obab i l i t y on whether you want to take the jump
or not

28 sub c=( fy − fx )
29 prob SA =(1+ i t e r ) ˆ( sub c ∗C)
30 p = min (1 , prob SA )
31 value random = rand
32

33 i f ( value random<p)
34 x = y ; # Jump with p r obab i l i t y p . Else stay at x .
35 fx = fy ; # Update the prev ious va lue s .
36 end
37 end

Figure 3.5: Simulated Annealing method for finding the optimal 8-bit filter coeffi-
cients in x .
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Figure 3.6: FFT Magnitude for 8 bit quantization. The top plot represents the
frequency response of the input coefficients. The bottom plot represents the final
design using transition of 0.2.
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Figure 3.7: FFT Magnitude plots for 6 bit quantization. Top plot depicts the input
coefficients without any modifications. The bottom plot represents the result after
simulated annealing is applied.
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(0,-π)

(-π,0)

(0,π)

(π,0)

Figure 3.8: Single direction Gaussian filter design for different frequency-domain
spreads.
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(0,-π)

(-π,0)

(0,π)
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Figure 3.9: Directional Gaussian filter design. The example shows 8 orientations.
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(0,-π)

(-π,0)

(0,π)

(π,0)

Figure 3.10: Directional Gabor filterbank design. The example does not show wrap-
around artifacts. It also assumes the pre application of the 1D Hilbert Trasnform to
suppress frequency magnitude components in the left two quadrants.
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Figure 3.11: Low-parameter Directional Gaussian implementations using 11 × 11
filter coefficients.

Figure 3.12: Low-parameter Directional Gabor implementations using 11× 11 filter
coefficients.
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Figure 3.13: FFT magnitude plot from Low-parameter Directional Gaussian imple-
mentations using 11× 11 filter coefficients.

Figure 3.14: FFT magnitude plot from Low-parameters Directional Gabor imple-
mentations using 11× 11 filter coefficients.
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Figure 3.15: Top-left: Original image. Bottom-left: FFT Magnitude of analytical
image. Top-right: IA from AM-FM filterbank using DCA. Bottom-right: FM com-
ponent using DCA. Undesirable AM components can be seen at the lower-left corner
of the IA image.
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Results

In this chapter, the results of running the Single-Block and Multi-Block regression

architectures are presented for three different types of input: (i) Original gray scale

image processed with LeNet-5, and the proposed architecture using DCA estimates

for: (ii) FM image, (iii) the IA image, (iv) IA and FM images. Refer to section 2.1 for

a description of the AOLME dataset, and the breakdown of the training, validation

and testing sets.

To visualize the results, we present examples of: True Positives (TP), False Pos-

itives (FP) and False Negatives (FN) mark over the blocks. The results are color

coded as follows: green dot for a True Positive, red dot for a False Positive and

yellow dot for False Negative. To determine TP, FP, TN and FN, a threshold for the

ground truth continuous values had to be defined. Several thresholds were tested in

correspondence with the range values of the output predictions.

The Receiver Operating Characteristic (ROC) plots along with the AUC value

are presented to compare the performance between to input data types. The FM

image is compared to both the original and the AM-FM combined input. The AUC

gives a reliable metric to compare both performances.
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Loss and AUC plots are presented for the three different data inputs. The Loss

function is the objective function to be minimized by the optimization algorithm

in the CNN. The AUC is a metric that varies from 0.5 for a useless predictor and

1.0 for an ideal one. Also the MobileNet V2 results are shown for comparisons in

performance and computation time.

4.1 Face-Detection using Single-Block Classifica-

tion

Several frames were used for debugging the block-based face detection. In the follow-

ing figures the selected frame will show the type of data as well the block markings

for a threshold value of 0.15. Here, it is important to mention that a higher value

will reduce the False Positive rates, but most often, the outcome will be the absence

of any result, since the FP and TP regression values are close to each other. For this

reason, the threshold was set to a point where enough TPs are displayed without

predicting the majority of blocks as faces, having too many FPs.

Starting with the original image in grayscale, figure 4.1 shows no face predic-

tions in any of the 45 blocks in the frame. Same behavior is encountered in figure

4.2, regardless of the given threshold value. The results from the FM input image

demonstrated that the proposed method managed to find 2 faces along with several

False Positives (red marks), presented in figure 4.3.

The loss function plot per epoch is presented to facilitate a better understand-

ing of the learning process. Figure 4.4 summarizes the experiments conducted for

reducing the over fitting by reducing the network complexity. The Loss values in

blue corresponds to an architecture using a max pooling layer of stride = 2 , while

the red corresponds to stride = 5. There is a clear difference between the training
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Figure 4.1: Single-Block regression: Original grayscale frame with marks for TP
(green), FP (red) and FN (yellow). LeNet-5 did not work with the original grayscale
image.

loss versus the validation loss. This difference is greater with the stride = 2, hence

motivating an increase to the max pooling stride to the value used in the system:

stride = 6 .

Figures 4.5 and 4.6 support the results from threshold experiment (figures 4.1 and

4.2). No learning is happening with the original grayscale image or the combination

of the IA and FM image. In both figures, both of them having the same training and

validation loss (in blue) of 0.025 and 0.028 respectively. In contrast, the FM image

produced clear learning results at each epoch, with less difference between training

and validation than in figure 4.4.

The results for the Area Under the Curve (AUC) value at each epoch are shown

in figures 4.7 and 4.8. The selection of this metric involves the unbalanced nature

of the dataset, since the blocks with a face percentage comprises around 10% of
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Figure 4.2: Single-Block regression: AM-FM frame with marks for TP (green), FP
(red) and FN (yellow).

the total of blocks in the frame. Then, any dummy predictor set to ”background”

will encounter 90% of accuracy. It was important to come up with a better metric

to determine the success of the predictions. Both plots were included to show the

similar behavior of random predictor when using the original image of the AM-FM.

For the FM component, the AUC was constantly increasing, reaching 80% of their

final value at approximately 5 epochs.

The AUC plot was obtained using Keras callbacks. In this framework, the au-

tomatic threshold used to generate the AUC value was set to 0.5, because the ROC

calculation requires the ground truth value to be boolean and the input to be contin-

uous. In despite of this, the stranded AUC at 0.5 indicates no learning is happening

for the original or AM-FM data.

The following figures 4.9 and 4.10 demonstrate the importance of the phase com-
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Figure 4.3: Single-Block regression: FM frame with marks for TP (green), FP (red)
and FN (yellow).

ponent in block-based face detection using CNNs. The ROC for the original grayscale

image describes a random predictor, not capable of differentiating between the fea-

tures of the images. In contrast, the phase does give a functional predictor to start

exploring the face detection methods. Similar results are presented in figure 4.10 the

AM-FM components against the FM components alone.

4.2 Face Detection by Combining Regional Clas-

sifiers

This section summarize the results for Multi-block regression. The marks for True

Positive, False Positive and False Negative are presented for the three input data

types in figures 4.11, 4.12 and 4.13.
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Figure 4.4: Loss function results during the Single-Block architecture tunning. Dif-
ferent values of stride at the max pooling layer are presented in blue and red for
stride=2 and stride=5 respectively.

From these results, the first 2 frames predict the same blocks. Furthermore, the

same blocks were predicted as faces for several other frames. For results not based on

the FM images, random-like predictions were generated by the Single-Block system,

and were input to the training of the Multi-block regressor. The fully connected

layers trained to generalize the data using random-like inputs, selected the blocks

where the faces were most commonly found. In the case of the Multi-block regressor

using the FM component data, the input predictions were far more accurate. Figure

4.13 shows three predicted blocks as faces. From them, one was successfully found

and the two others were close to the actual faces.

The generalization achieved with the original and AM-FM systems led to a loss

function that resembles the loss function for the FM component (see figures 4.14 and

4.15). In the first case, there is a higher number of False Positives due to the broad
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Figure 4.5: Single-Block training results: Loss function values for the original image
and the FM component.

selection of blocks as faces. While in the FM case, the prediction was done using the

previous information, thus obtaining different results for each frame.

The following figures depict the evolution of the AUC per epoch. The original

and AM-FM plots are similar in the evolution of the AUC values (see figures 4.16

and 4.17). The starting point is near 0.5 of a random predictor and later it increases

as it generalizes for the whole dataset. They also have an irregular growth due to the

several adjustments the network had to perform. Frames came from different groups

and sessions, thus giving slight variations where the faces are often located. For the

case of the FM component, the growth was uniform reaching the same AUC values.

The results in figures 4.18 and 4.19 provide extensions of the previous figures. In

terms of testing, the AUC values from the FM component and the original - AM-FM

components are similar.
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Figure 4.6: Single-Block training results: Loss function values for the AM-FM com-
ponent and the FM component.

4.3 Results for MobileNetV2

MobileNetV2 network was tested for the single-block regression process. The fol-

lowing discussion compares the performance from the original image input and the

FM component. Also, the training time for MobileNet V2 is compared against the

training times for the proposed architectures.

In figure 4.20, the loss function values during the training are presented for the

original and FM component input images. During validation the loss functions os-

cillate around 0.021 (original) and 0.024 (FM) (see figure 4.5 ).

Figure 4.21 shows that both the FM and original input will converge to around

the same AUC after 80 epochs. Furthermore, the proposed architecture of Single-

block regression (see figure 4.7) achieves 0.6 AUC at the 5th epoch. MobileNet V2
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Figure 4.7: Single-Block: AUC at each epoch for FM component (in red) and original
image (in blue).

achieves a 0.6 AUC at the 8th epoch.

The required training time for MobileNet V2 is significantly more than for the

proposed methods (see table 4.1). Here, we noted that MobileNet V2 is consider-

ably faster than other CNN architectures, an specifically targeted towards mobile

applications. From table 4.1, it is clear that the proposed architectures are 7x to 11x

faster to train. Furthermore, in terms of generalization, the proposed architecture

use 123 times less trainable parameters than MobileNet V2.
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Figure 4.8: Single-Block: AUC at each epoch for FM component (in red) and AM-
FM component (in blue).

Network Portable PC Desktop PC Parameters

MobileNet V2 220 sec 68 sec 1205073
Single-block 20 sec 10 sec 9775
Multi-block 4 sec 2 sec 7045

Table 4.1: Comparison of MobileNet V2 vs the proposed architectures. The times
correspond to a single epoch. For the laptop, we used Intel core i5-7300HQ CPU
@ 2.50GHz, 8GB RAM and NVIDIA GeForce GTX 1050. For the desktop system,
we used an Intel Xeon CPU ES-2630 v4 @ 2.20GHz, 32 GB RAM and two NVIDIA
GeForce GTX 1080. The GPU was used during training.

The ROC in figure 4.22 demonstrates the similarities between training with the

original image and the FM component. The AUC values are also similar.

The considerable increase in complexity when using the MobileNetV2 comes with

a predictable improvement for results using any of the three input data types. This
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Figure 4.9: Single-Block: ROC curve for FM component (in red) and original image
(in blue).

certainly helps the original gray scale image to achieves more accurate results.

Face detection results are presented in figures 4.23 and 4.24. The original im-

age produced more blocks predicted as faces, having more False Positives and True

Positives. Predicting every block as a face would decrease the AUC value, in this

case there was a balanced in the prediction, corroborated by the AUC. For the FM

component, the balance was similar but the number of blocks predicted as faces

decreased to a more accurate number.
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Figure 4.10: Single-Block: ROC curve for FM component (in red) and AM-FM
component (in blue).
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Figure 4.11: Multi-Block regression: Original grayscale frame with marks for TP
(green), FP (red) and FN (yellow).
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Figure 4.12: Multi-Block regression: AM-FM frame with marks for TP (green), FP
(red) and FN (yellow).
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Figure 4.13: Multi-Block regression: FM frame with marks for TP (green), FP (red)
and FN (yellow).
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Figure 4.14: Multi-Block training results: Loss function values for the original image
and the FM component.
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Figure 4.15: Multi-Block training results: Loss function values for the AM-FM com-
ponent and the FM component.
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Figure 4.16: Multi-Block training results: AUC at each epoch for FM component
(in red) and original image (in blue).
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Figure 4.17: Multi-Block training results: AUC at each epoch for FM component
(in red) and AM-FM component (in blue).
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Figure 4.18: Multi-Block: ROC curve for FM component (in red) and original image
(in blue). Unlike the popular belief that lowet layers learn ipmortant features, the
plot illustrates that higher layer that learn spatial locations in stationary scenes can
correct the results from lower layers.
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Figure 4.19: Multi-Block: ROC curve for FM component (in red) and AM-FM
component (in blue).
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Figure 4.20: MobileNet V2 training results: Loss function values for the original
image and the FM component.
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Figure 4.21: MobileNet V2 training results: AUC at each epoch for FM component
(in red) and original image (in blue).
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Figure 4.22: MobileNet V2 regression: ROC curve for FM component (in red) and
original image (in blue).
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Figure 4.23: MobileNet V2 regression: Original grayscale frame with marks for TP
(green), FP (red) and FN (yellow).
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Figure 4.24: MobileNet V2 regression: FM component frame with marks for TP
(green), FP (red) and FN (yellow).
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Conclusions and Future Work

5.1 Conclusions

This thesis has demonstrated the importance of using the dominant Frequency-

Modulation components in the training of Convolutional Neural Networks in block-

based face detection applications. The thesis has made the following contributions:

(i) an approach for designing a Hilbert fixed-point filter using Simulated Anneal-

ing, (ii) the design of a low-parameter Gabor filterbank for implementing Dominant

Component Analysis, (iii) a hybrid Neural Net using Single-block and Multi-block

regression to detect faces in image blocks.

The video dataset had a variety of student groups working in an unconstrained

environment. From the AOLME dataset, 12960 blocks were extracted to train and

validate the network, while 6480 blocks from different frames were used for testing.

This data was processed by Dominant Component Analysis to obtain the Instanta-

neous Amplitude (IA) and the Frequency-Modulated (FM) components. The use of

IA, FM and original images were also tested against MobileNet V2, that was designed

for speed and low computational requirements associated with mobile devices.
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The results from this study suggest that using the FM component of an image

provides significantly better results and much faster training with low-parameter

networks. The LeNet-5 network did not work for the original image or the IA. A

vastly simplified version of LeNet-5 with a single convolutional layer produced much

better results when used with FM components.

The Single-block regression with the FM image achieved and AUC of 0.78 com-

pared to the AUC of 0.48 when using the original image as input. In comparison,

the MobileNet V2 network achieved an AUC=0.8 with the original image input,

while requiring 11x more time to train and 123x more parameters to train. The fast

training results demonstrate the importance of the Instantaneous Phase.

5.2 Future Work

Future work include the further exploration of methods that used FM components

as input. Future research should consider the replacement of the block architecture

by region of interest methods. Furthermore, there is a need to investigate the use of

spatial statistics in face detection. Fixed-point implementation on FPGAs can also

lead to significant speed-up in training.
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head detection in collaborative learning environments using am-fm representa-
tions. In 2018 IEEE Southwest Symposium on Image Analysis and Interpretation
(SSIAI), pages 1–4, April 2018.

[11] W. Shi, M. S. Pattichis, S. Celedón-Pattichis, and C. LópezLeiva. Dynamic
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