33 research outputs found

    Adaptive multiresolution visualization of large multidimensional multivariate scientific datasets

    Get PDF
    The sizes of today\u27s scientific datasets range from megabytes to terabytes, making it impossible to directly browse the raw datasets visually. This presents significant challenges for visualization scientists who are interested in supporting these datasets. In this thesis, we present an adaptive data representation model which can be utilized with many of the commonly employed visualization techniques when dealing with large amounts of data. Our hierarchical design also alleviates the long standing visualization problem due to limited display space. The idea is based on using compactly supported orthogonal wavelets and additional downsizing techniques to generate a hierarchy of fine to coarse approximations of a very large dataset for visualization. An adaptive data hierarchy, which contains authentic multiresolution approximations and the corresponding error, has many advantages over the original data. First, it allows scientists to visualize the overall structure of a dataset by browsing its coarse approximations. Second, the fine approximations of the hierarchy provide local details of the interesting data subsets. Third, the error of the data representation can provide the scientist with information about the authenticity of the data approximation. Finally, in a client-server network environment, a coarse representation can increase the efficiency of a visualization process by quickly giving users a rough idea of the dataset before they decide whether to continue the transmission or to abort it. For datasets which require long rendering time, an authentic approximation of a very large dataset can speed up the visualization process greatly. Variations on the main wavelet-based multiresolution hierarchy described in this thesis also lead to other multiresolution representation mechanisms. For example, we investigate the uses of norm projections and principal components to build multiresolution data hierarchies of large multivariate datasets. This leads to the development of a more flexible dual multiresolution visualization environment for large data exploration. We present the results of experimental studies of our adaptive multiresolution representation using wavelets. Utilizing a multiresolution data hierarchy, we illustrate that information access from a dataset with tens of millions of data values can be achieved in real time. Based on these results, we propose procedures to assist in generating a multiresolution hierarchy of a large dataset. For example, the findings indicate that an ordinary computed tomography volume dataset can be represented effectively for some tasks by an adaptive data hierarchy with less than 1.5% of its original size

    Data analytics enhanced data visualization and interrogation with parallel coordinates plots

    Full text link
    © 2018 IEEE. Parallel coordinates plots (PCPs) suffer from curse of dimensionality when used with larger multidimensional datasets. Curse of dimentionality results in clutter which hides important visual data trends among coordinates. A number of solutions to address this problem have been proposed including filtering, aggregation, and dimension reordering. These solutions, however, have their own limitations with regard to exploring relationships and trends among the coordinates in PCPs. Correlation based coordinates reordering techniques are among the most popular and have been widely used in PCPs to reduce clutter, though based on the conducted experiments, this research has identified some of their limitations. To achieve better visualization with reduced clutter, we have proposed and evaluated dimensions reordering approach based on minimization of the number of crossing pairs. In the last step, k-means clustering is combined with reordered coordinates to highlight key trends and patterns. The conducted comparative analysis have shown that minimum crossings pairs approach performed much better than other applied techniques for coordinates reordering, and when combined with k-means clustering, resulted in better visualization with significantly reduced clutter

    Clutter Reduction in Parallel Coordinates using Binning Approach for Improved Visualization

    Get PDF
    As the data and number of information sources keeps on mounting, the mining of necessary information and their presentation in a human delicate form becomes a great challenge. Visualization helps us to pictorially represent, evaluate and uncover the knowledge from the data under consideration. Data visualization offers its immense opportunity in the fields of trade, banking, finance, insurance, energy etc. With the data explosion in various fields, there is a large importance for visualization techniques. But when the quantity of data becomes elevated, the visualization methods may take away the competency. Parallel coordinates is an eminent and often used method for data visualization. However the efficiency of this method will be abridged if there are large amount of instances in the dataset, thereby making the visualization clumsier and the data retrieval very inefficient. Here we introduced a data summarization approach as a preprocessing step to the existing parallel coordinate method to make the visualization more proficient

    Force-Directed Parallel Coordinates

    Get PDF

    A visual analytics approach to feature discovery and subspace exploration in protein flexibility matrices

    Get PDF
    The vast amount of information generated by domain scientists makes the transi- tion from data to knowledge difficult and often impedes important discoveries. For example, the knowledge gained from protein flexibility data sets can speed advances in genetic therapies and drug discovery. However, these models generate so much data that large scale analysis by traditional methods is almost impossible. This hinders biomedical advances. Visual analytics is a new field that can help alleviate this problem. Visual analytics attempts to seamlessly integrate human abilities in pattern recognition, domain knowledge, and synthesis with automatic analysis techniques. I propose a novel, visual analytics pipeline and prototype which eases discovery, com- parison, and exploration in the outputs of complex computational biology datasets. The approach utilizes automatic feature extraction by image segmentation to locate regions of interest in the data, visually presents the features to users in an intuitive way, and provides rich interactions for multi-resolution visual exploration. Functional- ity is also provided for subspace exploration based on automatic similarity calculation and comparative visualizations. The effectiveness of feature discovery and subspace exploration is shown through a user study and user scenarios. Feedback from analysts confirms the suitability of the proposed solution to domain tasks

    Doctor of Philosophy

    Get PDF
    dissertationVisualization and exploration of volumetric datasets has been an active area of research for over two decades. During this period, volumetric datasets used by domain users have evolved from univariate to multivariate. The volume datasets are typically explored and classified via transfer function design and visualized using direct volume rendering. To improve classification results and to enable the exploration of multivariate volume datasets, multivariate transfer functions emerge. In this dissertation, we describe our research on multivariate transfer function design. To improve the classification of univariate volumes, various one-dimensional (1D) or two-dimensional (2D) transfer function spaces have been proposed; however, these methods work on only some datasets. We propose a novel transfer function method that provides better classifications by combining different transfer function spaces. Methods have been proposed for exploring multivariate simulations; however, these approaches are not suitable for complex real-world datasets and may be unintuitive for domain users. To this end, we propose a method based on user-selected samples in the spatial domain to make complex multivariate volume data visualization more accessible for domain users. However, this method still requires users to fine-tune transfer functions in parameter space transfer function widgets, which may not be familiar to them. We therefore propose GuideME, a novel slice-guided semiautomatic multivariate volume exploration approach. GuideME provides the user, an easy-to-use, slice-based user interface that suggests the feature boundaries and allows the user to select features via click and drag, and then an optimal transfer function is automatically generated by optimizing a response function. Throughout the exploration process, the user does not need to interact with the parameter views at all. Finally, real-world multivariate volume datasets are also usually of large size, which is larger than the GPU memory and even the main memory of standard work stations. We propose a ray-guided out-of-core, interactive volume rendering and efficient query method to support large and complex multivariate volumes on standard work stations
    corecore