14 research outputs found

    Local Complexity of Delone Sets and Crystallinity

    Full text link
    This paper characterizes when a Delone set X is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the hetereogeneity of their distribution. Let N(T) count the number of translation-inequivalent patches of radius T in X and let M(T) be the minimum radius such that every closed ball of radius M(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a `gap in the spectrum' of possible growth rates between being bounded and having linear growth, and that having linear growth is equivalent to X being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in this bound is best possible in all dimensions. For M(T), either M(T) is bounded or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package

    A Local Characterization of Combinatorial Multihedrality in Tilings

    Full text link
    A locally finite face-to-face tiling of euclidean d-space by convex polytopes is called combinatorially multihedral if its combinatorial automorphism group has only finitely many orbits on the tiles. The paper describes a local characterization of combinatorially multihedral tilings in terms of centered coronas. This generalizes the Local Theorem for Monotypic Tilings, established in an earlier paper, which characterizes the case of combinatorial tile-transitivity.Comment: 10 pages (to appear in Contributions to Discrete Mathematics

    On the arithmetic classification of crystal structures

    Full text link

    Bounds for the Regularity Radius of Delone Sets

    Get PDF
    Delone sets are discrete point sets X in Rd characterized by parameters (r,R), where (usually) 2r is the smallest inter-point distance of X, and R is the radius of a largest ``empty ball that can be inserted into the interstices of X. The regularity radius ρ^d is defined as the smallest positive number ρ such that each Delone set with congruent clusters of radius ρ is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our ``Weak Conjecture states that ρ^d=O(d2logd)R as d→∞, independent of~r. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2r and those with full-dimensional sets of d-reachable points. We also offer support for the plausibility of a ``Strong Conjecture , stating that ρ^d=O(dlogd)R as d→∞, independent of r. Delone sets are discrete point sets X in Rd characterized by parameters (r,R), where (usually) 2r is the smallest inter-point distance of X, and R is the radius of a largest ``empty ball that can be inserted into the interstices of X. The regularity radius ρ^d is defined as the smallest positive number ρ such that each Delone set with congruent clusters of radius ρ is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our ``Weak Conjecture states that ρ^d=O(d2logd)R as d→∞, independent of~r. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2r and those with full-dimensional sets of d-reachable points. We also offer support for the plausibility of a ``Strong Conjecture , stating that ρ^d=O(dlogd)R as d→∞, independent of r

    A Multidimensional Critical Factorization Theorem

    Get PDF
    The Critical Factorization Theorem is one of the principal results in combinatorics on words. It relates local periodicities of a word to its global periodicity. In this paper we give a multidimensional extension of it. More precisely, we give a new proof of the Critical Factorization Theorem, but in a weak form, where the weakness is due to the fact that we loose the tightness of the local repetition order. In exchange, we gain the possibility of extending our proof to the multidimensional case. Indeed, this new proof makes use of the Theorem of Fine and Wilf, that has several classical generalizations to the multidimensional cas

    Repetitive Delone Sets and Quasicrystals

    Full text link
    This paper considers the problem of characterizing the simplest discrete point sets that are aperiodic, using invariants based on topological dynamics. A Delone set whose patch-counting function N(T), for radius T, is finite for all T is called repetitive if there is a function M(T) such that every ball of radius M(T)+T contains a copy of each kind of patch of radius T that occurs in the set. This is equivalent to the minimality of an associated topological dynamical system with R^n-action. There is a lower bound for M(T) in terms of N(T), namely N(T) = O(M(T)^n), but no general upper bound. The complexity of a repetitive Delone set can be measured by the growth rate of its repetitivity function M(T). For example, M(T) is bounded if and only if the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive sets and densely repetitive sets have strict uniform patch frequencies, i.e. the associated topological dynamical system is strictly ergodic. It follows that such sets are diffractive. In the reverse direction, we construct a repetitive Delone set in R^n which has M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform patch frequencies. Aperiodic linearly repetitive sets have many claims to be the simplest class of aperiodic sets, and we propose considering them as a notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37 pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te

    The Local Theory for Regular Systems in the Context of t-Bonded Sets

    Get PDF
    The main goal of the local theory for crystals developed in the last quarter of the 20th Century by a geometry group of Delone (Delaunay) at the Steklov Mathematical Institute is to find and prove the correct statements rigorously explaining why the crystalline structure follows from the pair-wise identity of local arrangements around each atom. Originally, the local theory for regular and multiregular systems was developed with the assumption that all point sets under consideration are (r,R) role= presentation \u3e(r,R) -systems or, in other words, Delone sets of type (r,R) role= presentation \u3e(r,R) in d-dimensional Euclidean space. In this paper, we will review the recent results of the local theory for a wider class of point sets compared with the Delone sets. We call them t-bonded sets. This theory, in particular, might provide new insight into the case for which the atomic structure of matter is a Delone set of a “microporous” character, i.e., a set that contains relatively large cavities free from points of the set

    On the regularity radius of Delone sets in R3

    Get PDF
    We complete the proof of the upper bound ρ^3≤10R for the regularity radius of Delone sets in three-dimensional Euclidean space. Namely, summing up the results obtained earlier, and adding the missing cases, we show that if all 10R-clusters of a Delone set X with parameters (r,R) are equivalent, then X is a regular system
    corecore