research

Repetitive Delone Sets and Quasicrystals

Abstract

This paper considers the problem of characterizing the simplest discrete point sets that are aperiodic, using invariants based on topological dynamics. A Delone set whose patch-counting function N(T), for radius T, is finite for all T is called repetitive if there is a function M(T) such that every ball of radius M(T)+T contains a copy of each kind of patch of radius T that occurs in the set. This is equivalent to the minimality of an associated topological dynamical system with R^n-action. There is a lower bound for M(T) in terms of N(T), namely N(T) = O(M(T)^n), but no general upper bound. The complexity of a repetitive Delone set can be measured by the growth rate of its repetitivity function M(T). For example, M(T) is bounded if and only if the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive sets and densely repetitive sets have strict uniform patch frequencies, i.e. the associated topological dynamical system is strictly ergodic. It follows that such sets are diffractive. In the reverse direction, we construct a repetitive Delone set in R^n which has M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform patch frequencies. Aperiodic linearly repetitive sets have many claims to be the simplest class of aperiodic sets, and we propose considering them as a notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37 pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te

    Similar works

    Full text

    thumbnail-image