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Abstract

The Critical Factorization Theorem is one of the principal results in combinatorics on words. It
relates local periodicities of a word to its global periodicity. In this paper we give a multidimensional
extension of it. More precisely, we give a new proof of the Critical Factorization Theorem, but in a
weak form, where the weakness is due to the fact that we loose the tightness of the local repetition
order. In exchange, we gain the possibility of extending our proof to the multidimensional case. Indeed,
this new proof makes use of the Theorem of Fine and Wilf, that has several classical generalizations
to the multidimensional case.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As Professor M.P. Schutzenberger wrote in 1983, “Periodicity is an important property
of words that is often used in applications of combinatorics on words. The main results
concerning it are the theorem of Fine and Wilf [. . .] and the Critical Factorization Theorem”
(cf. [27]). Since then, combinatorics on words has expanded a great deal and now other
results may be added to the previous ones. Among them even an older result that became
important because the well-known Sturmian words represent an extremal case for it, the
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Morse-Hedlund Theorem (cf. [35] and see also [28,17,37,23] and references therein).
Another important result is a periodicity theorem proved in [31] (cf. also for instance
[11,26]), which is a “tight evolution” of a combinatorial lemma firstly proved in [20], used
in the design and analysis of a famous string matching algorithm described in the same
article (cf. also [13]).

In this paper, we will focus on one of the results mentioned by Schutzenberger, the critical
factorization theorem, found out by Césari and Vincent in [10] and developed by Duval in
[15]. It relates local periodicities of a word to its global periodicity. For a reference on it
and on other combinatorial results, see also [11, Chapter 6], [28, Chapter 8], [7, Chapter 3],
[26,25], and references therein.

For what concerns Computer Science and the theory of Combinatorics on Words, this
problem has a long tradition and it is an active research field (cf. for instance
[11,27,7,9,15,16,28,26,31,36] and references therein).Among the applications of the critical
factorization theorem in this field we recall a famous string matching algorithm, described
in [12], and an algorithm that finds a short superstring (cf. [8]). This theorem is also deeply
linked with longest unbordered factors of a word and a recently solved famous conjecture
by Duval (cf. [22,27,28,33] and references therein).

Concerning other fields, the same problem appears also in the theory of long-range order
for discrete structures in Rd . Indeed, the recent discovery and study of quasicrystals (cf.
[41] and [14]) raises the question: what geometric and physical conditions force a structure
to be crystalline rather than quasi-crystalline. Some answers to previous question have been
given in [14] where some conditions on “local rules” imply a “global” crystalline structure.
(cf. also [14,41,34,38,39,5,24] and references therein).

The same problem appears also in [6] with applications in Biology and in the study of
spatial structure of proteins. The solution proposed in this paper has been applied in several
research studies.

The aim of this paper is to give a first generalization of the critical factorization theorem
to the multidimensional domain. Up to our knowledge, no such generalization exists in the
scientific literature.

The techniques used here for proving the first generalization to multidimensional words
come from the theory of multidimensional periodicities, that was introduced in their sem-
inal and fundamental work by Amir and Benson in [1–3] (cf. also [4,19,21,40,43,17]). In
particular our techniques make use of some results developed in [21].

Recently, we have been able to give a proof of a weak form of the Critical Factoriza-
tion Theorem, by using the Theorem of Fine and Wilf. For this last theorem, which is
the tight version of the periodicity lemma, there exist generalizations to the multidimen-
sional case (cf. [21,32,40,42]). This fact has suggested us to try to extend our proof to the
multidimensional case.

The paper is organized as follows. In the next section we give some basic definitions and
state some fundamental theorems in the unidimensional case. Moreover, we state and prove
a weak form of the critical factorization theorem. This proof, as already stressed, will be
essential for the demonstration of the main result of the paper.

In Section 3, we examine the multidimensional case. Firstly, we give some fundamental
definitions and we extend some unidimensional lemmas to this case. Afterwards, we prove
our main theorem in the bidimensional case. In fact the proof in this case is simpler to read
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and the one in the d-dimensional case is only a trivial generalization of it that follows the
same steps.

In Section 4, we describe some research directions that are related to the results of this
paper and we state some open problems.

2. Basic definitions and the unidimensional case

For any notation not explicitly defined in this paper we refer to [21,27–29].
We begin this paper by considering unidimensional case for words, because it is in some

sense the simpler and most deeply studied case and it can help the intuition. Indeed, we will
state a weak form of the critical factorization theorem.

The alphabet we are considering here is any set, but it is usually finite. We want just to
observe that the main results of this paper are alphabet-independent.

A bi-infinite word w is a function from Z to the alphabet A. Therefore w(i) is a letter of
A that is the image of i by the function w. The set of all bi-infinite words is AZ.

Definition 1. Let w be a bi-infinite word. A factor of length n (or block of n consecutive
letters, or subword of length n) of w is a word of the form x = w(l)w(l + 1) · · · w(u), such
that u − l = n − 1. We accept l to be −∞ and u to be +∞, and not just integers, i.e. we
consider also, as factors of w, infinite words.

A bi-infinite word w has period p ∈ N, p > 0, or equivalently, p is a period of w if for
any i ∈ Z, w(i) = w(i + p). A finite word x has period p if it is a factor of a bi-infinite
word having period p, or, equivalently, if w(i) = w(i + p), for any i ∈ Z such that both
w(i) and w(i + p) belong to x. If the bi-infinite word w has a period, the smallest of all its
periods is called the period of w. If w has no periods, w is called aperiodic and its period
is considered to be +∞.

Note that for a finite word x, the above definition of periodicity differs from the classical
one by the fact that any p greater than the length of x is considered to be a period of x, while
it is not in the classical definition.

If x is a finite word, we denote by x(i) the ith letter of x. Thus we can write x =
x(1) . . . x(n), where n is the length of x. We define the numbers from 1 up to n − 1 to be
the positions of x. Roughly speaking, position i lies between letters x(i) and x(i + 1). The
set of positions of a bi-infinite word is Z.

We now define repetitions and central local periods.

Definition 2. Let w be a finite or infinite word.A factor of length n (or block of n consecutive
letters) of w, w(j)w(j + 1) · · · w(j + n − 1), is a repetition of order �, with ��1 a real
number, if there exists a natural number p, 0 < p�n such that w(i) = w(i + p) for
i = j, . . . , j + n − 1 − p and such that n/p��. The number p is called a period of the
repetition. The smallest of all periods is called the period of the repetition.

Note that if a factor of length n is a repetition of order � then it is trivially also a repetition of
order �′ for any 1��′ �� of the same period, because the definition of repetition involves an
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inequality. Any word of length n and period p�n has order n/p. Note also that a repetition
can have more than one period. Consequently, if a factor x of length n is a repetition of order
� and period p and if it has also period q, then factor x is a repetition of order �(p/q) and
period q.

As an example let us consider the word w = abaaba. It is a repetition of length 6 and
has order 1 with period 6, order 6

5 with period 5 and order 2 with period 3. In particular the
length of the repetition is always a period and, so, any factor is a repetition of order 1 and
period its length.

We refer to [28] for a formal definition of local period c�(w, i) of order � in position i of
the word w.

Roughly speaking c�(w, i) is the period of the smallest repetition of order � that matches
w when the center of the repetition is placed in position i. The match can be virtual, in the
sense that it is considered valid also when there are no more letters to match in w.

Definition 3. A position i is �-critical (or just critical, when � is fixed) if c�(w, i) coincides
with the period of the whole word w.

Above definition slightly differs from the corresponding one given in [28], where a critical
position represents the maximum of the local periods.

Remark 1. Note that if w has period p (where p can also be +∞) then for any � and
for any i ∈ Z, c�(w, i)�p. This inequality can be strict for all i, i.e. it may be that
there are no �-critical points. For instance, if w is the periodic word with period 4 w =
. . . 1000100010001000 . . . and if � = 4

3 , then no position is �-critical. Indeed the period
of w is 4, while w has in every position i a central repetition of order greater than or equal
to 4

3 and period smaller than or equal to 3. In fact, if i is between two 0s, then the central
repetition in position i of order greater than or equal to 4

3 is 00, that has order 2 and period
equal to 1. If i has a 1 immediately to the right (resp. left), then the central repetition in
position i of order greater than or equal to 4

3 is 0010 (resp. 0100), that has order exactly
equal to 4

3 and period 3. For another more complex example, we refer to Chapter 8 of [28]
where it is shown that if w is the Fibonacci bi-infinite word (that has period +∞), then for
any �, 1�� < 2 and for any i one has that c�(w, i)� k�(w), where k�(w) is a constant
depending on �.

In this section, we give a new proof of a weak form of the critical factorization theorem.
The weakness is due to the fact that we loose the tightness of the local repetition order. In
exchange, we gain the possibility of extending our proof to two dimensions. Indeed, this new
proof makes use of the Theorem of Fine and Wilf, that has several classical generalizations
to the bidimensional case.

Let us, firstly, state two lemmas and the Theorem of Fine and Wilf, that will be helpful
for our new proof (see [28, Lemma 8.1.2, Lemma 8.1.3, Theorem 8.1.4]).

Lemma 1. Let u, v, w be words such that uv and vw have period p and | v | �p. Then
the word uvw has period p.
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Lemma 2. Suppose that w has period q and that there exists a factor v of w with | v | � q

that has period r, where r divides q. Then w has period r.

Theorem 1 (Fine and Wilf [18]). Let w be a word having periods p and q, being q �p two
positive integers. If |w|�p + q − gcd(p, q), then w has also period gcd(p, q).

Before stating and proving the weak form of the critical factorization theorem, let us give
a definition that we will use in our proof.

Definition 4. Let w be a word and i, j be two positions of w. We define P�(i, j) =
sup{c�(w, l) | i� l�j}. If i and j coincide, respectively, with the first and last positions in
w (including the case i = −∞ and j = +∞), we denote P�(w) = P�(i, j).

The following theorem is, for � = 2, the critical factorization theorem. We will prove
it for � = 4, because under this hypothesis we will be able to use the Theorem of Fine
and Wilf.

An interval of positions [i, j ], i�j of a word w is the set of integers {i, . . . j} that are
also positions of w. Its size is its cardinality, that is j − i + 1.

Theorem 2. Let w be a (finite or infinite) word, [i, j ] be an interval of positions in w,
i, j ∈ Z

⋃{−∞, +∞} and � = 4.
(1) Every interval [t1, t2] ⊆ [i, j ], t1, t2 ∈ Z, of size t2 − t1 + 1 = max(1, P�(i, j) − 1)

contains a position l such that c�(w, l) = P�(i, j).
(2) If

i′ = inf
{
l −

⌈�

2
· c�(w, l)

⌉∣∣∣ i� l�j,

where l is such that c�(w, l) = P�(i, j)
}

,

j ′ = sup
{
l +

⌈�

2
· c�(w, l)

⌉
− 1

∣∣∣ i� l�j,

where l is such that c�(w, l) = P�(i, j)
}

,

then w has period P�(i, j) in [i′′, j ′′], where

i′′ =
{

i′ if i′ is a position in w,

the first position in w otherwise,

j ′′ =
{

j ′ if j ′ is a position in w,

the first position in w otherwise.

Proof. The proof is by induction on P�(i, j).
• If P�(i, j) = 1, c�(w, l) = 1 whenever in [i, j ] and then there is only one letter labelling

all the positions in this interval. Thus, w has period P�(i, j) = c�(w, l) = 1 in the whole
[i, j ] and the assertion is trivially true.

• Let us suppose that both assertions of the theorem hold true for all intervals [î, ĵ ] such

that P�(î, ĵ )〈n, n〉1. Let [i, j ] be an interval such that P�(i, j) = n. We shall prove that
both statements hold true even in [i, j ].
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Let us assume that there exists, by contradiction, an interval [t ′1, t ′2] ⊆ [i, j ] of size
equal to max(1, P�(i, j) − 1) = n − 1 that does not contain any position k such that
c�(w, k) = n. Let us slide this interval to the left or to the right until we find [t1, t2] of size
t2 − t1 +1 = n−1 such that the first position k′, i� k′ �j to the left or to the right of [t1, t2]
verifies c�(w, k′) = n and P�(t1, t2) = q < n. This k′ must exists because P�(i, j) = n.
Let us suppose that k′ is to the left (the proof being analogous in the other case) of the
interval, i.e. k′ = t1 − 1.

By the inductive hypothesis we know that each subinterval of size max(1, q −1) contains
a position l such that c�(w, l) = P�(t1, t2) = q. In particular, there exists at least one such
l among the first max(1, q − 1) positions of [t1, t2]. Let l be the smallest among them.

By the inductive hypothesis, on the interval [i′′, t2], with

i′′ =
{

i′ if i′ is a position in w,

the first position in w otherwise

and

i′ = inf
{
l −

⌈�

2
· c�(w, l)

⌉∣∣∣ i� l�j, where l is such that c�(w, l) = P�(i, j)
}

,

w is periodic of period q.

Claim. Position i′ belongs to the domain of the word w and, therefore, i′′ = i′.

Proof of the Claim. Let us suppose, on the contrary, that the claim is false. Since i′′ is the
first position in w and l� t1 > k′, there exists in position k′ an �-local repetition of period
q, contradicting the fact that c�(w, k′) = n and the claim is proved.

By hypothesis, i′′ = l − ��/2 · c�(w, l)	 = l − 2q. Thus, interval [i′′, t2] has size
t2−i′′+1 = t2−(l−2q)+1� t2−(t1+q−1−2q)+1 = t2−t1+q+2�n−2+q+2 = n+q.
Hence the word x = w(i′′) . . . w(t2) has length greater than or equal to n + q. But x has
also period n because it is contained in the repetition of order � centered in k′. Therefore, we
can apply the Theorem of Fine and Wilf to x and we conclude that the word x has period an
integer d that divides both n and q. By Lemma 2 this implies that the whole word centered
in k′ has period d, which is absurd because of the minimality of c�(w, k′) = n.

Therefore, the distance between two different positions l1 and l2 such that c�(w, l1) =
c�(w, l2) = P�(i, j) = n is at most n − 1 and the first assertion of the theorem is proved.
By Lemma 1 the word w has period n in the interval [i′′, j ′′], and this concludes the
proof. �

Recall that a critical position l is defined, in this paper, to be a position where the local
period c�(w, l) is equal to the global period p(w) of the word w. The first part of previous
theorem tell us that in every interval of length max(1, P�(w)−1) there is a critical position,
while the second part implies that P�(w) is equal to p(w). Therefore, the following corollary
is straigtforward.

Corollary 1. Every interval [t1, t2], with t1, t2 ∈ Z positions in w, of size t2 − t1 + 1 =
max(1, p(w) − 1) contains a critical position.
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3. The multidimensional case and the critical factorization theorem

Let us consider, now, the multidimensional case. Analogously to the unidimensional case
we may define a d-dimensional word w as a function from a subset X ⊆ Zd to an alphabet A.
The set X is called the shape of w and it is denoted by sh(w).A factor v of a multidimensional
word w is any restriction of w to any subset Y ⊆ X and clearly sh(v) = Y .

A word w is called an n-cubic word or simply a cubic word if its shape sh(w) is either
an hypercube of Zd , i.e. it is of the form {j1, . . . , j1 + n − 1} × · · · × {jd, . . . , jd + n − 1}
for some natural number n, or a translate of a quadrant, or the whole Zd .

Let us give the definition of multidimensional periodicity for words.

Definition 5. Let H be an additive subgroup of Zd , different from 〈0d〉 = {0d} (the zero
subgroup). A multidimensional word w having shape Zd has period H, or equivalently H
is a period of w, if for any i ∈ Zd and for any element g of the subgroup H one has that
w(i) = w(i + g).

A multidimensional word w′ has period H if it is a factor of a multidimensional word w

having shape Zd that has period H.
If w has no periods, w is called aperiodic and its period is considered to be +∞.

Note that for d = 1, the above definition of periodicity is equivalent to the one given in
the unidimensional case, if we consider equivalent the two properties of having period p
and having period the subgroup H = 〈p〉 generated by p > 0 (recall that all subgroups of
Z can be generated by only one element, that is unique up to a factor ±1).

The non-zero subgroups of Zd can only have dimension an integer d ′, with 1�d ′ �d.
For instance the word w from Z2 to A = Z defined by w(i1, i2) = i2 has period H1,

where H1 is generated by the element (1, 0) (in short H1 = 〈(1, 0)〉) and has dimension 1.
The word w from Z2 to A = {0, 1, 2, 3} defined by w(i1, i2) = x, where x is the decimal

corresponding to the binary number composed of two digits, the first being i1 (mod 2)

and the second i2 (mod 2), has period H2, where H2 is generated by the elements (2, 0)

and (0, 2) (in short H2 = 〈(2, 0), (0, 2)〉). Subgroup H2 has dimension 2.
The subgroups of Zd of dimension d are called lattices or fully dimensional subgroups.

They are the only subgroups that have finite index. If a factor has period a lattice H, it is
called fully periodic.

Another remarkable class of subgroups is that of subgroups of dimension 1. They are
generated by only one element. Trivially, if H = 〈q〉 then H = 〈−q〉, and q and −q are
the only generators of H. Suppose that H has dimension 1, q is its generator and it is also
a period of a factor v. The element q is called periodicity vector of v. It is easy to see that
q ∈ Zd is a periodicity vector of v if and only if for any z ∈ Z and for any i ∈ sh(v), such
that i + zq ∈ sh(v), one has that v(i) = v(i + zq).

Remark 2. If a factor v has period H and if H ′ is a subgroup of H then v has also period
H ′. In particular, if v has period H, for any q ∈ H one has that q is a periodicity vector
of v. In the unidimensional case this is equivalent to say that if v has period p then every
multiple of p is a period.
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Note that if w is an application from Zd to A and has period H and if g is an application
from A to any set B, the word g · w, composition of w and g, from Zd to B has also period
H. In other terms, projections preserve the period.

Recall that any subgroup H of dimension d > 1 has infinitely many bases, where a basis
of H is any set consisting of a minimal number of generators.

We give now the classical definition of transversal of a subgroup.

Definition 6. Given a subgroup H, a transversal TH of H is a subset of Zd such that for any
element i ∈ Zd , there exists an unique element j ∈ TH such that i − j ∈ H .

Remark 3. Note that if TH is a transversal of H then for any q ∈ Zd the set q + TH is
also a transversal of H. Indeed for any element i ∈ Zd , let us consider i − q. Since TH is a
transversal there exists an unique element j ′ ∈ TH such that i −q − j ′ = i − (q + j ′) ∈ H .
The unique element j = q + j ′ belongs to q + TH , and so q + TH satisfies previous
definition.

We now define the order of periodicity of factors of w that have an “hypercube” as “shape”.
These factors will be used to define what is a local periodicity in the multidimensional case
of words.

Definition 7. An n-cubic factor v is a repetition of order �, with ��1 a real number, (or an
�-repetition), if
(1) v is L periodic, where L is a full dimensional subgroup of Zd ;
(2) n is such that n/hL ��, where hL is the smallest integer such that every hypercube of

side length hL contains a transversal of L.
The lattice L is called a period of the �-repetition v.

Definition 8. The word w has a central repetition v of order � in position j = (j1, . . . , jd) ∈
Zd , if v is a 2n-cubic word that is a repetition of order � and shape {−n+ 1, . . . , n− 1, n}d
that matches w when its center is placed in position j, i.e., more formally, if for any i ∈ sh(v)

such that j + i ∈ sh(w) one has that w(j + i) = v(i). We say also that the repetition v is
centered in position j.

If w has at least a central repetition of order � and period L in position j ∈ Zd , the
set H of all hL such that every hypercube of side length hL contains a transversal of L is
non-empty. We will denote by c�(w, j) the minimum of this set H.

If w has no central repetitions of order � in position j, we set c�(w, j) = +∞.

Note that if an n-cubic factor is a repetition of order � then it is also a repetition of
order �′ for any 1��′ �� of same period because we used an inequality in the definition of
repetition.

Note also that a factor, and, as well, repetitions can have more than one period.
Note also that it is possible to give geometrical properties of the basis vectors of L to

satisfy condition 2. For instance, in dimension d = 1, L = 〈p〉 and the property is that
hL �p. For dimension d = 2, L = 〈(a, b), (c, d)〉, with a > 0 and c > 0 and the
requirement is that hL �a + c and hL � | b | + | d | (cf. [1]).
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We have now all notions necessary to state and prove the main result of the paper. We
only need some more “tools” that will play an important role in the proof of it. Let us start
by stating a result that is analogous for the multidimensional case to the Periodicity Lemma
(cf. [30]). It is an immediate consequence of the generalization to the multidimensional
case of the Theorem of Fine and Wilf given in [21].

Let H be a subgroup of Zd , q an element of Zd and v a word and let sh(v) be its shape.

Theorem 3. Suppose that v is H-periodic and that q is a periodicity vector for v. If sh(v)∩
(sh(v) + q) contains a transversal of H then v is also H ′-periodic, where H ′ = 〈H, q〉 is
the lattice generated by H and q.

Next two lemmas are the d-dimensional generalizations, respectively of Lemmas 1 and
2. They will be necessary for the proof of Theorem 4, as the unidimensional corresponding
ones were necessary for proving Theorem 2.

Lemma 3. Let v1 and v2 be two factors of same word w of Zd that have both period the
subgroup H. If sh(v1) ∩ sh(v2) contains a transversal of H then the factor v that has shape
sh(v) = sh(v1) ∪ sh(v2) has also period H.

Proof. We have to prove that for any i, j ∈ sh(v), if i − j ∈ H then v(i) = v(j). Previous
equality trivially holds if both i, j belong to sh(v1) or to sh(v2). We can suppose now,
without loss of generality, that i ∈ sh(v1) and j ∈ sh(v2). Since sh(v1)∩ sh(v2) contains a
transversal of H, there exists i′ ∈ sh(v1)∩ sh(v2) such that i′ − i ∈ H . Since v1 has period
H and also i′ ∈ sh(v1), v(i) = v1(i) = v1(i

′) = v(i′).
But i′ belongs also to sh(v2), and, moreover i′ − j = i′ − i + i − j that belongs to H

because both i′ − i and i − j belong to H. Since v2 has period H and also i′ ∈ sh(v2),
v(i′) = v1(i

′) = v1(j) = v(j) and the lemma is proved. �

Lemma 4. Let v1 and v2 be two factors of the same word w on Zd with sh(v2) ⊆
sh(v1). Suppose that v1 has period H1 and that v2 has period H2, with H1 a subgroup
of H2, and that sh(v2) contains a transversal of H1. Under these hypotheses v1 has
period H2.

Proof. We have to prove that for any i, j ∈ sh(v1), if i − j = h ∈ H2 then v1(i) = v1(j).
Since sh(v2) contains a transversal of H1, there exist i′, j ′ ∈ sh(v2) such that i′ − i = li ∈
H1 and j ′−j = lj ∈ H1. Since sh(v2) ⊆ sh(v1) and since v1 has period H1, v1(i) = v1(i

′)
and v1(j) = v1(j

′). But i′ − j ′ = i′ − i + i − j + j − j ′ = li + lj + h. Since H1 is a
subgroup of H2, li + lj + h ∈ H2. Since i′, j ′ ∈ sh(v2), i′ − j ′ ∈ H2 and v2 has period
H2, v1(i

′) = v2(i
′) = v2(j

′) = v1(j
′) and the lemma is proved. �

From now on we will deal with bidimensional words and we will state and prove
the main result of this paper in that case. In fact, the proof is in this case simpler to
read. The proof in the d-dimensional case follows the same steps and it will be not
reported here.

Moreover, we will focus on squared words. Our result will be proved only in this case.
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sh(w)

X

Fig. 1. �-repetitions such that c�(w, l) = P�(X), for � = 2.

Definition 9. Let w be a word and X be a square contained in sh(w). We define P�(X) =
sup{c�(w, l) | l ∈ X}. We call a position l critical if there exists a period L of w such that
every square of side length c�(w, l) contains a transversal of L.

Remark 4. We notice that lattice L in above definition depends only on w and c�(w, l) and
not directly on �. Roughly speaking, a position is critical if a local period is also a global
period.

Theorem 4. Let w be a (finite or infinite) squared bidimensional word, X be a square
contained in the shape of w and � = 4.
(1) Every square T ⊆ X, of side length sd(T ) = max(1, P�(X) − 1) contains a position l

such that c�(w, l) = P�(X).
(2) Let v be the factor of w the shape of which is the intersection of sh(w) and the union of

the shapes of the �-repetitions centered in positions l ∈ X such that c�(w, l) = P�(X).
Then v has period L, where L is a subgroup such that every square of side length P�(X)

contains a transversal of L (Figs. 1, 2).

Proof. The proof is by induction on P�(X). Let X′ be the union of the shapes of the �-
repetitions centered in position l ∈ X. If P�(X) = 1, there is only one letter labelling all
the positions in X′ and the assertions are trivially true.
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sh(w)

X′

Fig. 2. Intersection of sh(w) and the union of the shapes of the �-repetitions centered in position l ∈ X.

Let us suppose that the statements of the theorem hold true for all squares T such that
P�(T )〈n, n〉1. Let X be a square such that P�(X) = n.

Let us assume that there exists, on the contrary, a square T ′ ⊆ X having side length equal
to max(1, P�(X) − 1) = n − 1 that does not contain any position k such that c�(w, k) = n.
Let us slide this square in any possible direction until we find a square T such that there exists
a position k ∈ X just out, at distance one (by using the distance induced by the sup norm)
from the perimeter of T, such that c�(w, k) = n. This k must exist because P�(X) = n.
Notice that P�(T ) is smaller than n. We denote this value P�(T ) by q.

By the inductive hypothesis we know that v has period L2, where v is the factor of w

the shape of which is the intersection of sh(w) and the union T ′ of the shapes of the �-
repetitions centered in position l ∈ T such that c�(w, l) = P�(T ) = q and L2 is such that
every square of side length q contains a transversal of it.

Again by the inductive hypothesis, the square C, that has side length sd(T ) + 2(q + 1)

and centre T (see Fig. 3) is contained in T ′.
We know that the factor of w that has shape C ∩ sh(w) has period L2. We know that

sh(w) contains both T and the position k. We want to prove that C ∩ sh(w) encloses a
square of side length at least sd(T ) + q + 1. �
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q+1

C

T

k

Fig. 3. Square C, that has side length sd(T ) + 2(q + 1) and center T.

Claim 1. sh(w) is not contained in C.

Proof of the Claim 1. Let us suppose, on the contrary, that the claim is false. Since sh(w)

is contained in C ∩ sh(w), it has period L2. Therefore, there exists in position k an �-
local repetition of period L2, where L2 is such that every square of side length q con-
tains a transversal of it. This contradicts the fact that c�(w, k) = n > q and the claim is
proved.

The shape sh(w) is not contained in C, but encloses T. Hence, it extends at least beyond
one side of C. Therefore the side length of sh(w) must be greater than sd(T ) + q + 1. Any
intersection of C and a square of side length greater than sd(T )+q +1 that contains T must
contain a square of side length at least sd(T ) + q + 1. This implies that the intersection of
sh(w) and C contains a square C1 of side length at least sd(T ) + q + 1 (see Fig. 4). Notice
that C1 can be chosen in such a way that it contains position k.

Let us consider the intersection C2 between C1 and the shape of the central �-repetition in
position k. This is a square of side length 4n, because � = 4 and k is such that c�(w, k) = n.
Since k belongs to C1 and since sd(T )�n, this intersection is a square of side length greater
than or equal to n + q + 1.

This square has periods both L and L2. The scheme is the same as in the unidimensional
case, even if a bit more complicated. We want to apply Theorem 3 in order to prove that this
square has a period lattice L4 = 〈L, L2〉, generated by both L and L2 and this is proved in
the following claim.

Claim 2. C2 has period L4 = 〈L, L2〉.

Proof of the Claim 2. Since every square of side length n contains a transversal of L, there
exists a basis {b1, b2} of L, L = 〈b1, b2〉, such that every coordinate of both b1 and b2 has
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q+1

C

T

k

q+1

C

T

k

q+1

C

T

k

C

T

k

q+1

sh(w)
sh(w)

sh(w)
sh(w)

Fig. 4. All possible locations of C and sh(w). All intersections between C and sh(w) contain a square C1 of side
length at least sd(T ) + q + 1.

absolute value smaller than or equal to n. This implies that both b1 and b2 are periodicity
vectors for the restriction v of w to the shape C2. Hence C2 ∩ (C2 +b1) and C2 ∩ (C2 +b2)

contain a square of side length q.
We can now apply Theorem 3 to the factor v, having shape C2, periodicity vector b1 and

period lattice L2 and we obtain that v has period lattice the lattice L3 = 〈L2, b1〉. Since L2
is a subgroup of L3, every square of side length q contains a transversal of L3. We can again
apply Theorem 3 to the factor v, but this time referring to periodicity vector b2 and period
lattice L3. We obtain that v has lattice periodicity the lattice L4 = 〈L3, b2〉 = 〈L, L2〉 and
Claim 2 is proved.

Since L is a subgroup of L4 and v contains a transversal of L, by Lemma 4 we have that
the whole central �-repetition in position k has period L4. This is absurd because, since L2
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is a subgroup of L4, every square of side length q contains a transversal of L4, and this
contradicts the minimality of c�(w, k) = n > q. Therefore, we have proved statement 1 of
the theorem.

Let l′1 and l′2 be a couple of positions such that the distance (induced by the sup norm)
between them is at most n−1, such that c�(w, l′1) = c�(w, l′2) = P�(X) = n. Denote by L′

1
and L′

2 the two periods corresponding to the two central �-repetitions v′
1 and v′

2. We want to
prove that v′

1 and v′
2 are �-repetitions with the same period L′. Since the intersection of the

shapes of the two central �-repetitions in positions l′1 and l′2 contains a square having side
length at least 3n, we can apply the reasoning used above to prove Claim 2 to conclude that
this intersection has period L′ = 〈L′

1, L
′
2〉. By Lemma 4 both v′

1 and v′
2 are �-repetitions

with period L′.
Since every square T ⊆ X, of side length sd(T ) = max(1, P�(X)−1) contains a position

l such that c�(w, l) = P�(X), we can iteratively apply this result and conclude that there
exists a lattice L′ that is a period for all �-repetitions with centre in a position l ∈ X such
that c�(w, l) = P�(X).

We can now iteratively apply Lemma 3 and obtain that L′ is a period for the restriction
of w to sh(w) ∩ X′, where X′ is the union of the shapes of the �-repetitions centered in
position l ∈ X such that c�(w, l) = P�(X). �

Corollary 2. Every square T, with T enclosed in sh(w), of side length

sd(T ) = max(1, P�(sh(w)) − 1)

contains a critical position.

4. Conclusions and open problems

It is known that in the unidimensional case the tight value for the critical factorization
theorem is � = 2. It still remains an open problem to find the tight value of � for any
dimension d > 1. Is it � = 2, as in the unidimensional case?

The original critical factorization theorem was the main theoretic tool in a famous string
matching algorithm (see [12]) that works with constant additional space. We hope that
our results can be helpful in the design and analysis of multidimensional pattern matching
algorithms.

A further problem is to extend results from the case of multidimensional words to the
case of Delone sets, in particular, to extend Theorem 4 (cf. [14] and references therein).

Last, but not least, it would be interesting to see if it is possible to extend the Duval
Conjecture, or Harju–Nowotka Theorem, to the multidimensional case. This problem is not
trivial because it involves the generalization of unidimensional notions, such as the one of
unbordered words (cf. [22] and references therein).
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