1,831 research outputs found

    Managing Incomplete Preference Relations in Decision Making: A Review and Future Trends

    Get PDF
    In decision making, situations where all experts are able to efficiently express their preferences over all the available options are the exception rather than the rule. Indeed, the above scenario requires all experts to possess a precise or sufficient level of knowledge of the whole problem to tackle, including the ability to discriminate the degree up to which some options are better than others. These assumptions can be seen unrealistic in many decision making situations, especially those involving a large number of alternatives to choose from and/or conflicting and dynamic sources of information. Some methodologies widely adopted in these situations are to discard or to rate more negatively those experts that provide preferences with missing values. However, incomplete information is not equivalent to low quality information, and consequently these methodologies could lead to biased or even bad solutions since useful information might not being taken properly into account in the decision process. Therefore, alternative approaches to manage incomplete preference relations that estimates the missing information in decision making are desirable and possible. This paper presents and analyses methods and processes developed on this area towards the estimation of missing preferences in decision making, and highlights some areas for future research

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    Estimating unknown values in reciprocal intuitionistic preference relations via asymmetric fuzzy preference relations

    Get PDF
    Intuitionistic preference relations are becoming increasingly important in the field of group decision making since they present a flexible and simple way to the experts to provide their preference relations, while at the same time allowing them to accommodate a certain degree of hesitation inherent to all decision making processes. In this contribution, we prove the mathematical equivalence between the set of asymmetric fuzzy preference relations and the set of reciprocal intuitionistic fuzzy preference relations. This result is exploited to tackle the presence of incomplete reciprocal intuitionistic fuzzy preference relation in decision making by developing a consistency driven estimation procedure via the corresponding equivalent incomplete asymmetric fuzzy preference relation

    Ordering based decision making: a survey

    Get PDF
    Decision making is the crucial step in many real applications such as organization management, financial planning, products evaluation and recommendation. Rational decision making is to select an alternative from a set of different ones which has the best utility (i.e., maximally satisfies given criteria, objectives, or preferences). In many cases, decision making is to order alternatives and select one or a few among the top of the ranking. Orderings provide a natural and effective way for representing indeterminate situations which are pervasive in commonsense reasoning. Ordering based decision making is then to find the suitable method for evaluating candidates or ranking alternatives based on provided ordinal information and criteria, and this in many cases is to rank alternatives based on qualitative ordering information. In this paper, we discuss the importance and research aspects of ordering based decision making, and review the existing ordering based decision making theories and methods along with some future research directions

    Consistency test and weight generation for additive interval fuzzy preference relations

    Get PDF
    Some simple yet pragmatic methods of consistency test are developed to check whether an interval fuzzy preference relation is consistent. Based on the definition of additive consistent fuzzy preference relations proposed by Tanino (Fuzzy Sets Syst 12:117–131, 1984), a study is carried out to examine the correspondence between the element and weight vector of a fuzzy preference relation. Then, a revised approach is proposed to obtain priority weights from a fuzzy preference relation. A revised definition is put forward for additive consistent interval fuzzy preference relations. Subsequently, linear programming models are established to generate interval priority weights for additive interval fuzzy preference relations. A practical procedure is proposed to solve group decision problems with additive interval fuzzy preference relations. Theoretic analysis and numerical examples demonstrate that the proposed methods are more accurate than those in Xu and Chen (Eur J Oper Res 184:266–280, 2008b)

    A chi-square method for priority derivation in group decision making with incomplete reciprocal preference relations

    Get PDF
    This paper proposes a chi-square method (CSM) to obtain a priority vector for group decision making (GDM) problems where decision-makers’ (DMs’) assessment on alternatives is furnished as incomplete reciprocal preference relations with missing values. Relevant theorems and an iterative algorithm about CSM are proposed. Saaty’s consistency ratio concept is adapted to judge whether an incomplete reciprocal preference relation provided by a DM is of acceptable consistency. If its consistency is unacceptable, an algorithm is proposed to repair it until its consistency ratio reaches a satisfactory threshold. The repairing algorithm aims to rectify an inconsistent incomplete reciprocal preference relation to one with acceptable consistency in addition to preserving the initial preference information as much as possible. Finally, four examples are examined to illustrate the applicability and validity of the proposed method, and comparative analyses are provided to show its advantages over existing approaches

    Granular computing and optimization model-based method for large-scale group decision-making and its application

    Get PDF
    In large-scale group decision-making process, some decision makers hesitate among several linguistic terms and cannot compare some alternatives, so they often express evaluation information with incomplete hesitant fuzzy linguistic preference relations. How to obtain suitable large-scale group decision-making results from incomplete preference information is an important and interesting issue to concern about. After analyzing the existing researches, we find that: i) the premise that complete preference relation is perfectly consistent is too strict, ii) deleting all incomplete linguistic preference relations that cannot be fully completed will lose valid assessment information, iii) semantics given by decision makers are greatly possible to be changed during the consistency improving process. In order to solve these issues, this work proposes a novel method based on Granular computing and optimization model for large-scale group decision-making, considering the original consistency of incomplete hesitant fuzzy linguistic preference relation and improving its consistency without changing semantics during the completion process. An illustrative example and simulation experiments demonstrate the rationality and advantages of the proposed method: i) semantics are not changed during the consistency improving process, ii) completion process does not significantly alter the inherent quality of information, iii) complete preference relations are globally consistent, iv) final large-scale group decision-making result is acquired by fusing complete preference relations with different weights

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    An optimal feedback model to prevent manipulation behaviours in consensus under social network group decision making

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A novel framework to prevent manipulation behaviour in consensus reaching process under social network group decision making is proposed, which is based on a theoretically sound optimal feedback model. The manipulation behaviour classification is twofold: (1) ‘individual manipulation’ where each expert manipulates his/her own behaviour to achieve higher importance degree (weight); and (2) ‘group manipulation’ where a group of experts force inconsistent experts to adopt specific recommendation advices obtained via the use of fixed feedback parameter. To counteract ‘individual manipulation’, a behavioural weights assignment method modelling sequential attitude ranging from ‘dictatorship’ to ‘democracy’ is developed, and then a reasonable policy for group minimum adjustment cost is established to assign appropriate weights to experts. To prevent ‘group manipulation’, an optimal feedback model with objective function the individual adjustments cost and constraints related to the threshold of group consensus is investigated. This approach allows the inconsistent experts to balance group consensus and adjustment cost, which enhances their willingness to adopt the recommendation advices and consequently the group reaching consensus on the decision making problem at hand. A numerical example is presented to illustrate and verify the proposed optimal feedback model
    • 

    corecore