115 research outputs found

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Navigation and guidance requirements for commercial VTOL operations

    Get PDF
    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts

    Towards consistent visual-inertial navigation

    Get PDF
    Visual-inertial navigation systems (VINS) have prevailed in various applications, in part because of the complementary sensing capabilities and decreasing costs as well as sizes. While many of the current VINS algorithms undergo inconsistent estimation, in this paper we introduce a new extended Kalman filter (EKF)-based approach towards consistent estimates. To this end, we impose both state-transition and obervability constraints in computing EKF Jacobians so that the resulting linearized system can best approximate the underlying nonlinear system. Specifically, we enforce the propagation Jacobian to obey the semigroup property, thus being an appropriate state-transition matrix. This is achieved by parametrizing the orientation error state in the global, instead of local, frame of reference, and then evaluating the Jacobian at the propagated, instead of the updated, state estimates. Moreover, the EKF linearized system ensures correct observability by projecting the most-accurate measurement Jacobian onto the observable subspace so that no spurious information is gained. The proposed algorithm is validated by both Monte-Carlo simulation and real-world experimental tests.United States. Office of Naval Research (N00014-12-1- 0093, N00014-10-1-0936, N00014-11-1-0688, and N00014-13-1-0588)National Science Foundation (U.S.) (Grant IIS-1318392

    DECENTRALIZED ROBUST NONLINEAR MODEL PREDICTIVE CONTROLLER FOR UNMANNED AERIAL SYSTEMS

    Get PDF
    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1 A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2 A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3 An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4 A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible

    Vision-based control and autonomous landing of a VTOL-UAV

    Get PDF
    In recent years the popularity of quadrotor unmanned aerial vehicles (UAVs) has increased. Today, UAVs are widely used by military and police forces for surveillance. They are used by industry for such tasks as traffic monitoring, infrastructure inspection or even delivery of goods. They are used by individuals for hobby flying and aerial photography. It is currently of great interest in the research community to improve the level of autonomy of the UAV for these and future uses. One particular problem is the ability to stabilize over and land on a moving platform. This situation can easily arise for a quadrotor returning to a ship at sea or even a landing pad affixed to a vehicle. Many current techniques rely on knowledge of the platform and its motion, or a predictive model. This information is not always available or accurate. A solution that does not require knowledge of the target is desirable. This thesis deals with practical implementation of optical flow based position stabilization and autonomous landing algorithms for a quadrotor UAV. The quadrotor used is a common low cost platform with a large open source community. Firstly, non-linear estimation and control techniques are implemented for the attitude stabilization using low-cost sensors and limited computational power. Some methods for the system parameters estimation are presented and some challenges related to the implementation are discussed. Despite the ability of the attitude controller to stabilize the orientation of the quadrotor, hovering and landing precisely over a specific area is not possible without a position stabilization scheme. In applications where GPS signals are not available and the hovering target is a priori unknown, it is common to rely on visual information. In this context, this thesis aims for the development of an efficient optical-flow-based position stabilization and autonomous landing scheme for the quadrotor UAV

    ヘクサコプターのための耐故障制御と視覚に基づくナビゲーション

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Development and evaluation of a dynamically scaled testbed aircraft for a visual inertial odometry dataset

    Get PDF
    In this thesis we describe the design, manufacturing, and testing of a dynamically scaled aircraft, which is a scaled model of a general aviation vehicle that dynamically behaves in a similar manner as the full-scale aircraft. This scaled model (Cirrus SR22T) is to serve as a testbed for both Distributed Electric Propulsion (DEP) aircraft research and for Visual Inertial Odometry (VIO) research. The aircraft is used as a baseline to compare with the DEP aircraft, to draw conclusion regarding the effect of changing to a DEP configuration, and to provide a way to measure the effect that a DEP configuration would have on a full-scale aircraft. The aircraft is also used to collect data from various onboard sensors to provide a data set for the VIO research community to use

    NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    Get PDF
    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.

    Active control of turbulence-induced helicopter vibration

    Get PDF
    Helicopter vibration signatures induced by severe atmospheric turbulence have been shown to differ considerably from nominal, still air vibration. The perturbations of the transmission frequency have significant implications for the design of passive and active vibration alleviation devices, which are generally tuned to the nominal vibration frequency. This thesis investigates the existence of the phenomena in several realistic atmospheric turbulence environments, generated using Computational Fluid Dynamic (CFD) engineering software and assimilated within a high-fidelity rotorcraft simulation, RASCAL. The RASCAL simulation is modified to calculate blade element sampling of the gust, enabling thorough, high frequency analyses of the rotor response. In a final modification, a numerical, integration-based inverse simulation algorithm, GENISA is incorporated and the augmented simulation is henceforth referred to as HISAT. Several implementation issues arise from the symbiosis, principally because of the modelling of variable rotorspeed and lead-lag motion. However, a novel technique for increasing the numerical stability margins is proposed and tested successfully. Two active vibration control schemes, higher harmonic control 'HHC' and individual blade control 'IBC', are then evaluated against a 'worst-case' sharp-edged gust field. The higher harmonic controller demonstrates a worrying lack of robustness, and actually begins to contribute to the vibration levels. Several intuitive modifications to the algorithm are proposed but only disturbance estimation is successful. A new simulation model of coupled blade motion is derived and implemented using MATLAB and is used to design a simple IBC compensator. Following bandwidth problems, a redesign is proposed using H theory which improves the controller performance. Disturbance prediction/estimation is attempted using artificial neural networks to limited success. Overall, the aims and objectives of the research are met
    corecore